
Ph.D. Qualifying Exam – Spring 2003

First problem

Let f be a continuous function on the unit square Q = [0, 1]2 and for s ∈ [0, 1], let

g(s) = Max
{
f(s, t) | t ∈ [0, 1]

}

1. Show that g is a continuous function on [0, 1].

2. Prove that if
∣∣f(x) − f(y)

∣∣ 6 M|x − y| for x and y in Q, then
∣∣g(s1) − g(s2)

∣∣ 6

M|s1 − s2| for s1 and s2 in [0, 1].

3. Give an example in which f is C 1(Q) but g is not C 1([0, 1]).

Solution

a f is continuous on the compact Q, therefore it is uniformly continuous. So if ǫ is a
given positive number, there exists η > 0 such that

∀(s1, t1), (s2, t2) ∈ Q
(
|s1−s2| 6 η and |t1−t2| 6 η

)
=⇒

∣∣f(s1, t1)−f(s2, t2)
∣∣ 6 ǫ

Let s1 and s2 be any two elements of [0, 1], such that |s1 − s2| 6 η. By definition of
g(s1),

∀t ∈ [0, 1] f(s1, t) 6 g(s1)

By uniform continuity of f ,

∀t ∈ [0, 1]
∣∣f(s1, t) − f(s2, t)

∣∣ 6 ǫ

In particular ∀t ∈ [0, 1] f(s2, t) 6 f(s1, t) + ǫ 6 g(s1) + ǫ

Taking the max over t in the lefthandside yields

g(s2) 6 g(s1) + ǫ

Since s1 and s2 play symmetric roles, we obtain in the same way that

g(s1) 6 g(s2) + ǫ

Therefore
∣∣g(s1) − g(s2)

∣∣ 6 ǫ as soon as |s1 − s2| 6 η

Conclusion: g is uniformly continuous on [0, 1].
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b Suppose now that f is M-Lipschitz on Q, which means that

∀(s1, t1), (s2, t2) ∈ Q
∣∣f(s1, t1) − f(s2, t2)

∣∣ 6 M
(
|s1 − s2| + |t1 − t2|

)

Let s1 and s2 be in [0, 1]. Since t 7−→ f(s1, t) is continuous on the compact set [0, 1],
the Max in the definition of g is attained (this is actually implicit in the definition) at
some t1 ∈ [0, 1]. Then

∣∣g(s1) − f(s2, t1)
∣∣ =

∣∣f(s1, t1) − f(s2, t1)
∣∣ 6 M|s1 − s2|

In particular g(s1) 6 M|s1 − s2| + f(s2, t1) 6 M|s1 − s2| + g(s2)

Since s1 and s2 play symmetric roles, we could show as well that

g(s2) 6 M|s1 − s2| + g(s1)

Therefore ∀s1, s2 ∈ [0, 1]
∣∣g(s1) − g(s2)

∣∣ 6 M|s1 − s2|

c Take ∀(x, y) ∈ [0, 1]2 f(x, y) =
(1

2
− x

)(1

2
− y

)

Then ∀x ∈ [0, 1] g(x) =
1

2

∣∣∣1
2
− x

∣∣∣

which is not C 1, while f is.
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Second problem

Suppose (X, d) is a metric space without isolated points, such that every continuous
function f : X −→ [0, 1] is uniformly continuous. Show that X is compact.

Solution

Suppose that X is not compact. Then there is a sequence (un)n∈N ⊂ X that has no
convergent subsequence; up to removing multiple occurences of terms, we can suppose
that all terms of the sequence are pairwise distinct.

Denote by U the collection {un | n ∈ N}. This set is closed. Indeed, suppose that a
sequence of elements of U converges to some x ∈ X. If this sequence contains infinitely
many elements of U , then we can construct a convergent subsequence of (un)n∈N, which
is impossible. Therefore our sequence only takes finitely many values; since it converges,
it is eventually constant and therefore x ∈ U .

Let p be an integer and define Up = U \ {up}. Then Up is closed as well (the sequence
(un)n 6=p has no convergent subsequence) and the distance of up to Up is thus positive. Let
ǫp be a positive number such that

0 < ǫp < Min
(1

p
, d(up,Up)

)

Because up is not isolated, the ball B(up, ǫp) contains some vp other than up.
The sequence (vp)p∈N constructed has no convergent subsequence (if it had, since

d(vp, up) < 1
p
, then (up)p∈N would have a convergent subsequence) and therefore the set

V = {vp | p ∈ N} is closed. A union of closed sets is closed and therefore F = U ⋃V is
closed. Define a function f on F as follows:

∀n ∈ N f(up) = 0 and f(vp) = 1

This function is continuous on F since it only takes the values 0 and 1, and

f−1
(
{1}

)
= V and f−1

(
{0}

)
= U

which are closed sets. By Tietze’s extension theorem there exists a continuous function
extending f . For convenience, this new function is still denoted by f .

We finally remark that f cannot be uniformly continuous. Indeed, if η is a positive
real number, there exists p such that ǫp < η. Then

|up − vp| < ǫp < η and
∣∣f(up) − f(vp)

∣∣ = 1

This contradicts the hypothesis on X, that every continuous function is uniformly contin-
uous. Hence

X is compact.
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Third problem

Suppose X and Y are Banach spaces and T : X −→ Y is linear. Prove that T is
bounded in each of the following cases:

1. If there is a family F of real continuous linear functionals on Y such that f ◦ T is
continuous for each f ∈ F and

⋂
f∈F

f−1(0) = {0}.

2. If there are closed sets (An)n∈N with
⋃

n∈N

An = X and with T(An) bounded subset

of Y for every integer n.

Solution

a Suppose such a family F exists. Let (xn)n∈N be a sequence in X that converges to
some x ∈ X and such that (Txn)n∈N converges to some y ∈ Y. Because f ◦T is continuous
for every f ∈ F , we have

∀f ∈ F lim
n→∞

f ◦ T(xn) = f ◦ T(x)

Also, because lim
n→∞

Txn = y and all f ’s in F are continuous, we have

∀f ∈ F lim
n→∞

f ◦ T(xn) = f(y)

Therefore ∀f ∈ F f(Tx − y) = 0

which means that Tx − y ∈
⋂

f∈F

f−1(0) = {0}

Hence Tx = y

which shows that T has closed graph.

T is continuous.

b Suppose we are given those closed sets (An)n∈N. By Baire’s theorem, since their union
is equal to X, one of them, say AN, has nonempty interior:

∃x0 ∈ AN ∃ǫ > 0 B(x0, ǫ) ⊂ AN

Because AN is closed, the closed ball B(x0, ǫ) is also included in AN. We know as well
that T(AN) is bounded:

∃M > 0 ∀x ∈ AN ‖Tx‖ 6 M
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Let x be a nonzero element of X. Then x0 + ǫx
‖x‖

is in the closed ball of center x and
radius ǫ. Thus ∥∥∥Tx0 +

ǫ

‖x‖ Tx

∥∥∥ 6 M

By the triangle inequality ‖a‖ − ‖b‖ 6 ‖a − b‖,
ǫ

‖x‖ ‖Tx‖ − ‖Tx0‖ 6 M

and ‖Tx‖ 6
M + ‖Tx0‖

ǫ
‖x‖ 6

2M

ǫ
‖x‖

Conclusion: T is bounded.
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Fourth problem

Suppose T : X −→ Y is a compact operator between Banach spaces. Prove that the
adjoint operator T⋆ : Y⋆ −→ X⋆ is also compact.

Solution

Since T is compact, the set K = T(BX) is compact. The proof of the compactness
of T⋆ relies on the following important observation. If f is a bounded linear functional
on Y, then f is in particular continuous on the compact set K . Thus it makes sense to
consider ‖f‖∞ = Sup

y∈K

∣∣f(y)|. But since K is the closure of T(BX), we also have

‖f‖∞ = Sup
y∈T(BX)

∣∣f(y)
∣∣ = Sup

x∈BX

∣∣f(Tx)
∣∣ = Sup

x∈BX

∣∣T⋆(f)x
∣∣

and we recognize here the norm of T⋆f as an element of the dual of X. So our important
observation is that

‖f‖∞ = ‖T⋆f‖X⋆

Now, consider a sequence (fn)n∈N of elements of the unit ball of Y⋆. First notice that

∀n ∈ N ‖fn‖∞ = ‖T⋆fn‖ 6 ‖T⋆‖ ‖fn‖ 6 ‖T⋆‖
so (fn)n∈N is bounded in C (K ). Furthermore, this sequence is uniformly equicontinuous
on K since

∀y1, y2 ∈ K
∣∣fn(y1) − fn(y2)

∣∣ =
∣∣fn(y1 − y2)

∣∣ 6 ‖fn‖ ‖y1 − y2‖ 6 ‖y1 − y2‖
So by Arzela-Ascoli, there (fn)n∈N has a converging subsequence in C (K ). So (T⋆fn)n∈N

has a subsequence which is Cauchy, and therefore convergent in X⋆. This achieves showing
that

T⋆ is compact.
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Fifth problem

A sequence (ξj)j∈N ⊂ [0, 1] is said to be uniformly distributed in [0, 1] if

∀f ∈ C ([0, 1]) lim
n→∞

1

n

n∑

j=1

f(ξj) =

∫

[0,1]

f

Prove that (ξj)j∈N is uniformly distributed in [0, 1] if

∀m ∈ Z \ {0} lim
n→∞

1

n

n∑

j=1

e2πimξj = 0

Solution

First suppose that (ξj)j∈N is uniformly distibuted, let m be a nonzero integer. Then,
since x 7−→ e2πimx is continuous on [0, 1], we know that

lim
n→∞

1

n

n∑

j=1

e2πimξj =

∫ 1

0

e2πimx dx = 0

Conversely, suppose that this property holds for every m 6= 0. When m = 0, we get:

∀n ∈ N
1

n

n∑

j=1

e2πi×0×ξj = 1

so we can actually write in general that

∀m ∈ Z lim
n→∞

1

n

n∑

j=1

e2πimξj =

∫ 1

0

e2πimx dx

or ∀g ∈ P lim
n→∞

1

n

n∑

j=1

g(ξj) =

∫

[0,1]

g

where P is the set of trigonometric polynomials on [0, 1] (finite linear combinations of
functions of the type x 7−→ e2πimx).

Now, we know that P is dense in the set of continuous functions on [0, 1] that take
the same value at 0 and 1. And

g 7−→ lim
n→∞

1

n

n∑

j=1

g(ξj)

is a bounded linear functional on P, coinciding with integration against Lebesgue mea-
sure. Therefore, it extends to P and

∀f ∈ C ([0, 1]) f(0) = f(1) =⇒ lim
n→∞

1

n

n∑

j=1

f(ξj) =

∫

[0,1]

f
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Now we have to extend this somehow to all continuous functions on [0, 1], regardless
of the values at 0 and 1. Let 0 6 a < b 6 1 and f = 1[a,b). If a = 0 and b = 1, we have
the constant function equal to 1 and we know that everything works fine. So suppose we
are not in this case. We define function f−

ǫ and f+
ǫ as follows:

• If a = 0: Take ǫ small enough so that 0 < ǫ < b − ǫ < b + ǫ < 1 − ǫ and define

0

-

6

1b

1

ǫ

f−
ǫ

0

-

6

1b

1

f+
ǫ

• If b = 1: Take ǫ small enough so that 0 < ǫ < a − ǫ < a + ǫ < 1 and define

0

-

6

1a

1

f−
ǫ

0

-

6

1a

1

f+
ǫ

• If 0 < a < b < 1: Take ǫ small enough so that 0 < a−ǫ < a+ǫ < b−ǫ < b+ǫ < 1
and define

0

-

6

1a

1

b

f−
ǫ

0

-

6

1a

1

b

f+
ǫ

In any case, the functions f−
ǫ and f+

ǫ have been chosen so that

f−
ǫ (0) = f−

ǫ (1) f+
ǫ (0) = f+

ǫ (1) (1)

∀x ∈ [0, 1] f−
ǫ (x) < f(x) < f+

ǫ (x) (2)

and

∫

[0,1]

f−
ǫ =

∫

[0,1]

f − ǫ

∫

[0,1]

f+
ǫ =

∫

[0,1]

f + ǫ (3)
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From (2),

∀n ∈ N⋆ 1

n

n∑

j=1

f−
ǫ (ξj) <

1

n

n∑

j=1

f(ξj) <
1

n

n∑

j=1

f+
ǫ (ξj)

Because of (1), the left- and righthandside have limits as n tends to ∞ that are respectively∫
f−

ǫ and
∫

f+
ǫ . Thus
∫

[0,1]

f−
ǫ 6 lim inf

n→∞

1

n

n∑

j=1

f(ξj) 6 lim sup
n→∞

1

n

n∑

j=1

f(ξj) 6

∫

[0,1]

f+
ǫ

And finally, using (3):

−ǫ +

∫

[0,1]

f 6 lim inf
n→∞

1

n

n∑

j=1

f(ξj) 6 lim sup
n→∞

1

n

n∑

j=1

f(ξj) 6 ǫ +

∫

[0,1]

f

Since this is true for every (small enough) positive ǫ, we deduce that

lim
n→∞

1

n

n∑

j=1

f(ξj) exists and lim
n→∞

1

n

n∑

j=1

f(ξj) =

∫

[0,1]

f

Let S be the set of step functions on [0, 1], that is linear combinations of indicator
functions of intervals. Because integrating and taking limits are linear operations, and
a, b were arbitrary, it follows that

∀f ∈ S lim
n→∞

1

n

n∑

j=1

f(ξj) =

∫

[0,1]

f

Finally, S is dense in C ([0, 1]). Therefore,

∀f ∈ C ([0, 1]) lim
n→∞

1

n

n∑

j=1

f(ξj) =

∫

[0,1]

f

In other words The sequence (ξj)j∈N is uniformly distributed.
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Sixth problem

If X is a finite dimensional real vector space, prove that all norms on X are equivalent.

Solution

Call n the dimension of X and let (e1, . . . , en) be a basis for X. Any vector x ∈ X has
a unique decomposition long this basis:

∃ ! (x1, . . . , xn) ∈ Rn x =
n∑

i=1

xiei

If we define ‖x‖∞ = Max {|x1|, . . . , |xn|}
we know that ‖ ‖∞ is a norm on X, and that closed bounded sets are compact for this
norm.

Let ‖ ‖ be any other norm. Then by the triangle inequality

‖x‖ 6 |x1| ‖e1‖ + · · ·+ |xn| ‖en‖ 6 C‖x‖∞

with C =
n∑

i=1

‖ei‖

We deduce from this that

∀x, y ∈ X
∣∣‖x‖ − ‖y‖

∣∣ 6 ‖x − y‖ 6 C‖x − y‖∞
which implies that ‖ ‖ is continuous on the normed space

(
X, ‖ ‖∞

)
. Since the unit sphere

in X for ‖ ‖∞ is closed and bounded, it is compact, and ‖ ‖ has a minimum on this set:

∃m > 0 ∀x ∈ X ‖x‖∞ = 1 =⇒ m 6 ‖x‖
We know that m is attained, which excludes the possibility for it to be 0 (since ‖a‖ = 0
implies that a = 0); thus m > 0.

Now let x be any nonzero elements of X. Then x
‖x‖∞

has ∞-norm equal to 1 and
therefore

m 6

∥∥∥ x

‖x‖∞

∥∥∥ =
‖x‖
‖x‖∞

Conclusion: ∀x ∈ X m‖x‖∞ 6 ‖x‖ 6 C‖x‖∞
and the two norms ‖ ‖∞ and ‖ ‖ are equivalent. Since equivalence between norms is
actually an equivalence relationship, we deduce that

All norms on X are equivalent.
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Seventh problem

1. Prove that a weakly compact subset of a normed space is bounded.

2. In the Hilbert space L2(0, 1), give an example of a countable closed bounded subset
that is not weakly closed. Justify your answer (no kidding?).

Solution

1 Remember that the weak topology on X is the weakest topology that makes all bounded
linear functionals continuous. We also know from class that X injects isometrically in X⋆⋆

by defining, for every x ∈ X:

∀f ∈ X⋆ Tx(f) = f(x)

We then have ‖x‖X = ‖Tx‖X⋆⋆

Let K be a weakly compact set. If f ∈ X⋆, since it is (weakly) continuous on K
(weakly) compact, it is bounded on this set:

∀f ∈ X⋆ ∃Mf > 0 ∀x ∈ K
∣∣f(x)

∣∣ =
∣∣T(x)f

∣∣ 6 Mf

Applying the Banach-Steinhaus theorem (principle of uniform boundedness), we get that
the family of operators (Tx)x∈K is uniformly bounded:

∃M > 0 ∀x ∈ K ‖Tx‖ 6 M

But since T is an isometry, as explained earlier, this means exactly that K is bounded.

A weakly compact set is bounded.

Let us recall the statement of the Banach-Steihnaus theorem:
Theorem: Let E be a normed space and B be a Banach space. Let (Ta)a∈A be

any family of bounded linear maps from B to E, such that

∀x ∈ B Sup
a∈A

‖Tax‖ < ∞

Then (Ta)a∈A is uniformly bounded:

∃M > 0 ∀a ∈ A ‖Ta‖ 6 M

In this problem, we apply this theorem with B = X⋆ (which is always complete,
even if X is not), E = R, and the family (Tx)x∈K.

b For every integer n, let en : x 7−→ e2πinx and E = {en | n ∈ N}. E is closed (all
points are isolated) and bounded since ‖en‖ = 1 for every n. But E is not weakly closed:
indeed, by the L2 version of Riemann-Lebesgue’s lemma, (en)n∈N converges weakly to 0
in L2(0, 1), but 0 is not in E.
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Eighth problem

Let µ be a finite positive Borel measure on [0, 1].

1. Prove that there is an increasing function α on (0, 1) such that

∀f ∈ C 1
c (0, 1)

∫

[0,1]

f dµ = −
∫

[0,1]

f ′α

2. In case µ is non-atomic, prove that α is unique up to an additive constant, and is
continuous.

Solution

1 Simply define ∀t ∈ [0, 1] α(t) = µ([0, t])

Since µ is positive, α is of course an increasing function.

If f is a C 1 function on (0, 1), with compact support, we have in particular f(1) = 0
and therefore

∀x ∈ [0, 1] f(x) = −
∫ 1

x

f ′(t) dt =

∫

[0,1]

f ′
1[x,1]

Then

∫

[0,1]

f dµ = −
∫

[0,1]

∫

[0,1]

f ′(t)1[x,1](t) dt dµ(x) (1)

Remark that ∀x, t ∈ [0, 1] 1[x,1](t) = 1[0,t](x)

All that is left is showing that we can Fubinise the double integral in (1):
∫

[0,1]

∫

[0,1]

|f ′(t)1[x,1](t)| dt dµ(x) 6 ‖f ′‖∞ µ([0, 1]) < ∞

Therefore

∫

[0,1]

f dµ = −
∫

[0,1]

∫

[0,1]

f ′(t)1[0,t](x) dµ(x) dt = −
∫ 1

0

f ′(t)α(t) dt

2 First we establish that α, defined in part 1, is continuous, under the asumption that
µ does not charge points. Remember that

∀t ∈ [0, 1] α(t) = µ([0, t])

Let t ∈ [0, 1] and define

∀h ∈ [0, 1 − t] ϕ(t) = α(t + h) − α(t) = µ((t, t + h])
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Then ϕ is increasing, because µ is a positive measure, bounded below by 0 at 0, and it
thus has a non-negative limit ℓ at 0. Now that we know that this limit exists, we can
write that

ℓ = lim
n→∞

g
(1

n

)
= lim

n→∞
µ
((

t, t +
1

n

])
= µ

( ⋂

n∈N

(
t, t +

1

n

])
= µ(∅) = 0

Hence lim
h→0+

(
α(t + h) − α(t)

)
= 0

which shows that α is right-continuous at t. To prove left-continuity, we do the same job
and find that

lim
h→0−

(
α(t + h) − α(t)

)
= µ

(
{t}

)
= 0

α is continuous on [0, 1]

Next we show that two functions satisfying the same property as α differ by a constant.
Let β be an increasing function on [0, 1] such that

∀f ∈ C 1
c (0, 1)

∫

[0,1]

f dµ = −
∫

[0,1]

f ′β

Then ∀t ∈ [0, 1] β(0) 6 β(t) 6 β(1)

so that ∀t ∈ [0, 1]
∣∣β(t)

∣∣ 6 Max
(∣∣β(0)

∣∣,
∣∣β(1)

∣∣)

Therefore β is integrable on [0, 1]. Similarly, the α we found in part 1 is also integrable
on [0, 1]. Therefore, γ = α − β ∈ L1(0, 1). Since

∀f ∈ C 1
c (0, 1)

∫

[0,1]

f dµ = −
∫

[0,1]

f ′α = −
∫

[0,1]

f ′β

we have ∀f ∈ C 1
c (0, 1)

∫

[0,1]

f ′γ = 0

Let f be any function in Cc(0, 1) and define

∀t ∈ [0, 1] g(t) =

∫ t

0

f(x) dx − t

∫ 1

0

f(x) dx

Then g is in C 1
c (0, 1) and

∀t ∈ [0, 1] g′(t) = f(t) −
∫ 1

0

f(x) dx

Then 0 =

∫

[0,1]

g′γ =

∫ 1

0

f(t)γ(t) dt −
∫ 1

0

∫ 1

0

f(x) dx γ(t) dt
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Intervert the order of integration and combine the integrals again:

0 =

∫ 1

0

f(t)
(
γ(t) −

∫ 1

0

γ(x) dx
)

dt

This holds for every continuous function with compact support in (0, 1), therefore

γ −
∫ 1

0
γ(x) dx = 0 almost everywhere. That is, γ is almost everywhere constant,

or β = α + C almost everywhere.
Since α + C is continuous and β is increasing, it is clear that β has to be continuous

as well (this can be checked properly with ǫ’s if you want, I won’t do it here).

The α found in part 1 is continuous, and unique up to constants.
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Ninth problem

Prove that the following integrals converge to 0 as n goes to ∞:

1.

∫ n

0

cos nx dx√
x(1 + n2x2)

;

2.

∫ 1

0

n(1 − x)2

(1 + nx) ln2 x
cos nx dx.

Solution

1 Let’s first justify that the integral exists. Let n be a fixed positive integer. The function

fn : x 7−→ cos nx√
x(1 + n2x2)

is continuous on (0, n] and

∣∣fn(x)
∣∣ ∼

x→0

1√
x

which is integrable at 0. Therefore, fn is integrable on (0, n]. Let In =
∫ n

0
fn(x) dx and

make the substitution u = nx:

In =

∫ n2

0

cos u√
u
n
(1 + u2)

du

n
=

1√
n

∫ n2

0

cos u√
u(1 + u2)

du

The function f : u 7−→ cos u√
u(1 + u2)

is continuous on (0, +∞), integrable because

|f(u)| ∼
u→0

1√
u

and |f(u)| =
u→+∞

O
( 1

u3/2

)

Therefore |In| 6
‖f‖1√

n

and lim
n→∞

∫ n

0

cos nx√
x(1 + n2x2)

dx = 0

2 Again, we start by justifying the existence of the considered integral. If n is an integer,
define
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∀x ∈ [0, 1] fn(x) =





0 if x = 0
n

1 + n
if x = 1

n(1 − x)2

(1 + nx) ln2 x
otherwise

Then fn is continuous on (0, 1) by theorems about operations on continuous functions. It
is also continuous at 0 since

fn(x) ∼
x→0

1

ln2 x
−−−→

x→0
0

and at 1 because

fn(x) ∼
x→1

n

1 + n

(1 − x

ln x

)2

−−−→
x→1

n

1 + n

Remember that ln x = ln
(
1 + (x − 1)

)
= x − 1 + o(x − 1)

So fn actually is continuous on [0, 1] and therefore L1(0, 1). Let’s see now what happens
as n goes to ∞:

∀x ∈ (0, 1) fn(x) =
n(1 − x)2

(1 + nx) ln2 x
−−−−→

n→∞

(1 − x)2

x ln2 x

Define the righthandside to be f and notice that f is in L1(0, 1).

An antiderivative of
1

x ln2 x
is − 1

ln x
, which has the limit 0 at 0.

We then showed that (fn)n∈N converges almost everywhere to f . We also have that, for
fixed x,

(
fn(x)

)
n∈N

is increasing. This follows at once from the identity

n

1 + nx
=

1

x
− 1

x(1 + nx)

From the monotone convergence theorem (fn)n∈N actually converges in L1 to f .

Now let’s get back to our problem. The integrals we are looking at are the

In =

∫ 1

0

fn(x) cos nx dx =

∫ 2π

0

fn(x)χ(x) cos nx dx where χ = 1[0,1]

We recognize here the real part of f̂nχ(n), the n-th Fourier coefficient of fnχ. We have
then

∣∣f̂n1[0,1](n)
∣∣ 6

∣∣ ̂(f − fn)χ(n)
∣∣ +

∣∣f̂χ(n)
∣∣ 6 ‖f − fn‖1 +

∣∣f̂χ(n)
∣∣

16



The first term tends to 0 since fnχ
L1

−−−→
n→∞

f ; the second term tends to 0 by Riemann-

Lebesgue. Hence

lim
n→∞

∫ 1

0

n(1 − x)2

(1 + nx) ln2 x
cos nx dx = 0

17



Tenth problem

Prove that if α ∈ (0, 1) and if f is an L2(T) function such that
∑

|n|>N

∣∣f̂(n)
∣∣ 6 N−α for

each N > 1, then the L2 class of f has a Hölder continuous representative with exponent α.

Solution

We start by proving the hint, which was:
Proposition: There exists a C > 0, depending only on α, such that

∀N ∈ N
∑

|n|6N

∣∣nf̂(n)
∣∣ 6 CN1−α

Proof: For every positive integer n, define

Sn =
∑

|p|>n

∣∣f̂(p)
∣∣

so that we know that Sn 6
1

nα

Then Sn+1 = Sn −
∣∣f̂(n)

∣∣ −
∣∣f̂(−n)

∣∣

or
∣∣f̂(n)

∣∣ +
∣∣f̂(−n)

∣∣ = Sn − Sn+1

Let N be a positive integer. We have

∑

|n|6N

∣∣nf̂(n)
∣∣ =

N∑

n=1

n
(∣∣f̂(n)

∣∣ +
∣∣f̂(−n)

∣∣) =

N∑

n=1

n(Sn − Sn+1)

=
N∑

n=1

nSn −
N∑

n=1

nSn+1 =
N∑

n=1

nSn −
N+1∑

n=2

(n − 1)Sn

=

N∑

n=2

Sn + S1 − SN+1 6

N∑

n=1

Sn

∑

|n|6N

∣∣nf̂(n)
∣∣ 6

N∑

n=1

1

nα

This manipulation is called the Abel transform, and it can be regarder as a discrete
integration be parts. It is a very powerful technique for estimating partial sums of,
or studying, series.
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The sum on the righthandside is estimated by comparison with an integral: on the interval
[n − 1, n], the function x 7−→ 1

xα is decreasing, hence bigger than 1
nα . Therefore

N∑

n=1

1

nα
6

N∑

n=1

∫ n

n−1

dx

xα
6

∫ N

0

dx

xα
=

N1−α

1 − α

This achieves the proof of the proposition; our C is 1
1−α

. �

Now let’s get back to our problem. Since

∀N ∈ N SN 6
1

Nα

we know that the series
∑ ∣∣f̂(n)

∣∣ converges. This implies that
∑

f̂(n) einx converges

absolutely and uniformly on T and thus defines a continuous function f0. Since f0 has
the same Fourier coefficients as f , these functions are equal:

The equivalence class of f in L2(T) contains a continuous function f0.

We are going to show that this representative is Hölder continuous with exponent α. Let x

and h be in [0, 2π], let N be a positive integer. We split the sum defining f0(x+h)−f0(x)
at N and study each term separately:

∣∣f0(x + h) − f0(x)
∣∣ =

∑

|n|6N

f̂(n)
(
ein(x+h) − einx

)
+

∑

|n|>N+1

f̂(n)
(
ein(x+h) − einx

)

The second term is roughly estimated as follows:∣∣∣∣
∑

|n|>N

f̂(n)
(
ein(x+h) − einx

)∣∣∣∣ 6 2
∑

|n|>N+1

∣∣f̂(n)
∣∣ 6

2

Nα

The first term will require a bit more work. First, we have
∣∣ein(x+h) − einx =

∣∣einh − 1
∣∣ = 2

∣∣∣ sin
nh

2

∣∣∣ 6 |nh|

Thus

∣∣∣∣
∑

|n|6N

f̂(n)
(
ein(x+h) − einx

)∣∣∣∣ 6 |h|
∑

|n|6N

∣∣nf̂(n)
∣∣ 6 C|h|N1−α

using the proposition. So
∣∣f0(x + h) − f0(x)

∣∣ 6 C|h|N1−α +
2

Nα

Now is time to choose N, which was undetermined until now. Just take

N =
[ 1

|h|
]

N 6
1

h
< N + 1

1

N
6

2

N + 1
6 2|h|

and obtain
∣∣f0(x + h) − f0(x)

∣∣ 6
(
C + 2α+1

)
|h|α

f0 is Hölder continuous, of exponent α.
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