Ph.D. Qualifying Exam - Spring 2003

First problem

Let f be a continuous function on the unit square $\mathrm{Q}=[0,1]^{2}$ and for $s \in[0,1]$, let

$$
g(s)=\operatorname{Max}\{f(s, t) \mid t \in[0,1]\}
$$

1. Show that g is a continuous function on $[0,1]$.
2. Prove that if $|f(x)-f(y)| \leqslant \mathrm{M}|x-y|$ for x and y in Q , then $\left|g\left(s_{1}\right)-g\left(s_{2}\right)\right| \leqslant$ $\mathrm{M}\left|s_{1}-s_{2}\right|$ for s_{1} and s_{2} in $[0,1]$.
3. Give an example in which f is $\mathscr{C}^{1}(\mathrm{Q})$ but g is not $\mathscr{C}^{1}([0,1])$.

Solution

a f is continuous on the compact Q , therefore it is uniformly continuous. So if ϵ is a given positive number, there exists $\eta>0$ such that
$\forall\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right) \in \mathrm{Q} \quad\left(\left|s_{1}-s_{2}\right| \leqslant \eta \quad\right.$ and $\left.\quad\left|t_{1}-t_{2}\right| \leqslant \eta\right) \quad \Longrightarrow \quad\left|f\left(s_{1}, t_{1}\right)-f\left(s_{2}, t_{2}\right)\right| \leqslant \epsilon$
Let s_{1} and s_{2} be any two elements of $[0,1]$, such that $\left|s_{1}-s_{2}\right| \leqslant \eta$. By definition of $g\left(s_{1}\right)$,

$$
\forall t \in[0,1] \quad f\left(s_{1}, t\right) \leqslant g\left(s_{1}\right)
$$

By uniform continuity of f,

$$
\forall t \in[0,1] \quad\left|f\left(s_{1}, t\right)-f\left(s_{2}, t\right)\right| \leqslant \epsilon
$$

In particular $\quad \forall t \in[0,1] \quad f\left(s_{2}, t\right) \leqslant f\left(s_{1}, t\right)+\epsilon \leqslant g\left(s_{1}\right)+\epsilon$
Taking the max over t in the lefthandside yields

$$
g\left(s_{2}\right) \leqslant g\left(s_{1}\right)+\epsilon
$$

Since s_{1} and s_{2} play symmetric roles, we obtain in the same way that

$$
g\left(s_{1}\right) \leqslant g\left(s_{2}\right)+\epsilon
$$

Therefore

$$
\left|g\left(s_{1}\right)-g\left(s_{2}\right)\right| \leqslant \epsilon \quad \text { as soon as } \quad\left|s_{1}-s_{2}\right| \leqslant \eta
$$

Conclusion:

$$
g \text { is uniformly continuous on }[0,1] .
$$

b Suppose now that f is M-Lipschitz on Q, which means that

$$
\forall\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right) \in \mathrm{Q} \quad\left|f\left(s_{1}, t_{1}\right)-f\left(s_{2}, t_{2}\right)\right| \leqslant \mathrm{M}\left(\left|s_{1}-s_{2}\right|+\left|t_{1}-t_{2}\right|\right)
$$

Let s_{1} and s_{2} be in $[0,1]$. Since $t \longmapsto f\left(s_{1}, t\right)$ is continuous on the compact set $[0,1]$, the Max in the definition of g is attained (this is actually implicit in the definition) at some $t_{1} \in[0,1]$. Then

$$
\left|g\left(s_{1}\right)-f\left(s_{2}, t_{1}\right)\right|=\left|f\left(s_{1}, t_{1}\right)-f\left(s_{2}, t_{1}\right)\right| \leqslant \mathrm{M}\left|s_{1}-s_{2}\right|
$$

In particular $\quad g\left(s_{1}\right) \leqslant \mathrm{M}\left|s_{1}-s_{2}\right|+f\left(s_{2}, t_{1}\right) \leqslant \mathrm{M}\left|s_{1}-s_{2}\right|+g\left(s_{2}\right)$
Since s_{1} and s_{2} play symmetric roles, we could show as well that

$$
g\left(s_{2}\right) \leqslant \mathrm{M}\left|s_{1}-s_{2}\right|+g\left(s_{1}\right)
$$

Therefore

$$
\forall s_{1}, s_{2} \in[0,1] \quad\left|g\left(s_{1}\right)-g\left(s_{2}\right)\right| \leqslant \mathrm{M}\left|s_{1}-s_{2}\right|
$$

(c) Take

$$
\forall(x, y) \in[0,1]^{2} \quad f(x, y)=\left(\frac{1}{2}-x\right)\left(\frac{1}{2}-y\right)
$$

Then

$$
\forall x \in[0,1] \quad g(x)=\frac{1}{2}\left|\frac{1}{2}-x\right|
$$

which is not \mathscr{C}^{1}, while f is.

Second problem

Suppose (X, d) is a metric space without isolated points, such that every continuous function $f: \mathrm{X} \longrightarrow[0,1]$ is uniformly continuous. Show that X is compact.

Solution

Suppose that X is not compact. Then there is a sequence $\left(u_{n}\right)_{n \in \mathbb{N}} \subset \mathrm{X}$ that has no convergent subsequence; up to removing multiple occurences of terms, we can suppose that all terms of the sequence are pairwise distinct.

Denote by \mathcal{U} the collection $\left\{u_{n} \mid n \in \mathbb{N}\right\}$. This set is closed. Indeed, suppose that a sequence of elements of \mathcal{U} converges to some $x \in \mathrm{X}$. If this sequence contains infinitely many elements of \mathcal{U}, then we can construct a convergent subsequence of $\left(u_{n}\right)_{n \in \mathbb{N}}$, which is impossible. Therefore our sequence only takes finitely many values; since it converges, it is eventually constant and therefore $x \in \mathcal{U}$.

Let p be an integer and define $\mathcal{U}_{p}=\mathcal{U} \backslash\left\{u_{p}\right\}$. Then \mathcal{U}_{p} is closed as well (the sequence $\left(u_{n}\right)_{n \neq p}$ has no convergent subsequence) and the distance of u_{p} to \mathcal{U}_{p} is thus positive. Let ϵ_{p} be a positive number such that

$$
0<\epsilon_{p}<\operatorname{Min}\left(\frac{1}{p}, \mathrm{~d}\left(u_{p}, \mathcal{U}_{p}\right)\right)
$$

Because u_{p} is not isolated, the ball $\mathcal{B}\left(u_{p}, \epsilon_{p}\right)$ contains some v_{p} other than u_{p}.
The sequence $\left(v_{p}\right)_{p \in \mathbb{N}}$ constructed has no convergent subsequence (if it had, since $\mathrm{d}\left(v_{p}, u_{p}\right)<\frac{1}{p}$, then $\left(u_{p}\right)_{p \in \mathbb{N}}$ would have a convergent subsequence) and therefore the set $\mathcal{V}=\left\{v_{p} \mid p \in \mathbb{N}\right\}$ is closed. A union of closed sets is closed and therefore $\mathcal{F}=\mathcal{U} \bigcup \mathcal{V}$ is closed. Define a function f on \mathcal{F} as follows:

$$
\forall n \in \mathbb{N} \quad f\left(u_{p}\right)=0 \quad \text { and } \quad f\left(v_{p}\right)=1
$$

This function is continuous on \mathcal{F} since it only takes the values 0 and 1 , and

$$
f^{-1}(\{1\})=\mathcal{V} \quad \text { and } \quad f^{-1}(\{0\})=\mathcal{U}
$$

which are closed sets. By Tietze's extension theorem there exists a continuous function extending f. For convenience, this new function is still denoted by f.

We finally remark that f cannot be uniformly continuous. Indeed, if η is a positive real number, there exists p such that $\epsilon_{p}<\eta$. Then

$$
\left|u_{p}-v_{p}\right|<\epsilon_{p}<\eta \quad \text { and } \quad\left|f\left(u_{p}\right)-f\left(v_{p}\right)\right|=1
$$

This contradicts the hypothesis on X , that every continuous function is uniformly continuous. Hence

> | X is compact. |
| :--- |

Third problem

Suppose X and Y are Banach spaces and $\mathrm{T}: \mathrm{X} \longrightarrow \mathrm{Y}$ is linear. Prove that T is bounded in each of the following cases:

1. If there is a family \mathscr{F} of real continuous linear functionals on Y such that $f \circ \mathrm{~T}$ is continuous for each $f \in \mathscr{F}$ and $\bigcap_{f \in \mathscr{F}} f^{-1}(0)=\{0\}$.
2. If there are closed sets $\left(\mathrm{A}_{n}\right)_{n \in \mathbb{N}}$ with $\bigcup_{n \in \mathbb{N}} \mathrm{~A}_{n}=\mathrm{X}$ and with $\mathrm{T}\left(\mathrm{A}_{n}\right)$ bounded subset of Y for every integer n.

Solution

a Suppose such a family \mathscr{F} exists. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X that converges to some $x \in \mathrm{X}$ and such that $\left(\mathrm{T} x_{n}\right)_{n \in \mathbb{N}}$ converges to some $y \in \mathrm{Y}$. Because $f \circ \mathrm{~T}$ is continuous for every $f \in \mathscr{F}$, we have

$$
\forall f \in \mathscr{F} \quad \lim _{n \rightarrow \infty} f \circ \mathrm{~T}\left(x_{n}\right)=f \circ \mathrm{~T}(x)
$$

Also, because $\lim _{n \rightarrow \infty} \mathrm{~T} x_{n}=y$ and all f 's in \mathscr{F} are continuous, we have

$$
\forall f \in \mathscr{F} \quad \lim _{n \rightarrow \infty} f \circ \mathrm{~T}\left(x_{n}\right)=f(y)
$$

Therefore

$$
\forall f \in \mathscr{F} \quad f(\mathrm{~T} x-y)=0
$$

which means that

Hence

$$
\mathrm{T} x-y \in \bigcap_{f \in \mathscr{F}} f^{-1}(0)=\{0\}
$$

which shows that T has closed graph.
T is continuous.
b Suppose we are given those closed sets $\left(\mathrm{A}_{n}\right)_{n \in \mathbb{N}}$. By Baire's theorem, since their union is equal to X, one of them, say A_{N}, has nonempty interior:

$$
\exists x_{0} \in \mathrm{~A}_{\mathrm{N}} \quad \exists \epsilon>0 \quad \mathscr{B}\left(x_{0}, \epsilon\right) \subset \mathrm{A}_{\mathrm{N}}
$$

Because A_{N} is closed, the closed ball $\overline{\mathscr{B}\left(x_{0}, \epsilon\right)}$ is also included in A_{N}. We know as well that $T\left(A_{N}\right)$ is bounded:

$$
\exists \mathrm{M}>0 \quad \forall x \in \mathrm{~A}_{\mathrm{N}} \quad\|\mathrm{~T} x\| \leqslant \mathrm{M}
$$

Let x be a nonzero element of X . Then $x_{0}+\frac{\epsilon x}{\|x\|}$ is in the closed ball of center x and radius ϵ. Thus

$$
\left\|\mathrm{T} x_{0}+\frac{\epsilon}{\|x\|} \mathrm{T} x\right\| \leqslant \mathrm{M}
$$

By the triangle inequality $\|a\|-\|b\| \leqslant\|a-b\|$,

$$
\frac{\epsilon}{\|x\|}\|\mathrm{T} x\|-\left\|\mathrm{T} x_{0}\right\| \leqslant \mathrm{M}
$$

and

$$
\|\mathrm{T} x\| \leqslant \frac{\mathrm{M}+\left\|\mathrm{T} x_{0}\right\|}{\epsilon}\|x\| \leqslant \frac{2 \mathrm{M}}{\epsilon}\|x\|
$$

Conclusion:
T is bounded.

Fourth problem

Suppose T: X Y is a compact operator between Banach spaces. Prove that the adjoint operator $\mathrm{T}^{\star}: \mathrm{Y}^{\star} \longrightarrow \mathrm{X}^{\star}$ is also compact.

Solution

Since T is compact, the set $\mathscr{K}=\overline{\mathrm{T}\left(\mathscr{B}_{\mathrm{X}}\right)}$ is compact. The proof of the compactness of T^{\star} relies on the following important observation. If f is a bounded linear functional on Y, then f is in particular continuous on the compact set \mathscr{K}. Thus it makes sense to consider $\|f\|_{\infty}=\operatorname{Sup}_{y \in \mathscr{K}}|f(y)|$. But since \mathscr{K} is the closure of $\mathrm{T}\left(\mathscr{B}_{\mathrm{x}}\right)$, we also have

$$
\|f\|_{\infty}=\operatorname{Sup}_{y \in \mathrm{~T}\left(\mathscr{B}_{\mathrm{X}}\right)}|f(y)|=\operatorname{Sup}_{x \in \mathscr{B}_{\mathrm{X}}}|f(\mathrm{~T} x)|=\operatorname{Sup}_{x \in \mathscr{B}_{\mathrm{X}}}\left|\mathrm{~T}^{\star}(f) x\right|
$$

and we recognize here the norm of $\mathrm{T}^{\star} f$ as an element of the dual of X . So our important observation is that

$$
\|f\|_{\infty}=\left\|\mathrm{T}^{\star} f\right\|_{\mathrm{X}^{\star}}
$$

Now, consider a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ of elements of the unit ball of Y^{\star}. First notice that

$$
\forall n \in \mathbb{N} \quad\left\|f_{n}\right\|_{\infty}=\left\|\mathrm{T}^{\star} f_{n}\right\| \leqslant\left\|\mathrm{T}^{\star}\right\|\left\|f_{n}\right\| \leqslant\left\|\mathrm{T}^{\star}\right\|
$$

so $\left(f_{n}\right)_{n \in \mathbb{N}}$ is bounded in $\mathscr{C}(\mathscr{K})$. Furthermore, this sequence is uniformly equicontinuous on \mathscr{K} since

$$
\forall y_{1}, y_{2} \in \mathscr{K} \quad\left|f_{n}\left(y_{1}\right)-f_{n}\left(y_{2}\right)\right|=\left|f_{n}\left(y_{1}-y_{2}\right)\right| \leqslant\left\|f_{n}\right\|\left\|y_{1}-y_{2}\right\| \leqslant\left\|y_{1}-y_{2}\right\|
$$

So by Arzela-Ascoli, there $\left(f_{n}\right)_{n \in \mathbb{N}}$ has a converging subsequence in $\mathscr{C}(\mathscr{K})$. So $\left(\mathrm{T}^{\star} f_{n}\right)_{n \in \mathbb{N}}$ has a subsequence which is Cauchy, and therefore convergent in X^{\star}. This achieves showing that

$$
\mathrm{T}^{\star} \text { is compact. }
$$

Fifth problem

A sequence $\left(\xi_{j}\right)_{j \in \mathbb{N}} \subset[0,1]$ is said to be uniformly distributed in $[0,1]$ if

$$
\forall f \in \mathscr{C}([0,1]) \quad \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} f\left(\xi_{j}\right)=\int_{[0,1]} f
$$

Prove that $\left(\xi_{j}\right)_{j \in \mathbb{N}}$ is uniformly distributed in $[0,1]$ if

$$
\forall m \in \mathbb{Z} \backslash\{0\} \quad \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \mathrm{e}^{2 \pi \mathrm{im} \xi_{j}}=0
$$

Solution

First suppose that $\left(\xi_{j}\right)_{j \in \mathbb{N}}$ is uniformly distibuted, let m be a nonzero integer. Then, since $x \longmapsto \mathrm{e}^{2 \pi \mathrm{i} m x}$ is continuous on $[0,1]$, we know that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \mathrm{e}^{2 \pi \mathrm{i} m \xi_{j}}=\int_{0}^{1} \mathrm{e}^{2 \pi \mathrm{i} m x} \mathrm{~d} x=0
$$

Conversely, suppose that this property holds for every $m \neq 0$. When $m=0$, we get:

$$
\forall n \in \mathbb{N} \quad \frac{1}{n} \sum_{j=1}^{n} \mathrm{e}^{2 \pi \mathrm{i} \times 0 \times \xi_{j}}=1
$$

so we can actually write in general that

$$
\begin{gathered}
\forall m \in \mathbb{Z} \quad \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \mathrm{e}^{2 \pi \mathrm{i} m \xi_{j}}=\int_{0}^{1} \mathrm{e}^{2 \pi \mathrm{i} m x} \mathrm{~d} x \\
\forall g \in \mathscr{P} \quad \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} g\left(\xi_{j}\right)=\int_{[0,1]} g
\end{gathered}
$$

where \mathscr{P} is the set of trigonometric polynomials on $[0,1]$ (finite linear combinations of functions of the type $\left.x \longmapsto \mathrm{e}^{2 \pi \mathrm{imx}}\right)$.

Now, we know that \mathscr{P} is dense in the set of continuous functions on $[0,1]$ that take the same value at 0 and 1 . And

$$
g \longmapsto \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} g\left(\xi_{j}\right)
$$

is a bounded linear functional on \mathscr{P}, coinciding with integration against Lebesgue measure. Therefore, it extends to $\overline{\mathscr{P}}$ and

$$
\forall f \in \mathscr{C}([0,1]) \quad f(0)=f(1) \quad \Longrightarrow \quad \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} f\left(\xi_{j}\right)=\int_{[0,1]} f
$$

Now we have to extend this somehow to all continuous functions on $[0,1]$, regardless of the values at 0 and 1 . Let $0 \leqslant a<b \leqslant 1$ and $f=\mathbb{1}_{[a, b)}$. If $a=0$ and $b=1$, we have the constant function equal to 1 and we know that everything works fine. So suppose we are not in this case. We define function f_{ϵ}^{-}and f_{ϵ}^{+}as follows:

- If $\boldsymbol{a}=\mathbf{0}$: Take ϵ small enough so that $0<\epsilon<b-\epsilon<b+\epsilon<1-\epsilon$ and define

- If $\boldsymbol{b}=\mathbf{1}$: Take ϵ small enough so that $0<\epsilon<a-\epsilon<a+\epsilon<1$ and define

- If $\mathbf{0}<\boldsymbol{a}<\boldsymbol{b}<\mathbf{1}$: Take ϵ small enough so that $0<a-\epsilon<a+\epsilon<b-\epsilon<b+\epsilon<1$ and define

In any case, the functions f_{ϵ}^{-}and f_{ϵ}^{+}have been chosen so that

$$
\begin{gather*}
f_{\epsilon}^{-}(0)=f_{\epsilon}^{-}(1) \quad f_{\epsilon}^{+}(0)=f_{\epsilon}^{+}(1) \tag{1}\\
\forall x \in[0,1] \quad f_{\epsilon}^{-}(x)<f(x)<f_{\epsilon}^{+}(x) \tag{2}\\
\int_{[0,1]} f_{\epsilon}^{-}=\int_{[0,1]} f-\epsilon \quad \int_{[0,1]} f_{\epsilon}^{+}=\int_{[0,1]} f+\epsilon \tag{3}
\end{gather*}
$$

and

From (2),

$$
\forall n \in \mathbb{N}^{\star} \quad \frac{1}{n} \sum_{j=1}^{n} f_{\epsilon}^{-}\left(\xi_{j}\right)<\frac{1}{n} \sum_{j=1}^{n} f\left(\xi_{j}\right)<\frac{1}{n} \sum_{j=1}^{n} f_{\epsilon}^{+}\left(\xi_{j}\right)
$$

Because of (1), the left- and righthandside have limits as n tends to ∞ that are respectively $\int f_{\epsilon}^{-}$and $\int f_{\epsilon}^{+}$. Thus

$$
\int_{[0,1]} f_{\epsilon}^{-} \leqslant \liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} f\left(\xi_{j}\right) \leqslant \limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} f\left(\xi_{j}\right) \leqslant \int_{[0,1]} f_{\epsilon}^{+}
$$

And finally, using (3):

$$
-\epsilon+\int_{[0,1]} f \leqslant \liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} f\left(\xi_{j}\right) \leqslant \limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} f\left(\xi_{j}\right) \leqslant \epsilon+\int_{[0,1]} f
$$

Since this is true for every (small enough) positive ϵ, we deduce that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} f\left(\xi_{j}\right) \quad \text { exists and } \quad \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} f\left(\xi_{j}\right)=\int_{[0,1]} f
$$

Let \mathscr{S} be the set of step functions on $[0,1]$, that is linear combinations of indicator functions of intervals. Because integrating and taking limits are linear operations, and a, b were arbitrary, it follows that

$$
\forall f \in \mathscr{S} \quad \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} f\left(\xi_{j}\right)=\int_{[0,1]} f
$$

Finally, \mathscr{S} is dense in $\mathscr{C}([0,1])$. Therefore,

$$
\forall f \in \mathscr{C}([0,1]) \quad \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} f\left(\xi_{j}\right)=\int_{[0,1]} f
$$

In other words The sequence $\left(\xi_{j}\right)_{j \in \mathbb{N}}$ is uniformly distributed.

Sixth problem

If X is a finite dimensional real vector space, prove that all norms on X are equivalent.

Solution

Call n the dimension of X and let $\left(e_{1}, \ldots, e_{n}\right)$ be a basis for X . Any vector $x \in \mathrm{X}$ has a unique decomposition long this basis:

$$
\exists!\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \quad x=\sum_{i=1}^{n} x_{i} e_{i}
$$

If we define

$$
\|x\|_{\infty}=\operatorname{Max}\left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}
$$

we know that $\left\|\|_{\infty}\right.$ is a norm on X , and that closed bounded sets are compact for this norm.

Let || || be any other norm. Then by the triangle inequality

$$
\begin{gathered}
\|x\| \leqslant\left|x_{1}\right|\left\|e_{1}\right\|+\cdots+\left|x_{n}\right|\left\|e_{n}\right\| \leqslant \mathrm{C}\|x\|_{\infty} \\
\mathrm{C}=\sum_{i=1}^{n}\left\|e_{i}\right\|
\end{gathered}
$$

with

We deduce from this that

$$
\forall x, y \in \mathrm{X} \quad|\|x\|-\|y\|| \leqslant\|x-y\| \leqslant \mathrm{C}\|x-y\|_{\infty}
$$

which implies that $\left\|\|\right.$ is continuous on the normed space $\left(X,\| \|_{\infty}\right)$. Since the unit sphere in X for $\left\|\|_{\infty}\right.$ is closed and bounded, it is compact, and $\| \|$ has a minimum on this set:

$$
\exists m \geqslant 0 \quad \forall x \in \mathrm{X} \quad\|x\|_{\infty}=1 \quad \Longrightarrow \quad m \leqslant\|x\|
$$

We know that m is attained, which excludes the possibility for it to be 0 (since $\|a\|=0$ implies that $a=0$); thus $m>0$.

Now let x be any nonzero elements of X . Then $\frac{x}{\|x\|_{\infty}}$ has ∞-norm equal to 1 and therefore

$$
m \leqslant\left\|\frac{x}{\|x\|_{\infty}}\right\|=\frac{\|x\|^{\|x\|_{\infty}}}{}
$$

Conclusion: $\quad \forall x \in \mathrm{X} \quad m\|x\|_{\infty} \leqslant\|x\| \leqslant \mathrm{C}\|x\|_{\infty}$
and the two norms $\left\|\|_{\infty}\right.$ and $\| \|$ are equivalent. Since equivalence between norms is actually an equivalence relationship, we deduce that

All norms on X are equivalent.

Seventh problem

1. Prove that a weakly compact subset of a normed space is bounded.
2. In the Hilbert space $L^{2}(0,1)$, give an example of a countable closed bounded subset that is not weakly closed. Justify your answer (no kidding?).

Solution

1 Remember that the weak topology on X is the weakest topology that makes all bounded linear functionals continuous. We also know from class that X injects isometrically in $\mathrm{X}^{\star \star}$ by defining, for every $x \in \mathrm{X}$:

$$
\forall f \in \mathrm{X}^{\star} \quad \mathrm{T} x(f)=f(x)
$$

We then have

$$
\|x\|_{\mathrm{X}}=\|\mathrm{T} x\|_{\mathrm{X}^{\star \star}}
$$

Let K be a weakly compact set. If $f \in \mathrm{X}^{\star}$, since it is (weakly) continuous on K (weakly) compact, it is bounded on this set:

$$
\forall f \in \mathrm{X}^{\star} \quad \exists \mathrm{M}_{f}>0 \quad \forall x \in \mathrm{~K} \quad|f(x)|=|\mathrm{T}(x) f| \leqslant \mathrm{M}_{f}
$$

Applying the Banach-Steinhaus theorem (principle of uniform boundedness), we get that the family of operators $(\mathrm{T} x)_{x \in \mathrm{~K}}$ is uniformly bounded:

$$
\exists \mathrm{M}>0 \quad \forall x \in \mathrm{~K} \quad\|\mathrm{~T} x\| \leqslant \mathrm{M}
$$

But since T is an isometry, as explained earlier, this means exactly that K is bounded.

> A weakly compact set is bounded.

Let us recall the statement of the Banach-Steihnaus theorem:
Theorem: Let E be a normed space and B be a Banach space. Let $\left(\mathrm{T}_{a}\right)_{a \in \mathrm{~A}}$ be any family of bounded linear maps from B to E , such that

$$
\forall x \in \mathrm{~B} \quad \operatorname{Sup}_{a \in \mathrm{~A}}\left\|\mathrm{~T}_{a} x\right\|<\infty
$$

Then $\left(\mathrm{T}_{a}\right)_{a \in \mathrm{~A}}$ is uniformly bounded:

$$
\exists \mathrm{M}>0 \quad \forall a \in \mathrm{~A} \quad\left\|\mathrm{~T}_{a}\right\| \leqslant \mathrm{M}
$$

In this problem, we apply this theorem with $\mathrm{B}=\mathrm{X}^{\star}$ (which is always complete, even if X is not), $\mathrm{E}=\mathbb{R}$, and the family $(\mathrm{T} x)_{x \in \mathrm{~K}}$.
(b) For every integer n, let $e_{n}: x \longmapsto \mathrm{e}^{2 \pi \mathrm{i} n x}$ and $\mathrm{E}=\left\{e_{n} \mid n \in \mathbb{N}\right\}$. E is closed (all points are isolated) and bounded since $\left\|e_{n}\right\|=1$ for every n. But E is not weakly closed: indeed, by the L^{2} version of Riemann-Lebesgue's lemma, $\left(e_{n}\right)_{n \in \mathbb{N}}$ converges weakly to 0 in $L^{2}(0,1)$, but 0 is not in E.

Eighth problem

Let μ be a finite positive Borel measure on $[0,1]$.

1. Prove that there is an increasing function α on $(0,1)$ such that

$$
\forall f \in \mathscr{C}_{c}^{1}(0,1) \quad \int_{[0,1]} f \mathrm{~d} \mu=-\int_{[0,1]} f^{\prime} \alpha
$$

2. In case μ is non-atomic, prove that α is unique up to an additive constant, and is continuous.

Solution

1 Simply define

$$
\forall t \in[0,1] \quad \alpha(t)=\mu([0, t])
$$

Since μ is positive, α is of course an increasing function.
If f is a \mathscr{C}^{1} function on $(0,1)$, with compact support, we have in particular $f(1)=0$ and therefore

$$
\forall x \in[0,1] \quad f(x)=-\int_{x}^{1} f^{\prime}(t) \mathrm{d} t=\int_{[0,1]} f^{\prime} \mathbb{1}_{[x, 1]}
$$

Then

$$
\begin{equation*}
\int_{[0,1]} f \mathrm{~d} \mu=-\int_{[0,1]} \int_{[0,1]} f^{\prime}(t) \mathbb{1}_{[x, 1]}(t) \mathrm{d} t \mathrm{~d} \mu(x) \tag{1}
\end{equation*}
$$

Remark that

$$
\forall x, t \in[0,1] \quad \mathbb{1}_{[x, 1]}(t)=\mathbb{1}_{[0, t]}(x)
$$

All that is left is showing that we can Fubinise the double integral in (1):

$$
\int_{[0,1]} \int_{[0,1]}\left|f^{\prime}(t) \mathbb{1}_{[x, 1]}(t)\right| \mathrm{d} t \mathrm{~d} \mu(x) \leqslant\left\|f^{\prime}\right\|_{\infty} \mu([0,1])<\infty
$$

Therefore $\int_{[0,1]} f \mathrm{~d} \mu=-\int_{[0,1]} \int_{[0,1]} f^{\prime}(t) \mathbb{1}_{[0, t]}(x) \mathrm{d} \mu(x) \mathrm{d} t=-\int_{0}^{1} f^{\prime}(t) \alpha(t) \mathrm{d} t$
2 First we establish that α, defined in part 1, is continuous, under the asumption that μ does not charge points. Remember that

$$
\forall t \in[0,1] \quad \alpha(t)=\mu([0, t])
$$

Let $t \in[0,1]$ and define

$$
\forall h \in[0,1-t] \quad \varphi(t)=\alpha(t+h)-\alpha(t)=\mu((t, t+h])
$$

Then φ is increasing, because μ is a positive measure, bounded below by 0 at 0 , and it thus has a non-negative limit ℓ at 0 . Now that we know that this limit exists, we can write that

$$
\ell=\lim _{n \rightarrow \infty} g\left(\frac{1}{n}\right)=\lim _{n \rightarrow \infty} \mu\left(\left(t, t+\frac{1}{n}\right]\right)=\mu\left(\bigcap_{n \in \mathbb{N}}\left(t, t+\frac{1}{n}\right]\right)=\mu(\emptyset)=0
$$

Hence

$$
\lim _{h \rightarrow 0^{+}}(\alpha(t+h)-\alpha(t))=0
$$

which shows that α is right-continuous at t. To prove left-continuity, we do the same job and find that

$$
\lim _{h \rightarrow 0^{-}}(\alpha(t+h)-\alpha(t))=\mu(\{t\})=0
$$

α is continuous on $[0,1]$
Next we show that two functions satisfying the same property as α differ by a constant. Let β be an increasing function on $[0,1]$ such that

$$
\forall f \in \mathscr{C}_{c}^{1}(0,1) \quad \int_{[0,1]} f \mathrm{~d} \mu=-\int_{[0,1]} f^{\prime} \beta
$$

Then

$$
\forall t \in[0,1] \quad \beta(0) \leqslant \beta(t) \leqslant \beta(1)
$$

so that

$$
\forall t \in[0,1] \quad|\beta(t)| \leqslant \operatorname{Max}(|\beta(0)|,|\beta(1)|)
$$

Therefore β is integrable on $[0,1]$. Similarly, the α we found in part 1 is also integrable on $[0,1]$. Therefore, $\gamma=\alpha-\beta \in \mathrm{L}^{1}(0,1)$. Since

$$
\forall f \in \mathscr{C}_{c}^{1}(0,1) \quad \int_{[0,1]} f \mathrm{~d} \mu=-\int_{[0,1]} f^{\prime} \alpha=-\int_{[0,1]} f^{\prime} \beta
$$

we have

$$
\forall f \in \mathscr{C}_{c}^{1}(0,1) \quad \int_{[0,1]} f^{\prime} \gamma=0
$$

Let f be any function in $\mathscr{C}_{c}(0,1)$ and define

$$
\forall t \in[0,1] \quad g(t)=\int_{0}^{t} f(x) \mathrm{d} x-t \int_{0}^{1} f(x) \mathrm{d} x
$$

Then g is in $\mathscr{C}_{c}^{1}(0,1)$ and

$$
\forall t \in[0,1] \quad g^{\prime}(t)=f(t)-\int_{0}^{1} f(x) \mathrm{d} x
$$

Then

$$
0=\int_{[0,1]} g^{\prime} \gamma=\int_{0}^{1} f(t) \gamma(t) \mathrm{d} t-\int_{0}^{1} \int_{0}^{1} f(x) \mathrm{d} x \gamma(t) \mathrm{d} t
$$

Intervert the order of integration and combine the integrals again:

$$
0=\int_{0}^{1} f(t)\left(\gamma(t)-\int_{0}^{1} \gamma(x) \mathrm{d} x\right) \mathrm{d} t
$$

This holds for every continuous function with compact support in (0,1), therefore $\gamma-\int_{0}^{1} \gamma(x) \mathrm{d} x=0$ almost everywhere. That is, γ is almost everywhere constant, or $\beta=\alpha+\mathrm{C}$ almost everywhere.

Since $\alpha+\mathrm{C}$ is continuous and β is increasing, it is clear that β has to be continuous as well (this can be checked properly with ϵ 's if you want, I won't do it here).

The α found in part 1 is continuous, and unique up to constants.

Ninth problem

Prove that the following integrals converge to 0 as n goes to ∞ :

1. $\int_{0}^{n} \frac{\cos n x \mathrm{~d} x}{\sqrt{x\left(1+n^{2} x^{2}\right)}}$;
2. $\int_{0}^{1} \frac{n(1-x)^{2}}{(1+n x) \ln ^{2} x} \cos n x \mathrm{~d} x$.

Solution

1 Let's first justify that the integral exists. Let n be a fixed positive integer. The function

$$
f_{n}: x \longmapsto \frac{\cos n x}{\sqrt{x\left(1+n^{2} x^{2}\right)}}
$$

is continuous on $(0, n]$ and

$$
\left|f_{n}(x)\right| \underset{x \rightarrow 0}{\sim} \frac{1}{\sqrt{x}}
$$

which is integrable at 0 . Therefore, f_{n} is integrable on $(0, n]$. Let $\mathrm{I}_{n}=\int_{0}^{n} f_{n}(x) \mathrm{d} x$ and make the substitution $u=n x$:

The function

$$
\mathrm{I}_{n}=\int_{0}^{n^{2}} \frac{\cos u}{\sqrt{\frac{u}{n}\left(1+u^{2}\right)}} \frac{\mathrm{d} u}{n}=\frac{1}{\sqrt{n}} \int_{0}^{n^{2}} \frac{\cos u}{\sqrt{u\left(1+u^{2}\right)}} \mathrm{d} u
$$

$$
f: u \longmapsto \frac{\cos u}{\sqrt{u\left(1+u^{2}\right)}}
$$

is continuous on $(0,+\infty)$, integrable because

$$
|f(u)| \underset{u \rightarrow 0}{\sim} \frac{1}{\sqrt{u}} \quad \text { and } \quad|f(u)| \underset{u \rightarrow+\infty}{=} \mathrm{O}\left(\frac{1}{u^{3 / 2}}\right)
$$

Therefore

$$
\left|\mathrm{I}_{n}\right| \leqslant \frac{\|f\|_{1}}{\sqrt{n}}
$$

and

$$
\lim _{n \rightarrow \infty} \int_{0}^{n} \frac{\cos n x}{\sqrt{x\left(1+n^{2} x^{2}\right)}} \mathrm{d} x=0
$$

2 Again, we start by justifying the existence of the considered integral. If n is an integer, define

$$
\forall x \in[0,1] \quad f_{n}(x)=\left\{\begin{array}{cl}
0 & \text { if } x=0 \\
\frac{n}{1+n} & \text { if } x=1 \\
\frac{n(1-x)^{2}}{(1+n x) \ln ^{2} x} & \text { otherwise }
\end{array}\right.
$$

Then f_{n} is continuous on $(0,1)$ by theorems about operations on continuous functions. It is also continuous at 0 since

$$
f_{n}(x) \underset{x \rightarrow 0}{\sim} \frac{1}{\ln ^{2} x} \xrightarrow[x \rightarrow 0]{ } 0
$$

and at 1 because

$$
f_{n}(x) \underset{x \rightarrow 1}{\sim} \frac{n}{1+n}\left(\frac{1-x}{\ln x}\right)^{2} \xrightarrow[x \rightarrow 1]{ } \frac{n}{1+n}
$$

$$
\text { Remember that } \quad \ln x=\ln (1+(x-1))=x-1+\mathrm{o}(x-1)
$$

So f_{n} actually is continuous on $[0,1]$ and therefore $\mathrm{L}^{1}(0,1)$. Let's see now what happens as n goes to ∞ :

$$
\forall x \in(0,1) \quad f_{n}(x)=\frac{n(1-x)^{2}}{(1+n x) \ln ^{2} x} \underset{n \rightarrow \infty}{ } \frac{(1-x)^{2}}{x \ln ^{2} x}
$$

Define the righthandside to be f and notice that f is in $\mathrm{L}^{1}(0,1)$.

$$
\text { An antiderivative of } \frac{1}{x \ln ^{2} x} \text { is }-\frac{1}{\ln x} \text {, which has the limit } 0 \text { at } 0 .
$$

We then showed that $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges almost everywhere to f. We also have that, for fixed $x,\left(f_{n}(x)\right)_{n \in \mathbb{N}}$ is increasing. This follows at once from the identity

$$
\frac{n}{1+n x}=\frac{1}{x}-\frac{1}{x(1+n x)}
$$

From the monotone convergence theorem $\left(f_{n}\right)_{n \in \mathbb{N}}$ actually converges in L^{1} to f.
Now let's get back to our problem. The integrals we are looking at are the

$$
\mathrm{I}_{n}=\int_{0}^{1} f_{n}(x) \cos n x \mathrm{~d} x=\int_{0}^{2 \pi} f_{n}(x) \chi(x) \cos n x \mathrm{~d} x \quad \text { where } \quad \chi=\mathbb{1}_{[0,1]}
$$

We recognize here the real part of $\widehat{f_{n} \chi}(n)$, the n-th Fourier coefficient of $f_{n} \chi$. We have then

$$
\left|\widehat{f_{n} \mathbb{1}_{[0,1]}}(n)\right| \leqslant\left|\widehat{\left(f-f_{n}\right)} \chi(n)\right|+|\widehat{f \chi}(n)| \leqslant\left\|f-f_{n}\right\|_{1}+|\widehat{f \chi}(n)|
$$

The first term tends to 0 since $f_{n} \chi \xrightarrow[n \rightarrow \infty]{\mathrm{L}^{1}} f$; the second term tends to 0 by RiemannLebesgue. Hence

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n(1-x)^{2}}{(1+n x) \ln ^{2} x} \cos n x \mathrm{~d} x=0
$$

Tenth problem

Prove that if $\alpha \in(0,1)$ and if f is an $\mathrm{L}^{2}(\mathbb{T})$ function such that $\sum_{|n| \geqslant \mathrm{N}}|\widehat{f}(n)| \leqslant \mathrm{N}^{-\alpha}$ for each $\mathrm{N} \geqslant 1$, then the L^{2} class of f has a Hölder continuous representative with exponent α.

Solution

We start by proving the hint, which was:
Proposition: There exists $a \mathrm{C}>0$, depending only on α, such that

$$
\forall \mathrm{N} \in \mathbb{N} \quad \sum_{|n| \leqslant \mathrm{N}}|n \widehat{f}(n)| \leqslant \mathrm{CN}^{1-\alpha}
$$

Proof: For every positive integer n, define

$$
\mathrm{S}_{n}=\sum_{|p| \geqslant n}|\widehat{f}(p)|
$$

so that we know that

$$
\mathrm{S}_{n} \leqslant \frac{1}{n^{\alpha}}
$$

Then

$$
\begin{aligned}
& \mathrm{S}_{n+1}=\mathrm{S}_{n}-|\widehat{f}(n)|-|\widehat{f}(-n)| \\
& |\widehat{f}(n)|+|\widehat{f}(-n)|=\mathrm{S}_{n}-\mathrm{S}_{n+1}
\end{aligned}
$$

Let N be a positive integer. We have

$$
\begin{aligned}
\sum_{|n| \leqslant \mathrm{N}}|n \widehat{f}(n)| & =\sum_{n=1}^{\mathrm{N}} n(|\widehat{f}(n)|+|\widehat{f}(-n)|)=\sum_{n=1}^{\mathrm{N}} n\left(\mathrm{~S}_{n}-\mathrm{S}_{n+1}\right) \\
& =\sum_{n=1}^{\mathrm{N}} n \mathrm{~S}_{n}-\sum_{n=1}^{\mathrm{N}} n \mathrm{~S}_{n+1}=\sum_{n=1}^{\mathrm{N}} n \mathrm{~S}_{n}-\sum_{n=2}^{\mathrm{N}+1}(n-1) \mathrm{S}_{n} \\
& =\sum_{n=2}^{\mathrm{N}} \mathrm{~S}_{n}+\mathrm{S}_{1}-\mathrm{S}_{\mathrm{N}+1} \leqslant \sum_{n=1}^{\mathrm{N}} \mathrm{~S}_{n} \\
\sum_{|n| \leqslant \mathrm{N}}|n \widehat{f}(n)| & \leqslant \sum_{n=1}^{\mathrm{N}} \frac{1}{n^{\alpha}}
\end{aligned}
$$

This manipulation is called the Abel transform, and it can be regarder as a discrete integration be parts. It is a very powerful technique for estimating partial sums of, or studying, series.

The sum on the righthandside is estimated by comparison with an integral: on the interval $[n-1, n]$, the function $x \longmapsto \frac{1}{x^{\alpha}}$ is decreasing, hence bigger than $\frac{1}{n^{\alpha}}$. Therefore

$$
\sum_{n=1}^{\mathrm{N}} \frac{1}{n^{\alpha}} \leqslant \sum_{n=1}^{\mathrm{N}} \int_{n-1}^{n} \frac{\mathrm{~d} x}{x^{\alpha}} \leqslant \int_{0}^{\mathrm{N}} \frac{\mathrm{~d} x}{x^{\alpha}}=\frac{\mathrm{N}^{1-\alpha}}{1-\alpha}
$$

This achieves the proof of the proposition; our C is $\frac{1}{1-\alpha}$.
Now let's get back to our problem. Since

$$
\forall \mathrm{N} \in \mathbb{N} \quad \mathrm{~S}_{\mathrm{N}} \leqslant \frac{1}{\mathrm{~N}^{\alpha}}
$$

we know that the series $\sum|\widehat{f}(n)|$ converges. This implies that $\sum \widehat{f}(n) \mathrm{e}^{\mathrm{i} n x}$ converges absolutely and uniformly on \mathbb{T} and thus defines a continuous function f_{0}. Since f_{0} has the same Fourier coefficients as f, these functions are equal:

$$
\text { The equivalence class of } f \text { in } \mathrm{L}^{2}(\mathbb{T}) \text { contains a continuous function } f_{0} \text {. }
$$

We are going to show that this representative is Hölder continuous with exponent α. Let x and h be in $[0,2 \pi]$, let N be a positive integer. We split the sum defining $f_{0}(x+h)-f_{0}(x)$ at N and study each term separately:

$$
\left|f_{0}(x+h)-f_{0}(x)\right|=\sum_{|n| \leqslant \mathrm{N}} \widehat{f}(n)\left(\mathrm{e}^{\mathrm{i} n(x+h)}-\mathrm{e}^{\mathrm{i} n x}\right)+\sum_{|n| \geqslant \mathrm{N}+1} \widehat{f}(n)\left(\mathrm{e}^{\mathrm{i} n(x+h)}-\mathrm{e}^{\mathrm{i} n x}\right)
$$

The second term is roughly estimated as follows:

$$
\left|\sum_{|n| \geqslant \mathrm{N}} \widehat{f}(n)\left(\mathrm{e}^{\mathrm{i} n(x+h)}-\mathrm{e}^{\mathrm{i} n x}\right)\right| \leqslant 2 \sum_{|n| \geqslant \mathrm{N}+1}|\widehat{f}(n)| \leqslant \frac{2}{\mathrm{~N}^{\alpha}}
$$

The first term will require a bit more work. First, we have

$$
\left|\mathrm{e}^{\mathrm{i} n(x+h)}-\mathrm{e}^{\mathrm{i} n x}=\left|\mathrm{e}^{\mathrm{i} n h}-1\right|=2\right| \sin \frac{n h}{2}|\leqslant|n h|
$$

Thus

$$
\left|\sum_{|n| \leqslant \mathrm{N}} \widehat{f}(n)\left(\mathrm{e}^{\mathrm{i} n(x+h)}-\mathrm{e}^{\mathrm{i} n x}\right)\right| \leqslant|h| \sum_{|n| \leqslant \mathrm{N}}|n \widehat{f}(n)| \leqslant \mathrm{C}|h| \mathrm{N}^{1-\alpha}
$$

using the proposition. So

$$
\left|f_{0}(x+h)-f_{0}(x)\right| \leqslant \mathrm{C}|h| \mathrm{N}^{1-\alpha}+\frac{2}{\mathrm{~N}^{\alpha}}
$$

Now is time to choose N, which was undetermined until now. Just take

$$
\mathrm{N}=\left[\frac{1}{|h|}\right] \quad \mathrm{N} \leqslant \frac{1}{h}<\mathrm{N}+1 \quad \frac{1}{\mathrm{~N}} \leqslant \frac{2}{\mathrm{~N}+1} \leqslant 2|h|
$$

and obtain

$$
\left|f_{0}(x+h)-f_{0}(x)\right| \leqslant\left(\mathrm{C}+2^{\alpha+1}\right)|h|^{\alpha}
$$

f_{0} is Hölder continuous, of exponent α.

