Ph.D. Qualifying Exam - Spring 2004

First problem

Suppose $f \in \mathrm{~L}^{1}(\mathbb{R})$. Let

$$
\forall x \in \mathbb{R} \quad g(x)=\int_{\mathbb{R}} \mathrm{e}^{-\mathrm{i} x y^{2}} f(y) \mathrm{d} y
$$

1. Prove that the integral exists for every x.
2. Prove that g is a continuous function.
3. Prove that there is a dense subset S of $\mathrm{L}^{1}(\mathbb{R})$ such that if $f \in \mathrm{~S}$, then

$$
\lim _{|x| \rightarrow+\infty} g(x)=0
$$

4. Prove that (\star) holds for any $f \in \mathrm{~L}^{1}(\mathbb{R})$.

Solution

1 We have

$$
\begin{equation*}
\forall x, y \in \mathbb{R} \quad\left|\mathrm{e}^{-\mathrm{i} x y^{2}} f(y)\right|=|f(y)| \tag{1}
\end{equation*}
$$

and since f is $\mathrm{L}^{1}(\mathbb{R})$, the function $x \longmapsto f(y) \mathrm{e}^{-\mathrm{i} x y^{2}}$ is also $\mathrm{L}^{1}(\mathbb{R})$ for every real number x. Thus

$$
\text { The function } g \text { is well defined. }
$$

2 Because of $(\mathbf{1})$, and because the function $(x, y) \longmapsto f(y) \mathrm{e}^{-\mathrm{i} x y^{2}}$ is continuous in x, we can apply the continuity theorem for integrals and deduce that

$$
g \text { is continuous on } \mathbb{R} .
$$

In the remainder of the solution, we will write $\mathrm{T} f$ for g. That is

$$
\forall f \in \mathrm{~L}^{1}(\mathbb{R}) \quad \forall x \in \mathbb{R} \quad \mathrm{~T} f(x)=\int_{\mathbb{R}} f(y) \mathrm{e}^{-\mathrm{i} x y^{2}} \mathrm{~d} y
$$

3 Let S_{1} be the set of L^{1} functions, that are 0 almost everywhere in some neighbourhood of 0 . That is:

$$
\mathrm{S}_{1}=\left\{f \in \mathrm{~L}^{1}(\mathbb{R}) \mid \exists \epsilon>0 \quad f \mathbb{1}_{[-\epsilon, \epsilon]}=0\right\}
$$

We first show that S_{1} is dense. Let f be in L^{1}. For every positive integer n, define

Then

$$
\begin{gathered}
f_{n}=f-f \mathbb{1}\left[-\frac{1}{n}, \frac{1}{n}\right] \\
f_{n} \mathbb{1}_{\left[-\frac{1}{n}, \frac{1}{n}\right]}=0
\end{gathered}
$$

so that

$$
\forall n \in \mathbb{N}^{\star} \quad f_{n} \in \mathrm{~S}
$$

Furthermore $\quad \forall n \in \mathbb{N} \quad\left\|f-f_{n}\right\|_{1}=\int_{-\frac{1}{n}}^{\frac{1}{n}}|f| \xrightarrow[n \rightarrow \infty]{ } 0$
which proves that S_{1} is dense. We now let S be the elements of S_{1} which are \mathscr{C}^{∞} with compact support. The intersection of two dense sets is dense, hence

S is dense in $L^{1}(\mathbb{R})$.

If f belongs to S , then $h: y \longmapsto \frac{f(y)}{y}$ is \mathscr{C}^{∞} with compact support and 0 in a neighbourhood of 0 . Thus h and h^{\prime} are integrable. We have

$$
\forall x \in \mathbb{R} \quad \mathrm{~T} f(x)=\int_{\mathbb{R}} f(y) \mathrm{e}^{-\mathrm{i} x y^{2}} \mathrm{~d} y=\int_{\mathbb{R}} h(y) y \mathrm{e}^{-\mathrm{i} x y^{2}} \mathrm{~d} y
$$

Integrate by parts:

$$
\forall x \in \mathbb{R} \backslash\{0\} \quad \mathrm{T} f(x)=\underbrace{\left[\frac{h(y) \mathrm{e}^{-\mathrm{i} x y^{2}}}{-2 \mathrm{i} x}\right]_{-\infty}^{+\infty}}_{=0}+\frac{1}{2 \mathrm{i} x} \int_{\mathbb{R}} h^{\prime}(y) \mathrm{e}^{-\mathrm{i} x y^{2}} \mathrm{~d} y
$$

Thus

$$
\forall x \in \mathbb{R} \backslash\{0\} \quad|\mathrm{T} f(x)| \leqslant \frac{1}{2|x|}\left\|h^{\prime}\right\|_{1} \xrightarrow[|x| \rightarrow+\infty]{ } 0
$$

There is a dense subset S of L^{1} such that

$$
\forall f \in \mathrm{~S} \quad \lim _{|x| \rightarrow+\infty} \mathrm{T} f(x)=0
$$

4 Let f be in L^{1} and g be in S . We can write that $\mathrm{T} f=\mathrm{T} g+\mathrm{T}(f-g)$, and notice that

$$
\forall x \in \mathbb{R} \quad|\mathrm{~T}(f-g)(x)| \leqslant\|f-g\|_{1}
$$

Then

$$
\limsup _{|x| \rightarrow+\infty}|\mathrm{T} f(x)| \leqslant \underbrace{\limsup _{|x| \rightarrow+\infty}|\mathrm{T} g(x)|}_{=0}+\|f-g\|_{1}=\|f-g\|_{1}
$$

This holds for every g in S , which is dense in L^{1}. Thus $\limsup _{|x| \rightarrow \infty}|\mathrm{T} f(x)|$ is 0 :

$$
|x| \rightarrow+\infty
$$

$$
\forall f \in \mathrm{~L}^{1}(\mathbb{R}) \quad \lim _{|x| \rightarrow+\infty} \mathrm{T} f(x)=0
$$

Second problem

Suppose $(\mathrm{X}, \mathscr{A}, \mu)$ is a measure space and that $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a sequence in $\mathrm{L}^{1}(\mu)$ converging weakly. Prove that

$$
\forall \epsilon>0 \quad \exists \delta>0 \quad \forall \mathrm{~A} \in \mathscr{A} \quad\left(\mu(\mathrm{~A})<\delta \Longrightarrow \forall n \in \mathbb{N} \quad \int_{\mathrm{A}}\left|f_{n}\right| \mathrm{d} \mu \leqslant \epsilon\right)
$$

Solution

The following result is a key ingredient for this problem:
Theorem 1: Let $(\mathrm{X}, \mathscr{A}, \mu)$ be a measure space. Let f be a positive integrable function on X. Then

$$
\forall \epsilon>0 \quad \exists \delta>0 \quad \forall \mathrm{~A} \in \mathscr{A} \quad\left(\mu(\mathrm{~A}) \leqslant \delta \Longrightarrow \int_{\mathrm{A}} f d \mu \leqslant \epsilon\right)
$$

I believe it is usually proved in 205A, so it can, of course, be used. Yet it took me so much time remembering why it is true that I want to recall the proof:
Proof: For every positive integer n, define

$$
f_{n}=\operatorname{Min}(f, n)
$$

The sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ is increasing and converges pointwise to f. By the monotone convergence theorem, $f_{n} \xrightarrow[n \rightarrow \infty]{\mathrm{L}^{1}(\mu)} f$. Let A be a measurable set. We have

$$
\int_{\mathrm{A}} f \mathrm{~d} \mu=\int_{\mathrm{A}}\left(f-f_{n}\right) \mathrm{d} \mu+\int_{\mathrm{A}} f_{n} \mathrm{~d} \mu \leqslant \int_{\mathrm{X}}\left(f-f_{n}\right) \mathrm{d} \mu+n \mu(\mathrm{~A})
$$

Taking n big enough so that $\int_{\mathrm{X}}\left(f-f_{n}\right) \mathrm{d} \mu \leqslant \frac{\epsilon}{2}$, and letting A be any set of measure less than $\frac{\epsilon}{2 n}$ yield

$$
\int_{\mathrm{A}} f \mathrm{~d} \mu \leqslant \epsilon
$$

Suppose the conclusion false:

$$
\exists \epsilon>0 \quad \forall \delta>0 \quad \exists \mathrm{~A} \in \mathscr{A} \quad\left(\mu(\mathrm{~A})<\delta \quad \text { and } \quad \int_{\mathrm{A}}\left|f_{n}\right| \mathrm{d} \mu>\epsilon \text { for some } n\right)
$$

In other words,

$$
\operatorname{Inf}\left\{\mu(\mathrm{A}) \mid \mathrm{A} \in \mathscr{A} \text { such that } \int_{\mathrm{A}}\left|f_{n}\right| \mathrm{d} \mu>\epsilon \text { for some } n\right\}=0
$$

Start by taking $\delta_{1}=1 \mathrm{in}(\star)$. Then there exists an integer k_{1} and a measurable set A_{1} such that

$$
\mu\left(\mathrm{A}_{1}\right) \leqslant \delta_{1} \quad \text { and } \quad \int_{\mathrm{A}_{1}}\left|f_{k_{1}}\right| \mathrm{d} \mu>\epsilon
$$

Let's rename $f_{k_{1}}$ to g_{1}. This is the first step in the inductive construction of a subsequence $\left(g_{n}\right)_{n \in \mathbb{N}}$ of $\left(f_{n}\right)_{n \in \mathbb{N}}$, a sequence $\left(\mathrm{A}_{n}\right)_{n \in \mathbb{N}}$ of measurable sets, and a sequence $\left(\delta_{n}\right)_{n \in \mathbb{N}}$ of positive real numbers.

Suppose that we have constructed the first terms g_{1}, \ldots, g_{n} of the subsequence, sets $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{n}$ and positive real numbers $\delta_{1}, \ldots, \delta_{n}$, with the following properties:

- For $m \leqslant n, \delta_{m}$ is such that

$$
\forall \mathrm{A} \in \mathscr{A} \quad\left(\mu(\mathrm{~A}) \leqslant \delta_{m} \Longrightarrow \int_{\mathrm{A}}\left|g_{j}\right| \mathrm{d} \mu<\frac{\epsilon}{2^{m}} \text { for } j=1, \ldots, m-1\right)
$$

- For $m \leqslant n, \mathrm{~A}_{m}$ and g_{m} are such that

$$
\mu\left(\mathrm{A}_{m}\right) \leqslant \delta_{m} \quad \text { and } \quad \int_{\mathrm{A}_{m}}\left|g_{m}\right| \mathrm{d} \mu>\epsilon
$$

Using Theorem 1 and (\star), it is clear that we can construct $\delta_{n+1}, \mathrm{~A}_{n+1}$ and g_{n+1}. So the two properties listed above are actually satisfied for every n. Hope this is clear enough... For every positive integer n, let

$$
\mathrm{B}_{n}=\mathrm{A}_{n} \backslash\left(\bigcup_{j=1}^{n-1} \mathrm{~A}_{j}\right)
$$

The sets $\left(\mathrm{B}_{n}\right)_{n \in \mathbb{N}}$ are pairwise disjoint

Third problem

Let $f:(a, b) \longrightarrow \mathbb{R}$ be an arbitrary function. Let

$$
\mathrm{S}=\left\{x \in(a, b) \mid f^{\prime}(x) \text { exists and equals } 0\right\}
$$

Prove that the image $f(\mathrm{~S})$ of S under f has measure 0 .

Solution

Let ϵ be a positive real number. By definition, if x is in S, f is differentiable at x and $f^{\prime}(x)=0$. Thus there exists $h>0$ such that

$$
\forall y \in[x-h, x+h] \quad|f(y)-f(x)| \leqslant \epsilon|x-y| \leqslant 2 \epsilon h
$$

which means that $f([x-h, x+h]) \subset[f(x)-2 \epsilon h, f(x)+2 \epsilon h]$.
Now, let \mathscr{C} be the collection of all intervals of the form $\mathrm{I}=[x-h, x+h] \subset(a, b)$, such that $x \in \mathrm{~S}$ and $f(\mathrm{I})$ is contained in an interval of length at most $2 \epsilon h$. What we just explained shows that \mathscr{C} covers S . Thus, by the 5 -times covering lemma, there exists a pairwise disjoint collection $\left(\mathrm{I}_{n}\right)_{n \in \mathbb{N}}=\left(\left[x_{n}-h_{n}, x_{n}+h_{n}\right]\right)_{n \in \mathbb{N}} \subset \mathscr{C}$ such that $\left(5 \mathrm{I}_{n}\right)_{n \in \mathbb{N}} \subset \mathscr{C}$ as well, and $\mathrm{S} \subset \bigcup_{n \in \mathbb{N}} 5 \mathrm{I}_{n}$. Thus $f(\mathrm{~S}) \subset \bigcup_{n \in \mathbb{N}} f\left(5 \mathrm{I}_{n}\right)$ and since the Lebesgue measure is increasing and subadditive:

$$
\mu(f(\mathrm{~S})) \leqslant \sum_{n \in \mathbb{N}} \mu\left(f\left(5 \mathrm{I}_{n}\right)\right)
$$

For every integer n, because $5 \mathrm{I}_{n} \in \mathscr{C}, f\left(5 \mathrm{I}_{n}\right)$ is included in an interval of length $2 \epsilon \times 5 h_{n}$:

$$
\mu(f(\mathrm{~S})) \leqslant 5 \epsilon \sum_{n \in \mathbb{N}} 2 h_{n}=5 \epsilon \sum_{n \in \mathbb{N}} \mu\left(\mathrm{I}_{n}\right)=5 \epsilon \mu\left(\bigcup_{n \in \mathbb{N}} \mathrm{I}_{n}\right) \leqslant 5 \epsilon(b-a)
$$

This holds for every positive ϵ. Therefore,

$$
\mu(f(\mathrm{~S}))=0
$$

Fourth problem

Let X be a metric space.

1. Prove that if X is countably compact, then X is compact.
2. Prove that if every continuous function on X is bounded, then X is compact.

Solution

1 Suppose that X is countably compact, which means that every countable open cover of X has a finite subcover. Then we can derive a property analogous to the finite intersection property: if $\left(\mathrm{F}_{n}\right)_{n \in \mathbb{N}}$ is a (countable) collection of closed sets such that $\bigcap_{n \in \mathbb{N}} \mathrm{~F}_{n}=\emptyset$, there exists a finite subcollection $\mathrm{F}_{n_{1}}, \ldots, \mathrm{~F}_{n_{k}}$ such that $\mathrm{F}_{n_{1}} \cap \cdots \cap \mathrm{~F}_{n_{k}}=\emptyset$.

This is proven exactly as the finite intersection property is proven: the $\left(\mathrm{F}_{n}^{c}\right)_{n \in \mathbb{N}}$ form a countable open cover of X. Thus there is a finite subcover $F_{n_{1}}^{c} \cup \cdots \cup F_{n_{k}}^{c}$ of X , and we have $\mathrm{F}_{n_{1}} \cap \cdots \mathrm{~F}_{n_{k}}=\emptyset$.

Because X is a metric space, sequential compactness is equivalent to compactness. So let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence of elements of X . The set of limit points of $\left(x_{n}\right)_{n \in \mathbb{N}}$ is

$$
\mathscr{L}=\bigcap_{n \in \mathbb{N}} \overline{\left\{x_{k} \mid k \geqslant n\right\}}
$$

Suppose that \mathscr{L} is empty. Then there exist integers $n_{1} \leqslant \ldots \leqslant n_{j}$ such that

$$
\emptyset=\bigcap_{k=1}^{j} \overline{\left\{x_{k} \mid k \geqslant n_{j}\right\}}
$$

But these closed sets form a decreasing sequence, therefore

$$
\emptyset=\overline{\left\{x_{k} \mid k \geqslant n_{j}\right\}}
$$

which is, of course, impossible. Hence \mathscr{L} is not empty: $\left(x_{n}\right)_{n \in \mathbb{N}}$ has convergent subsequences.
2 Suppose that X is not compact. There exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ of elements of X that has no convergent subsequence. Denote by \mathscr{X} the collection $\left(x_{n}\right)_{n \in \mathbb{N}}$. Then \mathscr{X} is closed: indeed, a convergent sequence of distinct points of \mathscr{X} would allow us to construct a convergent subsequence of $\left(x_{n}\right)_{n \in \mathbb{N}}$.

The same conclusion holds for $\mathscr{X}_{n}=\mathscr{X} \backslash\left\{x_{n}\right\}$, for every integer n : this set is closed. Since it does not contain x_{n}, the distance $\operatorname{dist}\left(x_{n}, \mathscr{X}_{n}\right)$ is a positive real number r_{n}.

Define a function on \mathscr{X} as follows:

$$
\forall n \in \mathbb{N} \quad f\left(x_{n}\right)=n
$$

Then f is continuous on the closed set \mathscr{X} and by Tietze's extension theorem, it can be extended to a continuous function (still denoted f) on X. So there exists a continuous, unbounded, function on X.

If every continuous function on X is bounded, X is compact.

Fifth problem

Prove that there exists an orthonormal basis \mathscr{B} of $\mathrm{L}^{2}([0,1])$ such that

$$
\forall f \in \mathscr{B} \quad \int_{0}^{1}|f(x)| \frac{\mathrm{d} x}{x}<\infty \quad \text { and } \quad \int_{0}^{1} f(x) \frac{\mathrm{d} x}{x}=0
$$

Solution

Let

$$
\begin{gathered}
\mathscr{S}=\left\{f \in \mathrm{~L}^{2}(0,1)\left|\int_{0}^{1}\right| f(x) \left\lvert\, \frac{\mathrm{d} x}{x}<\infty\right.\right\} \\
\forall f \in \mathscr{S} \quad \mathrm{~T} f=\int_{0}^{1} f(x) \frac{\mathrm{d} x}{x}
\end{gathered}
$$

and

$$
\forall n \in \mathbb{N} \quad g_{n}=\mathbb{1}_{\left[\frac{1}{n}, 1\right]}
$$

Then \mathscr{S} is dense in $\mathrm{L}^{2}(0,1)$. Indeed, let f be an L^{2} function. For every positive integer n, the function $f_{n}=f g_{n}$ is in \mathscr{S}, and

$$
\left\|f-f_{n}\right\|_{2}^{2}=\int_{0}^{\frac{1}{n}} f(x) \mathrm{d} x \xrightarrow[n \rightarrow \infty]{ } 0
$$

by dominated convergence.
Define now

$$
\mathscr{Z}=\operatorname{Ker} \mathrm{T}
$$

and let's show that \mathscr{Z} is dense in \mathscr{S}. For this, we will need the value of $\mathrm{T} g_{n}$, which is not a problem:

$$
\forall n \in \mathbb{N} \quad \mathrm{~T} g_{n}=\int_{\frac{1}{n}}^{1} \frac{\mathrm{~d} x}{x}=\ln n \xrightarrow[n \rightarrow \infty]{ }+\infty
$$

Let f be any function in \mathscr{S}. Then

$$
\mathrm{T}\left(f-\frac{\mathrm{T} f}{\mathrm{~T} g_{n}} g_{n}\right)=0
$$

which gives

$$
f-\frac{\mathrm{T} f}{\mathrm{~T} g_{n}} g_{n} \in \mathscr{Z}
$$

But

$$
\frac{|\mathrm{T} f|}{\left|\mathrm{T} g_{n}\right|}\left\|g_{n}\right\|_{2}=\frac{\mathrm{T} f}{\ln n}\left(1-\frac{1}{n}\right) \xrightarrow[n \rightarrow \infty]{ } 0
$$

and therefore

$$
\lim _{n \rightarrow \infty}\left(f-\frac{\mathrm{T} f}{\mathrm{~T} g_{n}} g_{n}\right)=f
$$

f is indeed the limit of a sequence in \mathscr{Z} : the latter is dense in \mathscr{S}.
Since $L^{2}(0,1)$ is separable, \mathscr{Z} has a countable dense subset \mathscr{X}. Using the GramSchmidt process, we can extract an orthonormal sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \subset \mathscr{X}$, that spans the same subspace as \mathscr{X}. Thus
and

$$
\begin{gathered}
\mathscr{X} \subset \operatorname{Span}\left(f_{n}\right)_{n \in \mathbb{N}} \\
\mathrm{~L}^{2}(0,1)=\overline{\operatorname{Span}}\left(f_{n}\right)_{n \in \mathbb{N}}
\end{gathered}
$$

Sixth problem

Let $(\mathrm{X}, \mathscr{B}, \mu)$ be a finite measure space. Suppose that $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a sequence of functions in $\mathrm{L}^{1}(\mu)$, converging almost everywhere to an $\mathrm{L}^{1}(\mu)$ function f. Suppose also that

$$
\left\|f_{n}\right\|_{1} \xrightarrow[n \rightarrow \infty]{ }\|f\|_{1}
$$

1. Prove that for every measurable set A, $\int_{\mathrm{A}}\left|f_{n}\right| \mathrm{d} \mu \underset{n \rightarrow \infty}{ } \int_{\mathrm{A}}|f|$.
2. Prove that $\left\|f_{n}-f\right\|_{1} \xrightarrow[n \rightarrow \infty]{ } 0$.

Solution

1 For every integer n, define

$$
g_{n}=\operatorname{Min}\left(\left|f_{n}\right|,|f|\right)=\frac{\left|f_{n}\right|+|f|-\left|\left|f_{n}\right|-|f|\right|}{2}
$$

Since $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges almost everywhere to f, it follows that $\left(g_{n}\right)_{n \in \mathbb{N}}$ converges almost everywhere to $|f|$ and is dominated by $|f|$.

Let A be any measurable set. Then $\left(g_{n} \mathbb{1}_{\mathrm{A}}\right)_{n \in \mathbb{N}}$ converges almost everywhere to $|f| \mathbb{1}_{\mathrm{A}}$ and is dominated by $|f| \mathbb{1}_{\mathrm{A}}$. The dominated convergence theorem implies that

$$
\lim _{n \rightarrow \infty} \int_{\mathrm{A}} g_{n} \mathrm{~d} \mu=\int_{\mathrm{A}}|f| \mathrm{d} \mu
$$

The same argument shows that

$$
\lim _{n \rightarrow \infty} \int_{\mathrm{X}} g_{n} \mathrm{~d} \mu=\int_{\mathrm{X}}|f| \mathrm{d} \mu
$$

Now, by definition of g_{n}, the function $\left|f_{n}\right|-g_{n}$ is nonnegative for every integer n and thus we have
so that

$$
\begin{gathered}
0 \leqslant\left(\left|f_{n}\right|-g_{n}\right) \mathbb{1}_{\mathrm{A}} \leqslant\left|f_{n}\right|-g_{n} \\
0 \leqslant \int_{\mathrm{A}}\left(\left|f_{n}\right|-g_{n}\right) \mathrm{d} \mu \leqslant \int_{\mathrm{X}}\left(\left|f_{n}\right|-g_{n}\right) \mathrm{d} \mu
\end{gathered}
$$

Both terms on the righthandside tend to $\int_{\mathrm{X}}|f| \mathrm{d} \mu$, thus

$$
\lim _{n \rightarrow \infty} \int_{\mathrm{A}}\left(\left|f_{n}\right|-g_{n}\right) \mathrm{d} \mu=0
$$

So

$$
\forall n \in \mathbb{N} \quad \int_{\mathrm{A}}\left|f_{n}\right| \mathrm{d} \mu=\int_{\mathrm{A}}\left(\left|f_{n}\right|-g_{n}\right) \mathrm{d} \mu+\int_{\mathrm{A}} g_{n} \mathrm{~d} \mu \underset{n \rightarrow \infty}{ } \int_{\mathrm{A}}|f| \mathrm{d} \mu
$$

2 For every integer n, the function $\left|f_{n}\right|+|f|-\left|f_{n}-f\right|$ is nonnegative, by the triangular inequality. Thus Fatou's lemma applies:

$$
\int_{\mathrm{X}} \liminf _{n \rightarrow \infty}\left(\left|f_{n}\right|+|f|-\left|f_{n}-f\right|\right) \mathrm{d} \mu \leqslant \liminf _{n \rightarrow \infty} \int_{\mathrm{X}}\left(\left|f_{n}\right|+|f|-\left|f_{n}-f\right|\right) \mathrm{d} \mu
$$

Since $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges almost everywhere to f, we can actually simplify the lefthandside.
And since $\int_{\mathrm{X}}\left(\left|f_{n}\right|+|f|\right) \mathrm{d} \mu$ does converge to $2 \int_{\mathrm{X}}|f|$, we can pull it out of the liminf on the righthandside, after taking limits:

Hence

$$
\begin{gathered}
2 \int_{\mathrm{X}}|f| \leqslant 2 \int_{\mathrm{X}}|f|+\liminf _{n \rightarrow \infty}\left(-\int_{\mathrm{X}}\left|f_{n}-f\right| \mathrm{d} \mu\right) \\
\limsup _{n \rightarrow \infty} \int_{\mathrm{X}}\left|f_{n}-f\right| \mathrm{d} \mu=-\liminf _{n \rightarrow \infty}\left(-\int_{\mathrm{X}}\left|f_{n}-f\right| \mathrm{d} \mu\right) \leqslant 0 \\
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{1}=0
\end{gathered}
$$

and

We used here the following manipulation involving liminfs:
Lemma: If $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ are two sequences of real numbers such that the first one converges to some $u \in \mathbb{R}$, we have

$$
\liminf _{n \rightarrow \infty}\left(u_{n}+v_{n}\right)=u+\liminf _{n \rightarrow \infty} v_{n}
$$

Note that in general, if we don't assume that $\left(u_{n}\right)_{n \in \mathbb{N}}$ converges, then all we can say is that

$$
\liminf _{n \rightarrow \infty}\left(u_{n}+v_{n}\right) \geqslant \liminf _{n \rightarrow \infty} u_{n}+\liminf _{n \rightarrow \infty} v_{n}
$$

which is not sufficient for us to solve the problem.
Proof: Define

$$
\forall n \in \mathbb{N} \quad \mathrm{U}_{n}=\operatorname{Inf}_{k \geqslant n} u_{k} \quad \mathrm{~V}_{n}=\operatorname{Inf}_{k \geqslant n} v_{k} \quad \text { and } \quad w_{n}=\operatorname{Inf}_{k \geqslant n}\left(u_{k}+v_{k}\right)
$$

so that

$$
\begin{gathered}
\liminf _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \mathrm{U}_{n}=u \quad \liminf _{n \rightarrow \infty} v_{n}=\lim _{n \rightarrow \infty} \mathrm{~V}_{n} \\
\liminf _{n \rightarrow \infty}\left(u_{n}+v_{n}\right)=\lim _{n \rightarrow \infty} w_{n}
\end{gathered}
$$

and
Let ϵ be a positive real number. Then there exists an integer N such that

$$
\forall n \geqslant \mathrm{~N} \quad u-\epsilon<u_{n}<u+\epsilon
$$

Let n be an integer bigger than N , let k be an integer bigger than n. Then we have in particular

$$
u_{k}+v_{k}<u+\epsilon+v_{k}
$$

But

$$
u_{k}+v_{k} \geqslant \operatorname{Inf}_{p \geqslant n}\left(u_{p}+v_{p}\right)=w_{n}
$$

Therefore

$$
w_{n}<u+\epsilon+v_{k}
$$

This holds for every $k \geqslant n$, so taking the infimum over k yields

$$
\forall n \geqslant \mathrm{~N} \quad w_{n}<u+\epsilon+\mathrm{V}_{n}
$$

Let n tend to ∞ in order to obtain

$$
\liminf _{n \rightarrow \infty}\left(u_{n}+v_{n}\right) \leqslant u+\epsilon+\liminf _{n \rightarrow \infty} v_{n}
$$

Since this holds for every positive ϵ, we get

$$
\liminf _{n \rightarrow \infty}\left(u_{n}+v_{n}\right) \leqslant u+\liminf _{n \rightarrow \infty} v_{n}
$$

But the converse inequality holds in general, as stated earlier. Hence

$$
\liminf _{n \rightarrow \infty}\left(u_{n}+v_{n}\right)=u+\liminf _{n \rightarrow \infty} v_{n}
$$

Seventh problem

Suppose that $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a decreasing sequence of continuous functions on $[0,1]$, converging pointwise to a continuous function f. Prove that the convergence is uniform.

Solution

Let ϵ be a positive real number. Define

$$
\forall n \in \mathbb{N} \quad \mathrm{O}_{n}=\left\{x \in[0,1] \mid f_{n}(x)-f(x)<\epsilon\right\}
$$

The sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ is decreasing. Thus, if $p<n$ are integers, and x is in O_{p}, we have

$$
f_{n}(x)-f(x)<f_{p}(x)-f(x)<\epsilon
$$

which proves that $x \in \mathrm{O}_{n}$. So the sequence $\left(\mathrm{O}_{n}\right)_{n \in \mathbb{N}}$ is increasing.
Since the $\left(f_{n}\right)_{n \in \mathbb{N}}$'s and f are continuous, all the $\left(\mathrm{O}_{n}\right)_{n \in \mathbb{N}}$'s are open. Because $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges pointwise to f, every $x \in[0,1]$ belongs to at least one of these sets. So $\left(\mathrm{O}_{n}\right)_{n \in \mathbb{N}}$ is an open cover of the compact set $[0,1]$. Thus there is a finite subcover: there exist integers $n_{1} \leqslant \cdots \leqslant n_{k}$ such that

$$
[0,1]=\left(\mathrm{O}_{n_{1}} \cup \cdots \cup \mathrm{O}_{n_{k}}\right) \subset\left(\mathrm{O}_{n_{k}} \cup \cdots \cup \mathrm{O}_{n_{k}}\right)=\mathrm{O}_{n_{k}}
$$

But using again the fact that the $\left(\mathrm{O}_{n}\right)_{n \in \mathbb{N}}$ are increasing, we get

$$
\forall n \geqslant n_{k} \quad[0,1]=\mathrm{O}_{n}
$$

In other words

$$
\forall n \geqslant n_{k} \quad \forall x \in[0,1] \quad 0 \leqslant f_{n}(x)-f(x)<\epsilon
$$

Conclusion

$$
\left(f_{n}\right)_{n \in \mathbb{N}} \text { converges uniformly to } f \text {. }
$$

Eighth problem

Let $\left(c_{n}\right)_{n \in \mathbb{N}}$ be a sequence of complex numbers. Assume there are positive integers $\mathrm{N}_{k} \xrightarrow[k \rightarrow \infty]{ } \infty$ such that the trigonometric polynomials

$$
\mathrm{P}_{k}(t)=\sum_{j=-\mathrm{N}_{k}}^{\mathrm{N}_{k}}\left(1-\frac{|j|}{\mathrm{N}_{k}+1}\right) c_{j} \mathrm{e}^{\mathrm{i} j t}
$$

are nonnegative for all t. Prove that there exists a positive measure μ on \mathbb{T} such that

$$
\forall n \in \mathbb{Z} \quad c_{n}=\int_{\mathbb{T}} \mathrm{e}^{-\mathrm{i} n t} \mathrm{~d} \mu(t)
$$

Solution

For every integer k, let μ_{k} be the measure with density P_{k} relatively to the Lebesgue measure. Then μ_{k} is a positive measure and

$$
\left\|\mu_{k}\right\|=\mu_{k}(\mathbb{T})=\int_{\mathbb{T}} \mathrm{P}_{k}(t) \mathrm{d} t=2 \pi c_{0}
$$

So $\left(\mu_{k}\right)_{k \in \mathbb{N}}$ is a bounded sequence in $\mathscr{M}(\mathbb{T})$ (the Banach space of signed measures on \mathbb{T}). Up to multiplying the $\left(\mu_{k}\right)_{k \in \mathbb{N}}$ by the constant $\frac{1}{2 \pi c_{0}}$, we can assume that $\left\|\mu_{k}\right\|=1$.

Since $\mathscr{M}(\mathbb{T})$ is the dual of the separable Banach space $\mathscr{C}(\mathbb{T})$ (this is Riesz' representation theorem), the unit ball of $\mathscr{M}(\mathbb{T})$, together with the topology $\star-\sigma(\mathscr{C}(\mathbb{T}), \mathscr{M}(\mathbb{T}))$, is metrizable. And by Banach-Alaoglu-Bourbaki, it is also compact. Thus any bounded sequence there, such as $\left(\mu_{k}\right)_{k \in \mathbb{N}}$, has a weak- \star convergent subsequence. So we can assume also that $\left(\mu_{k}\right)_{k \in \mathbb{N}}$ converges weakly to a measure μ. In particular, we have

$$
\forall n \in \mathbb{N} \quad \int_{\mathbb{T}} \mathrm{e}^{-\mathrm{i} n t} \mathrm{~d} \mu(t)=\lim _{k \rightarrow \infty} \int_{\mathbb{T}} \mathrm{P}_{k}(t) \mathrm{e}^{-\mathrm{i} n t} \mathrm{~d}
$$

But $\quad \forall k \in \mathbb{N} \quad \int_{\mathbb{T}} \mathrm{P}_{k}(t) \mathrm{e}^{-\mathrm{i} n t} \mathrm{~d} t=\left\{\begin{array}{cll}0 & \text { if } \quad \mathrm{N}_{k}<n \\ \left(1-\frac{|n|}{\mathrm{N}_{k}+1}\right) c_{n} & \text { if } \quad \mathrm{N}_{k} \geqslant n\end{array}\right.$

Hence

$$
\forall n \in \mathbb{Z} \quad \int_{\mathbb{T}} \mathrm{e}^{-\mathrm{i} n t} \mathrm{~d} \mu(t)=c_{n}
$$

Ninth problem

Let X be a vector space.

1. Prove that X has a Hamel basis (or algebraic basis).
2. If X is an infinite dimensional Banach space, prove that any Hamel basis must be uncountable.

Solution

1 Remember that a finite collection $\left(x_{1}, \ldots, x_{n}\right)$ of vectors in X is called linearly independent if and only if

$$
\forall\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{K}^{n} \quad\left(\sum_{k=1}^{n} \lambda_{k} x_{k}=0 \Longrightarrow \lambda_{1}=\cdots=\lambda_{n}=0\right)
$$

A set $L \subset X$ is called linearly independent if and only if every finite subset of L is linearly independent. A Hamel basis for X is a linearly independent subset of X that spans X .

Define $\quad \mathscr{L}=\{\mathrm{L} \subset \mathrm{X} \mid \mathrm{L}$ linearly independent $\}$
\mathscr{L} is partially ordered by inclusion. Let $\mathscr{L}^{\prime} \subset \mathscr{L}$ be totally ordered, that is: every two elements of \mathscr{L}^{\prime} can be compared and consider

$$
\mathcal{L}=\bigcup_{\mathrm{L} \in \mathscr{L}^{\prime}} \mathrm{L}
$$

Let's show that $\mathcal{L} \in \mathscr{L}$, or in other words, that \mathcal{L} is linearly independent. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be any finite subset of \mathcal{L}. Then

$$
\forall k \in\{1, \ldots, n\} \quad \exists \mathrm{L}_{k} \in \mathscr{L}^{\prime} \quad x_{k} \in \mathrm{~L}_{k}
$$

Since \mathscr{L}^{\prime} is totally ordered, we can suppose, up to renaming the x 's, that $\mathrm{L}_{1} \subset \mathrm{~L}_{2} \subset$ $\cdots \subset \mathrm{L}_{n}$. Therefore, $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathrm{L}_{n}$ is linearly independent. Which proves that \mathcal{L} is linearly independent. Thus we showed that \mathscr{L} is inductive: every totally ordered subset \mathscr{L}^{\prime} of \mathscr{L} has an upper bound.

By Zorn's lemma, \mathscr{L} has a maximal element: there exists a maximal linearly independent family \mathcal{B} in X . Let's check that \mathcal{B} is a basis. Of course, by definition, \mathcal{B} is linearly independent. If $x \in \mathrm{X}$ is not in $\operatorname{Span} \mathcal{B}$, then $\mathcal{B} \subsetneq(\mathcal{B} \cup\{x\}) \in \mathscr{L}$, which contradicts the maximality of \mathcal{B}.

$$
\text { Span } \mathcal{B}=\mathrm{X}: \mathrm{X} \text { has a Hamel basis. }
$$

2 Let X be an infinite dimensional Banach space and suppose it has a countable Hamel basis $\left(x_{n}\right)_{n \in \mathbb{N}^{*}}$. Let

$$
\forall n \in \mathbb{N}^{\star} \quad \mathrm{X}_{n}=\operatorname{Span}\left(x_{1}, \ldots, x_{n}\right)
$$

so that

$$
\mathrm{X}=\bigcup_{n \in \mathbb{N}^{\star}} \mathrm{X}_{n}
$$

Each X_{n} is closed. Indeed, let $\left(u_{p}\right)_{p \in \mathbb{N}}$ be a sequence in X_{n}, converging to some $u \in \mathrm{X}$. Then $\left(u_{p}\right)_{p \in \mathbb{N}}$ is Cauchy; but we know that finite dimensional vector spaces are complete, thus $\left(u_{p}\right)_{p \in \mathbb{N}}$ has a limit $v \in \mathrm{X}_{n}$. By unicity of the limit, $u=v$ and therefore $u \in \mathrm{X}_{n}$.

By Baire's lemma, there has to be a positive integer N such that X_{N} has nonempty interior: there exists $x \in \mathrm{X}_{\mathrm{N}}$ and $\epsilon>0$, such that $\mathcal{B}(x, 2 \epsilon) \subset \mathrm{X}_{\mathrm{N}}$. We should deduce from this that $\mathrm{X}_{\mathrm{N}}=\mathrm{X}$. Let $y \in \mathrm{X}$ be nonzero. Then $x+\frac{\epsilon}{\|y\|} y$ is in the ball $\mathcal{B}(x, 2 \epsilon) \subset \mathrm{X}_{\mathrm{N}}$. Therefore, since X_{N} is a vector space,

$$
y=\left[\frac{\|y\|}{\epsilon}\left(x+\frac{\epsilon}{\|y\|} y\right)-\frac{\|y\|}{\epsilon} x\right] \in \mathrm{X}_{\mathrm{N}}
$$

which proves

$$
\mathrm{X} \subset \mathrm{X}_{\mathrm{N}}
$$

So X is finite dimensional and we have a contradiction.
A Hamel basis for an infinite dimensional Banach space is uncountable.

Tenth problem

Suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a bounded function such that

$$
\exists \mathrm{K}>0 \quad \forall x, h \in \mathbb{R} \quad|f(x+h)+f(x-h)-2 f(x)| \leqslant \mathrm{K}|h|
$$

Prove that

$$
\forall x, y \in \mathbb{R} \quad|f(x)-f(y)| \leqslant c\left(1+\ln ^{+} \frac{1}{|x-y|}\right)|x-y|
$$

where c is a constant depending only on K and $\|f\|_{\infty}$.

Solution

Fix an $x \in \mathbb{R}$ and define

$$
\forall z \in \mathbb{R} \quad g(z)=f(z+x)-f(x)
$$

Then

$$
g(0)=0 \quad\|g\|_{\infty} \leqslant 2\|f\|_{\infty}
$$

$\Varangle \mathfrak{y} h \in \mathbb{R} \quad|g(z+h)+g(z-h)-2 g(z)|=|f(z+x+h)+f(z+x-h)-2 f(z+x)| \leqslant \mathrm{K}(\mathbf{l}) \mid$ Fix a $z \in \mathbb{R}$, let n be any integer; by (1):
or

$$
\begin{gathered}
\left|g\left(2^{n} z+2^{n} z\right)+g\left(2^{n} z-2^{n} z\right)-2 g\left(2^{n} z\right)\right| \leqslant 2^{n} \mathrm{~K}|z| \\
\left|\frac{g\left(2^{n+1} z\right)}{2^{n+1}}-\frac{g\left(2^{n} z\right)}{2^{n}}\right| \leqslant \frac{\mathrm{K}|z|}{2}
\end{gathered}
$$

after dividing both sides by 2^{n+1}. This is true for every integer n, therefore we can sum all these inequalities between $n=0$ and $n=\mathrm{N}-1$ for some positive integer N :

$$
\left|\sum_{n=0}^{\mathrm{N}-1}\left(\frac{g\left(2^{n+1} z\right)}{2^{n+1}}-\frac{g\left(2^{n} z\right)}{2^{n}}\right)\right| \leqslant \sum_{n=0}^{\mathrm{N}-1}\left|\frac{g\left(2^{n+1} z\right)}{2^{n+1}}-\frac{g\left(2^{n} z\right)}{2^{n}}\right| \leqslant \frac{\mathrm{KN}|z|}{2}
$$

The lefthandside is a telescoping series and we are left with

$$
\left|\frac{g\left(2^{\mathrm{N}} z\right)}{2^{\mathrm{N}}}-g(z)\right| \leqslant \frac{\mathrm{KN}|z|}{2}
$$

Now use the triangle inequality $|a-b| \geqslant|a|-|b|$:

$$
|g(z)|-\frac{\left|g\left(2^{\mathrm{N}} z\right)\right|}{2^{\mathrm{N}}} \leqslant \frac{\mathrm{KN}|z|}{2}
$$

and finally $\quad|g(z)| \leqslant \frac{\|g\|_{\infty}}{2^{\mathrm{N}}}+\frac{\mathrm{KN}|z|}{2} \leqslant \frac{2\|f\|_{\infty}}{2^{\mathrm{N}}}+\frac{\mathrm{KN}|z|}{2}$

We consider now two cases, depending on $|z|$:

- If $|\boldsymbol{z}| \geqslant 1$: Just take $\mathrm{N}=1$ in (2) in order to get

$$
|g(z)| \leqslant\|f\|_{\infty}+\frac{\mathrm{K}|z|}{2} \leqslant\left(\|f\|_{\infty}+\frac{\mathrm{K}}{2}\right)|z|
$$

- If $|\boldsymbol{z}|<1$: Choose N to be the only positive integer such that

$$
\frac{1}{2^{\mathrm{N}+1}}<|z| \leqslant \frac{1}{2^{\mathrm{N}}}
$$

that is

$$
\mathrm{N} \leqslant \frac{\ln 1 /|z|}{\ln 2}<\mathrm{N}+1
$$

and see what happens in (2):

$$
|g(z)| \leqslant 4\|f\|_{\infty}|z|+\frac{\mathrm{K}|z|}{2 \ln 2} \ln \frac{1}{|z|}
$$

Letting c be some bigass constant, for example

$$
c=\operatorname{Max}\left(4\|f\|_{\infty}, \frac{\mathrm{K}}{2 \ln 2},\|f\|_{\infty}+\frac{\mathrm{K}}{2}\right)
$$

we get an inequality that combines both cases:

$$
\forall x, z \in \mathbb{R} \quad|g(z)|=|f(x+z)-f(x)| \leqslant c\left(1+\ln ^{+} \frac{1}{|z|}\right)|z|
$$

