
Ph.D. Qualifying Exam – Spring 2002

First problem

Let f : R −→ R be any function. Let E be the set of points x ∈ R such that

f ′
+(x) = lim

h→0
h>0

f(x + h) − f(x)

h
and lim

h→0
h<0

f(x + h) − f(x)

h

both exist and are different. Prove that E is countable.

Solution

Let F =
{
x ∈ R

∣∣ f ′
+(x), f ′

−(x) exist and f ′
+(x) > f ′

−(x)
}

and G =
{
x ∈ R

∣∣ f ′
+(x), f ′

−(x) exist and f ′
+(x) < f ′

−(x)
}

so that E = F ∪ G

We will show first that F is countable. If x ∈ F, since the inequality f ′
+(x) > f ′

−(x) is
strict, the interval (f ′

−(x), f ′
+(x)) is nonempty and thus contains a rational q. Because it

is open, there is a positive ω such that (q − ω, q + ω) ⊂ (f ′
−(x), f ′

+(x)). Thus

F ⊂
⋃

q∈Q
ω>0

Fq,ω

where Fq,ω =
{
x ∈ R

∣∣ f ′
+(x, ), f ′

−(x) exist and f ′
+(x) > q − ω > q + ω > f ′

−(x)
}

Fix a rational number q and let x0 be in Fq,ω for some positive ω. That is, x ∈
⋃

ω>0

Fq,ω.

Consider the auxiliary function

∀x ∈ R g(x) = f(x) − qx

Then g′
+(x0) and g′

−(x0) both exist since x 7−→ qx is differentiable at x0, and we have

g′
+(x0) = f ′

+(x0) − q g′
−(x0) = f ′

−(x0) − q

so that g′
+(x0) > ω > −ω > g′

−(x0) (1)

This implies that g has a strict local minimum at x0. Indeed, the existence of g′
+(x0) and

g′
−(x0) tell us that there exists a positive η such that

∀h ∈ (0, η)
g(x0 + h) − g(x0)

h
− g′

+(x0) > −
ω

2
(2)
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and ∀h ∈ (−η, 0)
g(x0 − h) − g(x0)

h
− g′

−(x0) <
ω

2
(3)

From (1) and (2) ∀h ∈ (0, η) g(x0 + h) − g(x0) > h
(
g′
+(x0) −

ω

2

)
>

hω

2
> 0

while from (1) and (3) ∀h ∈ (−η, 0) g(x0 + h) − g(x0) > h
(
g′
−(x0) +

ω

2

)

> −
hω

2
> 0

Notice how there was a change in the direction of inequality (3) when multiplying both
sides by h, due to the fact that h < 0. Anyhow, we obtained

∀h ∈ (−η, η) h 6= 0 g(x0 + h) − g(x0) > 0

which confirms that x0 is a strict minimum for g in (x0−η, x0 +η). Of course, there exists
an integer n big enough so that (x0 −

1
n
, x0 + 1

n
) ⊂ (−η, η). Therefore, we showed that

( ⋃

ω>0

Fq,ω

)
⊂

⋃

n∈N?

Mn (4)

where Mn =
{
x ∈ R

∣∣ g has a strict minimum at x in
(
x −

1

n
, x +

1

n

)}

Finally, we show that each Mn is countable. If x and y are in Mn, such that |x−y| < 1
n
,

we know that, unless x = y, we have

g(x) < g(y) and g(y) < g(x)

which is impossible. Thus if x and y are distinct in Mn, they are at least at distance 1
n

apart. Which proves that Mn is countable. By (4),
⋃

ω>0

Fq,ω is countable, and therefore F

is countable. Applying this result to −f , we get that G is countable as well. Therefore,

E is countable.
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Second problem

Consider functions (fn)n∈N and (gn)n∈N in L2(0, 1) such that fn −−−−→
n→∞

f and

gn −−−−→
n→∞

g weakly in L2(0, 1).

1. Show that the L2 norms of the (fn)n∈N’s are uniformly bounded.

2. Show by example that (fngn)n∈N need not converge to fg in the weak star topology
of L1(0, 1).

3. Suppose (hn)n∈N and h are in L1(0, 1) and that the L1 norms of the (hn)n∈N are
uniformly bounded. Show that hn −−−−→

n→∞
h in the weak star topology of L1 if

and only if each Fourier coefficient of hn converges to the corresponding Fourier
coefficient of h.

4. Suppose that the Fourier coefficients of the (fn)n∈N’s and (gn)n∈N’s are 0 at negative
integers. Show that fngn −−−−→

n→∞
fg in the weak star topology of L1(0, 1).

Solution

1 This is a consequence of the Banach-Steinhaus theorem, as well as the fact that L2(0, 1)
is its own dual, through Riesz’s representation theorem for Hilbert spaces.

Indeed, the (fn)n∈N define a collection of bounded linear functionals on L2(0, 1) as
follows:

ϕn : g 7−→ 〈fn|g〉

and ‖ϕn‖ = Sup
g∈L2

‖g‖=1

(ϕ, g) = Sup
g∈L2

‖g‖=1

〈fn|g〉 = ‖fn‖

Furthermore, the (fn)n∈N converge weakly, which means in particular that the sequence(
〈fn|g〉

)
n∈N

is bounded for every g. Since L2(0, 1) is complete, the principle of uniform
boundedness tells us that the sequence (ϕn)n∈N is bounded. It follows that (fn)n∈N is
bounded.

2 Let ∀n ∈ N fn : x 7−→ e−2πinx and gn : x 7−→ e2πinx

The Riemann-Lebesgue lemma tells us that

∀h ∈ L1(0, 1) lim
n→∞

∫

[0,1]

fnh = lim
n→∞

∫

[0,1]

gnh = 0

In particular ∀h ∈ C ([0, 1]) lim
n→∞

∫

[0,1]

fnh = lim
n→∞

∫

[0,1]

gnh = 0
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so (fn)n∈N and (gn)n∈N both converge to 0 in the weak-? topology of L1(0, 1). But

∀n ∈ N fngn = 1

so (fngn)n∈N converges to 1 in the weak-? topology of L1(0, 1).

3 Suppose (hn)n∈N is a bounded sequence in L1(0, 1), let h be another L1 function.
First, if (hn)n∈N converges to h in the weak-? topology of L1(0, 1), then in particular,

∀p ∈ Z ĥn(p) =

∫ 1

0

hn(t)e−2πipt dt −−−−→
n→∞

∫ 1

0

h(t)e−2πipt dt = ĥ(p) (1)

since the functions t 7−→ e−2πipt are continuous on [0, 1].
Conversely, suppose that (1) holds. Then because integrating and taking limits are

linear operations, we get

∀g ∈ P

∫

[0,1]

hng −−−−→
n→∞

∫

[0,1]

hg

Here, P is the set of 1-periodic trigonometric polynomials. Let f be any continuous
function such that f(0) = f(1). We know that P is dense in the set of such functions
(the convolutions Kn ? f converge to f uniformly, where Kn is the n-th Fejér kernel), so if
ε is a positive number, there exists a trigonometric polynomial g such that ‖f − g‖∞ < ε.
Now, we have for every integer n:

∣∣∣∣
∫

[0,1]

(hn − h)f

∣∣∣∣ 6

∣∣∣∣
∫

[0,1]

(hn − h)(f − g)

∣∣∣∣ +

∣∣∣∣
∫

[0,1]

(hn − h)g

∣∣∣∣

6 ‖hn − h‖1‖f − g‖∞ +

∣∣∣∣
∫

[0,1]

(hn − h)g

∣∣∣∣
(2)

Because the sequence (hn)n∈N is bounded, we can find a positive real number M such that

‖h‖1 6 M and ∀n ∈ N ‖hn‖1 6 M

And because g is a trigonometric polynomial,

lim
n→∞

∫

[0,1]

(hn − h)g = 0

Therefore, taking the limsup in (2) yields

lim sup
n→∞

∣∣∣∣
∫

[0,1]

(hn − h)g

∣∣∣∣ 6 2Mε

This holds for every positive ε. Thus

lim
n→∞

∫

[0,1]

hnf =

∫

[0,1]

hf

Finally, if we want to show something similar for functions f that are continuous, but
don’t satisfy the endpoint condition f(0) = f(1), we can proceed as in the 2003 exam,
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problem 5: first let f be the indicator function of an interval and approximate it by
functions satisfying the endpoint condition. Then use the fact that linear combinations
of indicators of intervals are dense in C ([0, 1]).

(hn)n∈N converges to h in the weak-? topology of L1.

4 We go back to the initial situation: (fn)n∈N and (gn)n∈N are sequences in L2(0, 1),
converging weakly respectively to f and g. We suppose that the (fn)n∈N’s and (gn)n∈N’s
have their Fourier coefficients equal to 0 at negative integers. Then f (and g) have the
same property since

∀p ∈ Z f̂(p) =

∫ 1

0

f(t)e−2πipt dt = lim
n→∞

∫ 1

0

fn(t)e−2πipt dt = lim
n→∞

f̂n(p) = 0 (3)

Define ∀n ∈ N hn = fngn and h = fg

As we saw in the first question, there exists a positive number M such that

∀n ∈ N ‖fn‖2, ‖gn‖2 6 M

Therefore ∀n ∈ N ‖hn‖1 6 ‖fn‖2 ‖gn‖2 6 M2

Since hn = fngn, its Fourier coefficients are obtained as the convolution of the Fourier
coefficients of fn and gn:

∀p ∈ N ĥn(p) =
∑

k∈Z

f̂n(k) ĝn(p − k) =

p∑

k=0

f̂n(k) ĝn(p − k) (4)

and if p < 0, ĥn(p) =
∑

k∈Z

f̂n(k) ĝn(p − k) =
∑

k∈N

f̂n(k) ĝn(p − k)︸ ︷︷ ︸
=0

= 0

Similarly ∀p ∈ Z ĥ(p) =






0 if p < 0
p∑

k=0

f̂(k) ĝ(p − k) if p > 0
(5)

Because of (3), and because (4) and (5) only involve finite sums, it follows that

∀p ∈ Z ĥn(p) −−−−→
n→∞

ĥ(p)

Using the result from the third question,

(hn)n∈N converges to h in the weak-? topology of L1(0, 1).
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Third problem

Consider a C ∞ function f : R −→ R such that for every x ∈ R, there exists an integer
k such that f (k)(x) = 0. Let

U =
{
x ∈ R

∣∣ f is a polynomial in a neighbourhood of x
}

1. Prove that U is a dense open subset of R.

2. Prove that the complement of U contains no isolated points.

Solution

1 We first show that U is open. Let x0 ∈ U. Then, by definition of U, there exists a
positive ε and a polynomial function P such that f = P on I = (x0 − ε, x0 + ε).

If x is any point in that interval, letting r = |x−x0|, the interval
(
x−(ε−r), x+(ε−r)

)

is included in I, on which f = P. Thus f is a polynomial in a neighbourhood of x, which
shows that x is in U as well, and therefore I ⊂ U:

U is open.

Next we show that U is dense in R. Let O be a nonempty open set in R. Because
every point x in R is such that f (k)(x) = 0 for some k, we have

R =
⋃

k∈N

Fk

where ∀k ∈ N Fk =
{
x ∈ R | f (k)(x) = 0

}

Therefore O =
⋃

k∈N

(
O ∩ Fk

)

By Baire’s lemma, there exists a k such that O∩Fk has nonempty interior. This interior

is actually O ∩
◦

Fk.

Remember indeed that Int(A ∩ B) = ◦A ∩ ◦B. The similar property with
unions, however, is false. Take for example

A = Q B = R \ Q
◦

A = ∅
◦

B = ∅

Then
◦

A ∪
◦

B = ∅ while Int(A ∪ B) =
◦

R = R

Similarly, for all sets A and B, we have A∪B = A ∪ B, but the property with
the intersections is false in general.
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So there is an open ball B(x0, ε) in O ∩
◦

Fk. Then in particular

∀x ∈ (x0 − ε, x0 + ε) f (k)(x) = 0

Since f is obtained by multiple integrations of f (k), it follows that f is a polynomial of
degree at most k − 1 in (x0 − ε, x0 + ε). Which proves that x0 ∈ U, so that O ∩ U is not
empty. Every open subset of R intersets U nontrivially, or in other words,

U is dense in R.

2 We first show that if (a, b) is an open interval contained in U, then f is a polynomial
in (a, b). For this, let x0 ∈ (a, b) ⊂ U. Then we know that for some positive ε, there exists
a polynomial function P such that f = P on (x0 − ε, x0 + ε). Let

M = Sup
{
x ∈ (x0, b)

∣∣ f = P in (x0, x)
}

Then ε 6 M 6 b

and we will show that M is actually equal to b. Suppose it is not the case. Then we know
that f = P on (x0, M) and M ∈ (a, b) ⊂ U. Therefore, there exists a positive η and a
polynomial Q such that f = Q on (M − η, M + η). But then

∀x ∈ (M − η, M) P(x) − Q(x) = f(x) − f(x) = 0

P−Q is a polynomial with infinitely many zeroes, so it has to be the 0 polynomial: P = Q.
It follows that f = P on (x0, M + η), which contradicts the definition of M. Thus M = b.

Similarly, we would show that

Inf
{
x ∈ (a, x0)

∣∣ f = P in (x, x0)
}

= a

It follows that f = P on all of (a, b).

Now, going back to the question asked. Suppose that x ∈ R \ U is isolated. Then
there exists a positive ε such that (x0 − ε, x0) and (x0, x0 + ε) sit entirely inside U. From
what we just showed, there are polynomials P and Q such that

∀x ∈ (x0 − ε, x0) f(x) = P(x)

and ∀x ∈ (x0, x0 + ε) f(x) = Q(x)

Let k be the biggest number of deg(P) and deg(Q). Then P(k+1) = 0 and Q(k+1) = 0.
As a consequence,

∀x ∈ (x0 − ε, x0 + ε) \ {x0} f (k+1)(x) = P(k+1)(x) or Q(k+1)(x) = 0

Because f (k+1) is continuous at x0, it follows that f (k+1)(x0) = 0 as well. So f (k+1) = 0
on the whole interval (x0 − ε, x0 + ε). By integrating k + 1 times, it follows that f is a
polynomial function in that interval. Thus x0 is in U, which gives us a contradication.

The complement of U has no isolated points.
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Fourth problem

Prove the inequality

∀a ∈ `2(Z)
∑

m∈Z

∣∣∣∣
∑

n∈Z
n 6=m

an

n − m

∣∣∣∣
2

6 π2‖a‖2

Show also that π2 cannot be replaced by a smaller constant.

Solution

Let f be the 1-periodic function coinciding with x 7−→ x− 1
2

on (0, 1) and let’s compute
its Fourier coefficients. Obviously, since f is symmetric around the point 1

2
, we’ll have

f̂(0) = 0. So let n ∈ Z nonzero and integrate by parts:

f̂(n) =

∫ 1

0

(
x −

1

2

)
e−2πinx dx =

∫ 1

0

xe−2πinx dx

=
1

−2πin

[
xe−2πinx

]1

0
+

1

2πin

∫ 1

0

e−2πinx dx

f̂(n) = −
1

2πin

Let a be any sequence in `2(Z) and let g be the L2(0, 1) function whose Fourier coefficients
are the terms of the sequence a:

g =
∑

n∈Z

anen where en : x 7−→ e2πinx

We know that fg is L2(0, 1) (since f is bounded), whose Fourier coefficients are obtained
by convolution of f and g’s coefficients:

∀m ∈ N f̂ g(m) =
∑

n∈Z

an f̂(m − n) = −
1

2πi

∑

n∈Z
n 6=m

an

m − n

And Parseval’s formula tells us that

‖fg‖2
2 =

∑

m∈Z

∣∣f̂ g
∣∣2 =

1

4π2

∑

m∈Z

∣∣∣∣
∑

n∈Z
m6=n

an

m − n

∣∣∣∣
2

Thus
∑

m∈Z

∣∣∣∣
∑

n∈Z
m6=n

an

m − n

∣∣∣∣
2

= 4π2‖fg‖2
2 6 4π2‖f‖2

∞ ‖g‖2
2 = π2

∑

m∈Z

|an|
2
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To show that the inequality is sharp, it is enough to show that

∀g ∈ L2 ‖fg‖2
2 6

‖g‖2
2

4

is optimal. All we have to do is find a sequence of L2(0, 1) functions (gn)n∈N that will pick
up the value 1

4
, which is the supremum of f 2 on (0, 1). So let

gn =

√
n

2

(
1(0, 1

n
) + 1(1− 1

n
,1)

)

Then |gn|
2 =

n

2

(
1(0, 1

n
) + 1(1− 1

n
,1)

)

so that ‖gn‖
2
2 = 1

Now, we also have, using the fact that f 2 and g2
n are symmetric around the line x = 1

2
:

‖fgn‖
2
2 = 2

∫

[0, 1
2
]

f 2g2
n = n

∫ 1

n

0

(
x −

1

2

)2

dx =
n

3

((1

n
−

1

2

)
−

1

8

)
=

1

3n2
−

1

2n
+

1

4

This tends to 1
4

as n goes to ∞.
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Fifth problem

Let K be an L1 function on the unit square [0, 1]2. Suppose that for every continuous
function f on [0, 1], we have

∫

[0,1]

K(x, y)f(y) dy for almost every x

Prove that K = 0 almost everywhere.

Solution

Denote the unit square [0, 1]2 by Q and consider the subspace F of C (Q) spanned by
functions of the type

(x, y) 7−→ g(x)f(y) f, g ∈ C ([0, 1])

It is easy to check that a product of finite linear combinations of such functions is still
a finite linear combination of such functions. Thus F is a subalgebra of C ([0, 1]). It
separates points, since if (x1, y1) and (x2, y2) are distinct points in Q, they are separated
by the function (x, y) 7−→ (x − x1)

2 + (y − y1)
2. Also, F contains the constant function

1. Therefore, F is dense in C (Q).
Now, let f and g be any two continuous functions on [0, 1]. Since K is L1(Q),

∫ 1

0

∫ 1

0

∣∣K(x, y)g(x)f(y)
∣∣dydx 6 ‖f‖∞ ‖g‖∞ ‖K‖1 < ∞

and therefore

∫

Q

K(x, y)g(x)f(y) dλ(x, y) =

∫ 1

0

g(x)

( ∫ 1

0

K(x, y)f(y) dy

)
dx = 0

by Fubini and by hypothesis on K. By linearity,

∀f ∈ F

∫

Q

Kf = 0

But ‖K‖1 = Sup
f∈C (Q)
‖f‖∞=1

∫

Q

Kf = Sup
f∈F

‖f‖∞=1

∫

Q

Kf

since F is dense in C (Q). Thus ‖K‖1 = 0, and

K is 0 almost everywhere.
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Sixth problem

Show that there do not exist measurable sets A and B with positive measure such that
A ∩ (B − r) = ∅ for every rational number r.

Solution

Suppose that such sets exist. We might as well assume that A and B have positive
finite measure, by intersecting them with a big enough compact set. Then 1A and 1B are
both L2 functions, and 1A ? 1−B is continuous.

This is a remarkable property of the convolution of L2 functions. Indeed, if f

and g are L2, then

∣∣f ? g(x + h) − f ? g(h)
∣∣ =

∣∣∣∣
∫

R

f(y)
(
g(x + h − y) − g(x − y)

)
dy

∣∣∣∣

6 ‖f‖2

( ∫

R

∣∣g(y − h) − g(y)
∣∣2 dy

) 1

2

and we know that translations are continuous on L2(R) so the righthandside tends
to 0.

Another way of seing it is using the Fourier transform:

f̂ ? g = f̂ ĝ

But the Fourier transform is an isometry of L2 onto itself, therefore f̂ ? g is L1. So
f ? g, as the inverse Fourier transform of an L1 function, is continuous.

In fact, more generally, the convolution of an Lp and an Lp′ function yields a
continuous function.

We have ∀x ∈ R 1A ? 1−B(x) =

∫

R

1A(y)1−B(x − y) dy

But 1A(y)1−B(x − y) is 1 if and only if
{

y ∈ A
x − y ∈ −B

that is y ∈ A ∩ (x + B)

and is 0 otherwise. Therefore, 1A ? 1−B is 0 at every rational number. But this function
is continuous, and rationals are dense in R, therefore

∀x ∈ R 1A ? 1−B(x) = 0

However
∥∥1A ? 1−B

∥∥
1

=

∫

R

∫

R

1A(y)1−B(x − y) dydx = µ(A)µ(B) 6= 0

We have our contradiction.
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Seventh problem

Let (fn)n∈N be a sequence of Lebesgue measurable functions on [0, 1]. Let

E =
{
x ∈ [0, 1]

∣∣ ∑
n∈N

fn(x) converges
}

Show that for every positive ε, there is a set F and an integer k such that

• F is in the ring of sets generated by sets of the form f−1
i (A) for i 6 k and A Borel;

• m(E∆F) < ε.

Solution

Using the fact the a sequence of real or complex numbers converges if and only if it is
Cauchy, we see that

E =
⋂

p∈N?

⋃

N∈N

⋂

n>N

⋂

m∈N

{∣∣
n+m∑

k=n

fk

∣∣ <
1

p

}

For every integers N, n and m, we let

Ap,n,m =
{∣∣ n+m∑

k=n

fk

∣∣ <
1

p

}

Notice that Ap,n,m is in the σ-algebra generated by sets of the form f−1
i (B) where i 6 n+m

and B Borel.

In case you are not sure anymore why this is true, here is a way to do it. Let
f and g be two measurable functions, let a be any real number. Then one checks
easily that

{f + g < a} = {f < a − g} =
⋃

r∈Q

(
{f < r} ∩ {g < a − r}

)

which shows that {f + g < a} is in the σ-algebra generated by sets of the form
f−1(B), g−1(B) with B Borel. Inductively, this generalizes to sums of an arbitrary
number of functions.

For every pair of integers K and M, we let

EK,M =
⋂

p∈N?

⋃

N∈N

K⋂

n=N

M⋂

m=0

{∣∣
n+m∑

k=n

fk

∣∣ <
1

p

}

This set is in the σ-algebra generated by the f−1
i (B) for B Borel and i 6 K + M.
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It can probably be checked that 1EK,M
converges pointwise to 1E as K and M tend to

∞. Moreover, all the EK,M’s are dominated by the constant function equal to 1, which is
integrable on [0, 1]. By the dominated convergence theorem,

lim
K,M→∞

1EK,M
= 1E in L1(0, 1)

or in other words, 0 = lim
K,M→∞

∥∥1EK,M
− 1E

∥∥
1

= lim
K,M→∞

µ
(
E∆EK,M

)

So if ε is a positive real number, just take K and M big enough, let F = EK,M, so that

µ(E∆F) 6 ε
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Eighth problem

Let C ∈ (0, 1). Show that there are numbers δN, depending on C, with the following
properties:

• If A1, . . . , AN are measurable sets in [0, 1] each with measure C, then

m(Ai ∩ Aj) > (1 − δN)C2

for some i 6= j;

• δN −−−−→
N→∞

0.

Solution

Let N be a positive integer and A1, . . . , AN be measurable sets in [0, 1], each with

measure C. Consider the function F =
N∑

n=1

1An
. Then

F2 =
N∑

m,n=1

1An
1Am

=
N∑

n=1

1An
+

N∑

n=1

N∑

m=1
m6=n

1An∩Am

and

∫

[0,1]

F2 = NC +

N∑

n=1

N∑

m=1
m6=n

m
(
An ∩ Am

)

Now let i and j be distinct and such that

m(Ai ∩ Aj) = Max
{
m(An ∩ Am)

∣∣ m 6= n
}

Then NC + N(N − 1)m(Ai ∩ Aj) >

∫

[0,1]

F2
>

( ∫

[0,1]

F

)2

= N2C2

This last step is just Hölder’s inequality applied to F = F × 1. Anyhow, it follows that

and m(Ai ∩ Aj) >
N2C2 − NC

N(N − 1)
=

N − 1
C

N − 1
C2

so take δN =
1 − C

NC − C
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Ninth problem

Suppose the Banach space X is uniformly convex. That is, for every positive ε, there
exists a positive δ such that

∀x, y ∈ X
(
‖x‖ = ‖y‖ = 1 and

∥∥∥
x + y

2

∥∥∥ > 1 − δ
)

=⇒ ‖x − y‖ 6 ε

Let f be a bounded linear functional on X with norm 1. Show that there is a unique
point x ∈ X with ‖x‖ = 1 such that f(x) = 1.

Solution

Since f has norm 1, there exists a sequence (xn)n∈N in the unit sphere of X such that

lim
n→∞

(f, xn) = 1 (1)

Let ε be a positive real number; uniform convexity of X provides us with a δ such that

∀x, y ∈ X
(
‖x‖ = ‖y‖ = 1 and

∥∥∥
x + y

2

∥∥∥ > 1 − δ
)

=⇒ ‖x − y‖ 6 ε

And (1) provides us with a positive integer N such that

∀n > N 1 − δ < (f, xn)

Thus ∀n > N ∀p ∈ N 1 − δ <
(
f,

xn + xn+p

2

)

which implies in turn that
∥∥∥
xn + xn+p

2

∥∥∥ > 1 − δ

Therefore ∀n > N ∀p ∈ N ‖xn+p − xn‖ 6 ε

The sequence (xn)n∈N is Cauchy, and therefore converges to some x. Of course,

‖x‖ = 1 and (f, x) = lim
n→∞

(f, xn) = 1

Now let y ∈ X satisfy this same property:

‖y‖ = 1 and (f, y) = 1

Then
∥∥∥
x + y

2

∥∥∥ >

(
f,

x + y

2

)
= 1

which implies, by uniform convexity, that ‖x − y‖ 6 ε for every positive ε.

There exists a unique x ∈ X such that (f, x) = 1.
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Tenth problem

1. Let µ be a finite measure on R and let ν be the measure with density e−x2

with
respect to µ. Show that the Fourier transform of ν is the restriction to R of an
entire function F.

2. Express the n-th derivative F(n)(0) in terms of µ.

3. Show that the set

S =
{
p(x) e−x2

∣∣ p polynomial
}

is dense in C0(R), the space of continuous functions tending to 0 at ±∞.

Solution

1 For every complex number z, define

F(z) =

∫

R

e−izx dν(x) =

∫

R

e−x2−izx dµ(x)

Since the function x 7−→ e−x2+xImz is continuous and tends to 0 at ±∞, it is bounded by
some M > 0 and we have∫

R

∣∣e−x2−izx
∣∣ dµ(x) =

∫

R

e−x2+xImz dµ(x) 6 M‖µ‖ < ∞

Therefore, F is well defined at every z ∈ C.
Now, let γ be any closed curve in C. Since γ is compact, there exists a positive number

C such that

∀z ∈ γ Imz 6 C

Therefore

∫

γ

∫

R

∣∣e−x2−izx
∣∣ dµ(x)d|z| 6

∫

γ

∫

R

e−x2+Cx dµ(x)d|z| 6 F(C)length(γ) < ∞

which allows us to Fubinise the double integral
∫

γ

F(z) dz =

∫

R

e−x2

∫

γ

e−ixz dzdµ(x) = 0

since z 7−→ e−ixz is holomorphic in a neighbourhood of γ. Since this holds for every
closed curve γ, F is analytic in C. And of course, the restriction to R of F is the Fourier
transform of ν.

ν̂ is the restriction to R of an entire function.
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In the next question, we will see another strategy that could have been used to
solve that question, and gives us at the same time the derivatives of F at 0. I
simply wanted to present both methods because each of them is interesting and
worth seeing at least once.

2 The function x 7−→ e|zx|−x2

is continuous and tends to 0 at ±∞, thus is bounded. We
let M > 0 be such that

∀x ∈ R e|zx|−x2

6 M

Thus

∫

R

∑

n∈N

|zx|n

n!
e−x2

dµ(x) =

∫

R

e|zx|−x2

dµ(x) 6 M‖µ‖ < ∞

which allows us, thanks to Fubini, to compute as we wish the double integral:

F(z) =

∫

R

e−x2−izx dµ(x) =

∫

R

∑

n∈N

(−izx)n

n!
e−x2

dµ(x) =
∑

n∈N

zn

n!

∫

R

(−ix)ne−x2

dµ(x)

This gives us a power series expansion of F around zero. In particular, we get for free the
derivatives of F at 0:

∀n ∈ N F(n)(0) =

∫

R

(−ix)ne−x2

dµ(x)

Of course, this is the method you would use during the exam, since it overkills
questions 1 and 2.

3 Let S =
{
p(x)e−x2

∣∣ p polynomial
}

and let µ be a finite measure on R that vanishes on S:

∀p ∈ C[X]

∫

R

p(x)e−x2

dµ(x) = 0

In particular ∀n ∈ N

∫

R

(−ix)n e−x2

dµ = 0

Hence, by questions 1 and 2, the Fourier transform of e−x2

dµ is 0. And, by injectivity of
the Fourier transform, this measure itself is 0:

∀f ∈ Cc(R)

∫

R

f(x) e−x2

dµ(x) = 0
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Now, if f is continuous with compact support, x 7−→ f(x)ex2

is also continuous with
compact support and as a consequence,

∫

R

fdµ =

∫

R

(
f(x) ex2)

e−x2

dµ = 0

So µ vanishes on Cc(R). This set is dense in C0(R), so µ also vanishes there and it follows
that µ = 0. Therefore,

S is dense in C0(R).
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