
Ph.D. Qualifying Exam – Spring 2004

First problem

Suppose f ∈ L1(R). Let

∀x ∈ R g(x) =

∫

R

e−ixy2

f(y) dy

1. Prove that the integral exists for every x.

2. Prove that g is a continuous function.

3. Prove that there is a dense subset S of L1(R) such that if f ∈ S, then

lim
|x|→+∞

g(x) = 0 (⋆)

4. Prove that (⋆) holds for any f ∈ L1(R).

Solution

1 We have ∀x, y ∈ R
∣
∣e−ixy2

f(y)
∣
∣ =

∣
∣f(y)

∣
∣ (1)

and since f is L1(R), the function x 7−→ f(y)e−ixy2

is also L1(R) for every real number x.
Thus

The function g is well defined.

2 Because of (1), and because the function (x, y) 7−→ f(y)e−ixy2

is continuous in x, we
can apply the continuity theorem for integrals and deduce that

g is continuous on R.

In the remainder of the solution, we will write Tf for g. That is

∀f ∈ L1(R) ∀x ∈ R Tf(x) =

∫

R

f(y) e−ixy2

dy

3 Let S1 be the set of L1 functions, that are 0 almost everywhere in some neighbourhood
of 0. That is:

S1 =
{
f ∈ L1(R) | ∃ǫ > 0 f 1[−ǫ,ǫ] = 0

}
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We first show that S1 is dense. Let f be in L1. For every positive integer n, define

fn = f − f 1[− 1
n
, 1

n
]

Then fn 1[− 1

n
, 1

n
] = 0

so that ∀n ∈ N⋆ fn ∈ S

Furthermore ∀n ∈ N ‖f − fn‖1 =

∫ 1

n

− 1

n

|f | −−−−→
n→∞

0

which proves that S1 is dense. We now let S be the elements of S1 which are C ∞ with
compact support. The intersection of two dense sets is dense, hence

S is dense in L1(R).

If f belongs to S, then h : y 7−→
f(y)

y
is C ∞ with compact support and 0 in a

neighbourhood of 0. Thus h and h′ are integrable. We have

∀x ∈ R Tf(x) =

∫

R

f(y) e−ixy2

dy =

∫

R

h(y) ye−ixy2

dy

Integrate by parts:

∀x ∈ R \ {0} Tf(x) =
[h(y)e−ixy2

−2ix

]+∞

−∞
︸ ︷︷ ︸

=0

+
1

2ix

∫

R

h′(y)e−ixy2

dy

Thus ∀x ∈ R \ {0}
∣
∣Tf(x)

∣
∣ 6

1

2|x|
‖h′‖1 −−−−−−→

|x|→+∞
0

There is a dense subset S of L1 such that

∀f ∈ S lim
|x|→+∞

Tf(x) = 0

4 Let f be in L1 and g be in S. We can write that Tf = Tg + T(f − g), and notice that

∀x ∈ R
∣
∣T(f − g)(x)

∣
∣ 6 ‖f − g‖1

Then lim sup
|x|→+∞

∣
∣Tf(x)

∣
∣ 6 lim sup

|x|→+∞

∣
∣Tg(x)

∣
∣

︸ ︷︷ ︸

=0

+‖f − g‖1 = ‖f − g‖1

This holds for every g in S, which is dense in L1. Thus lim sup
|x|→+∞

∣
∣Tf(x)

∣
∣ is 0:

∀f ∈ L1(R) lim
|x|→+∞

Tf(x) = 0
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Second problem

Suppose (X, A , µ) is a measure space and that (fn)n∈N is a sequence in L1(µ) converg-
ing weakly. Prove that

∀ǫ > 0 ∃δ > 0 ∀A ∈ A
(
µ(A) < δ =⇒ ∀n ∈ N

∫

A

|fn| dµ 6 ǫ
)

Solution

The following result is a key ingredient for this problem:
Theorem 1: Let (X, A , µ) be a measure space. Let f be a positive integrable

function on X. Then

∀ǫ > 0 ∃δ > 0 ∀A ∈ A
(
µ(A) 6 δ =⇒

∫

A

f dµ 6 ǫ
)

I believe it is usually proved in 205A, so it can, of course, be used. Yet it took me
so much time remembering why it is true that I want to recall the proof:
Proof: For every positive integer n, define

fn = Min (f, n)

The sequence (fn)n∈N is increasing and converges pointwise to f . By the monotone

convergence theorem, fn

L1(µ)
−−−−→

n→∞
f . Let A be a measurable set. We have

∫

A

f dµ =

∫

A

(f − fn) dµ +

∫

A

fn dµ 6

∫

X

(f − fn) dµ + nµ(A)

Taking n big enough so that
∫

X
(f−fn) dµ 6 ǫ

2
, and letting A be any set of measure

less than ǫ
2n

yield
∫

A

f dµ 6 ǫ �

Suppose the conclusion false:

∃ǫ > 0 ∀δ > 0 ∃A ∈ A
(
µ(A) < δ and

∫

A

|fn| dµ > ǫ for some n
)

(⋆)

In other words,

Inf
{

µ(A)
∣
∣
∣ A ∈ A such that

∫

A

|fn| dµ > ǫ for some n
}

= 0

Start by taking δ1 = 1 in (⋆). Then there exists an integer k1 and a measurable set A1

such that
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µ(A1) 6 δ1 and

∫

A1

|fk1
| dµ > ǫ

Let’s rename fk1
to g1. This is the first step in the inductive construction of a subsequence

(gn)n∈N of (fn)n∈N, a sequence (An)n∈N of measurable sets, and a sequence (δn)n∈N of
positive real numbers.

Suppose that we have constructed the first terms g1, . . . , gn of the subsequence, sets
A1, . . . , An and positive real numbers δ1, . . . , δn, with the following properties:

• For m 6 n, δm is such that

∀A ∈ A
(
µ(A) 6 δm =⇒

∫

A

|gj| dµ <
ǫ

2m
for j = 1, . . . , m − 1

)

• For m 6 n, Am and gm are such that

µ(Am) 6 δm and

∫

Am

|gm| dµ > ǫ

Using Theorem 1 and (⋆), it is clear that we can construct δn+1, An+1 and gn+1. So the
two properties listed above are actually satisfied for every n. Hope this is clear enough...

For every positive integer n, let

Bn = An \
( n−1⋃

j=1

Aj

)

The sets (Bn)n∈N are pairwise disjoint
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Third problem

Let f : (a, b) −→ R be an arbitrary function. Let

S =
{
x ∈ (a, b)

∣
∣ f ′(x) exists and equals 0

}

Prove that the image f(S) of S under f has measure 0.

Solution

Let ǫ be a positive real number. By definition, if x is in S, f is differentiable at x and
f ′(x) = 0. Thus there exists h > 0 such that

∀y ∈ [x − h, x + h]
∣
∣f(y) − f(x)

∣
∣ 6 ǫ|x − y| 6 2ǫh

which means that f([x − h, x + h]) ⊂ [f(x) − 2ǫh, f(x) + 2ǫh].

Now, let C be the collection of all intervals of the form I = [x − h, x + h] ⊂ (a, b),
such that x ∈ S and f(I) is contained in an interval of length at most 2ǫh. What we just
explained shows that C covers S. Thus, by the 5-times covering lemma, there exists a
pairwise disjoint collection (In)n∈N =

(
[xn −hn, xn +hn]

)

n∈N
⊂ C such that (5In)n∈N ⊂ C

as well, and S ⊂
⋃

n∈N

5In. Thus f(S) ⊂
⋃

n∈N

f(5In) and since the Lebesgue measure is

increasing and subadditive:

µ
(
f(S)

)
6

∑

n∈N

µ
(
f(5In)

)

For every integer n, because 5In ∈ C , f(5In) is included in an interval of length 2ǫ× 5hn:

µ
(
f(S)

)
6 5ǫ

∑

n∈N

2hn = 5ǫ
∑

n∈N

µ(In) = 5ǫµ
( ⋃

n∈N

In

)

6 5ǫ(b − a)

This holds for every positive ǫ. Therefore,

µ
(
f(S)

)
= 0
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Fourth problem

Let X be a metric space.

1. Prove that if X is countably compact, then X is compact.

2. Prove that if every continuous function on X is bounded, then X is compact.

Solution

1 Suppose that X is countably compact, which means that every countable open cover of
X has a finite subcover. Then we can derive a property analogous to the finite intersection
property: if (Fn)n∈N is a (countable) collection of closed sets such that

⋂

n∈N

Fn = ∅, there

exists a finite subcollection Fn1
, . . . , Fnk

such that Fn1
∩ · · · ∩ Fnk

= ∅.

This is proven exactly as the finite intersection property is proven: the (Fc
n)n∈N

form a countable open cover of X. Thus there is a finite subcover Fc
n1

∪ · · · ∪ Fc
nk

of X, and we have Fn1
∩ · · ·Fnk

= ∅.

Because X is a metric space, sequential compactness is equivalent to compactness. So
let (xn)n∈N be a sequence of elements of X. The set of limit points of (xn)n∈N is

L =
⋂

n∈N

{xk | k > n}

Suppose that L is empty. Then there exist integers n1 6 . . . 6 nj such that

∅ =
j⋂

k=1

{xk | k > nj}

But these closed sets form a decreasing sequence, therefore

∅ = {xk | k > nj}

which is, of course, impossible. Hence L is not empty: (xn)n∈N has convergent subse-
quences.

2 Suppose that X is not compact. There exists a sequence (xn)n∈N of elements of X
that has no convergent subsequence. Denote by X the collection (xn)n∈N. Then X is
closed: indeed, a convergent sequence of distinct points of X would allow us to construct
a convergent subsequence of (xn)n∈N.

The same conclusion holds for Xn = X \ {xn}, for every integer n: this set is closed.
Since it does not contain xn, the distance dist(xn, Xn) is a positive real number rn.
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Define a function on X as follows:

∀n ∈ N f(xn) = n

Then f is continuous on the closed set X and by Tietze’s extension theorem, it can be
extended to a continuous function (still denoted f) on X. So there exists a continuous,
unbounded, function on X.

If every continuous function on X is bounded, X is compact.
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Fifth problem

Prove that there exists an orthonormal basis B of L2([0, 1]) such that

∀f ∈ B

∫ 1

0

|f(x)|
dx

x
< ∞ and

∫ 1

0

f(x)
dx

x
= 0

Solution

Let S =
{

f ∈ L2(0, 1)
∣
∣

∫ 1

0

|f(x)|
dx

x
< ∞

}

∀f ∈ S Tf =

∫ 1

0

f(x)
dx

x

and ∀n ∈ N gn = 1[ 1

n
,1]

Then S is dense in L2(0, 1). Indeed, let f be an L2 function. For every positive integer n,
the function fn = fgn is in S , and

‖f − fn‖
2
2 =

∫ 1

n

0

f(x) dx −−−−→
n→∞

0

by dominated convergence.
Define now

Z = Ker T

and let’s show that Z is dense in S . For this, we will need the value of Tgn, which is
not a problem:

∀n ∈ N Tgn =

∫ 1

1

n

dx

x
= ln n −−−−→

n→∞
+∞

Let f be any function in S . Then

T
(

f −
Tf

Tgn

gn

)

= 0

which gives f −
Tf

Tgn

gn ∈ Z

But
|Tf |

|Tgn|
‖gn‖2 =

Tf

ln n

(

1 −
1

n

)

−−−−→
n→∞

0

and therefore lim
n→∞

(

f −
Tf

Tgn

gn

)

= f
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f is indeed the limit of a sequence in Z : the latter is dense in S .
Since L2(0, 1) is separable, Z has a countable dense subset X . Using the Gram-

Schmidt process, we can extract an orthonormal sequence (fn)n∈N ⊂ X , that spans the
same subspace as X . Thus

X ⊂ Span (fn)n∈N

and L2(0, 1) = Span (fn)n∈N
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Sixth problem

Let (X, B, µ) be a finite measure space. Suppose that (fn)n∈N is a sequence of functions
in L1(µ), converging almost everywhere to an L1(µ) function f . Suppose also that

‖fn‖1 −−−−→
n→∞

‖f‖1

1. Prove that for every measurable set A,

∫

A

|fn| dµ −−−−→
n→∞

∫

A

|f |.

2. Prove that ‖fn − f‖1 −−−−→
n→∞

0.

Solution

1 For every integer n, define

gn = Min (|fn|, |f |) =
|fn| + |f | −

∣
∣|fn| − |f |

∣
∣

2
Since (fn)n∈N converges almost everywhere to f , it follows that (gn)n∈N converges almost
everywhere to |f | and is dominated by |f |.

Let A be any measurable set. Then (gn1A)n∈N converges almost everywhere to |f |1A

and is dominated by |f |1A. The dominated convergence theorem implies that

lim
n→∞

∫

A

gn dµ =

∫

A

|f | dµ

The same argument shows that

lim
n→∞

∫

X

gn dµ =

∫

X

|f | dµ

Now, by definition of gn, the function |fn| − gn is nonnegative for every integer n and
thus we have

0 6
(
|fn| − gn

)
1A 6 |fn| − gn

so that 0 6

∫

A

(
|fn| − gn

)
dµ 6

∫

X

(
|fn| − gn

)
dµ

Both terms on the righthandside tend to

∫

X

|f | dµ, thus

lim
n→∞

∫

A

(
|fn| − gn) dµ = 0

So ∀n ∈ N

∫

A

|fn| dµ =

∫

A

(
|fn| − gn

)
dµ +

∫

A

gn dµ −−−−→
n→∞

∫

A

|f | dµ
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2 For every integer n, the function |fn|+ |f | − |fn − f | is nonnegative, by the triangular
inequality. Thus Fatou’s lemma applies:

∫

X

lim inf
n→∞

(
|fn| + |f | − |fn − f |

)
dµ 6 lim inf

n→∞

∫

X

(
|fn| + |f | − |fn − f |

)
dµ

Since (fn)n∈N converges almost everywhere to f , we can actually simplify the lefthandside.

And since

∫

X

(
|fn| + |f |

)
dµ does converge to 2

∫

X

|f |, we can pull it out of the liminf on

the righthandside, after taking limits:

2

∫

X

|f | 6 2

∫

X

|f | + lim inf
n→∞

(

−

∫

X

|fn − f | dµ
)

Hence lim sup
n→∞

∫

X

|fn − f | dµ = − lim inf
n→∞

(

−

∫

X

|fn − f | dµ
)

6 0

and lim
n→∞

‖fn − f‖1 = 0

We used here the following manipulation involving liminfs:
Lemma: If (un)n∈N and (vn)n∈N are two sequences of real numbers such that the

first one converges to some u ∈ R, we have

lim inf
n→∞

(un + vn) = u + lim inf
n→∞

vn

Note that in general, if we don’t assume that (un)n∈N converges, then all we
can say is that

lim inf
n→∞

(un + vn) > lim inf
n→∞

un + lim inf
n→∞

vn

which is not sufficient for us to solve the problem.
Proof: Define

∀n ∈ N Un = Inf
k>n

uk Vn = Inf
k>n

vk and wn = Inf
k>n

(uk + vk)

so that lim inf
n→∞

un = lim
n→∞

Un = u lim inf
n→∞

vn = lim
n→∞

Vn

and lim inf
n→∞

(un + vn) = lim
n→∞

wn

Let ǫ be a positive real number. Then there exists an integer N such that

∀n > N u − ǫ < un < u + ǫ

Let n be an integer bigger than N, let k be an integer bigger than n. Then we have
in particular

uk + vk < u + ǫ + vk
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But uk + vk > Inf
p>n

(up + vp) = wn

Therefore wn < u + ǫ + vk

This holds for every k > n, so taking the infimum over k yields

∀n > N wn < u + ǫ + Vn

Let n tend to ∞ in order to obtain

lim inf
n→∞

(un + vn) 6 u + ǫ + lim inf
n→∞

vn

Since this holds for every positive ǫ, we get

lim inf
n→∞

(un + vn) 6 u + lim inf
n→∞

vn

But the converse inequality holds in general, as stated earlier. Hence

lim inf
n→∞

(un + vn) = u + lim inf
n→∞

vn �
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Seventh problem

Suppose that (fn)n∈N is a decreasing sequence of continuous functions on [0, 1], con-
verging pointwise to a continuous function f . Prove that the convergence is uniform.

Solution

Let ǫ be a positive real number. Define

∀n ∈ N On =
{
x ∈ [0, 1]

∣
∣ fn(x) − f(x) < ǫ

}

The sequence (fn)n∈N is decreasing. Thus, if p < n are integers, and x is in Op, we
have

fn(x) − f(x) < fp(x) − f(x) < ǫ

which proves that x ∈ On. So the sequence (On)n∈N is increasing.
Since the (fn)n∈N’s and f are continuous, all the (On)n∈N’s are open. Because (fn)n∈N

converges pointwise to f , every x ∈ [0, 1] belongs to at least one of these sets. So (On)n∈N

is an open cover of the compact set [0, 1]. Thus there is a finite subcover: there exist
integers n1 6 · · · 6 nk such that

[0, 1] =
(
On1

∪ · · · ∪ Onk

)
⊂

(
Onk

∪ · · · ∪ Onk

)
= Onk

But using again the fact that the (On)n∈N are increasing, we get

∀n > nk [0, 1] = On

In other words ∀n > nk ∀x ∈ [0, 1] 0 6 fn(x) − f(x) < ǫ

Conclusion (fn)n∈N converges uniformly to f .
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Eighth problem

Let (cn)n∈N be a sequence of complex numbers. Assume there are positive integers
Nk −−−−→

k→∞
∞ such that the trigonometric polynomials

Pk(t) =

Nk∑

j=−Nk

(

1 −
|j|

Nk + 1

)

cj eijt

are nonnegative for all t. Prove that there exists a positive measure µ on T such that

∀n ∈ Z cn =

∫

T

e−int dµ(t)

Solution

For every integer k, let µk be the measure with density Pk relatively to the Lebesgue
measure. Then µk is a positive measure and

‖µk‖ = µk(T) =

∫

T

Pk(t) dt = 2πc0

So (µk)k∈N is a bounded sequence in M (T) (the Banach space of signed measures on T).
Up to multiplying the (µk)k∈N by the constant 1

2πc0
, we can assume that ‖µk‖ = 1.

Since M (T) is the dual of the separable Banach space C (T) (this is Riesz’ represen-
tation theorem), the unit ball of M (T), together with the topology ⋆− σ

(
C (T), M (T)

)
,

is metrizable. And by Banach-Alaoglu-Bourbaki, it is also compact. Thus any bounded
sequence there, such as (µk)k∈N, has a weak-⋆ convergent subsequence. So we can assume
also that (µk)k∈N converges weakly to a measure µ. In particular, we have

∀n ∈ N

∫

T

e−int dµ(t) = lim
k→∞

∫

T

Pk(t) e−int d

But ∀k ∈ N

∫

T

Pk(t) e−int dt =







0 if Nk < n
(

1 −
|n|

Nk + 1

)

cn if Nk > n

Hence ∀n ∈ Z

∫

T

e−int dµ(t) = cn
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Ninth problem

Let X be a vector space.

1. Prove that X has a Hamel basis (or algebraic basis).

2. If X is an infinite dimensional Banach space, prove that any Hamel basis must be
uncountable.

Solution

1 Remember that a finite collection (x1, . . . , xn) of vectors in X is called linearly inde-
pendent if and only if

∀(λ1, . . . , λn) ∈ Kn
(

n∑

k=1

λkxk = 0 =⇒ λ1 = · · · = λn = 0
)

A set L ⊂ X is called linearly independent if and only if every finite subset of L is linearly
independent. A Hamel basis for X is a linearly independent subset of X that spans X.

Define L = {L ⊂ X | L linearly independent}

L is partially ordered by inclusion. Let L ′ ⊂ L be totally ordered, that is: every two
elements of L ′ can be compared and consider

L =
⋃

L∈L ′

L

Let’s show that L ∈ L , or in other words, that L is linearly independent. Let {x1, . . . , xn}
be any finite subset of L. Then

∀k ∈ {1, . . . , n} ∃Lk ∈ L ′ xk ∈ Lk

Since L ′ is totally ordered, we can suppose, up to renaming the x’s, that L1 ⊂ L2 ⊂
· · · ⊂ Ln. Therefore, {x1, . . . , xn} ⊂ Ln is linearly independent. Which proves that L is
linearly independent. Thus we showed that L is inductive: every totally ordered subset
L ′ of L has an upper bound.

By Zorn’s lemma, L has a maximal element: there exists a maximal linearly indepen-
dent family B in X. Let’s check that B is a basis. Of course, by definition, B is linearly
independent. If x ∈ X is not in SpanB, then B (

(
B ∪ {x}

)
∈ L , which contradicts the

maximality of B.

SpanB = X: X has a Hamel basis.
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2 Let X be an infinite dimensional Banach space and suppose it has a countable Hamel
basis (xn)n∈N⋆ . Let

∀n ∈ N⋆ Xn = Span (x1, . . . , xn)

so that X =
⋃

n∈N⋆

Xn

Each Xn is closed. Indeed, let (up)p∈N be a sequence in Xn, converging to some u ∈ X.
Then (up)p∈N is Cauchy; but we know that finite dimensional vector spaces are complete,
thus (up)p∈N has a limit v ∈ Xn. By unicity of the limit, u = v and therefore u ∈ Xn.

By Baire’s lemma, there has to be a positive integer N such that XN has nonempty
interior: there exists x ∈ XN and ǫ > 0, such that B(x, 2ǫ) ⊂ XN. We should deduce from
this that XN = X. Let y ∈ X be nonzero. Then x + ǫ

‖y‖
y is in the ball B(x, 2ǫ) ⊂ XN.

Therefore, since XN is a vector space,

y =

[
‖y‖

ǫ

(

x +
ǫ

‖y‖
y
)

−
‖y‖

ǫ
x

]

∈ XN

which proves X ⊂ XN

So X is finite dimensional and we have a contradiction.

A Hamel basis for an infinite dimensional Banach space is uncountable.
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Tenth problem

Suppose f : R −→ R is a bounded function such that

∃K > 0 ∀x, h ∈ R
∣
∣f(x + h) + f(x − h) − 2f(x)

∣
∣ 6 K|h|

Prove that

∀x, y ∈ R
∣
∣f(x) − f(y)

∣
∣ 6 c

(

1 + ln+ 1

|x − y|

)

|x − y|

where c is a constant depending only on K and ‖f‖∞.

Solution

Fix an x ∈ R and define

∀z ∈ R g(z) = f(z + x) − f(x)

Then g(0) = 0 ‖g‖∞ 6 2‖f‖∞

and∀z, h ∈ R
∣
∣g(z+h)+g(z−h)−2g(z)

∣
∣ =

∣
∣f(z+x+h)+f(z+x−h)−2f(z+x)

∣
∣ 6 K|h|(1)

Fix a z ∈ R, let n be any integer; by (1):
∣
∣g(2nz + 2nz) + g(2nz − 2nz) − 2g(2nz)

∣
∣ 6 2nK|z|

or
∣
∣
∣
g(2n+1z)

2n+1
−

g(2nz)

2n

∣
∣
∣ 6

K|z|

2

after dividing both sides by 2n+1. This is true for every integer n, therefore we can sum
all these inequalities between n = 0 and n = N − 1 for some positive integer N:

∣
∣
∣

N−1∑

n=0

(g(2n+1z)

2n+1
−

g(2nz)

2n

)∣
∣
∣ 6

N−1∑

n=0

∣
∣
∣
g(2n+1z)

2n+1
−

g(2nz)

2n

∣
∣
∣ 6

KN|z|

2

The lefthandside is a telescoping series and we are left with
∣
∣
∣
g(2Nz)

2N
− g(z)

∣
∣
∣ 6

KN|z|

2

Now use the triangle inequality |a − b| > |a| − |b|:

|g(z)| −

∣
∣g(2Nz)

∣
∣

2N
6

KN|z|

2

and finally |g(z)| 6
‖g‖∞
2N

+
KN|z|

2
6

2‖f‖∞
2N

+
KN|z|

2
(2)
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We consider now two cases, depending on |z|:

• If |z| > 1: Just take N = 1 in (2) in order to get

∣
∣g(z)

∣
∣ 6 ‖f‖∞ +

K|z|

2
6

(

‖f‖∞ +
K

2

)

|z|

• If |z| < 1: Choose N to be the only positive integer such that

1

2N+1
< |z| 6

1

2N

that is N 6
ln 1/|z|

ln 2
< N + 1

and see what happens in (2):

∣
∣g(z)

∣
∣ 6 4‖f‖∞|z| +

K|z|

2 ln 2
ln

1

|z|

Letting c be some bigass constant, for example

c = Max
(

4‖f‖∞,
K

2 ln 2
, ‖f‖∞ +

K

2

)

we get an inequality that combines both cases:

∀x, z ∈ R
∣
∣g(z)

∣
∣ =

∣
∣f(x + z) − f(x)

∣
∣ 6 c

(

1 + ln+ 1

|z|

)

|z|
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