
Ph.D. Qualifying Exam – Spring 2001

First problem

Let X be a metric space.

1. Suppose X is separable. Show that every open cover of X has a countable subcover.

2. Conversely, suppose that every open cover of X has a countable subcover. Show
that X is separable.

Solution

1 Suppose that X is separable and let {xn | n ∈ N} be a countable dense subset of X.
Let (Oα)α∈A be a collection of open sets, such that

X =
⋃

α∈A

Oα

For every integer n, there exists αn such that xn ∈ Oαn
.

2 Conversely, suppose that every open cover of X has a countable subcover. Obviously,

X =
⋃

x∈X
n∈N

⋆

B
(
x,

1

n

)

This cover thus has a countable subcover; let (xj)j∈N be the centers of those balls. Then

X =
⋃

j∈N

n∈N⋆

B
(
xj ,

1

n

)

If x is any point in X and ǫ is a positive real number, let n be big enough so that 1
n
< ǫ.

Then there exists a j such that x ∈ B(xj ,
1
n
) which implies that d(x, xj) < ǫ. Thus (xj)j∈N

is dense.

X is separable.
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Second problem

Let T be the set of real number x with the following propery:

∀k ∈ N ∃N > k ∃a ∈ N

∣∣∣∣x−
a

10N

∣∣∣∣ 6
1

20N

1. Prove that T is uncountable.

2. What is the Lebesgue measure of T?

Solution

1 Let T1 =
⋂

k∈N

Ak

where ∀k ∈ N Ak =
⋃

N>k

⋃

a∈Z

( a

10N
− 1

20N
,
a

10N
+

1

20N

)

so that T1 ⊂ T

We show that T1 is uncountable, which in turn implies that T is uncountable.
First, let’s talk about the (Ak)k∈N. Let k be a fixed integer. If x is any rational

number with a finite decimal expansion, we can assume that this expansion has at least
k + 1 decimals, by adding enough zeroes to the right of the expansion if needed. Which
means that x can be written as a

10N for N > k + 1 and a ∈ Z.
Thus every Ak contains rational numbers with a finite decimal expansion. And those

are dense in R since every real number has a (finite or infinite) decimal expansion. So Ak

is dense in R for every k.
Now, assume that T1 is countable, say T1 = {xm | m ∈ N}. Then

∅ = T1

⋂
Tc

1 =
⋂

m∈N

⋂

k∈N

(
Ak ∩ {xm}c

)

But removing a point off a dense set leaves it dense. Thus ∅ is a countable intersection
of dense sets. That’s very unlikely, since R is complete and we have Baire’s lemma. T1 is
uncountable and as a consequence

T is uncountable.

2 We have T =
⋂

k∈N

⋃

N>k

⋃

a∈Z

[ a

10N
− 1

20N
,
a

10N
+

1

20N

]

by definition. For every positive integer n, let
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Tn = T ∩ [−n, n] =
⋂

k∈N

⋃

N>k

⋃

a∈Z

([ a

10N
− 1

20N
,
a

10N
+

1

20N

]
∩ [−n, n]

)

The intervals that appear on the righthandside above will have empty intersection as soon
as

n <
a

10N
− 1

20N
or − n >

a

10N
+

1

20N

that is a > 10Nn+
1

2N
or a < −10Nn− 1

2N

A sufficient condition for that is for example that

a > 10Nn+ 1 or a < −10Nn− 1

Anyhow, it follows that

Tn ⊂
⋂

k∈N

⋃

N>k

⋃

a∈Z

−10Nn−16a610Nn+1

[ a

10N
− 1

20N
,
a

10N
+

1

20N

]

Thus ∀k ∈ N Tn ⊂ ⋃
N>k

⋃
a∈Z

−10Nn−16a610Nn+1

[ a

10N
− 1

20N
,
a

10N
+

1

20N

]

so ∀k ∈ N λ(Tn) 6
∑

N>k

10Nn+1∑

a=−10Nn−1

2

20N
=

∑

N>k

2(10Nn + 3)

20N

Since the righthandside tends to 0 as k tends to ∞, Tn has Lebesgue measure 0. And T
is the union of all the (Tn)n∈N’s, so

T has Lebesgue measure 0.
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Third problem

Let X be a compact metric space and C (X) be the space of continuous real valued
functions on X. Let F : C (X) −→ R be a continuous map such that F(1) = 1 and

∀u, v ∈ C (X)

{
F(u+ v) = F(u) + F(v)

F(uv) = F(u)F(v)

Show that there exists x0 ∈ X such that

∀u ∈ C (X) F(u) = u(x0)

Solution

This problem is easy once one know the structure of ideals of C (X). It is one of
the first examples studied in any course on Banach algebras.

We first show that if I is a proper ideal of C (X), there exists x0 in I such that every
function in I vanishes at x0. Suppose it is not the case. Then for every x ∈ X, there exists
fx ∈ I such that fx(x) 6= 0. Up to replacing f by −f (I is an ideal), we can assume that
fx(x) > 0. This allows us to form an open cover of X:

X =
⋃

x∈X

f−1
x

((fx(x)

2
, +∞

))

from which we extract af finite subcover. After renaming everything more conveniently,

X =

n⋃

i=1

f−1
i

((fi(xi)

2
, +∞

))
with fi(xi) > 0 (1)

Define then ∀x ∈ X g(x) = f1(x)
2 + · · ·+ fn(x)2

Since I is an ideal, it contains g. Now, if x is in X, there exists i ∈ {1, . . . , n} (by (1))
such that

0 <
fi(xi)

2
< fi(x)

Therefore g(x) > fi(x)
2 > 0

which establishes that g is (strictly) positive. Then the function 1
g

is in C (X). Because I

is an ideal, g × 1
g

= 1 is in I, so I is the whole ring C (X). By contrapositive, we showed
what was anounced:
Theorem If I is a proper ideal in C (X), there exists x0 ∈ X such that

∀f ∈ I f(x0) = 0
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Now, back to our problem. We first show that F is R-linear. Let u be any continuous
function on X. We have

∀n ∈ N⋆ F(nu) = F(u+ · · ·+ u︸ ︷︷ ︸
n times

) = F(u) + · · ·+ F(u)︸ ︷︷ ︸
n times

= nF(u)

Thus ∀n ∈ N⋆ F(u) = F
(n
n
u
)

= nF
(u
n

)

so that ∀n ∈ N⋆ F
(u
n

)
=

F(u)

n

and it follows that ∀r =
p

q
∈ Q⋆

+ F(ru) = F
(
p
u

q

)
= pF

(u
q

)
=
p

q
F(u) (2)

Next, F(0) = F(2 × 0) = 2F(0)

so F(0) = 0

As a consequence, F(−u) + F(u) = F(0) = 0 and F(−u) = −F(u) (3)

From (2) and (3),

∀r ∈ Q F(ru) = rF(u)

Since F is continuous, this relation extends to real numbers and we obtain that F is
R-linear.

Because F(1) = 1, we get that F(λ) = λ for all real number λ and therefore Im F = R.
Since F is a ring homomorphism, C (X)/Ker F ≃ R which is a field, and Ker F is a maximal
ideal in C (X).

From the theorem established on the previous page, there exists x0 ∈ X such that

∀u ∈ Ker F u(x0) = 0

Thus Ker F is included in the ideal

I0 = {u ∈ C (X) | u(x0) = 0}
And I0 is proper since it does not contain the constant function equal to 1. Because Ker F
is maximal, it is equal to I0:

KerF = {u ∈ C (X) | u(x0) = 0}
We now have all the ingredients to finish the proof. Let u be any element of C (X).

The function x 7−→ u(x) − u(x0) takes the value 0 at x0, thus is in Ker F:

F
(
u− u(x0) × 1

)
= 0

Since F is R-linear and F(1) = 1, it follows that F(u) = u(x0):

∃x0 ∈ X ∀u ∈ X F(u) = u(x0)

5



Fourth problem

Prove:

1. The continuous image of a connected set is connected.

2. If X is compact, Y is Hausdorff and f : X −→ Y is injective and continuous, then
f−1 is continuous.

3. The product of two compact sets is compact.

Solution

1 Let X and Y be two topological spaces, with X connected. Let f : X −→ Y be
continuous. Let U and V be open subsets of f(X), such that

U ∩ V = ∅ and U ∪ V = f(X)

By definition of the subset topology, there are open sets U1 and V1 in Y, such that

U = U1 ∩ f(X) and V = V1 ∩ f(X)

We have X = f−1
(
f(X)

)
= f−1(U ∪ V) = f−1(U) ∪ f−1(V)

=
(
f−1(U1) ∩ f−1

(
f(X)

))
∪

(
f−1(V1) ∩ f−1

(
f(X)

))

= f−1(U1) ∩ f−1(V1)

Similarly, ∅ = f−1(U ∩ V) = f−1(U1) ∩ f−1(V1)

Since f is continuous, f−1(U1) and f−1(V1) are open in X. And because X is connected,
one of those sets is X and the other one is empty. Let’s say that

f−1(U1) = X and f−1(V1) = ∅

Then f
(
f−1(U1)

)
= f(X) and f

(
f−1(V1)

)
= ∅

But we also have

f
(
f−1(U1)

)
= U1 ∩ f(X) = U and f

(
f−1(V1)

)
= V1 ∩ f(X) = V

Hence f(X) is connected.

This problem is so simple that I believe all the details above (especially going
through the definition of the subset topology of f(X)) are required.
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2 Suppose X is compact, Y is Hausdorff and f : X −→ Y is a continuous injective map.
Let C be any closed set in X. Then C is compact and therefore f(C) is compact. But in
a Hausdorff space, compact sets are closed so f(C) is closed. Thus

∀C closed in X f(C) is closed in Y

f−1 is continuous.

3 Let X and Y be two compact topological spaces. I’ll start with a few reminders on the
product topology. Remember that the product topology on X×Y is the weakest topology
that makes both projections

pX : (x, y) 7−→ x and pY : (x, y) 7−→ y

continuous. In other words, it is the weak topology on X × Y generated by pX and pY.
Notice that if OX and OY are open sets in X and Y respectively, then

p−1
X (OX) = OX × Y and p−1

Y (OY) = X × OY

A set is open in X×Y if and only if it is a union of finite intersections of sets of the form
OX × Y and X × OY (see the first section of the handout on weak topologies if it is the
first time you hear about this).

Handling intersections of cartesian products is not a problem. Indeed, if AX,BX are
subsets of X, and AY,BY are subsets of Y, then

(AX × AY) ∩ (BX ∩ BY) =
{
(x, y) ∈ X × Y | x ∈ AX, y ∈ AY and x ∈ BX, y ∈ BY

}

=
(
AX ∩ BX

)
×

(
AY ∩ BY

)

So finite intersections of products are just products of the corresponding intersections,
if you see what I mean. Therefore, a set is open in X × Y if and only if it is a union of
sets of the form OX × OY, with OX and OY open in X and Y respectively.

Finally, given any x ∈ X, we can define the bijection

ix : Y −→ X × Y
y 7−→ (x, y)

As one checks easily,

∀y ∈ Y pX ◦ ix(y) = x and pY ◦ ix(y) = y

so the functions pX ◦ ix and pY ◦ ix are continuous on Y: this implies (again, see the
handout on weak topologies) that ix is continuous on Y. This is not really important for
our purpose, and is just displayed here to show how weak topologies are used.

Now, towards solving the problem. Consider an open cover of X × Y; it looks like

X × Y =
⋃

α∈A

OX
α × OY

α
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where the
(
OX

α

)
α∈A

and
(
OY

α

)
α∈A

are open sets in X and Y respectively. Given x ∈ X, let

A(x) = {α ∈ A | x ∈ OX
α}

so that Y = i−1
x (X × Y) =

⋃

α∈A

i−1
x

(
OX

α × OY
α

)
=

⋃

α∈A(x)

OY
α

This is an open cover of Y. So we can extract a finite subcover: there exists Af (x) ⊂ A(x),
finite, such that

Y =
⋃

α∈Af (x)

OY
α (1)

Next, for every x,
⋂

α∈Af (x)

OX
α is open (finite intersection of open sets) and contains x.

Therefore,

X =
⋃

x∈X

⋂

α∈Af (x)

OX
α

and we can extract a finite subcover: there exists Xf ⊂ X, finite, such that

X =
⋃

x∈Xf

⋂

α∈Af (x)

OX
α (2)

Now we claim that

X × Y =
⋃

x∈Xf

⋃

α∈Af (x)

OX
α × OY

α

Indeed, let (x0, y0) ∈ X × Y. By (2), there exists x ∈ Xf such that

∀α ∈ Af(x) x0 ∈ OX
α

Now, by (1), there exists α ∈ Af (x) such that y0 ∈ OY
α . Therefore

(x0, y0) ∈ OX
α × OY

α

X × Y is compact.
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Fifth problem

Let S be a subset of C ([0, 1]), that is closed in L2(0, 1). Prove:

1. S is a closed subset of C ([0, 1]).

2. There exists M > 0 such that

∀f ∈ S ‖f‖2 6 ‖f‖∞ 6 M‖f‖2

3. For every y ∈ [0, 1], there exists Ky ∈ L2(0, 1) such that

∀f ∈ S f(y) =

∫

[0,1]

Kyf

Solution

1 Let (fn)n∈N be a sequence in S that converges (uniformly) to a (continuous) function
f . Remember that

∀g ∈ L2(0, 1) ‖g‖2
2 =

∫

[0,1]

|f |2 6 ‖f‖2
∞

(1)

Therefore ∀n ∈ N ‖fn − f‖2 6 ‖fn − f‖∞
Thus (fn)n∈N converges to f in L2(0, 1). Since S is closed in L2(0, 1), we deduce that
f ∈ S.

S is closed in C ([0, 1]).

2 Since S is closed in C ([0, 1]) and L2(0, 1) it is a Banach space with either ‖ ‖∞ and
‖ ‖2. And by (1), the identity map

(
S, ‖ ‖∞

)
−→

(
S, ‖ ‖2

)

is continuous bijective. Therefore it has a continuous inverse, which means that

∃M > 0 ∀f ∈ S ‖f‖∞ 6 M‖f‖2

Conclusion: ∀f ∈ S ‖f‖2 6 ‖f‖∞ 6 M‖f‖2
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3 Define ∀y ∈ [0, 1] ∀f ∈ S Jy(f) = f(y)

Of course, this map is perfectly well defined since functions in S are continuous. Further-
more, Jy is linear and

∀f ∈ S
∣∣Jy(f)

∣∣ =
∣∣f(y)

∣∣ 6 ‖f‖∞ 6 M‖f‖2

So Jy is a bounded linear function on the Hilbert space
(
S, ‖ ‖2

)
. By the Riesz represen-

tation theorem,

∃Ky ∈ S ∀f ∈ S Jy(f) =

∫

[0,1]

Kyf
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Sixth problem

Suppose (fn)n∈N is a sequence of non-decreasing functions on [0, 1] that converges
pointwise to a continuous function f . Show that the convergence is uniform.

Solution

First, notice that the limit f is non-decreasing. Indeed, if x 6 y are in [0, 1],

∀n ∈ N fn(x) 6 fn(y)

so f(x) 6 f(y)

by taking limits in the inequality.
Let ǫ be a positive real number. Since f is continuous on the compact [0, 1], it is

uniformly continuous: there exists a positive η such that

∀x, y ∈ [0, 1] |x− y| 6 η =⇒
∣∣f(x) − f(y)

∣∣ 6 ǫ (1)

Let 0 = x0 < x1 < · · · < xp = 1 be a subdivision of [0, 1], such that xi+1 − xi 6 η for
every i. Since (fn)n∈N converges pointwise to f , we can find N ∈ N such that

∀n > N ∀i ∈ {0, . . . , p}
∣∣fn(xi) − f(xi)

∣∣ 6 ǫ (2)

Now let x be any real number in [0, 1] and squeeze it between xi and xi+1 for some i.
Then, since the functions involved are all non-decreasing,

∀n ∈ N fn(xi) 6 fn(x) 6 fn(xi+1) (3)

and f(xi) 6 f(x) 6 f(xi+1) (4)

Now let n > N and subtract (3) from (4):

fn(xi) − f(xi+1) 6 fn(x) − f(x) 6 fn(xi+1) − f(xi)

We have all that’s needed to evaluate the terms on the left and on the right. For example,
for the term on the right:

∣∣fn(xi+1) − f(xi)
∣∣ 6

∣∣fn(xi+1) − f(xi+1)
∣∣

︸ ︷︷ ︸
6ǫ by (2)

+
∣∣f(xi+1) − f(xi)

∣∣
︸ ︷︷ ︸

6ǫ by (1)

Similarly
∣∣fn(xi) − f(xi+1)

∣∣ 6 2ǫ

so that ∀n > N
∣∣fn(x) − f(x)

∣∣ 6 2ǫ

(fn)n∈N converges uniformly to f .
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Seventh problem

Let A and B be two closed subspaces of a Hilbert space H such that

Inf
{
‖x− y‖

∣∣ (x, y) ∈ A × B ‖x‖ = ‖y‖ = 1
}
> 0

Prove that A + B is complete.

Solution

Let δ be the Inf above. Then if x and y are in A and B respectively, with norm 1, we
have

δ 6 ‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2〈x | y〉 = 2 − 2〈x | y〉

so that 〈x | y〉 6 1 − δ

2

Now if x and y are non-zero in A and B respectively, we get by scaling

〈x | y〉 6

(
1 − δ

2

)
‖x‖ ‖y‖

And of course, changing x into −x gives an upper bound on 〈x | y〉:

−
(
1 − δ

2

)
‖x‖ ‖y‖ 6 〈x | y〉 6

(
1 − δ

2

)
‖x‖ ‖y‖ (1)

Notice that A ∩ B = {0}, otherwise there would exist x ∈ A ∩ B with norm 1, which
would contradict the fact that δ > 0. Therefore, A and B are in direct sum: any z ∈ A+B
can be written uniquely as a+ b with a ∈ A and b ∈ B. We let pA be the projection from
A + B onto A parallel to B, that is

pA(z) = a

Similarly, the projection pB from A + B onto B parallel to A is defined by

pB(z) = b = (I − pA)z

We show that those are continuous by expanding the norm ‖a + b‖, using (1) and
completing a square:

‖z‖2 = ‖a + b‖2 = ‖a‖2 + ‖b‖2 + 2〈a | b〉

> ‖a‖2 + ‖b‖2 − 2
(
1 − δ

2

)
‖a‖ ‖b‖

>

(
‖a‖ −

(
1 − δ

2

)
‖b‖

)2

+
(
1 −

(
1 − δ

2

)2)
‖b‖2

In particular, ‖b‖2 = ‖pBz‖2 6
‖z‖2

1 −
(
1 − δ/2)2

if δ < 4
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But it turns out that δ is actually always less than 2 since

∀(x, y) ∈ A × B ‖x‖ = ‖y‖ = 1 ‖x− y‖ 6 ‖x‖ + ‖y‖ = 2

Anyhow, we see that pB is bounded. The same holds for pA since pA = I − pB. So if
(zn)n∈N is a Cauchy sequence in A+B, then (pAzn)n∈N and (pBzn)n∈N are Cauchy as well,
in A and B respectively. Since those are complete (closed in a Hilbert space), we have

lim
n→∞

pAzn = a ∈ A and lim
n→∞

pBzn = b ∈ B

Therefore lim
n→∞

zn = a + b ∈ A + B

Conclusion: A + B is complete.
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Eighth problem

Let A be the space of Fourier transforms of L1(R) functions. Let C0(R) be the space
of continuous functions that tend to 0 at ∞. Prove

1. A ( C0(R);

2. A is dense in C0(R).

Solution

1 There are various ways of solving this problem. You can either prove, as I did in
lecture, that

∀f ∈ L1(R) lim
a→+∞

∫ a

1

f̂(ξ) − f̂(−ξ)
ξ

dξ

exists. And deduce that any continuous function on R that is odd and equal to 1
ln ξ

on

[2, +∞) cannot be a Fourier transform, although it tends to 0 at ∞.

Or you can look at the solution to Problem 5 in the Spring 2005 exam. There, we
take ψ ∈ C ∞(R) with compact support in [−1, 1] and define

∀λ > 0 ϕλ : x 7−→ eiλx2

ψ(x)

and we show that ∃K > 0 ∀λ ∈ R
∥∥ϕ̂λ

∥∥
∞

6
K√
λ

If the Fourier tranform is onto C0(R), it has a continuous inverse since C0(R) and L1(R)
are Banach spaces. Thus there exists M > 0 such that

∀f ∈ L1(R) ‖f‖1 6 M
∥∥f̂

∥∥
∞

In particular ∀λ > 0 ‖ψ‖1 = ‖ϕλ‖ 6
MK√
λ

which is impossible.

A ( C0(R)

2 We know that the Fourier transform is a bijection from the Schwartz space onto itself.
So S (R) ⊂ A (R). And of course, we know that S (R) is dense in C0(R). Therefore,

A is dense in C0(R).
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Ninth problem

Same as Problem 6 in the Spring 2004 exam.
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Tenth problem

Let f and g be continuous 2π-periodic functions. Prove that

lim
n→∞

∫ 1

0

f(x)g(nx) dx =

∫

[0,1]

f

∫

[0,1]

g

Solution

Let g be a function in L∞(0, 1) and define

Φ : L1(0, 1) −→ C

f 7−→ f̂(0) ĝ(0) =

∫

(0,1)

f

∫

(0,1)

g

Then Φ is clearly a linear functional, bounded since :

∀f ∈ L1(0, 1) |(Φ, f)| = |ĝ(0)|
∣∣∣∣
∫

(0,1)

f

∣∣∣∣ 6 |ĝ(0)| ||f ||1

We are going to show that

∀f ∈ L1(0, 1) (Φ, f) = lim
n→∞

1

2π

∫

T

f(t)g(nt) dt

by showing it first for trigonometric polynomials and then for L1(T) by density.

We define ej to be the function x 7−→ e2πijx for every j in Z.

• If j = 0 : then we have :

∀n ∈ N

∫

(0,1)

ej(t)g(nt) dt =

∫ 1

0

g(nt) dt =
1

n

∫ n

0

g(u) du

The last equality comes from the change of variable u = nt. Next, since g is
1-periodic, we have simply :

1

n

∫ n

0

g(u) du =
1

n
× n

∫ 1

0

g(t) dt = ĝ(0) = (Φ, e0)

Hence (Φ, e0) = lim
n→∞

∫

(0,1)

e0(t)g(nt) dt
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• For j 6= 0 : take any integer n. Then we can write :

∫

(0,1)

ej(t)g(nt) dt =

∫ 1

0

e2πijtg(nt) dt =
u=nt

1

n

∫ n

0

e2πiju/ng(u) du

=
1

n

n−1∑
k=0

∫ k+1

k

e2πiju/ng(u) du

In each term of the sum, we make the change of variable t = u− k and we use the
1-periodicity of g to get :

∫

(0,1)

ej(t)g(nt) dt =
1

n

n−1∑
k=0

∫ 1

0

e2πij(t+k)/ng(t) dt

=
1

n

∫ 1

0

e2πiju/ng(u) du×
n−1∑

k=0

(
e2ijπ/n

)k

Now, if we take n > |j|, we have :

n−1∑
k=0

(
e2ijπ/n

)
=

1 − e2ijπ

1 − e2ijπ/n
= 0

so that ∀n > |j|
∫

(0,1)

ej(t)g(nt) dt = 0 = êj(0)ĝ(0) = (Φ, ej)

and lim
n→∞

∫

(0,1)

ej(t)g(nt) dt = (Φ, ej)

Since every trigonometric polynomial is a finite linear combination of the (ej)j∈Z’s,
we get :

∀f ∈ P lim
n→∞

∫

(0,1)

f(t)g(nt) dt = (Φ, f)

Finally, let f be any function in L1(0, 1). If ǫ is any positive real number, we can find
some P in P such that ||f −P||1 6 ǫ. And from what precedes, there exists an integer N
such that

∀n > N

∣∣∣∣(Φ,P) −
∫

(0,1)

P(t)g(nt) dt

∣∣∣∣ 6 ǫ
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Hence,

∀n > N

∣∣∣∣(Φ, f) −
∫

(0,1)

f(t)g(nt) dt

∣∣∣∣ 6 |(Φ, f) − (Φ,P)| +
∣∣∣∣(Φ,P) −

∫ 1

0

P(t)g(nt) dt

∣∣∣∣

+

∣∣∣∣
∫

(0,1)

(f − P)(t)g(nt) dt

∣∣∣∣

6 ||Φ|| ||f − P||1 + ǫ+ ||g||∞ ||f − P||1

∀n > N

∣∣∣∣(Φ, f) −
∫

(0,1)

f(t)g(nt) dt

∣∣∣∣ 6 ǫ (1 + ||Φ|| + ||g||∞)

which shows finally the result we want :

For every f in L1(0, 1), lim
n→∞

∫

(0,1)

f(t)g(nt) dt exists and equals (Φ, f).
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