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The SL2(Z) Eisenstein Series

E⋆(z, s) =
1
2

π−sΓ(s)
∑

(m,n)∈Z
2

(m,n)6=0

ys

|mz + n|2s z ∈H Re s > 1

E⋆(z, s) is SL2(Z)-automorphic in the variable z.

E⋆(z, s) is analytic in the variable s.
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Fourier Expansion

E⋆(z, s) = ysζ⋆(2s)+y1−sζ⋆(2−2s)+2
√

y
∑

n 6=0

τs− 1
2
(|n|)Ks− 1

2
(2π|n|y)e2πinx

where

τω(n) = n−ω
∑

d|n
d>0

d2ω is a divisor sum;

Kω(y) =
1
2

+∞
∫

0

e− y
2 (t+ 1

t ) tω dt
t

is a Bessel function.
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What You Need to Know About τω and Kω

τω(n) = τ−ω(n) and Kω(y) = K−ω(y);

Kω has rapid decay:

∀y > 2 |Kω(y)| 6 M e− y
2

As a consequence, E⋆(z, s) is the uniform limit of its Fourier series,
can be analytically continued to C \ {0, 1} and satisfies the functional
equation

∀z ∈H ∀s 6= 0, 1 E⋆(z, s) = E⋆(z, 1− s)
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The Setting

Q →֒ K is a totally real field extension with ring of integers o and
discriminant D.

There are exactly N distinct embeddings K →֒ C, denoted as
σ1, . . . , σN .

For convenience, we write also

∀α ∈ K α(i) = σi (α)

A is an ideal class in K and a an ideal in A−1.
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The Hilbert Modular Eisenstein Series

E⋆
K ,A(z, s) = N(a)2sπ−NsΓ(s)NDs ∑

(α,β)∈a
2/o

×

(α,β)6=0

N

Π
i=1

ys
i

∣

∣α(i)z + β(i)
∣

∣

2s

where z ∈H and Re s > 1.

E⋆
K ,A(z, s) is SL2(Z)-automorphic in the variable z;

E⋆
K ,A(z, s) is analytic in the variable s.
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Fourier Expansion

E⋆
K ,A(z, s) = yNsζ⋆

K ,A(2s) + yN(1−s)ζ⋆
K ,A(2− 2s)

+2Ny
N
2

∑

ξ∈D
−1

ξ 6=0

τK ,A
s− 1

2
(ξD)

(
N

Π
i=1

Ks− 1
2

(

2πy |ξ(i)|
)

)

e2πixTr ξ

where τω(c) = N(c)−ω
∑

b ideal in A
b|c

N(b)2ω is a generalized divisor sum.
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Zagier’s Theorem

Theorem

Let F be an SL2(Z)-automorphic function on H . Suppose that there
exists a function ϕ of the form

ϕ(y) =

ℓ
∑

i=1

ciyαi lnni y αi ∈ C ni ∈ N

such that F (z)− ϕ(y) =
y→+∞

o(y−n) for every positive integer n. Then

R(s) = RN
∫

SL2(Z)\H

E⋆(z, s)F (z)
dz
y2 =

def

+∞
∫

0

(

a0(y)− ϕ(y)
)

ys−1 dy
y
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Zagier’s Theorem: Ze Continuation

Theorem

where a0(y) =

1
∫

0

F (x + iy) dx, is well defined as an absolutely

convergent integral for Re s big enough. It has analytic continuation
to C, except for poles at 0, 1, the αi ’s and the (1− αi)’s.
Furthermore, R(s) = R(1− s).
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Previous Results

Were already studied by Professor BUMP:

RN
∫

SL2(Z)\H

E⋆(z, s0)E⋆
K ,A(z, s1)

dz
y2 when K is a totally real cubic

field and A is an ideal class;

RN
∫

SL2(Z)\H

E⋆(z, s0)E⋆(z, s1)E⋆(z, s2)E⋆(z, s3)
dz
y2 .
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Our Goal

We suspect that a similar phenomenon occurs and want to identify
the full group of functional equations for the renormalized
Rankin-Selberg transform

RA(s0, s1, s2) =

∫

SL2(Z)\H

E⋆(z, s0)E
⋆(z, s1)E

⋆
K ,A(z, s2)

dz
y2

when K is a real quadratic field and A is an ideal class.
Zagier’s theorem, together with our knowledge of the objects
involved, predict 16 functional equations. In fact,
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Main Theorem

Theorem

Let K be a real quadratic field and A an ideal class. The function
RA(s0, s1, s2) has a group of functional equations of order 48. It is
generated by the transformations

s0 7−→ 1− s0 s1 7−→ 1− s1 s2 7−→ 1− s2 s0 ←→ s1

and





s0

s1

s2





w7−→















− s0

2
+

s1

2
+ s2

1 − s0

2
+

s1

2
− s2

1 − s0

2
− s1

2















.
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Identifying the Polar Divisor of RA
Finding the Group of Π

An Upper Bound for |S|

Strategy

The polar divisor Π of RA is the subset of C3 at which RA is undefined.

Zagier’s theorem provides us with a complete description of Π.

All we have to do is identify the part ϕ of F that is not of rapid decay
and hope it looks like

ϕ(y) =

ℓ
∑

i=1

ciy
αi ln yni

Once we know the αi ’s, we know Π.
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Reminder

Remember that

E⋆(z, s1) = ys1ζ⋆(2s1) + y1−s1ζ⋆(2− 2s1)

+2
√

y
∑

n 6=0
τs1−

1
2
(|n|)Ks1−

1
2
(2π|n|y)e2πinx

E⋆
K ,A(z, s2) = y2s2ζ⋆

K ,A(2s2) + y2(1−s2)ζ⋆
K ,A(2− 2s2)

+4y
∑

ξ∈D
−1

ξ 6=0

τK ,A
s2−

1
2
(ξD)

(
2

Π
i=1

Ks2−
1
2

(

2πy |ξ(i)|
)

)

e2πixTr ξ

F (z) = E⋆(z, s1)E⋆
K ,A(z, s2)
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Expression of ϕ

ϕ(y) = ys1+2s2ζ⋆(2s1)ζ
⋆
K ,A(2s2) + y2+s1−2s2ζ⋆(2s1)ζ

⋆
K ,A(2− 2s2)

+y1−s1+2s2ζ⋆(2− 2s1)ζ
⋆
K ,A(2s2) + y3−s1−2s2ζ⋆(2− 2s1)ζ

⋆
K ,A(2− 2s2)

David LECOMTE Hidden Functional Equations



Introduction and First Notations
Polar divisor considerations
Proof of the Main Theorem

Acknowledgements

Identifying the Polar Divisor of RA
Finding the Group of Π

An Upper Bound for |S|

Expression of ϕ

ϕ(y) = ys1+2s2ζ⋆(2s1)ζ
⋆
K ,A(2s2) + y2+s1−2s2ζ⋆(2s1)ζ

⋆
K ,A(2− 2s2)

+y1−s1+2s2ζ⋆(2− 2s1)ζ
⋆
K ,A(2s2) + y3−s1−2s2ζ⋆(2− 2s1)ζ

⋆
K ,A(2− 2s2)

David LECOMTE Hidden Functional Equations



Introduction and First Notations
Polar divisor considerations
Proof of the Main Theorem

Acknowledgements

Identifying the Polar Divisor of RA
Finding the Group of Π

An Upper Bound for |S|

Cartesian Equation of Π

By Zagier’s Theorem, the polar divisor of RA is the union of the 14
hyperplanes

s0 = s1 + 2s2 s0 = 2 + s1 − 2s2 s0 = 1 − s1 + 2s2 s0 = 3 − s1 − 2s2

s0 = 1− s1 − 2s2 s0 = −1− s1 + 2s2 s0 = s1 − 2s2 s0 = −2 + s1 + 2s2

s0, s1, s2 = 0 and s0, s1, s2 = 1
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So what does Π look like?

The 14 hyperplanes in C3 cut out a rhombic dodecahedron:
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The Group of Π

The group SΠ of transformations leaving Π
invariant is computed through standard counting
arguments.

For example, SΠ acts transitively on the set of
vertices that are connected to 4 other vertices.

There are 6 such vertices.

Each of them is fixed by 8 transformations:
4 reflexions and 4 rotations.

So |SΠ| = 6× 8 = 48.
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Relationship Between S and SΠ

There is an easy inclusion between S and SΠ.

Every functional equation for RA should leave Π invariant.

So S ⊂ SΠ and it follows that |S| 6 48.
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More Notations
First Computations
Along Came Poisson
Wrap It Up, David

The SL3(Z) Eisenstein series I

ν1 and ν2 are complex numbers with real part bigger than
2
3

.

Ω is the set of quadruples (α, β, ξ, η) ∈ a× (aD)−1 × Z× Z with

α and ξ not simultaneously 0;
β and η not simultaneously 0;
Tr αβ + ξη = 0.

c = N(a)−
1
2 D− 1

4 ;

t1 and t2 are positive real numbers.
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The SL3(Z) Eisenstein Series II

Let Gν1,ν2(t1, t2) =
1
4

π−
3ν1

2 Γ
(3ν1

2

)

π−
3ν2

2 Γ
(3ν2

2

)

ζ⋆(3ν1 + 3ν2 + 1)

× ∑

(α,β,ξ,η)∈Ω

[

(

ct1α(1)
)2

+ (ct2α(2)
)2

+
(

ξ
t1 t2

)

]−
3ν1

2

×
[

(

β(1)

ct1

)2
+

(

β(2)

ct2

)2
+ (ηt1t2)2

]−
3ν2

2

David LECOMTE Hidden Functional Equations



Introduction and First Notations
Polar divisor considerations
Proof of the Main Theorem

Acknowledgements

More Notations
First Computations
Along Came Poisson
Wrap It Up, David

The SL3(Z) Eisenstein Series II

Let Gν1,ν2(t1, t2) =
1
4

π−
3ν1

2 Γ
(3ν1

2

)

π−
3ν2

2 Γ
(3ν2

2

)

ζ⋆(3ν1 + 3ν2 + 1)

× ∑

(α,β,ξ,η)∈Ω

[

(

ct1α(1)
)2

+ (ct2α(2)
)2

+
(

ξ
t1 t2

)

]−
3ν1

2

×
[

(

β(1)

ct1

)2
+

(

β(2)

ct2

)2
+ (ηt1t2)2

]−
3ν2

2

David LECOMTE Hidden Functional Equations



Introduction and First Notations
Polar divisor considerations
Proof of the Main Theorem

Acknowledgements

More Notations
First Computations
Along Came Poisson
Wrap It Up, David

The SL3(Z) Eisenstein series III

True facts about Gν1,ν2

Gν1,ν2(t1, t2) is well defined as a converging series when Re ν1

and Re ν2 are bigger than 2
3 ;

it has meromorphic continuation to C2;

G1−ν1−ν2,ν1(t1, t2) = Gν1,ν2(t1, t2).

Proof.

Gν1,ν2(t1, t2) is a particular value of the SL3(Z) Eisenstein series.
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Action of o
× on (R⋆

+)2

Definition

If ǫ is a unit in o and t1, t2 are positive real numbers, we define

ǫ (t1, t2) =
(

|ǫ(1)|t1, |ǫ(2)|t2
)

Remarks
∣

∣ǫ(1)ǫ(2)
∣

∣ =
∣

∣N(ǫ)
∣

∣ is a unit in Z, so
∣

∣ǫ(2)
∣

∣ = |ǫ|−1.

As a consequence, ǫ (t1, t2) =
(

|ǫ|t1, |ǫ|−1t2
)

.

By the Unit Theorem, there exists ε ∈ o
×, such that

o
× =

{

± εn | n ∈ Z
}

and ε > 1
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As a consequence, ǫ (t1, t2) =
(

|ǫ|t1, |ǫ|−1t2
)

.

By the Unit Theorem, there exists ε ∈ o
×, such that

o
× =

{

± εn | n ∈ Z
}

and ε > 1
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Identifying (R⋆
+)2/o×

Theorem

The action of o
× on (R⋆

+)2 has kernel {±1}. A fundamental domain is
given by

(R⋆
+)2/o

× =
{

(t1, t2) ∈ (R⋆
+)2 | ε−1

6
t2
t1

6 ε
}
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Action of o
× on Ω

Recall that

Ω =

{

(α, β, ξ, η) ∈ a× (aD)−1 × Z2 |







(α, ξ) 6= 0
(β, η) 6= 0
Tr αβ + ξη = 0

}

Definition

If ǫ ∈ o
× and (α, β, ξ, η) ∈ Ω, define

ǫ(α, β, ξ, η) =
(

ǫα, ǫ−1β, ξ, η)
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Identifying Ω/o×

Let A be a set of representatives of the principal ideals in a. In other
words, A = a/o

×.

Theorem

The action of o
× on Ω is faithful. A complete set of representatives for

the orbits is

Ω̃ =

{

(α, β, ξ, η) ∈ A × (aD)−1 × Z× Z |







(α, ξ) 6= 0
(β, η) 6= 0
Tr αβ + ξη

}
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The Link

Define

Λ =
1
4

π−
3ν1

2 Γ
(3ν1

2

)

π−
3ν2

2 Γ
(3ν2

2

)

ζ⋆(3ν1 + 3ν2 + 1) and

H(α, β, ξ, η, t1, t2) = (t1t2)s
[

(

ct1α(1)
)2

+ (ct2α(2)
)2

+
(

ξ
t1 t2

)

]−
3ν1

2

×
[

(

β(1)

ct1

)2
+

(

β(2)

ct2

)2
+ (ηt1t2)2

]−
3ν2

2

Then

Gν1,ν2(t1, t2)(t1t2)s = Λ
∑

(α,β,ξ,η)∈Ω

H(α, β, ξ, η, t1, t2)
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The Link II

We want to work with I =

∫∫

(R⋆

+)/o×

Gν1,ν2(t1, t2)(t1t2)s dt1dt2
t1t2

. Using our

two actions of o
×,

I = Λ
∑

(α,β,ξ,η)∈Ω

∫∫

(R⋆

+)2/o×

H(α, β, ξ, η, t1, t2)
dt1dt2

t1t2

= Λ
∑

(α,β,ξ,η)∈Ω̃

∑

ǫ∈o×

∫∫

(R⋆
+)2/o×

H
(

ǫ(α, β, ξ, η), t1, t2)
dt1dt2
t1t2

= Λ
∑

(α,β,ξ,η)∈Ω̃

∑

ǫ∈o×

∫∫

ǫ(R⋆
+)2/o×

H(α, β, ξ, η, t1, t2)
dt1dt2
t1t2
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The Link III

I = 2Λ
∑

(α,β,ξ,η)∈Ω̃

∫∫

(R⋆

+)2

H(α, β, ξ, η, t1, t2)
dt1dt2
t1t2

There are issues with this computation, though:

We were not careful about justifying interverting integrals and
sums.

In fact, it is not valid at all: some terms in the sum are not even
integrable on (R⋆

+)2/o
×. For example,

H(0, 0, 1, 1, t1, t2) = (t1t2)
s+3ν1−3ν2

cannot be integrable at the same time at 0 and∞.
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Troop Reorganization

We find it necessary to partition Ω into smaller subsets and sort out
who is integrable and who is not.
The right way to do this is by conditioning the parameters α, β, ξ, η on
whether they are 0 or not.

α = 0 ξ 6= 0 α 6= 0 ξ = 0 α 6= 0 ξ 6= 0

β = 0 η 6= 0 Excluded Ω6 Excluded

β 6= 0 η = 0 Ω5 Ω4 Ω2

β 6= 0 η 6= 0 Excluded Ω3 Ω1

Notice that each of these sets is stable under the action of o
×.

We call GΩi
ν1,ν2

the part of Gν1,ν2 corresponding to Ωi .
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Finally, Some Progress

Proposition

Let s0, s1, s2, ν1, ν2 and s be complex numbers related by







3ν1 = s0 + s1 + 2s2 − 1
3ν2 = s0 − s1 − 2s2 + 2

s = −2s1 + 2s2

⇐⇒































3ν1 + 3ν2

2
= s0 +

1
2

3ν1 − 3ν2 − 2s
6

= s1 −
1
2

3ν1 − 2ν2 + s
6

= s2 −
1
2

Assume that s in is some bounded open set, Re ν1, Re ν2 and
Re (ν1 − ν2) are large. Then
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Finally Some Progress II

Proposition

∫∫

(R⋆
+)2/o×

GΩ1
ν1,ν2

(t1, t2)(t1t2)s dt1dt2
t1t2

=
4
3

ζ⋆(2s0)

× ∑

ξ∈D
−1,n∈Z

ξ,n 6=0
Tr ξ+n=0

τs1−
1
2
(|n|)τK ,A

s2−
1
2
(ξD)

+∞
∫

0

y
3
2 Ks1−

1
2

(

2πy |n|
)

Ks2−
1
2

(

2πy |ξ(1)|
)

Ks2−
1
2

(

2πy |ξ(2)|
)

ys0−1 dy
y
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More Progress

Proposition

Same hypotheses as before. We have

∫∫

(R⋆

+)2/o×

GΩ2
ν1,ν2

(t1, t2)(t1t2)s dt1dt2
t1t2

=
2
3

ζ⋆(2s0)ζ
⋆(2− 2s1)

× ∑

ξ∈D
−1

ξ 6=0

τK ,A
s2−

1
2
(ξD)

+∞
∫

0

y2−s1Ks2−
1
2

(

2πy |ξ(1)|
)

Ks2−
1
2

(

2πy |ξ(2)|
)

ys0−1 dy
y
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The Case of Ω3

Unfortunately, we run into trouble when trying to do a similar
computation with GΩ3

ν1,ν2
.

More precisely, along the way, we encounter

+∞
∫

0

e−xx−
3ν1−3ν2−2s

6
dx
x

This requires Re 3ν1−3ν2−2s
6 to be negative, which contradicts the

hypotheses made so far.
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A Workaround: Poisson’s Summation Formula

Poisson’s Summation Formula

∀t > 0
∑

η∈Z

e−πη2t =
1√
t

∑

η∈Z

e−πη
2

t

This allows us to transform GΩ3∪Ω4
ν1,ν2

and obtain a new expression on
which the former strategy works.
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More Precisely...

Proposition

Same hypotheses as before. We have

∫∫

(R⋆

+)2/o×

(

GΩ3∪Ω4
ν1,ν2

(t1, t2)− Vν1,ν2(t1, t2)
)

(t1t2)s dt1dt2
t1t2

=
2
3

ζ⋆(2s0)ζ
⋆(2s1)

× ∑

ξ∈D
−1

ξ 6=0

τK ,A
s2−

1
2
(ξD)

+∞
∫

0

ys1+1Ks2−
1
2

(

2πy |ξ(1)|
)

Ks2−
1
2

(

2πy |ξ(2)|
)

ys0−1 dy
y
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More Precisely II

Proposition

where

Vν1,ν2(t1, t2) = ζ⋆(3ν1)ζ
⋆(3ν2 − 1)(t1t2)−

3ν1−3ν2+3
2

E⋆

(

t1α
(1)
1 − it2α

(2)
1

t1α
(1)
2 − it2α

(2)
2

,
3ν1 + 3ν2 − 1

2

)

and (α1, α2) is a Z-basis of a.
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What about Ω5 and Ω6?

It can be shown that

GΩ5
ν1,ν2

(t1, t2) = (t1t2)3ν1+
3ν2

2 ζ⋆(3ν1)ζ
⋆(3ν1 + 3ν2 − 1)

×E⋆

(

t1α
(1)
1 + it2α

(2)
1

t1α
(1)
2 + it2α

(2)
2

,
3ν2

2

)

GΩ6
ν1,ν2

(t1, t2) = (t1t2)−3ν2−
3ν1

2 ζ⋆(3ν2)ζ
⋆(3ν1 + 3ν2 − 1)

×E⋆

(

t1α
(1)
1 + it2α

(2)
1

t1α
(1)
2 + it2α

(2)
2

,
3ν1

2

)
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In Summary

Letting

fν1,ν2(t1, t2) =

ζ⋆(3ν1)ζ
⋆(3ν2 − 1)(t1t2)−

3ν1−3ν2+3
2 E⋆

(

t1α
(1)
1 − it2α

(2)
1

t1α
(1)
2 − it2α

(2)
2

,
3ν1 + 3ν2 − 1

2

)

+ (t1t2)3ν1+
3ν2

2 ζ⋆(3ν1)ζ
⋆(3ν1 + 3ν1 − 1)E⋆

(

t1α
(1)
1 + it2α

(2)
1

t1α
(1)
2 + it2α

(2)
2

,
3ν2

2

)

+ (t1t2)−3ν2−
3ν1

2 ζ⋆(3ν2)ζ
⋆(3ν1 + 3ν2 − 1)E⋆

(

t1α
(1)
1 + it2α

(2)
1

t1α
(1)
2 + it2α

(2)
2

,
3ν1

2

)

we obtain
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In Summary II

Theorem

Same hypotheses as before. We have

RA(s0, s1, s2) = 6
∫∫

(R⋆

+)2/o×

(

Gν1,ν2(t1, t2)− fν1,ν2(t1, t2)
)

(t1t2)s dt1dt2
t1t2
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What have we got so far?

So, we have an identity linking our renormalized integral RA,
Gν1,ν2 and fν1,ν2 .

Although w is a functional equation for Gν1,ν2 , it does not leave
fν1,ν2 invariant.

But, as it turns out, the integration over (R⋆
+)2/o

× has the effect
of creating this extra functional equation.

This requires some work, though.
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Hmm... Kinda nasty...

RA(s0, s1, s2)

3
=

+∞
∫

0

(

Gν1,ν2(v)

− v−
3ν1−3ν2+3

2 L
(3ν1 + 3ν2 − 1

2

)

ζ⋆(3ν1)ζ
⋆(3ν2 − 1)

− v3ν1+
3ν2

2 L
(3ν2

2

)

ζ⋆(3ν1)ζ
⋆(3ν1 + 3ν2 − 1)

− v−3ν2−
3ν1

2 L
(3ν1

2

)

ζ⋆(3ν2)ζ
⋆(3ν1 + 3ν2 − 1)

)

v s dv
v
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Final Modifications

Split this integral as

1
∫

0

+

+∞
∫

1

.

Replace v by 1
v in the first one.

Regroup into one integral from 1 to +∞.

Let x =
√

v , in order to get rid of those fractional powers.

Shake.
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Nastier

RA(s0,s1,s2)
3 =

+∞
∫

1

(

Gν1,ν2(x
2)x2s + Gν1,ν2(x

−2)x−2s

−x−(3ν1+3ν2+3−2s)L
( 3ν1+3ν2−1

2

)

ζ⋆(3ν1)ζ
⋆(3ν2 − 1)

−x6ν1+3ν2+2sL
( 3ν2

2

)

ζ⋆(3ν1)ζ
⋆(3ν1 + 3ν2 − 1)

−x−(3ν+6ν2−2s)L
( 3ν1

2

)

ζ⋆(3ν2)ζ
⋆(3ν1 + 3ν2 − 1)

−x3ν1−3ν2+3−2sL
( 3ν1+3ν2−1

2

)

ζ⋆(3ν1)ζ
⋆(3ν1 − 2)

−x−(6ν1+3ν2+2s)L
( 3ν2

2

)

ζ⋆(3ν1)ζ
⋆(3ν1 + 3ν2 − 1)

−x3ν1+6ν2−2sL
( 3ν1

2

)

ζ⋆(3ν2)ζ
⋆(3ν1 + 3ν2 − 1)

)dx
x
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( 3ν1

2

)

ζ⋆(3ν2)ζ
⋆(3ν1 + 3ν2 − 1)

)dx
x

− 1
3ν1−3ν2+3−2s L

( 3ν1+3ν2−1
2

)

ζ⋆(3ν1)ζ
⋆(3ν2 − 1)

− 1
3ν1+6ν2−2s L

( 3ν1
2

)

ζ⋆(3ν2)ζ
⋆(3ν1 + 3ν2 − 1)

− 1
6ν1+3ν2+2s L

( 3ν2
2

)

ζ⋆(3ν1)ζ
⋆(3ν1 + 3ν2 − 1)
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Even More Nastier II

− 1
3ν1−3ν2+3−2s L

( 3ν1+3ν2−1
2

)

ζ⋆(3ν1)ζ
⋆(3ν2 − 1)

− 1
3ν1+6ν2−2s L

( 3ν1
2

)

ζ⋆(3ν2)ζ
⋆(3ν1 + 3ν2 − 1)

− 1
6ν1+3ν2+2s L

( 3ν2
2

)

ζ⋆(3ν1)ζ
⋆(3ν1 + 3ν2 − 1)

+ 1
3ν1+6ν2−6−2s L

( 3ν1
2

)

ζ⋆(3ν2 − 1)ζ⋆(3ν1 + 3ν2 − 2)

+ 1
3ν1−3ν2−3−2s L

( 3ν1+3ν2−1
2

)

ζ⋆(3ν1 − 1)ζ⋆(3ν2)

+ 1
6ν1+3ν2+2s−6 L

( 3ν2
2

)

ζ⋆(3ν1 + 3ν2 − 2)ζ⋆(3ν1 − 1).
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Even More Nastier II

− 1
3ν1−3ν2+3−2s L

( 3ν1+3ν2−1
2

)

ζ⋆(3ν1)ζ
⋆(3ν2 − 1)

− 1
3ν1+6ν2−2s L

( 3ν1
2

)

ζ⋆(3ν2)ζ
⋆(3ν1 + 3ν2 − 1)

− 1
6ν1+3ν2+2s L

( 3ν2
2

)

ζ⋆(3ν1)ζ
⋆(3ν1 + 3ν2 − 1)

+ 1
3ν1+6ν2−6−2s L

( 3ν1
2

)

ζ⋆(3ν2 − 1)ζ⋆(3ν1 + 3ν2 − 2)

+ 1
3ν1−3ν2−3−2s L

( 3ν1+3ν2−1
2

)

ζ⋆(3ν1 − 1)ζ⋆(3ν2)

+ 1
6ν1+3ν2+2s−6L

( 3ν2
2

)

ζ⋆(3ν1 + 3ν2 − 2)ζ⋆(3ν1 − 1)-

�

j

-

�
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