Ph.D. Qualifying Exam — Spring 2004

‘ First problem

Suppose f € L'(R). Let
VeeR  g(x) = / e f(y) dy
R
1. Prove that the integral exists for every .
2. Prove that ¢ is a continuous function.

3. Prove that there is a dense subset S of L'(R) such that if f € S, then

‘x‘llrgm g(x) =0 (*)

4. Prove that (%) holds for any f € LY(R).

Solution

We have Ve,yeR e f(y)| = | f(y)] (1)

and since f is L'(R), the function 2 — f(y)e " is also L'(R) for every real number z.
Thus

‘The function g is well defined. ‘

Because of (1), and because the function (z,y) — f(y)e ¥ is continuous in z, we
can apply the continuity theorem for integrals and deduce that

‘ g is continuous on R. ‘

In the remainder of the solution, we will write T f for g. That is

VfeLI(R) VaeR Tf(x):/Rf(y)e‘i””dey

Let S; be the set of L! functions, that are 0 almost everywhere in some neighbourhood
of 0. That is:

Si={feLl'(R)|Ie>0 flq=0}



We first show that S; is dense. Let f be in L!. For every positive integer n, define

f f f]l[_ﬁ> ﬁ]
Then foliZ11,=0
so that Vn € N* fn €S
1
Furthermore Vn € N \f— follh = / |f| —— 0
1 n—o0

which proves that S; is dense. We now let S be the elements of S; which are ¥ with
compact support. The intersection of two dense sets is dense, hence

S is dense in L'(R).

If f belongs to S, then h : y — ) is ¥>° with compact support and 0 in a

Y
neighbourhood of 0. Thus h and A’ are integrable. We have

vreR  Tf(x)= / fly)e ™ dy = / h(y) ye™" dy
R R
Integrate by parts:
h —iwy? 1400 ]
(y)e ] s

h' —izy? d
iz (y)e™ dy

Ve e R\ {0}  Tf(z)= [

2iz [y

N~
=0

Thus Ve e R\ {0}  [Tf(z)] < 2\x|H Wl ————

There is a dense subset S of L' such that
VfesS hm Tf(z) =

.CB ——+00

Let f be in L' and g be in S. We can write that Tf = Tg+ T(f — g), and notice that
veeR |T(f—g)(@)| <[If gl
Then limsup‘Tf(x } hmsup}Tg }+||f glli=1f—glh

|z| =400 \x\—>+oo

g

=0

This holds for every g in S, which is dense in L*. Thus lim sup ‘T f (a:)‘ is 0:

|z|—+o00

Vf € L'(R) lim Tf(z) =

|z|—+o00




Second problem I

Suppose (X, ., ;1) is a measure space and that (f,,),en is a sequence in L' () converg-
ing weakly. Prove that

Ve>0 36>0 VAeo  (u(A)<d = VneN /|fn\du<e)
A

Solution

The following result is a key ingredient for this problem:
Theorem 1: Let (X, o/, 1) be a measure space. Let f be a positive integrable
function on X. Then

YVe>0 J0>0 VAed (M(A)<5:>/fd,u<6)
A

I believe it is usually proved in 205A, so it can, of course, be used. Yet it took me
so much time remembering why it is true that I want to recall the proof:
Proof: For every positive integer n, define

.f n = Min (f ’ n)
The sequence (f,,)nen is increasing and converges pointwise to f. By the monotone

Ll
convergence theorem, f, L, f. Let A be a measurable set. We have

n—~0o0

Jrau=[r=prdus [ fan< [ (= fodnrua)

Taking n big enough so that [, (f—f,) dp < 5, and letting A be any set of measure
less than o~ yield

/fdu<6 O
A

Suppose the conclusion false:
Je>0 V>0 JAed (1(A) <6 and /|fn\d,u>ef0rsomen) (%)
A
In other words,

Inf{u(A) ‘ A € of such that / | fn| dpe > € for some n} =0
A

Start by taking 0; = 1 in (x). Then there exists an integer k; and a measurable set A
such that



p(A1) <01 and | fruldp > €
Ay

Let’s rename f;, to g;. This is the first step in the inductive construction of a subsequence
(gn)nen of (fn)nen, a sequence (A, ),en of measurable sets, and a sequence (d,)nen Of
positive real numbers.

Suppose that we have constructed the first terms g, ..., g, of the subsequence, sets
Ay, ..., A, and positive real numbers 901, ..., d,, with the following properties:

e For m < n, d,, is such that
VA € o (,u(A)écSm:>/|gj|d,u<2imforj:1,...,m—1)
A
e For m < n, A,, and g,, are such that

(A < o and / |gm| dp > €
Am

Using Theorem 1 and (%), it is clear that we can construct 0,1, A,+1 and g,11. So the
two properties listed above are actually satisfied for every n. Hope this is clear enough...
For every positive integer n, let

Bn:An\(UAJ>

The sets (B,,)qen are pairwise disjoint



Third problem I

Let f : (a,b) — R be an arbitrary function. Let
S={z € (a,b) | f'(x) exists and equals 0}
Prove that the image f(S) of S under f has measure 0.

Solution

Let € be a positive real number. By definition, if z is in S, f is differentiable at = and
f'(x) = 0. Thus there exists h > 0 such that
Vy €z —ha+hl  [fly) = fl2)] <elr —y| < 2eh
which means that f([z — h,x + h]) C [f(z) — 2¢h, f(x) + 2¢h].

Now, let € be the collection of all intervals of the form I = [z — h,x + h| C (a,b),
such that x € S and f(I) is contained in an interval of length at most 2eh. What we just
explained shows that 4 covers S. Thus, by the 5-times covering lemma, there exists a
pairwise disjoint collection (I,,)pen = ([mn — hy, 2 + h"])neN C € such that (51,)peny C €
as well, and S C |J 5I,. Thus f(S) € | f(5l,) and since the Lebesgue measure is

neN neN
increasing and subadditive:

n(£(S)) < n(f(55))
neN
For every integer n, because 51, € €, f(51,) is included in an interval of length 2¢ x 5h,,:

n(f(S)) < 5€Z2hn = SEZ/L(L@) = 5e,u< U In> < 5e(b—a)

neN neN neN

This holds for every positive e. Therefore,

n(f(S)) =0




Fourth problem I

Let X be a metric space.

1. Prove that if X is countably compact, then X is compact.

2. Prove that if every continuous function on X is bounded, then X is compact.

Solution

Suppose that X is countably compact, which means that every countable open cover of
X has a finite subcover. Then we can derive a property analogous to the finite intersection

property: if (F,),en is a (countable) collection of closed sets such that () F,, = (), there
neN
exists a finite subcollection F,, , ..., F,, such that F,,, n---NF,, = 0.

This is proven exactly as the finite intersection property is proven: the (F¢),en
form a countable open cover of X. Thus there is a finite subcover Fy U---UF]
of X, and we have F,, N---F,, = 0.

Because X is a metric space, sequential compactness is equivalent to compactness. So
let (z,)nen be a sequence of elements of X. The set of limit points of (x,,),en is
L = () {zx [ k=n}
neN

Suppose that .2 is empty. Then there exist integers n; < ... < n; such that

j -
0= A{zr | k=n}
k=1
But these closed sets form a decreasing sequence, therefore
0 ={zx | k> n;}

which is, of course, impossible. Hence . is not empty: (z,)n,eny has convergent subse-
quences.

Suppose that X is not compact. There exists a sequence (x,),en of elements of X
that has no convergent subsequence. Denote by 2  the collection (x,),eny. Then 27 is
closed: indeed, a convergent sequence of distinct points of 2~ would allow us to construct
a convergent subsequence of (x,,),en.

The same conclusion holds for 2, = 2"\ {x,}, for every integer n: this set is closed.
Since it does not contain z,,, the distance dist(z,, £, ) is a positive real number r,,.



Define a function on 2 as follows:
VneN  f(z,)=n

Then f is continuous on the closed set 2" and by Tietze’s extension theorem, it can be
extended to a continuous function (still denoted f) on X. So there exists a continuous,
unbounded, function on X.

‘If every continuous function on X is bounded, X is compact.




Fifth problem I

Prove that there exists an orthonormal basis % of L2 [0, 1]) such that
d
VfeR / \f(a |— < 00 / Fla) =L =

Solution
! x
Let Y:{feLQ(O,l) ‘ /0 |f(x)|d;<oo}

1
Ve Tf:/0 f(x)i—x

Then . is dense in L?(0, 1). Indeed, let f be an L? functlon. For every positive integer n,
the function f, = fg, is in ./, and

n—~0o0

If = fulls = /05 flz)de —— 0

by dominated convergence.
Define now

¥ =KerT

and let’s show that % is dense in .¥. For this, we will need the value of Tg,, which is
not a problem:

1
d
Vn e N Tg, = %zlnn—>+oo
1 n—00
Let f be any function in .. Then
Tf
(f Ty, ) .
which gives f— 1/ gn € &
Tgn
'Tf] Tf 1
i = 11
h |Tgn| lgll = Inn n/ n—oo 0
and therefore lim ( f— I/ gn> =f



f is indeed the limit of a sequence in Z: the latter is dense in ..

Since L2(0,1) is separable, 2 has a countable dense subset 2". Using the Gram-
Schmidt process, we can extract an orthonormal sequence (f,)nen C 27, that spans the
same subspace as 2 . Thus

V4 - Span (fn)neN

and L?(0,1) = Span (fu)nen



Sixth problem I

Let (X, 4, 1) be a finite measure space. Suppose that (f,).en is a sequence of functions
in L'(u), converging almost everywhere to an L'(p) function f. Suppose also that

[fnllt —— 11/l
n— o0

1. Prove that for every measurable set A, / |ful dp ——— / ||
A n—=oo A

2. Prove that || f, — f|l1 —— 0.

Solution

For every integer n, define

gn = Min (| £, |f]) = [ ful 11 —2\|fn| sl

Since (f,,)nen converges almost everywhere to f, it follows that (g,)nen converges almost
everywhere to | f| and is dominated by | f|.

Let A be any measurable set. Then (g,14),en converges almost everywhere to |f|1a
and is dominated by |f|1s. The dominated convergence theorem implies that

lim gndu=/|f|du
A A

n—oo

The same argument shows that

lim gndu=/|f|du
X X

n—~00

Now, by definition of g,, the function |f,| — g, is nonnegative for every integer n and
thus we have

so that 0</A(|fn|—gn) dﬂ</}((|fn|_gn) du

Both terms on the righthandside tend to / | f| dp, thus
X

lim [ (| fal = gn)dpe =0

n—~0o0 A

So Vn eN /|fn\du=/(Ifn\—gn)du+/gndu%/|f\du
A A A n—00 A

10



For every integer n, the function |f,| + |f| — | f. — f] is nonnegative, by the triangular
inequality. Thus Fatou’s lemma applies:

[ timint (1] 171 = 15, = 1) dn < tmmin [ (16l 171 1 = £1) o

Since ( f,)nen converges almost everywhere to f, we can actually simplify the lefthandside.
And since / (|ful +1f]) dp does converge to 2/ |f|, we can pull it out of the liminf on
the righthandside, after taking limits:

2 [11<2 [ 1+ tmin (= [ 15— flan)

Hence limsup/ |fo — fldu = —liminf(—/ \fn—f|d,u> <0
n—oo X n—oo X
and lim ||f, = f]l1 =0

We used here the following manipulation involving liminfs:
Lemma: If (u,)neny and (v,)nen are two sequences of real numbers such that the
first one converges to some u € R, we have

lim inf(u, + v,) = v + liminf v,

n—oo n—o0

Note that in general, if we don’t assume that (u,),ey converges, then all we
can say is that

lim inf(u, + v,) > liminf u,, + lim inf v,

n—~0o0 n—~0o0 n—oo

which is not sufficient for us to solve the problem.
Proof: Define

Vn € N U,, = Inf uy V,, = Inf v, and wy, = Inf (ug + vg)

k>n k>n k>n
so that liminfu, = lim U, = u liminf v, = lim V,,
n—oo n—oo n—oo n—oo
and liminf(u, + v,) = lim w,
n—oo n—oo

Let € be a positive real number. Then there exists an integer N such that
Vn > N U—€< Uy <UFE

Let n be an integer bigger than N, let k£ be an integer bigger than n. Then we have
in particular

Up +Fvp < U+ €+ v

11



But up + v = Igf(up +v,) = w,
p=zn

Therefore Wy, < U+ €+ v
This holds for every k > n, so taking the infimum over k yields
VYn > N w, <u+e+V,
Let n tend to co in order to obtain
ligiolgf(un +v,) <ute+ ligriglfvn
Since this holds for every positive €, we get
liﬂ)i;lf(un +v,) <u+ ligg}f Uy,
But the converse inequality holds in general, as stated earlier. Hence

liminf(u, + v,) = v + liminf v,

n—~0o0 n—oo

12



Seventh probleml

Suppose that (f,)nen is a decreasing sequence of continuous functions on [0, 1], con-
verging pointwise to a continuous function f. Prove that the convergence is uniform.

Solution

Let € be a positive real number. Define
Vn e N O, ={z €[0,1] | fulz) — f(z) <€}

The sequence (f,)nen is decreasing. Thus, if p < n are integers, and z is in O,, we
have

fu(@) = f(2) < folz) = flz) <e
which proves that x € O,. So the sequence (O,,) ey is increasing.

Since the (f,)nen’s and f are continuous, all the (O,,),en’s are open. Because (f,,)nen
converges pointwise to f, every x € [0, 1] belongs to at least one of these sets. So (O,,)nen
is an open cover of the compact set [0,1]. Thus there is a finite subcover: there exist
integers ny < - -+ < nyg such that

[071] == (OmU-.-UOnk) C (O”kU"'UOnk) :Onk
But using again the fact that the (O,,),en are increasing, we get

VYn=n, [0,1]=0,

In other words Vn >n, Vrel0,1] 0< fulz) — flz) <e

Conclusion (fn)nen converges uniformly to f.

13



Eighth problem I

Let (¢,)nen be a sequence of complex numbers. Assume there are positive integers
Ny — oo such that the trigonometric polynomials

k—oo

Ny

Pr(t) = Z (1 - Nk|jj|t 1>cj et

Jj=—Ng

are nonnegative for all £. Prove that there exists a positive measure p on T such that

Vn € Z Cp = /e_i”t du(t)
T

Solution

For every integer k, let u; be the measure with density Py relatively to the Lebesgue
measure. Then py is a positive measure and

el = a(T) = / Pu(t) dt = 2o
T

So (ug)ken is a bounded sequence in . (T) (the Banach space of signed measures on T).
Up to multiplying the (u)ren by the constant ﬁ, we can assume that ||ug| = 1.

Since . (T) is the dual of the separable Banach space %'(T) (this is Riesz’ represen-
tation theorem), the unit ball of . (T), together with the topology x — o (€(T), .#(T)),
is metrizable. And by Banach-Alaoglu-Bourbaki, it is also compact. Thus any bounded
sequence there, such as (ug)ren, has a weak-x convergent subsequence. So we can assume
also that (ug)ken converges weakly to a measure p. In particular, we have

Vn e N /e_i”t du(t) = lim | Py(t)e ™ d
T

k—o0 T
0 if N <n
But Vk € N /P t) et qt = n )
T k() (1_%>0n if Nk>n

Hence Vn € Z /e_i"t du(t) = ¢,
T

14



Ninth problem I

Let X be a vector space.

1. Prove that X has a Hamel basis (or algebraic basis).

2. If X is an infinite dimensional Banach space, prove that any Hamel basis must be
uncountable.

Solution

Remember that a finite collection (z1,...,z,) of vectors in X is called linearly inde-
pendent if and only if

VO ) €K (Y N =0 = A, :---:An:0>
k=1
A set L € X is called linearly independent if and only if every finite subset of L is linearly
independent. A Hamel basis for X is a linearly independent subset of X that spans X.

Define <« ={L c X | L linearly independent }

£ is partially ordered by inclusion. Let .Z" C .Z be totally ordered, that is: every two
elements of .Z’ can be compared and consider

Let’s show that £ € .Z, or in other words, that £ is linearly independent. Let {z1,...,z,}
be any finite subset of £. Then

Vke{l,....,n} L, e T € Ly,

Since .’ is totally ordered, we can suppose, up to renaming the x’s, that L; C Ly C
-+» C L. Therefore, {x1,...,2,} C L, is linearly independent. Which proves that L is
linearly independent. Thus we showed that . is inductive: every totally ordered subset
£ of £ has an upper bound.

By Zorn’s lemma, .Z has a maximal element: there exists a maximal linearly indepen-
dent family B in X. Let’s check that B is a basis. Of course, by definition, B is linearly
independent. If z € X is not in Span B, then B C (BU {z}) € ., which contradicts the
maximality of B.

Span B = X: X has a Hamel basis. ‘

15



Let X be an infinite dimensional Banach space and suppose it has a countable Hamel
basis (,)nens. Let

Vn € N* X, = Span (z1,...,7,)

so that X = U X,

neN*

Each X,, is closed. Indeed, let (u,)yeny be a sequence in X,,, converging to some u € X.
Then (u,)pen is Cauchy; but we know that finite dimensional vector spaces are complete,
thus (u,)yen has a limit v € X,,. By unicity of the limit, u = v and therefore u € X,,.

By Baire’s lemma, there has to be a positive integer N such that Xy has nonempty
interior: there exists x € Xy and € > 0, such that B(z,2¢) C Xy. We should deduce from
this that Xy = X. Let y € X be nonzero. Then z + @y is in the ball B(x,2¢) C Xy.
Therefore, since Xy is a vector space,

Iyl ¢ Iyl ]
y=|—r+—y)——zl €X
[ ( Iyl ) )

€ €

which proves X C XN

So X is finite dimensional and we have a contradiction.

A Hamel basis for an infinite dimensional Banach space is uncountable.

16



Tenth problem I

Suppose f: R — R is a bounded function such that
K >0 Ve, heR  |flx+h)+ flx—h)—2f(z)| < KA
Prove that

VryeR |1~ )] <e(l+ =)y

where ¢ is a constant depending only on K and || f||ec-
Solution

Fix an z € R and define
VzeR  g(z) = f(z + ) — f(z)

Then g(0) =0 19100 < 2[[floo

wndh € R }g(z+h)+g(z—h)—29(z)} = ‘f(z+:v+h)+f(z+x—h)—2f(z+x)} < K(b)
Fix a z € R, let n be any integer; by (1):
lg(2"z + 27z) + g(2"2 — 2"2) — 2g(2”z)} < 2"K|z|

o) o) K

ontl on [T 2

after dividing both sides by 2"*!. This is true for every integer n, therefore we can sum
all these inequalities between n = 0 and n = N — 1 for some positive integer N:

or

2n+l g 2n+1 2n ) KN‘Z|
} Z < on+1 > ‘ Z on+1 mn < 92
The lefthand51de is a telescoping series and we are left with
g(2Nz KN|z
29 0| < KN

Now use the triangle inequality |a — b > |a| — |b]:

g(2N2) KN]|z|

lgllo KNz _ 2]}l KN

and finally lg(2)] < oN 5 S ToN 5 (2)

17



We consider now two cases, depending on |z|:

o If |z| > 1: Just take N =1 in (2) in order to get

+ )k

K]z|
9] < Ifloe + = < (Il +
e If |z| < 1: Choose N to be the only positive integer such that
1 1
ON-+1 <z < oN
In1
that is N < L/M N+1
In2
and see what happens in (2):
KlZ\
9] < 40 flclel + o)

Letting ¢ be some bigass constant, for example

e = Max (4] f - 575 Tl

we get an inequality that combines both cases:

A flloo +

n—
IZ\

2)

Vo,z€R |g(z)| = | flat2) — fo)] <

o(

1+ Int —

||

D)l
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