Ph.D. Qualifying Exam — Spring 2001

‘ First problem

Let X be a metric space.

1. Suppose X is separable. Show that every open cover of X has a countable subcover.

2. Conversely, suppose that every open cover of X has a countable subcover. Show
that X is separable.

Solution

Suppose that X is separable and let {z,, | n € N} be a countable dense subset of X.
Let (Og)aca be a collection of open sets, such that

X=|]0.
aEA

For every integer n, there exists «,, such that x,, € O,,,.

Conversely, suppose that every open cover of X has a countable subcover. Obviously,

x= U s(e)

rzeX
neN*

This cover thus has a countable subcover; let (z;);en be the centers of those balls. Then

1
- (o)

.U o

JjeN

neN*
If 2 is any point in X and € is a positive real number, let n be big enough so that % < €.
Then there exists a j such that 2 € B(z;, 2) which implies that d(z, z;) < e. Thus (z;)en
is dense.

‘X is separable. ‘




Second problem I

Let T be the set of real number x with the following propery:

a 1
1. Prove that T is uncountable.
2. What is the Lebesgue measure of T?
Solution
Let T, = ﬂ A,
kEN
L e N A — a 1 a 1
where ke ’“‘UU(10N_20N’10N+20N)
N>k a€Z
so that T, CT

We show that T; is uncountable, which in turn implies that T is uncountable.

First, let’s talk about the (Ap)ren. Let k be a fixed integer. If z is any rational
number with a finite decimal expansion, we can assume that this expansion has at least
k + 1 decimals, by adding enough zeroes to the right of the expansion if needed. Which
means that z can be written as mLN for N>k+1and a € Z.

Thus every Ay contains rational numbers with a finite decimal expansion. And those
are dense in R since every real number has a (finite or infinite) decimal expansion. So Ay
is dense in R for every k.

Now, assume that T is countable, say Tq = {z,, | m € N}. Then

But removing a point off a dense set leaves it dense. Thus () is a countable intersection
of dense sets. That’s very unlikely, since R is complete and we have Baire’s lemma. T} is
uncountable and as a consequence

‘T is uncountable. ‘

a 1 a 1
[2] We have T=-NUJuU [10N TN 10N T QON}

keENN>Ek acZ

by definition. For every positive integer n, let



To=Tn[=nn= (U U ([181“ B 23N’ 1gN * QéN} : [_”’”])

keENN>E acZ

The intervals that appear on the righthandside above will have empty intersection as soon
as

o 1 L@ N 1
—_— — = or -n>—+—
10N 20N 10N " 90N
hat i 10N 1 10N 1
that is a > 0n+2—N or a<—0n—2—N

A sufficient condition for that is for example that
a>10Nn +1 or a<—10Nn —1
Anyhow, it follows that

| |
e U U [18N BTk 18N + QON]

keEN N>k a€’
—10Nn—1<a<<10Nn+1

a 1 a 1
Thus VkeN T, C [ S ]
NL>Jk aLEJZ 10N 20N7 10N 20N

—10Nn—1<a<10Nn+1
10Nn+1
2 2(10Nn + 3)
S0 VEEN  NT.)<Y Y —QON:Z_ S
N>k g=—10Nn—1 N>k

Since the righthandside tends to 0 as k tends to oo, T,, has Lebesgue measure 0. And T
is the union of all the (T},),en’s, so

‘T has Lebesgue measure 0.




Third problem I

Let X be a compact metric space and % (X) be the space of continuous real valued
functions on X. Let F : ¥ (X) — R be a continuous map such that F(1) = 1 and

F(u+v) = F(u) + F(v)
Yu,v € €(X) { F(uv) = F(u)F(v)

Show that there exists g € X such that
Vu € €(X) F(u) = u(xg)

Solution

This problem is easy once one know the structure of ideals of € (X). It is one of
the first examples studied in any course on Banach algebras.

We first show that if I is a proper ideal of € (X), there exists x in I such that every
function in I vanishes at xy. Suppose it is not the case. Then for every x € X, there exists
fz € I'such that f,(x) # 0. Up to replacing f by —f (I is an ideal), we can assume that
fz(x) > 0. This allows us to form an open cover of X:

x=U (57 )

zeX

from which we extract af finite subcover. After renaming everything more conveniently,

X = Uf ((fx )) with  fi(z:) > 0 (1)

Define then Ve e X g(x) = fi(x)? + -+ fulz)?

Since I is an ideal, it contains g. Now, if = is in X, there exists i € {1,...,n} (by (1))
such that

fl( Z) < fz( )
Therefore g(z) = fi(x)* >0

which establishes that g is (strictly) positive. Then the function é is in ¢'(X). Because I

is an ideal, g x % = 1is in I, so I is the whole ring ¢ (X). By contrapositive, we showed
what was anounced:
Theorem If 1 is a proper ideal in € (X), there exists xy € X such that

Vel  flzg) =0



Now, back to our problem. We first show that F is R-linear. Let u be any continuous
function on X. We have

Vn € N* Flnu) =F(u+---+u) =F(u)+ -+ F(u) =nF(u)

-

g

n times n times

Thus Vne N F(u) = F(gu) - nF(%)
so that Vn € N* F<g> = Flw)

n n

i _Pcor _ YN (MY =P

and it follows that Vr = . c Qy F(ru) = F(p q) pF(q) qF(u) (2)
Next, F(0) = F(2 x 0) = 2F(0)
SO F(0)=0
As a consequence, F(—u)+F(u)=F(0)=0 and  F(—u) = —F(u) (3)

From (2) and (3),

VreQ F(ru) = rF(u)
Since F is continuous, this relation extends to real numbers and we obtain that F is
R-linear.

Because F(1) = 1, we get that F(A) = A for all real number A and therefore Im F = R.
Since F is a ring homomorphism, ¢’ (X)/Ker F ~ R which is a field, and Ker F is a maximal
ideal in €'(X).

From the theorem established on the previous page, there exists xy € X such that

Vu € Ker F u(zog) =0
Thus Ker F' is included in the ideal
Iy ={ue?X) | u(zg) =0}
And I is proper since it does not contain the constant function equal to 1. Because Ker F
is maximal, it is equal to Ij:
KerF = {u € €(X) | u(zg) =0}

We now have all the ingredients to finish the proof. Let u be any element of & (X).

The function & — u(z) — u(zo) takes the value 0 at z, thus is in Ker F:

F(u—u(zg) x1) =0
Since F is R-linear and F(1) = 1, it follows that F(u) = u(xo):
drge X YueX  F(u) =u(xg)




Fourth problem I

Prove:

1. The continuous image of a connected set is connected.

2. If X is compact, Y is Hausdorff and f : X — Y is injective and continuous, then
f~1is continuous.

3. The product of two compact sets is compact.

Solution
Let X and Y be two topological spaces, with X connected. Let f : X — Y be
continuous. Let U and V be open subsets of f(X), such that
unv=40 and UuUV = f(X)
By definition of the subset topology, there are open sets U; and V; in Y, such that
U=U;n f(X) and V=V;n f(X)

(X)) = UUV) = U U FHY)
FAU N X)) U (V) N (X))
HU) N V)

Similarly, 0="YUnV)=FYU)nf4YVy)

Since f is continuous, f~1(U;) and f~!(V;) are open in X. And because X is connected,
one of those sets is X and the other one is empty. Let’s say that

YU =X and Y V) =0
Then fOFHU)) =fX)  and  f(f'(V1) =0

But we also have

F(HU))=Uinf(X)=U and F(fH V) =Vinf(X)=V

We have X

I
e

Hence f(X) is connected.

This problem is so simple that I believe all the details above (especially going
through the definition of the subset topology of f(X)) are required.



Suppose X is compact, Y is Hausdorff and f : X — Y is a continuous injective map.
Let C be any closed set in X. Then C is compact and therefore f(C) is compact. But in
a Hausdorff space, compact sets are closed so f(C) is closed. Thus

VC closed in X f(C) is closed in Y

f~1is continuous.

Let X and Y be two compact topological spaces. I'll start with a few reminders on the
product topology. Remember that the product topology on X XY is the weakest topology
that makes both projections

px:(v,y)—2x and  py:(7v,y)—y
continuous. In other words, it is the weak topology on X x Y generated by px and py.
Notice that if OX and OY are open sets in X and Y respectively, then
px (0¥ =0 xY and  py'(OY) =X xOY

A set is open in X x Y if and only if it is a union of finite intersections of sets of the form
O* x Y and X x OY (see the first section of the handout on weak topologies if it is the
first time you hear about this).

Handling intersections of cartesian products is not a problem. Indeed, if AX BX are
subsets of X, and AY,BY are subsets of Y, then

(A*x AY)N(B*NBY) ={(z,y) e X xY |z € A%,y AY and z€BX yeBY}
= (AXNB¥) x (AYNBY)
So finite intersections of products are just products of the corresponding intersections,
if you see what I mean. Therefore, a set is open in X x Y if and only if it is a union of

sets of the form OX x OY, with O and OY open in X and Y respectively.
Finally, given any x € X, we can define the bijection

Ip: Y — X XY
y — (z,y)
As one checks easily,
VyeyY pxoiL(y) == and Py oi(y) =vy

so the functions px o i, and py o i, are continuous on Y: this implies (again, see the
handout on weak topologies) that i, is continuous on Y. This is not really important for
our purpose, and is just displayed here to show how weak topologies are used.

Now, towards solving the problem. Consider an open cover of X x Y it looks like

XxY:UOszZS

a€cA



where the (Oiﬁ) and (OY) are open sets in X and Y respectively. Given z € X, let
A(z)={a e A|xeOF}

so that Y:igl(XxY):Ui HOX x0)) = U (0}

acA acA(x

This is an open cover of Y. So we can extract a finite subcover: there exists A¢(z) C A(z),
finite, such that

U o (1)
a€Ay(x)

Next, for every x, () OZX is open (finite intersection of open sets) and contains z.
acAy(x)
Therefore,

Xx=J N o}
zeX acAy(x)
and we can extract a finite subcover: there exists X; C X, finite, such that

x=J N o 2

z€Xs acA ()

XxY={J) [J oXxo)

v€X s achy(z)
Indeed, let (xg,y0) € X x Y. By (2), there exists x € Xy such that
Va € Ag(x) z9 € OF
Now, by (1), there exists o € A;(z) such that yo € OY. Therefore
(z0,90) € OX x OY

Now we claim that

‘X X Y is compact.




Fifth problem I

Let S be a subset of €([0,1]), that is closed in L?(0,1). Prove:

1. S is a closed subset of ([0, 1]).

2. There exists M > 0 such that

VEeS Iflla < IIfllee < M| fll2

3. For every y € [0, 1], there exists K, € L*(0, 1) such that

Vs f(y)Z/mef

Solution

Let (fn)nen be a sequence in S that converges (uniformly) to a (continuous) function
f. Remember that

Vg e L20,1)  [lgl = /[ < (1)

Therefore Vn € N N fo — fll2 < || fo — fllo

Thus (f,)nen converges to f in L2(0,1). Since S is closed in L*(0,1), we deduce that
fes.

S is closed in €'(]0, 1]).

Since S is closed in €([0,1]) and L?(0,1) it is a Banach space with either || ||, and
| ]2 And by (1), the identity map

(S 1l lse) — (S, 11 Il2)

is continuous bijective. Therefore it has a continuous inverse, which means that

IM>0 VFES  [[flloe < M| fll2

Conclusion: Vfes 1fll2 < |1flloo < M| f]l2




Define Vy € [0,1] VfeS Jy,(f) = fy)

Of course, this map is perfectly well defined since functions in S are continuous. Further-
more, J, is linear and

vies LN =fW] < fllee <MIf]2

So J, is a bounded linear function on the Hilbert space (S, ]| ||2). By the Riesz represen-
tation theorem,

JK, €S VvVfeS Jy(f):/MKyf

10



Sixth problem I

Suppose (fn)nen 18 a sequence of non-decreasing functions on [0, 1] that converges
pointwise to a continuous function f. Show that the convergence is uniform.

Solution

First, notice that the limit f is non-decreasing. Indeed, if x <y are in [0, 1],

VneN  fu(z) < fu(y)

SO flz) < f(y)

by taking limits in the inequality.
Let € be a positive real number. Since f is continuous on the compact [0, 1], it is
uniformly continuous: there exists a positive n such that

Ve,y€[0,1]  Jz—y|<n = |f(x) = fly)| <e (1)

Let 0 = 29 < 21 < --- < z, = 1 be a subdivision of [0, 1], such that x;;; — x; < n for
every i. Since (f,)nen converges pointwise to f, we can find N € N such that

VasN Vie{0,...p}  |fulw) - fm)] < (2)

Now let & be any real number in [0, 1] and squeeze it between z; and x;;; for some i.
Then, since the functions involved are all non-decreasing,

vneN  fu(zi) < ful2) < folin) (3)
and flai) < fl2) < fl@in) (4)
Now let n > N and subtract (3) from (4):
fu(@i) = (i) < fu@) = f(2) < fal@ipn) — f2:)

We have all that’s needed to evaluate the terms on the left and on the right. For example,
for the term on the right:

| falir) — fla:)] < ifn($i+1) - f(l”z‘+1)4\+ | f(zig1) — f(i'fi)l

<e l;; (2) G g; (1)
Similarly [fulles) = Flain)] < 2
so that Vn > N }fn(:)s) — f(:)s)} < 2e

(fn)nen converges uniformly to f.

11



Seventh probleml

Let A and B be two closed subspaces of a Hilbert space H such that
f{[lz —y[| | (z,y) € AxB |zl =yl =1} >0
Prove that A + B is complete.
Solution
Let 6 be the Inf above. Then if x and y are in A and B respectively, with norm 1, we
have
0 < flz =yl = [lzl* + lyl* — 2(z | y) = 2 — 2{z | y)

so that <x|y)<1—g

Now if x and y are non-zero in A and B respectively, we get by scaling

o)< (1= 3) el vl

And of course, changing z into —z gives an upper bound on (z | y):

(1= 3) el sl < rld < (1= 2) el o "

Notice that A N B = {0}, otherwise there would exist + € A N B with norm 1, which
would contradict the fact that § > 0. Therefore, A and B are in direct sum: any z € A+B
can be written uniquely as a + b with a € A and b € B. We let pa be the projection from
A + B onto A parallel to B, that is

pa(z) =a
Similarly, the projection pg from A 4+ B onto B parallel to A is defined by
pp(2) =b=(1—pa)z

We show that those are continuous by expanding the norm ||a + b||, using (1) and
completing a square:

2112 = fla +I12 = lall? + 11b]1> +2(a | b)
)
> 2 2 _ _

> Jlall* + lll}* = 2(1 = 5 ) lal 15

> (= (1= ) 1)+ (1= (1= 2) Yol

I=]1*

if § <4
1—(1-0/22

In particular, 16]12 = ||pp2]|* <

12



But it turns out that ¢§ is actually always less than 2 since
V(z,y) e AXB |z =yl =1 |z =yl <zl + 1yl =2

Anyhow, we see that pg is bounded. The same holds for pa since pao = I — pg. So if
(2zn)nen is a Cauchy sequence in A + B, then (paz,)neny and (ppz,)nen are Cauchy as well,
in A and B respectively. Since those are complete (closed in a Hilbert space), we have

lim paz, =a €A and lim ppz, =b€eB
Therefore limz,=a+beA+B
Conclusion: A + B is complete.

13



Eighth problem I

Let ./ be the space of Fourier transforms of L!(R) functions. Let %,(R) be the space
of continuous functions that tend to 0 at co. Prove

L o CG(R);
2. o/ is dense in %y(R).

Solution

There are various ways of solving this problem. You can either prove, as I did in

lecture, that
Vf e LY(R) lim /aMdg
1

a—+00 5
exists. And deduce that any continuous function on R that is odd and equal to ﬁ on
2, +00) cannot be a Fourier transform, although it tends to 0 at co.
Or you can look at the solution to Problem 5 in the Spring 2005 exam. There, we
take ¢ € €°(R) with compact support in [—1, 1] and define
YAS0 oz — eMPyY(x)

and we show that JK>0 VAeR ||&a]l. < S

VA

If the Fourier tranform is onto %,(R), it has a continuous inverse since %p(R) and L*(R)
are Banach spaces. Thus there exists M > 0 such that

Ve ®)  |Iflh < M| f).

MK
In particular YA >0 [l = lleall <

S

which is impossible.

A G 6o (R)

We know that the Fourier transform is a bijection from the Schwartz space onto itself.
So ./ (R) C &/ (R). And of course, we know that .7 (R) is dense in 6,(R). Therefore,

</ is dense in 6,(R).

14



Ninth problem I

Same as Problem 6 in the Spring 2004 exam.

15



Tenth problem I

Let f and g be continuous 2m-periodic functions. Prove that
1

lim f(z)g(nz)dx = / f

n—oo Jo [0,1] [0,1]
Solution

Let g be a function in L*°(0, 1) and define
®:LY0,1) — C

fo<0>a<0>=/ o

(0,1) (0,1)

Then @ is clearly a linear functional, bounded since :

vieLi 0, 1) [(@,f)]=[9(0) O)[ /1l

We are going to show that
VfeLY0,1) (@, f) = lim —/f (nt)

n—oo 277
by showing it first for trigonometric polynomials and then for L*(T) by density.

We define e; to be the function  — €*™% for every j in Z.

e If 3 =0 : then we have :

1
Vn e N / e;(t)g(nt) dt = / g(nt) dt =
(0,1) 0

/O " o) du

Next, since g is

S|

The last equality comes from the change of variable u = nt.
1-periodic, we have simply :

E/O"gw) au="1x n/ g(t) dt = §(0) = (@, e0)

n

Hence (P,e0) = lim eo(t)g(nt) dt

16



e For 5 # 0 : take any integer n. Then we can write :

1 n
.. 1 ..
[ etgtmny = [ g ar = = [ du
(0,1) 0 u=nt n_J
1n—1

k+1 -
_ = Z / e27r1ju/ng(u) du
k

N k=0

In each term of the sum, we make the change of variable t = u — k and we use the
1-periodicity of g to get :

1 n 1
[ ettty = L [ erisning
(0,1) nk 0

n—

— _/ 27?1]u/n ( )du % (e2ij7r/n)k

n
0 0

[y

e
i

Now, if we take n > |j|, we have :

n—1 %5 /n 1— e2ij7r
2 () = T i =0

s that  Vn>|j / e;(D)g(nt) dt = 0 = &(0)5(0) = (®, ¢;)
(0,1)

and lim ej(t)g(nt) dt = (P, e;)

e J(0,1)

Since every trigonometric polynomial is a finite linear combination of the (e;);ez’s,
we get :

Vfe P lim f(t)g(nt)dt = (P, f)

o0 J(0,1)

Finally, let f be any function in L!(0,1). If € is any positive real number, we can find
some P in & such that || f — P||; < e. And from what precedes, there exists an integer N
such that

vn >N '((I),P)—/(Ol)P(t)g(nt) dt‘ <e

17



Hence,

Vi > N &nn— f@ﬂmm4<K@f&%@mmﬂ@ﬁw—ﬂ¥wmmww

(0,1)
+¢/ U—Pwmmww'
(0,1)
<11 = Plls + €+ lgllo 117 — Py

Vi N Mﬁﬂ—(mﬁ®ﬂmw4<dHWMwa@

which shows finally the result we want :

For every f in L'(0,1), lim f(t)g(nt) dt exists and equals (P, f).
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