Hidden Functional Equations for Rankin-Selberg transforms: New Results

David Lecomte

Department of Mathematics
Stanford University

Outline

(9) Introduction and First Notations

- The $S L_{2}(\mathbb{Z})$ Eisenstein Series
- The Hilbert Modular Eisenstein Series
- Zagier's Renormalization
- Previous Results and Present Goal
(2) Polar divisor considerations
- Identifying the Polar Divisor of R_{A}
- Finding the Group of Π
- An Upper Bound for $|S|$
(3) Proof of the Main Theorem
- More Notations
- First Computations
- Along Came Poisson
- Wrap It Up, David
(4) Acknowledgements

Introduction and First Notations
Polar divisor considerations
Proof of the Main Theorem
Acknowledgements

The $S_{2}(\mathbb{Z})$ Eisenstein Series

- $E^{\star}(z, s)=\frac{1}{2} \pi^{-s} \Gamma(s) \sum_{(m, n) \in \mathbb{Z}^{2}} \frac{y^{s}}{|m z+n|^{2 s}} \quad z \in \mathscr{H} \quad$ Res >1
- $E^{+}(z, s)$ is $S L_{2}(\mathbb{Z})$-automorphic in the variable z.
- $E^{\star}(z, s)$ is analytic in the variable s.

The $S L_{2}(\mathbb{Z})$ Eisenstein Series

- $E^{\star}(z, s)=\frac{1}{2} \pi^{-s} \Gamma(s) \sum_{\substack{(m, n) \in \mathbb{Z}^{2} \\(m, n) \neq 0}} \frac{y^{s}}{|m z+n|^{2 s}} \quad z \in \mathscr{H} \quad$ Res >1
- $E^{\star}(z, s)$ is $S L_{2}(\mathbb{Z})$-automorphic in the variable z.
- $E^{\star}(z, s)$ is analytic in the variable s.

The $\mathrm{SL}_{2}(\mathbb{Z})$ Eisenstein Series

- $E^{\star}(z, s)=\frac{1}{2} \pi^{-s} \Gamma(s) \sum_{\substack{(m, n) \in \mathbb{Z}^{2} \\(m, n) \neq 0}} \frac{y^{s}}{m z+\left.n\right|^{2 s}} \quad z \in \mathscr{H} \quad$ Res >1
- $E^{\star}(z, s)$ is $S L_{2}(\mathbb{Z})$-automorphic in the variable z.
- $E^{\star}(z, s)$ is analytic in the variable s.

The $L_{2}(\mathbb{Z})$ Eisenstein Series

- $E^{\star}(z, s)=\frac{1}{2} \pi^{-s} \Gamma(s) \sum_{\substack{(m, n) \in \mathbb{Z}^{2} \\(m, n) \neq 0}} \frac{y^{s}}{|m z+n|^{2 s}} \quad z \in \mathscr{H} \quad$ Res >1
- $E^{\star}(z, s)$ is $S L_{2}(\mathbb{Z})$-automorphic in the variable z.
- $E^{\star}(z, s)$ is analytic in the variable s.

Introduction and First Notations
Polar divisor considerations Proof of the Main Theorem Acknowledgements

Fourier Expansion

where

- $\tau_{\omega}(n)=n^{-\omega} \sum_{\substack{d \mid n \\ d>0}} d^{2 \omega}$ is a divisor sum;
- $K_{\omega}(y)=\frac{1}{2} \int_{0}^{+\infty} \mathrm{e}^{-\frac{y}{2}\left(t+\frac{1}{t}\right)} t^{\omega} \frac{\mathrm{d} t}{t}$ is a Bessel function.

Fourier Expansion

$$
E^{\star}(z, s)=y^{s} \zeta^{\star}(2 s)+y^{1-s} \zeta^{\star}(2-2 s)+2 \sqrt{y} \sum_{n \neq 0} \tau_{s-\frac{1}{2}}(|n|) K_{s-\frac{1}{2}}(2 \pi|n| y) \mathrm{e}^{2 \pi i n x}
$$

where

Fourier Expansion

$$
E^{\star}(z, s)=y^{s} \zeta^{\star}(2 s)+y^{1-s} \zeta^{\star}(2-2 s)+2 \sqrt{y} \sum_{n \neq 0} \tau_{s-\frac{1}{2}}(|n|) K_{s-\frac{1}{2}}(2 \pi|n| y) \mathrm{e}^{2 \pi i n x}
$$

where

- $\tau_{\omega}(n)=n^{-\omega} \sum_{\substack{d \mid n \\ d>0}} d^{2 \omega}$ is a divisor sum;

Fourier Expansion

$$
E^{\star}(z, s)=y^{s} \zeta^{\star}(2 s)+y^{1-s} \zeta^{\star}(2-2 s)+2 \sqrt{y} \sum_{n \neq 0} \tau_{s-\frac{1}{2}}(|n|) K_{s-\frac{1}{2}}(2 \pi|n| y) \mathrm{e}^{2 \pi i n x}
$$

where

- $\tau_{\omega}(n)=n^{-\omega} \sum_{\substack{d \mid n \\ d>0}} d^{2 \omega}$ is a divisor sum;
- $K_{\omega}(y)=\frac{1}{2} \int_{0}^{+\infty} \mathrm{e}^{-\frac{y}{2}\left(t+\frac{1}{t}\right)} t^{\omega} \frac{\mathrm{d} t}{t}$ is a Bessel function.

Introduction and First Notations
Polar divisor considerations
Proof of the Main Theorem Acknowledgements

What You Need to Know About τ_{ω} and K_{ω}

- $\tau_{\omega}(n)=\tau_{-\omega}(n)$ and $K_{\omega}(y)=K_{-\omega}(y)$;
- K_{ω} has rapid decay:

$$
\forall y>2 \quad\left|K_{\omega}(y)\right| \leqslant M e^{-\frac{y}{2}}
$$

As a consequence, $E^{\star}(z, s)$ is the uniform limit of its Fourier series, can be analytically continued to $\mathbb{C} \backslash\{0,1\}$ and satisfies the functional equation

$$
\forall z \in \mathscr{H} \quad \forall s \neq 0,1 \quad E^{\star}(z, s)=E^{\star}(z, 1-s)
$$

Introduction and First Notations
Polar divisor considerations
Proof of the Main Theorem Acknowledgements

What You Need to Know About τ_{ω} and K_{ω}

- $\tau_{\omega}(n)=\tau_{-\omega}(n)$ and $K_{\omega}(y)=K_{-\omega}(y)$;
- K_{ω} has rapid decay:

$$
\forall y>2 \quad\left|K_{\omega}(y)\right| \leqslant M e^{-\frac{y}{2}}
$$

As a consequence, $E^{\star}(z, s)$ is the uniform limit of its Fourier series, can be analytically continued to $\mathbb{C} \backslash\{0,1\}$ and satisfies the functional equation

$$
\forall z \in \mathscr{H} \quad \forall s \neq 0,1 \quad E^{\star}(z, s)=E^{\star}(z, 1-s)
$$

What You Need to Know About τ_{ω} and K_{ω}

- $\tau_{\omega}(n)=\tau_{-\omega}(n)$ and $K_{\omega}(y)=K_{-\omega}(y)$;
- K_{ω} has rapid decay:

$$
\forall y>2 \quad\left|K_{\omega}(y)\right| \leqslant M \mathrm{e}^{-\frac{y}{2}}
$$

As a consequence, $E^{\star}(z, s)$ is the uniform limit of its Fourier series, can be analytically continued to $\mathbb{C} \backslash\{0,1\}$ and satisfies the functional equation

$$
\forall z \in \mathscr{H} \quad \forall s \neq 0,1 \quad E^{\star}(z, s)=E^{\star}(z, 1-s)
$$

What You Need to Know About τ_{ω} and K_{ω}

- $\tau_{\omega}(n)=\tau_{-\omega}(n)$ and $K_{\omega}(y)=K_{-\omega}(y)$;
- K_{ω} has rapid decay:

$$
\forall y>2 \quad\left|K_{\omega}(y)\right| \leqslant M \mathrm{e}^{-\frac{y}{2}}
$$

As a consequence, $E^{\star}(z, s)$ is the uniform limit of its Fourier series, can be analytically continued to $\mathbb{C} \backslash\{0,1\}$ and satisfies the functional equation

$$
\forall z \in \mathscr{H} \quad \forall s \neq 0,1 \quad E^{\star}(z, s)=E^{\star}(z, 1-s)
$$

What You Need to Know About τ_{ω} and K_{ω}

- $\tau_{\omega}(n)=\tau_{-\omega}(n)$ and $K_{\omega}(y)=K_{-\omega}(y)$;
- K_{ω} has rapid decay:

$$
\forall y>2 \quad\left|K_{\omega}(y)\right| \leqslant M e^{-\frac{y}{2}}
$$

As a consequence, $E^{\star}(z, s)$ is the uniform limit of its Fourier series, can be analytically continued to $\mathbb{C} \backslash\{0,1\}$ and satisfies the functional equation

$$
\forall z \in \mathscr{H} \quad \forall s \neq 0,1 \quad E^{\star}(z, s)=E^{\star}(z, 1-s)
$$

Introduction and First Notations
Polar divisor considerations Proof of the Main Theorem Acknowledgements

The Setting

- $\mathbb{Q} \hookrightarrow K$ is a totally real field extension with ring of integers \mathfrak{o} and discriminant D.
- There are exactly N distinct embeddings $K \hookrightarrow \mathbb{C}$, denoted as $\sigma_{1}, \ldots, \sigma_{N}$.
- For convenience, we write also

$$
\forall \alpha \in K \quad \alpha^{(i)}=\sigma_{i}(\alpha)
$$

- A is an ideal class in K and \mathfrak{a} an ideal in A^{-1}.

The Setting

- $\mathbb{Q} \hookrightarrow K$ is a totally real field extension with ring of integers \mathfrak{o} and discriminant D.
- There are exactly N distinct embeddings $K \hookrightarrow \mathbb{C}$, denoted as
- For convenience, we write also
- A is an ideal class in K and \mathfrak{a} an ideal in A^{-1}

The Setting

- $\mathbb{Q} \hookrightarrow K$ is a totally real field extension with ring of integers \mathfrak{o} and discriminant D.
- There are exactly N distinct embeddings $K \hookrightarrow \mathbb{C}$, denoted as $\sigma_{1}, \ldots, \sigma_{N}$.
- For convenience, we write also
- A is an ideal class in K and \mathfrak{a} an ideal in A^{-1}

The Setting

- $\mathbb{Q} \hookrightarrow K$ is a totally real field extension with ring of integers \mathfrak{o} and discriminant D.
- There are exactly N distinct embeddings $K \hookrightarrow \mathbb{C}$, denoted as $\sigma_{1}, \ldots, \sigma_{N}$.
- For convenience, we write also

$$
\forall \alpha \in K \quad \alpha^{(i)}=\sigma_{i}(\alpha)
$$

- A is an ideal class in K and a an ideal in A^{-1}

The Setting

- $\mathbb{Q} \hookrightarrow K$ is a totally real field extension with ring of integers \mathfrak{o} and discriminant D.
- There are exactly N distinct embeddings $K \hookrightarrow \mathbb{C}$, denoted as $\sigma_{1}, \ldots, \sigma_{N}$.
- For convenience, we write also

$$
\forall \alpha \in K \quad \alpha^{(i)}=\sigma_{i}(\alpha)
$$

- A is an ideal class in K and \mathfrak{a} an ideal in A^{-1}.

Introduction and First Notations
Polar divisor considerations
Proof of the Main Theorem
Acknowledgements

The Hilbert Modular Eisenstein Series

- $E_{K, A}^{\star}(z, s)=\mathbb{N}(\mathfrak{a})^{2 s} \pi^{-N s} \Gamma(s)^{N} D^{s}$

where $z \in \mathscr{H}$ and Res>1.
- $E_{K}^{\star}, A(z, s)$ is $S L_{2}(\mathbb{Z})$-automorphic in the variable z;
- $E_{K, A}^{\star}(z, s)$ is analytic in the variable s.

The Hilbert Modular Eisenstein Series

- $E_{K, A}^{\star}(z, s)=\mathbb{N}(\mathfrak{a})^{2 s} \pi^{-N s} \Gamma(s)^{N} D^{s} \sum_{\substack{(\alpha, \beta) \in \mathfrak{a}^{2} / \mathfrak{o}^{\circ} \\(\alpha, \beta) \neq 0}} \prod_{i=1}^{N} \frac{y_{i}^{s}}{\left|\alpha^{(i)} z+\beta^{(i)}\right|^{2 s}}$
where $z \in \mathscr{H}$ and Res>1.
- $E_{K, A}^{\star}(z, s)$ is $S L_{2}(\mathbb{Z})$-automorphic in the variable z;
- $E_{K, A}^{\star}(z, s)$ is analytic in the variable s.

The Hilbert Modular Eisenstein Series

- $E_{K, A}^{\star}(z, s)=\mathbb{N}(\mathfrak{a})^{2 s} \pi^{-N s} \Gamma(s)^{N} D^{s} \sum_{\substack{(\alpha, \beta) \in \mathfrak{a}^{2} / \mathfrak{o}^{\times} \\(\alpha, \beta) \neq 0}} \prod_{i=1}^{N} \frac{y_{i}^{s}}{\left|\alpha^{(i)} z+\beta^{(i)}\right|^{2 s}}$
where $z \in \mathscr{H}$ and Res>1.
- $E_{K, A}^{\star}(z, s)$ is $S L_{2}(\mathbb{Z})$-automorphic in the variable z;

The Hilbert Modular Eisenstein Series

- $E_{K, A}^{\star}(z, s)=\mathbb{N}(\mathfrak{a})^{2 s} \pi^{-N s} \Gamma(s)^{N} D^{s} \sum_{\substack{(\alpha, \beta) \in \mathfrak{a}^{2} / \propto^{\circ} \\(\alpha, \beta) \neq 0}} \prod_{i=1}^{N} \frac{y_{i}^{s}}{\left|\alpha^{(i)} z+\beta^{(i)}\right|^{2 s}}$
where $z \in \mathscr{H}$ and Res>1.
- $E_{K, A}^{\star}(z, s)$ is $S L_{2}(\mathbb{Z})$-automorphic in the variable z;
- $E_{K, A}^{\star}(z, s)$ is analytic in the variable s.

Introduction and First Notations
Polar divisor considerations
Proof of the Main Theorem
Acknowledgements

Fourier Expansion

where $\tau_{\omega}(\mathfrak{c})=\mathbb{N}(\mathfrak{c})^{-\omega} \quad \sum \mathbb{N}(\mathfrak{b})^{2 \omega}$ is a generalized divisor sum.
6 ideal in A
$\mathfrak{b} \mid c$

Fourier Expansion

$$
\begin{aligned}
E_{K, A}^{\star}(z, s)= & y^{N s} \zeta_{K, A}^{\star}(2 s)+y^{N(1-s)} \zeta_{K, A}^{\star}(2-2 s) \\
& +2^{N} y^{\frac{N}{2}} \sum_{\substack{\xi \in \mathfrak{D}^{-1} \\
\xi \neq 0}} \tau_{s-\frac{1}{2}}^{K, A}(\xi \mathfrak{D})\left(\prod_{i=1}^{N} K_{s-\frac{1}{2}}\left(2 \pi y\left|\xi^{(i)}\right|\right)\right) \mathrm{e}^{2 \pi i x \operatorname{Tr} \xi}
\end{aligned}
$$

where $\tau_{\omega}(\mathfrak{c})=\mathbb{N}(\mathfrak{c})^{-\omega} \quad \sum \mathbb{N}(\mathfrak{b})^{2 \omega}$ is a generalized divisor sum.

Fourier Expansion

$$
\begin{aligned}
E_{K, A}^{\star}(z, s)= & y^{N s} \zeta_{K, A}^{\star}(2 s)+y^{N(1-s)} \zeta_{K, A}^{\star}(2-2 s) \\
& +2^{N} y^{\frac{N}{2}} \sum_{\substack{\xi \in \mathfrak{D}-1 \\
\xi \neq 0}} \tau_{s-\frac{1}{2}}^{K, A}(\xi \mathfrak{D})\left(\prod_{i=1}^{N} K_{s-\frac{1}{2}}\left(2 \pi y\left|\xi^{(i)}\right|\right)\right) \mathrm{e}^{2 \pi \mathrm{ixTr} \xi}
\end{aligned}
$$

where $\tau_{\omega}(\mathfrak{c})=\mathbb{N}(\mathfrak{c})^{-\omega} \quad \sum \mathbb{N}(\mathfrak{b})^{2 \omega}$ is a generalized divisor sum. \mathfrak{b} ideal in A
$\mathfrak{b} \mid \mathfrak{c}$

Introduction and First Notations
Polar divisor considerations Proof of the Main Theorem Acknowledgements

Zagier's Theorem

Theorem

Let F be an $S L_{2}(\mathbb{Z})$-automorphic function on \mathscr{H}. Suppose that there exists a function φ of the form

such that $F(z)-\varphi(y) \underset{y \rightarrow+\infty}{=} o\left(y^{-n}\right)$ for every positive integer n. Then

Zagier's Theorem

Theorem

Let F be an $S L_{2}(\mathbb{Z})$-automorphic function on \mathscr{H}. Suppose that there exists a function φ of the form

$$
\varphi(y)=\sum_{i=1}^{\ell} c_{i} y^{\alpha_{i}} \ln ^{n_{i}} y \quad \alpha_{i} \in \mathbb{C} \quad n_{i} \in \mathbb{N}
$$

such that $F(z)-\varphi(y) \underset{y \rightarrow+\infty}{=} o\left(y^{-n}\right)$ for every positive integer n. Then

$$
R(s)=R N \int_{S L_{2}(\mathbb{Z}) \backslash \mathscr{H}} E^{\star}(z, s) F(z) \frac{d z}{y^{2}} \overline{d e f} \int_{0}^{+\infty}\left(a_{0}(y)-\varphi(y)\right) y^{s-1} \frac{d y}{y}
$$

Zagier's Theorem: Ze Continuation

Theorem

where $a_{0}(y)=\int_{0}^{1} F(x+i y) d x$, is well defined as an absolutely
convergent integral for Res big enough. It has analytic continuation to \mathbb{C}, except for poles at 0,1 , the α_{i} 's and the $\left(1-\alpha_{i}\right)$'s.
Furthermore, $R(s)=R(1-s)$.

Previous Results

Were already studied by Professor BumP:

Previous Results

Were already studied by Professor Bump:

- $R N \int_{S L_{2}(\mathbb{Z}) \backslash \mathscr{H}} E^{\star}\left(z, s_{0}\right) E_{K, A}^{\star}\left(z, s_{1}\right) \frac{\mathrm{d} z}{y^{2}}$ when K is a totally real cubic field and A is an ideal class;

Previous Results

Were already studied by Professor Bump:

- $R N \int_{S L_{2}(\mathbb{Z}) \backslash \mathscr{H}} E^{\star}\left(z, s_{0}\right) E_{K, A}^{\star}\left(z, s_{1}\right) \frac{\mathrm{d} z}{y^{2}}$ when K is a totally real cubic
field and A is an ideal class;
- $R N \int_{S_{2}(\mathbb{Z}) \backslash \mathscr{H}} E^{\star}\left(z, s_{0}\right) E^{\star}\left(z, s_{1}\right) E^{\star}\left(z, s_{2}\right) E^{\star}\left(z, s_{3}\right) \frac{\mathrm{d} z}{y^{2}}$.

Introduction and First Notations
Polar divisor considerations Proof of the Main Theorem Acknowledgements

Our Goal

We suspect that a similar phenomenon occurs and want to identify the full group of functional equations for the renormalized Rankin-Selberg transform

$$
R_{A}\left(s_{0}, s_{1}, s_{2}\right)=\int_{s L_{2}(\mathbb{Z}) \backslash \mathscr{H}} E^{\star}\left(z, s_{0}\right) E^{\star}\left(z, s_{1}\right) E_{K, A}^{\star}\left(z, s_{2}\right) \frac{\mathrm{d} z}{y^{2}}
$$

when K is a real quadratic field and A is an ideal class. Zagier's theorem, together with our knowledge of the objects involved, predict 16 functional equations. In fact,

Our Goal

We suspect that a similar phenomenon occurs and want to identify the full group of functional equations for the renormalized Rankin-Selberg transform

$$
R_{A}\left(s_{0}, s_{1}, s_{2}\right)=\int_{s_{2}(\mathbb{Z}) \backslash \mathscr{H}} E^{\star}\left(z, s_{0}\right) E^{\star}\left(z, s_{1}\right) E_{K, A}^{\star}\left(z, s_{2}\right) \frac{\mathrm{d} z}{y^{2}}
$$

when K is a real quadratic field and A is an ideal class.
Zagier's theorem, together with our knowledge of the objects involved, predict 16 functional equations. In fact,

Our Goal

We suspect that a similar phenomenon occurs and want to identify the full group of functional equations for the renormalized Rankin-Selberg transform

$$
R_{A}\left(s_{0}, s_{1}, s_{2}\right)=\int_{s_{2}(\mathbb{Z}) \backslash \mathscr{H}} E^{\star}\left(z, s_{0}\right) E^{\star}\left(z, s_{1}\right) E_{K, A}^{\star}\left(z, s_{2}\right) \frac{\mathrm{d} z}{y^{2}}
$$

when K is a real quadratic field and A is an ideal class. Zagier's theorem, together with our knowledge of the objects involved, predict 16 functional equations. In fact,

Main Theorem

Theorem

Let K be a real quadratic field and A an ideal class. The function $R_{A}\left(s_{0}, s_{1}, s_{2}\right)$ has a group of functional equations of order 48. It is generated by the transformations

$$
s_{0} \longmapsto 1-s_{0} \quad s_{1} \longmapsto 1-s_{1} \quad s_{2} \longmapsto 1-s_{2} \quad s_{0} \longleftrightarrow s_{1}
$$

and

$$
\left[\begin{array}{l}
s_{0} \\
s_{1} \\
s_{2}
\end{array}\right] \stackrel{w}{\longmapsto}\left[\begin{array}{l}
-\frac{s_{0}}{2}+\frac{s_{1}}{2}+s_{2} \\
1-\frac{s_{0}}{2}+\frac{s_{1}}{2}-s_{2} \\
1-\frac{s_{0}}{2}-\frac{s_{1}}{2}
\end{array}\right] .
$$

Strategy

> The polar divisor Π of R_{A} is the subset of \mathbb{C}^{3} at which R_{A} is undefined. Zagier's theorem provides us with a complete description of Π. All we have to do is identify the part φ of F that is not of rapid decay and hope it looks like

Once we know the α_{i} 's, we know Π.

Strategy

The polar divisor Π of R_{A} is the subset of \mathbb{C}^{3} at which R_{A} is undefined.
Zagier's theorem provides us with a complete description of Π. All we have to do is identify the part φ of F that is not of rapid decay and hope it looks like

Once we know the α_{i} 's, we know Π.

Strategy

The polar divisor Π of R_{A} is the subset of \mathbb{C}^{3} at which R_{A} is undefined. Zagier's theorem provides us with a complete description of Π. All we have to do is identify the part φ of F that is not of rapid decay and hope it looks like

Once we know the α_{i} 's, we know Π.

Strategy

The polar divisor Π of R_{A} is the subset of \mathbb{C}^{3} at which R_{A} is undefined. Zagier's theorem provides us with a complete description of Π. All we have to do is identify the part φ of F that is not of rapid decay and hope it looks like

Once we know the α_{i} 's, we know Π.

Strategy

The polar divisor Π of R_{A} is the subset of \mathbb{C}^{3} at which R_{A} is undefined. Zagier's theorem provides us with a complete description of Π. All we have to do is identify the part φ of F that is not of rapid decay and hope it looks like

$$
\varphi(y)=\sum_{i=1}^{\ell} c_{i} y^{\alpha_{i}} \ln y^{n_{i}}
$$

Once we know the α_{i}^{\prime}, we know Π.

Strategy

The polar divisor Π of R_{A} is the subset of \mathbb{C}^{3} at which R_{A} is undefined.
Zagier's theorem provides us with a complete description of Π.
All we have to do is identify the part φ of F that is not of rapid decay and hope it looks like

$$
\varphi(y)=\sum_{i=1}^{\ell} c_{i} y^{\alpha_{i}} \ln y^{n_{i}}
$$

Once we know the α_{i} 's, we know Π.

Reminder

Remember that

$E^{\star}\left(z, s_{1}\right)=y^{s_{1}} \zeta^{\star}\left(2 s_{1}\right)+y^{1-s_{1}} \zeta^{\star}\left(2-2 s_{1}\right)$ $+2 \sqrt{y} \sum_{n \neq 0} \tau_{s_{1}-\frac{1}{2}}(|n|) K_{s_{1}-\frac{1}{2}}(2 \pi|n| y) \mathrm{e}^{2 \pi i n x}$

$$
E_{K, A}^{\star}\left(z, s_{2}\right)=y^{2 s_{2}} \zeta_{K, A}^{\star}\left(2 s_{2}\right)+y^{2\left(1-s_{2}\right)} \zeta_{K, A}^{\star}\left(2-2 s_{2}\right)
$$

$$
+4 y \sum_{\substack{\xi \in \mathfrak{D}-1 \\ \epsilon \pm 0}} \tau_{s_{2}-\frac{1}{2}}^{K, A}(\xi \mathfrak{D})\left(\prod_{i=1}^{2} K_{S_{2}-\frac{1}{2}}\left(2 \pi y\left|\xi^{(i)}\right|\right)\right) \mathrm{e}^{2 \pi i x \operatorname{Tr} \xi}
$$

$$
F(z)=E^{\star}\left(z, s_{1}\right) E_{K, A}^{\star}\left(z, s_{2}\right)
$$

Reminder

Remember that

$$
\begin{aligned}
E^{\star}\left(z, s_{1}\right)=y^{s_{1}} \zeta^{\star}\left(2 s_{1}\right) & +y^{1-s_{1}} \zeta^{\star}\left(2-2 s_{1}\right) \\
& +2 \sqrt{y} \sum_{n \neq 0} \tau_{s_{1}-\frac{1}{2}}(|n|) K_{s_{1}-\frac{1}{2}}(2 \pi|n| y) \mathrm{e}^{2 \pi \mathrm{inx}}
\end{aligned}
$$

$$
E_{K, A}^{\star}\left(z, s_{2}\right)=y^{2 s_{2}} \zeta_{K, A}^{\star}\left(2 s_{2}\right)+y^{2\left(1-s_{2}\right)} \zeta_{K, A}^{\star}\left(2-2 s_{2}\right)
$$

$$
F(z)=E^{\star}\left(z, s_{1}\right) E_{K, A}^{\star}\left(z, s_{2}\right)
$$

Reminder

Remember that

$$
\begin{aligned}
E^{\star}\left(z, s_{1}\right)= & y^{s_{1}} \zeta^{\star}\left(2 s_{1}\right) \\
& +y^{1-s_{1}} \zeta^{\star}\left(2-2 s_{1}\right) \\
& +2 \sqrt{y} \sum_{n \neq 0} \tau_{s_{1}-\frac{1}{2}}(|n|) K_{s_{1}-\frac{1}{2}}(2 \pi|n| y) \mathrm{e}^{2 \pi i n x} \\
E_{K, A}^{\star}\left(z, s_{2}\right)= & y^{2 s_{2}} \zeta_{K, A}^{\star}\left(2 s_{2}\right)+y^{2\left(1-s_{2}\right)} \zeta_{K, A}^{\star}\left(2-2 s_{2}\right) \\
& +4 y \sum_{\substack{\xi \in \mathfrak{D}^{-1} \\
\xi \neq 0}} \tau_{s_{2}-\frac{1}{2}}^{K, A}(\xi \mathfrak{D})\left(\prod_{i=1}^{2} K_{s_{2}-\frac{1}{2}}\left(2 \pi y\left|\xi^{(i)}\right|\right)\right) \mathrm{e}^{2 \pi i x \operatorname{Tr} \xi} \\
F(z)= & E^{\star}\left(z, s_{1}\right) E_{K, A}^{\star}\left(z, s_{2}\right)
\end{aligned}
$$

Expression of φ

Expression of φ

$$
\begin{aligned}
& \varphi(y)=y^{s_{1}+2 s_{2}} \zeta^{\star}\left(2 s_{1}\right) \zeta_{K, A}^{\star}\left(2 s_{2}\right)+y^{2+s_{1}-2 s_{2}} \zeta^{\star}\left(2 s_{1}\right) \zeta_{K, A}^{\star}\left(2-2 s_{2}\right) \\
& +y^{1-s_{1}+2 s_{2}} \zeta^{\star}\left(2-2 s_{1}\right) \zeta_{\kappa, A}^{\star}\left(2 s_{2}\right)+y^{3-s_{1}-2 s_{2}} \zeta^{\star}\left(2-2 s_{1}\right) \zeta_{K, A}^{\star}\left(2-2 s_{2}\right)
\end{aligned}
$$

Cartesian Equation of Π

By Zagier's Theorem, the polar divisor of R_{A} is the union of the 14 hyperplanes

$$
s_{0}=s_{1}+2 s_{2} \quad s_{0}=2+s_{1}-2 s_{2} \quad s_{0}=1-s_{1}+2 s_{2} \quad s_{0}=3-s_{1}-2 s_{2}
$$

$$
s_{0}=1-s_{1}-2 s_{2} \quad s_{0}=-1-s_{1}+2 s_{2} \quad s_{0}=s_{1}-2 s_{2} \quad s_{0}=-2+s_{1}+2 s_{2}
$$

$$
s_{0}, s_{1}, s_{2}=0 \quad \text { and } \quad s_{0}, s_{1}, s_{2}=1
$$

Cartesian Equation of Π

By Zagier's Theorem, the polar divisor of R_{A} is the union of the 14 hyperplanes
$s_{0}=1-s_{1}-2 s_{2} \quad s_{0}=-1-s_{1}+2 s_{2} \quad s_{0}=s_{1}-2 s_{2} \quad s_{0}=-2+s_{1}+2 s_{2}$

Cartesian Equation of Π

By Zagier's Theorem, the polar divisor of R_{A} is the union of the 14 hyperplanes
$s_{0}=s_{1}+2 s_{2} \quad s_{0}=2+s_{1}-2 s_{2} \quad s_{0}=1-s_{1}+2 s_{2} \quad s_{0}=3-s_{1}-2 s_{2}$
$s_{0}=1-s_{1}-2 s_{2} \quad s_{0}=-1-s_{1}+2 s_{2} \quad s_{0}=s_{1}-2 s_{2} \quad s_{0}=-2+s_{1}+2 s_{2}$
$s_{0}, s_{1}, s_{2}=0 \quad$ and $\quad s_{0}, s_{1}, s_{2}=1$

Cartesian Equation of Π

By Zagier's Theorem, the polar divisor of R_{A} is the union of the 14 hyperplanes

$$
\begin{aligned}
& s_{0}=s_{1}+2 s_{2} \quad s_{0}=2+s_{1}-2 s_{2} \quad s_{0}=1-s_{1}+2 s_{2} \quad s_{0}=3-s_{1}-2 s_{2} \\
& s_{0}=1-s_{1}-2 s_{2} \quad s_{0}=-1-s_{1}+2 s_{2} \quad s_{0}=s_{1}-2 s_{2} \quad s_{0}=-2+s_{1}+2 s_{2}
\end{aligned}
$$

Cartesian Equation of Π

By Zagier's Theorem, the polar divisor of R_{A} is the union of the 14 hyperplanes

$$
s_{0}=s_{1}+2 s_{2} \quad s_{0}=2+s_{1}-2 s_{2} \quad s_{0}=1-s_{1}+2 s_{2} \quad s_{0}=3-s_{1}-2 s_{2}
$$

$$
s_{0}=1-s_{1}-2 s_{2} \quad s_{0}=-1-s_{1}+2 s_{2} \quad s_{0}=s_{1}-2 s_{2} \quad s_{0}=-2+s_{1}+2 s_{2}
$$

$$
s_{0}, s_{1}, s_{2}=0 \quad \text { and } \quad s_{0}, s_{1}, s_{2}=1
$$

So what does П look like?

The 14 hyperplanes in \mathbb{C}^{3} cut out a rhombic dodecahedron:

The Group of Π

The group S_{Π} of transformations leaving Π invariant is computed through standard counting arguments.
For example, S_{Π} acts transitively on the set of vertices that are connected to 4 other vertices.
There are 6 such vertices.
Each of them is fixed by 8 transformations:
4 reflexions and 4 rotations.

So $\left|S_{\Pi}\right|=6 \times 8=48$.

The Group of Π

The group S_{\square} of transformations leaving Π invariant is computed through standard counting arguments.
For example, S_{Π} acts transitively on the set of vertices that are connected to 4 other vertices.

There are 6 such vertices.
Each of them is fixed by 8 transformations:
4 reflexions and 4 rotations.

So $\left|S_{\Pi}\right|=6 \times 8=48$.

The Group of Π

The group S_{\square} of transformations leaving Π invariant is computed through standard counting arguments.
For example, S_{Π} acts transitively on the set of vertices that are connected to 4 other vertices.

There are 6 such vertices.
Each of them is fixed by 8 transformations:
4 reflexions and 4 rotations.

So $\left|S_{\Pi}\right|=6 \times 8=48$.

The Group of Π

The group S_{\square} of transformations leaving Π invariant is computed through standard counting arguments.
For example, S_{Π} acts transitively on the set of vertices that are connected to 4 other vertices.

There are 6 such vertices.
Each of them is fixed by 8 transformations:
4 reflexions and 4 rotations.

So $\left|S_{\Pi}\right|=6 \times 8=48$

The Group of Π

The group S_{\square} of transformations leaving Π invariant is computed through standard counting arguments.
For example, S_{Π} acts transitively on the set of vertices that are connected to 4 other vertices.
There are 6 such vertices.
Each of them is fixed by 8 transformations:
4 reflexions and 4 rotations.

So $\left|S_{\square}\right|=6 \times 8=48$.

The Group of Π

The group S_{\square} of transformations leaving Π invariant is computed through standard counting arguments.
For example, S_{Π} acts transitively on the set of vertices that are connected to 4 other vertices.
There are 6 such vertices.
Each of them is fixed by 8 transformations:
4 reflexions and 4 rotations.

So $\left|S_{\Pi}\right|=6 \times 8=48$.

Relationship Between S and S_{Π}

> There is an easy inclusion between S and S_{Π}.
> Every functional equation for R_{A} should leave Π invariant.
> So $S \subset S_{\Pi}$ and it follows that $|S| \leqslant 48$.

Relationship Between S and S_{Π}

There is an easy inclusion between S and S_{\square}.
Every functional equation for R_{A} should leave Π invariant.
So $S \subset S_{\Pi}$ and it follows that $|S| \leqslant 48$.

Relationship Between S and S_{Π}

There is an easy inclusion between S and S_{\square}.
Every functional equation for R_{A} should leave Π invariant.
So $S \subset S_{\Pi}$ and it follows that $|S| \leqslant 48$.

Relationship Between S and S_{Π}

There is an easy inclusion between S and S_{\square}.
Every functional equation for R_{A} should leave Π invariant. So $S \subset S_{\Pi}$ and it follows that $|S| \leqslant 48$.

The $S L_{3}(\mathbb{Z})$ Eisenstein series I

```
- \(\nu_{1}\) and \(\nu_{2}\) are complex numbers with real part bigger than \(\frac{2}{3}\).
- \(\Omega\) is the set of quadruples \((\alpha, \beta, \xi, \eta) \in \mathfrak{a} \times(\mathfrak{a} \mathfrak{D})^{-1} \times \mathbb{Z} \times \mathbb{Z}\) with
- \(\alpha\) and \(\xi\) not simultaneously 0;
- \(\beta\) and \(\eta\) not simultaneously 0;
- \(\operatorname{Tr} \alpha \beta+\xi \eta=0\).
- \(c=\mathbb{N}(a)^{-\frac{1}{2}} D^{-\frac{1}{4}}\);
- \(t_{1}\) and \(t_{2}\) are positive real numbers.
```


The $S L_{3}(\mathbb{Z})$ Eisenstein series I

- ν_{1} and ν_{2} are complex numbers with real part bigger than $\frac{2}{3}$.
- Ω is the set of quadruples $(\alpha, \beta, \xi, \eta) \in \mathfrak{a} \times(a \mathfrak{D})^{-1} \times \mathbb{Z} \times \mathbb{Z}$ with - α and ξ not simultaneously 0 ; - β and η not simultaneously 0 ; - $\operatorname{Tr} \alpha \beta+\xi \eta=0$
- t_{1} and t_{2} are positive real numbers.

The $S L_{3}(\mathbb{Z})$ Eisenstein series I

- ν_{1} and ν_{2} are complex numbers with real part bigger than $\frac{2}{3}$.
- Ω is the set of quadruples $(\alpha, \beta, \xi, \eta) \in \mathfrak{a} \times(\mathfrak{a} \mathfrak{D})^{-1} \times \mathbb{Z} \times \mathbb{Z}$ with
- α and ξ not simultaneously 0 ;
- β and η not simultaneously 0;
- $\operatorname{Tr} \alpha \beta+\xi \eta=0$.
- t_{1} and t_{2} are positive real numbers.

The $S L_{3}(\mathbb{Z})$ Eisenstein series I

- ν_{1} and ν_{2} are complex numbers with real part bigger than $\frac{2}{3}$.
- Ω is the set of quadruples $(\alpha, \beta, \xi, \eta) \in \mathfrak{a} \times(\mathfrak{a} \mathfrak{D})^{-1} \times \mathbb{Z} \times \mathbb{Z}$ with - α and ξ not simultaneously 0 ;
- β and η not simultaneously 0 ;
- $\operatorname{Tr} \alpha \beta+\xi \eta=0$.
- t_{1} and t_{2} are positive real numbers.

The $S L_{3}(\mathbb{Z})$ Eisenstein series I

- ν_{1} and ν_{2} are complex numbers with real part bigger than $\frac{2}{3}$.
- Ω is the set of quadruples $(\alpha, \beta, \xi, \eta) \in \mathfrak{a} \times(\mathfrak{a} \mathfrak{D})^{-1} \times \mathbb{Z} \times \mathbb{Z}$ with
- α and ξ not simultaneously 0 ;
- β and η not simultaneously 0 ;
- t_{1} and t_{2} are positive real numbers.

The $S L_{3}(\mathbb{Z})$ Eisenstein series I

- ν_{1} and ν_{2} are complex numbers with real part bigger than $\frac{2}{3}$.
- Ω is the set of quadruples $(\alpha, \beta, \xi, \eta) \in \mathfrak{a} \times(\mathfrak{a} \mathfrak{D})^{-1} \times \mathbb{Z} \times \mathbb{Z}$ with
- α and ξ not simultaneously 0 ;
- β and η not simultaneously 0 ;
- $\operatorname{Tr} \alpha \beta+\xi \eta=0$.
- t_{1} and t_{2} are positive real numbers.

The $S L_{3}(\mathbb{Z})$ Eisenstein series I

- ν_{1} and ν_{2} are complex numbers with real part bigger than $\frac{2}{3}$.
- Ω is the set of quadruples $(\alpha, \beta, \xi, \eta) \in \mathfrak{a} \times(\mathfrak{a} \mathfrak{D})^{-1} \times \mathbb{Z} \times \mathbb{Z}$ with
- α and ξ not simultaneously 0 ;
- β and η not simultaneously 0 ;
- $\operatorname{Tr} \alpha \beta+\xi \eta=0$.
- $c=\mathbb{N}(\mathfrak{a})^{-\frac{1}{2}} D^{-\frac{1}{4}}$;
- t_{1} and t_{2} are positive real numbers.

The $S L_{3}(\mathbb{Z})$ Eisenstein series I

- ν_{1} and ν_{2} are complex numbers with real part bigger than $\frac{2}{3}$.
- Ω is the set of quadruples $(\alpha, \beta, \xi, \eta) \in \mathfrak{a} \times(\mathfrak{a} \mathfrak{D})^{-1} \times \mathbb{Z} \times \mathbb{Z}$ with
- α and ξ not simultaneously 0 ;
- β and η not simultaneously 0 ;
- $\operatorname{Tr} \alpha \beta+\xi \eta=0$.
- $c=\mathbb{N}(\mathfrak{a})^{-\frac{1}{2}} D^{-\frac{1}{4}}$;
- t_{1} and t_{2} are positive real numbers.

The $S L_{3}(\mathbb{Z})$ Eisenstein Series II

The $S L_{3}(\mathbb{Z})$ Eisenstein Series II

$$
\text { Let } \begin{aligned}
& G_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)= \frac{1}{4} \pi^{-\frac{3 \nu_{1}}{2}} \Gamma\left(\frac{3 \nu_{1}}{2}\right) \pi^{-\frac{3 \nu_{2}}{2}} \Gamma\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}+1\right) \\
& \times \sum_{(\alpha, \beta, \xi, \eta) \in \Omega}\left[\left(c t_{1} \alpha^{(1)}\right)^{2}+\left(c t_{2} \alpha^{(2)}\right)^{2}+\left(\frac{\xi}{t_{1} t_{2}}\right)\right]^{-\frac{3 \nu_{1}}{2}} \\
& \times\left[\left(\frac{\beta^{(1)}}{c t_{1}}\right)^{2}+\left(\frac{\beta^{(2)}}{c t_{2}}\right)^{2}+\left(\eta t_{1} t_{2}\right)^{2}\right]^{-\frac{3 \nu_{2}}{2}}
\end{aligned}
$$

The $S_{3}(\mathbb{Z})$ Eisenstein series III

True facts about $G_{\nu_{1}, \nu_{2}}$

- $G_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)$ is well defined as a converging series when $\operatorname{Re} \nu_{1}$ and $\operatorname{Re} \nu_{2}$ are bigger than $\frac{2}{3}$;
- it has meromorphic continuation to \mathbb{C}^{2};
- $G_{1-\nu_{1}-\nu_{2}, \nu_{1}}\left(t_{1}, t_{2}\right)=G_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)$.

Proof.

$G_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)$ is a particular value of the $S L_{3}(\mathbb{Z})$ Eisenstein series.

The $S L_{3}(\mathbb{Z})$ Eisenstein series III

True facts about $G_{\nu_{1}, \nu_{2}}$

- $G_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)$ is well defined as a converging series when $\operatorname{Re} \nu_{1}$ and $\operatorname{Re} \nu_{2}$ are bigger than $\frac{2}{3}$;
- it has meromorphic continuation to \mathbb{C}^{2};

Proof.

$L_{\nu_{1}, \nu_{2}}\left(t, t_{2}\right)$ is a particular value of the $S L_{3}(\mathbb{Z})$ Eisenstein series.
The $S L_{3}(\mathbb{Z})$ Eisenstein series III

True facts about $G_{\nu_{1}, \nu_{2}}$

- $G_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)$ is well defined as a converging series when $\operatorname{Re} \nu_{1}$ and $\operatorname{Re} \nu_{2}$ are bigger than $\frac{2}{3}$;
- it has meromorphic continuation to \mathbb{C}^{2};

Proof.

is a particular value of the $S L_{3}(\mathbb{Z})$ Eisenstein series.
The $S_{3}(\mathbb{Z})$ Eisenstein series III

True facts about $G_{\nu_{1}, \nu_{2}}$

- $G_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)$ is well defined as a converging series when $\operatorname{Re} \nu_{1}$ and $\operatorname{Re} \nu_{2}$ are bigger than $\frac{2}{3}$;
- it has meromorphic continuation to \mathbb{C}^{2};
- $G_{1-\nu_{1}-\nu_{2}, \nu_{1}}\left(t_{1}, t_{2}\right)=G_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)$.

Proof.

$G_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)$ is a particular value of the $S L_{3}(\mathbb{Z})$ Eisenstein series.

The $S_{3}(\mathbb{Z})$ Eisenstein series III

True facts about $G_{\nu_{1}, \nu_{2}}$

- $G_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)$ is well defined as a converging series when $\operatorname{Re} \nu_{1}$ and $\operatorname{Re} \nu_{2}$ are bigger than $\frac{2}{3}$;
- it has meromorphic continuation to \mathbb{C}^{2};
- $G_{1-\nu_{1}-\nu_{2}, \nu_{1}}\left(t_{1}, t_{2}\right)=G_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)$.

Proof.

$G_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)$ is a particular value of the $S L_{3}(\mathbb{Z})$ Eisenstein series.

Action of \mathfrak{o}^{\times}on $\left(\mathbb{R}_{+}^{\star}\right)^{2}$

Definition

If ϵ is a unit in 0 and t_{1}, t_{2} are positive real numbers, we define

$$
\epsilon\left(t_{1}, t_{2}\right)=\left(\left|\epsilon^{(1)}\right| t_{1},\left|\epsilon^{(2)}\right| t_{2}\right)
$$

Remarks

- $\left|\epsilon^{(1)} f^{(2)}\right|=|\mathbb{N}(\epsilon)|$ is a unit in \mathbb{Z}, so $\left|\epsilon^{(2)}\right|=|\epsilon|^{-1}$.
- As a consequence, $\epsilon\left(t_{1}, t_{2}\right)=\left(|\epsilon| t_{1},|\epsilon|^{-1} t_{2}\right)$.
- By the Unit Theorem, there exists $\varepsilon \in \mathfrak{o}^{\times}$, such that

$$
0^{x}=\left\{ \pm \varepsilon^{n} \mid n \in \mathbb{Z}\right\} \quad \text { and } \quad \varepsilon>1
$$

Action of \mathfrak{o}^{\times}on $\left(\mathbb{R}_{+}^{\star}\right)^{2}$

Definition

If ϵ is a unit in o and t_{1}, t_{2} are positive real numbers, we define

$$
\epsilon\left(t_{1}, t_{2}\right)=\left(\left|\epsilon^{(1)}\right| t_{1},\left|\epsilon^{(2)}\right| t_{2}\right)
$$

Remarks

- $\left|\epsilon^{(1)} \epsilon^{(2)}\right|=|\mathbb{N}(\epsilon)|$ is a unit in \mathbb{Z}, so $\left|\epsilon^{(2)}\right|$
- As a consequence, $\epsilon\left(t_{1}, t_{2}\right)=\left(|\epsilon| t_{1},|\epsilon|^{-1} t_{2}\right)$.
- By the Unit Theorem, there exists $\varepsilon \in \mathfrak{o}^{\times}$, such that

Action of \mathfrak{o}^{\times}on $\left(\mathbb{R}_{+}^{\star}\right)^{2}$

Definition

If ϵ is a unit in \mathfrak{o} and t_{1}, t_{2} are positive real numbers, we define

$$
\epsilon\left(t_{1}, t_{2}\right)=\left(\left|\epsilon^{(1)}\right| t_{1},\left|\epsilon^{(2)}\right| t_{2}\right)
$$

Remarks

- $\left|\epsilon^{(1)} \epsilon^{(2)}\right|=|\mathbb{N}(\epsilon)|$ is a unit in \mathbb{Z}, so $\left|\epsilon^{(2)}\right|=|\epsilon|^{-1}$.
- As a consequence, $\epsilon\left(t_{1}, t_{2}\right)=\left(|\epsilon| t_{1},|\epsilon|^{-1} t_{2}\right)$
- By the Unit Theorem, there exists $\varepsilon \in \mathfrak{o}^{\times}$, such that

Action of \mathfrak{o}^{\times}on $\left(\mathbb{R}_{+}^{\star}\right)^{2}$

Definition

If ϵ is a unit in \mathfrak{o} and t_{1}, t_{2} are positive real numbers, we define

$$
\epsilon\left(t_{1}, t_{2}\right)=\left(\left|\epsilon^{(1)}\right| t_{1},\left|\epsilon^{(2)}\right| t_{2}\right)
$$

Remarks

- $\left|\epsilon^{(1)} \epsilon^{(2)}\right|=|\mathbb{N}(\epsilon)|$ is a unit in \mathbb{Z}, so $\left|\epsilon^{(2)}\right|=|\epsilon|^{-1}$.
- As a consequence, $\epsilon\left(t_{1}, t_{2}\right)=\left(|\epsilon| t_{1},|\epsilon|^{-1} t_{2}\right)$.

- By the Unit Theorem, there exists $\varepsilon \in o^{\times}$, such that

Action of \mathfrak{o}^{\times}on $\left(\mathbb{R}_{+}^{\star}\right)^{2}$

Definition

If ϵ is a unit in o and t_{1}, t_{2} are positive real numbers, we define

$$
\epsilon\left(t_{1}, t_{2}\right)=\left(\left|\epsilon^{(1)}\right| t_{1},\left|\epsilon^{(2)}\right| t_{2}\right)
$$

Remarks

- $\left|\epsilon^{(1)} \epsilon^{(2)}\right|=|\mathbb{N}(\epsilon)|$ is a unit in \mathbb{Z}, so $\left|\epsilon^{(2)}\right|=|\epsilon|^{-1}$.
- As a consequence, $\epsilon\left(t_{1}, t_{2}\right)=\left(|\epsilon| t_{1},|\epsilon|^{-1} t_{2}\right)$.
- By the Unit Theorem, there exists $\varepsilon \in \mathfrak{o}^{\times}$, such that

$$
\mathfrak{o}^{\times}=\left\{ \pm \varepsilon^{n} \mid n \in \mathbb{Z}\right\} \quad \text { and } \quad \varepsilon>1
$$

Identifying $\left(\mathbb{R}_{+}^{\star}\right)^{2} / \mathfrak{o}^{x}$

Theorem

The action of ox on $\left(\mathbb{R}^{*}\right)^{2}$ has kernel $\{ \pm 1\}$. A fundamental domain is given by

Identifying $\left(\mathbb{R}_{+}^{\star}\right)^{2} / \mathfrak{o}^{x}$

Theorem

The action of \mathfrak{o}^{\times}on $\left(\mathbb{R}_{+}^{\star}\right)^{2}$ has kernel $\{ \pm 1\}$. A fundamental domain is given by

$$
\left(\mathbb{R}_{+}^{\star}\right)^{2} / \mathfrak{o}^{\times}=\left\{\left(t_{1}, t_{2}\right) \in\left(\mathbb{R}_{+}^{\star}\right)^{2} \left\lvert\, \varepsilon^{-1} \leqslant \frac{t_{2}}{t_{1}} \leqslant \varepsilon\right.\right\}
$$

Action of \mathfrak{o}^{\times}on Ω

Recall that

$$
\Omega=\left\{(\alpha, \beta, \xi, \eta) \in \mathfrak{a} \times(\mathfrak{a} \mathfrak{D})^{-1} \times \mathbb{Z}^{2} \left\lvert\,\left\{\begin{array}{l}
(\alpha, \xi) \neq 0 \\
(\beta, \eta) \neq 0 \\
\operatorname{Tr} \alpha \beta+\xi \eta=0
\end{array}\right\}\right.\right.
$$

Definition

If $\epsilon \in \mathfrak{o}^{\times}$and $(\alpha, \beta, \xi, \eta) \in \Omega$, define
$\epsilon(\alpha, \beta, \xi, \eta)=\left(\epsilon \alpha, \epsilon^{-1} \beta, \xi, \eta\right)$

Action of 0^{\times}on Ω

Recall that

$$
\Omega=\left\{(\alpha, \beta, \xi, \eta) \in \mathfrak{a} \times(\mathfrak{a} \mathfrak{D})^{-1} \times \mathbb{Z}^{2} \left\lvert\,\left\{\begin{array}{l}
(\alpha, \xi) \neq 0 \\
(\beta, \eta) \neq 0 \\
\operatorname{Tr} \alpha \beta+\xi \eta=0
\end{array}\right\}\right.\right.
$$

Definition

If $\epsilon \in \mathfrak{o}^{\times}$and $(\alpha, \beta, \xi, \eta) \in \Omega$, define

Action of 0^{\times}on Ω

Recall that

$$
\Omega=\left\{(\alpha, \beta, \xi, \eta) \in \mathfrak{a} \times(\mathfrak{a} \mathfrak{D})^{-1} \times \mathbb{Z}^{2} \left\lvert\,\left\{\begin{array}{l}
(\alpha, \xi) \neq 0 \\
(\beta, \eta) \neq 0 \\
\operatorname{Tr} \alpha \beta+\xi \eta=0
\end{array}\right\}\right.\right.
$$

Definition

If $\epsilon \in \mathfrak{o}^{\times}$and $(\alpha, \beta, \xi, \eta) \in \Omega$, define

$$
\epsilon(\alpha, \beta, \xi, \eta)=\left(\epsilon \alpha, \epsilon^{-1} \beta, \xi, \eta\right)
$$

Introduction and First Notations
Polar divisor considerations
Proof of the Main Theorem Acknowledgements

Identifying Ω / o^{\times}

Let \mathscr{A} be a set of representatives of the principal ideals in \mathfrak{a}. In other words, $\mathscr{A}=\mathfrak{a} / \mathfrak{o}^{\times}$

Theorem

The action of ${ }^{\times} \times$on Ω is faithful. A complete set of representatives for the orbits is

Identifying $\Omega / \mathfrak{o}^{\times}$

Let \mathscr{A} be a set of representatives of the principal ideals in \mathfrak{a}. words

Theorem

The action of on Ω is faithful. A complete set of representatives for the orbits is

Identifying $\Omega / \mathfrak{o}^{\times}$

Let \mathscr{A} be a set of representatives of the principal ideals in \mathfrak{a}. In other words, $\mathscr{A}=\mathfrak{a} / \mathfrak{o}^{\times}$.

Theorem
The action of \mathfrak{o}^{\times}on Ω is faithful. A complete set of representatives for the orbits is

Identifying $\Omega / \mathfrak{o}^{\times}$

Let \mathscr{A} be a set of representatives of the principal ideals in \mathfrak{a}. In other words, $\mathscr{A}=\mathfrak{a} / \mathfrak{o}^{\times}$.

Theorem

The action of \mathfrak{o}^{\times}on Ω is faithful. A complete set of representatives for the orbits is

$$
\tilde{\Omega}=\left\{(\alpha, \beta, \xi, \eta) \in \mathscr{A} \times(\mathfrak{a} \mathfrak{D})^{-1} \times \mathbb{Z} \times \mathbb{Z} \left\lvert\,\left\{\begin{array}{l}
(\alpha, \xi) \neq 0 \\
(\beta, \eta) \neq 0 \\
\operatorname{Tr} \alpha \beta+\xi \eta
\end{array}\right\}\right.\right.
$$

The Link

Define

- $\wedge=\frac{1}{4} \pi^{-\frac{3 \nu_{1}}{2}} \Gamma\left(\frac{3 \nu_{1}}{2}\right) \pi^{-\frac{3 \nu_{2}}{2}} \Gamma\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}+1\right)$ and
- $H\left(\alpha, \beta, \xi, \eta, t_{1}, t_{2}\right)=\left(t_{1} t_{2}\right)^{s}\left[\left(c t_{1} \alpha^{(1)}\right)^{2}+\left(c t_{2} \alpha^{(2)}\right)^{2}+\left(\frac{\xi}{t_{1} t_{2}}\right)\right]^{-\frac{3 \nu_{1}}{2}}$

Then

$$
\text { - } G_{\cdots, \nu_{2}}\left(t_{1}, t_{2}\right)\left(t_{1} t_{2}\right)^{s}=\Lambda \sum_{(\alpha, \beta, \xi, \eta) \in \Omega} H\left(\alpha, \beta, \xi, \eta, t_{1}, t_{2}\right)
$$

The Link

Define

- $\Lambda=\frac{1}{4} \pi^{-\frac{3 \nu_{1}}{2}} \Gamma\left(\frac{3 \nu_{1}}{2}\right) \pi^{-\frac{3 \nu_{2}}{2}} \Gamma\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}+1\right)$ and - $H\left(\alpha, \beta, \xi, \eta, t_{1}, t_{2}\right)=\left(t_{1} t_{2}\right)^{s}\left[\left(c t_{1} \alpha^{(1)}\right)^{2}+\left(c t_{2} \alpha^{(2)}\right)^{2}+\left(\frac{\xi}{t_{1} t_{2}}\right)\right]$

Then

- $G_{\nu, \nu_{2}}\left(t_{1}, t_{2}\right)\left(t_{1} t_{2}\right)^{s}=\wedge \quad \sum \quad H\left(\alpha, \beta, \xi, \eta, t_{1}, t_{2}\right)$

The Link

Define

- $\Lambda=\frac{1}{4} \pi^{-\frac{3 \nu_{1}}{2}} \Gamma\left(\frac{3 \nu_{1}}{2}\right) \pi^{-\frac{3 \nu_{2}}{2}} \Gamma\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}+1\right)$ and
- $H\left(\alpha, \beta, \xi, \eta, t_{1}, t_{2}\right)=\left(t_{1} t_{2}\right)^{s}\left[\left(c t_{1} \alpha^{(1)}\right)^{2}+\left(c t_{2} \alpha^{(2)}\right)^{2}+\left(\frac{\xi}{t_{1} t_{2}}\right)\right]^{-\frac{3 \nu_{1}}{2}}$

$$
\times\left[\left(\frac{\beta^{(1)}}{c t_{1}}\right)^{2}+\left(\frac{\beta^{(2)}}{c t_{2}}\right)^{2}+\left(\eta t_{1} t_{2}\right)^{2}\right]^{-\frac{3 \nu_{2}}{2}}
$$

Then

- $G_{\nu, \nu_{2}}\left(t_{1}, t_{2}\right)\left(t_{1} t_{2}\right)^{s}=\Lambda$ $H\left(\alpha, \beta, \xi, \eta, t_{1}, t_{2}\right)$

The Link

Define

- $\Lambda=\frac{1}{4} \pi^{-\frac{3 \nu_{1}}{2}} \Gamma\left(\frac{3 \nu_{1}}{2}\right) \pi^{-\frac{3 \nu_{2}}{2}} \Gamma\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}+1\right)$ and
- $H\left(\alpha, \beta, \xi, \eta, t_{1}, t_{2}\right)=\left(t_{1} t_{2}\right)^{s}\left[\left(c t_{1} \alpha^{(1)}\right)^{2}+\left(c t_{2} \alpha^{(2)}\right)^{2}+\left(\frac{\xi}{t_{1} t_{2}}\right)\right]^{-\frac{3 \nu_{1}}{2}}$

$$
\times\left[\left(\frac{\beta^{(1)}}{c t_{1}}\right)^{2}+\left(\frac{\beta^{(2)}}{c t_{2}}\right)^{2}+\left(\eta t_{1} t_{2}\right)^{2}\right]^{-\frac{3 \nu_{2}}{2}}
$$

Then

The Link

Define

- $\Lambda=\frac{1}{4} \pi^{-\frac{3 \nu_{1}}{2}} \Gamma\left(\frac{3 \nu_{1}}{2}\right) \pi^{-\frac{3 \nu_{2}}{2}} \Gamma\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}+1\right)$ and
- $H\left(\alpha, \beta, \xi, \eta, t_{1}, t_{2}\right)=\left(t_{1} t_{2}\right)^{s}\left[\left(c t_{1} \alpha^{(1)}\right)^{2}+\left(c t_{2} \alpha^{(2)}\right)^{2}+\left(\frac{\xi}{t_{1} t_{2}}\right)\right]^{-\frac{3 \nu_{1}}{2}}$

$$
\times\left[\left(\frac{\beta^{(1)}}{c t_{1}}\right)^{2}+\left(\frac{\beta^{(2)}}{c t_{2}}\right)^{2}+\left(\eta t_{1} t_{2}\right)^{2}\right]^{-\frac{3 \nu_{2}}{2}}
$$

Then

- $G_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)\left(t_{1} t_{2}\right)^{s}=\Lambda \sum_{(\alpha, \beta, \xi, \eta) \in \Omega} H\left(\alpha, \beta, \xi, \eta, t_{1}, t_{2}\right)$

The Link II

We want to work with $I=\iint_{\left(\mathbb{R}^{*}\right) / 0^{\times}} G_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)\left(t_{1} t_{2}\right)^{s} \frac{\mathrm{~d} t_{1} \mathrm{~d} t_{2}}{t_{1} t_{2}}$. Using our
two actions of \mathfrak{o}^{\times},

The Link II

We want to work with $I=\iint_{\left(\mathbb{R}_{+}^{*}\right) / \mathfrak{o}^{\times}} G_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)\left(t_{1} t_{2}\right)^{s} \frac{\mathrm{~d} t_{1} \mathrm{~d} t_{2}}{t_{1} t_{2}}$. Using our
two actions of \mathfrak{o}^{+}

The Link II

We want to work with $I=\iint_{\left(\mathbb{R}_{+}^{\star}\right) / 0^{\times}} G_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)\left(t_{1} t_{2}\right)^{s} \frac{\mathrm{~d} t_{1} \mathrm{~d} t_{2}}{t_{1} t_{2}}$. Using our two actions of \mathfrak{o}^{\times},

$$
I=\Lambda \sum_{(\alpha, \beta, \xi, \eta) \in \Omega} \iint_{\left(\mathbb{R}_{+}^{\times}\right)^{2} / \mathfrak{o}^{\times}} H\left(\alpha, \beta, \xi, \eta, t_{1}, t_{2}\right) \frac{\mathrm{d} t_{1} \mathrm{~d} t_{2}}{t_{1} t_{2}}
$$

The Link II

We want to work with $I=\iint_{\left(\mathbb{R}_{+}^{\star}\right) / 0^{\times}} G_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)\left(t_{1} t_{2}\right)^{s} \frac{\mathrm{~d} t_{1} \mathrm{~d} t_{2}}{t_{1} t_{2}}$. Using our two actions of \mathfrak{o}^{\times},

$$
\begin{aligned}
I & =\Lambda \sum_{(\alpha, \beta, \xi, \eta) \in \Omega} \iint_{\left(\mathbb{R}_{+}^{\star}\right)^{2} / \mathfrak{o}^{\times}} H\left(\alpha, \beta, \xi, \eta, t_{1}, t_{2}\right) \frac{\mathrm{d} t_{1} \mathrm{~d} t_{2}}{t_{1} t_{2}} \\
& =\Lambda \sum_{(\alpha, \beta, \xi, \eta) \in \tilde{\Omega} \in \in \mathfrak{o}^{\times}} \sum_{\left(\mathbb{R}_{+}^{*}\right)^{2} / \mathfrak{o}^{\times}} H \int_{\left(\epsilon(\alpha, \beta, \xi, \eta), t_{1}, t_{2}\right) \frac{\mathrm{d} t_{1} \mathrm{~d} t_{2}}{t_{1} t_{2}}}
\end{aligned}
$$

The Link II

We want to work with $I=\iint_{\left(\mathbb{R}^{\star}\right) / \mathbf{o}^{\times}} G_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)\left(t_{1} t_{2}\right)^{s} \frac{\mathrm{~d} t_{1} \mathrm{~d} t_{2}}{t_{1} t_{2}}$. Using our two actions of \mathfrak{o}^{\times},

$$
\begin{aligned}
I & =\Lambda \sum_{(\alpha, \beta, \xi, \eta) \in \Omega} \iint_{\left(\mathbb{R}_{+}^{\star}\right)^{2} / \mathfrak{o}^{\times}} H\left(\alpha, \beta, \xi, \eta, t_{1}, t_{2}\right) \frac{\mathrm{d} t_{1} \mathrm{~d} t_{2}}{t_{1} t_{2}} \\
& =\Lambda \sum_{(\alpha, \beta, \xi, \eta) \in \tilde{\Omega} \in \in \mathfrak{o}^{\times}} \sum_{\left(\mathbb{R}_{+}^{\star}\right)^{2} / \mathfrak{o}^{\times}} H \int_{(\alpha, \beta, \xi, \eta) \in \tilde{\Omega}} H\left(\epsilon(\alpha, \beta, \xi, \eta), t_{1}, t_{2}\right) \frac{\mathrm{d} t_{1} \mathrm{~d} t_{2}}{t_{1} t_{2}} \\
& =\Lambda \sum_{\epsilon \in \mathfrak{o}^{\times}} \int_{\epsilon\left(\mathbb{R}_{+}^{*}\right)^{2} / \mathfrak{o}^{\times}} H\left(\alpha, \beta, \xi, \eta, t_{1}, t_{2}\right) \frac{\mathrm{d} t_{1} \mathrm{~d} t_{2}}{t_{1} t_{2}}
\end{aligned}
$$

The Link III

$$
I=2 \Lambda \sum_{(\alpha, \beta, \xi, \eta) \in \tilde{\Omega}} \iint_{\left(\mathbb{R}_{+}^{\star}\right)^{2}} H\left(\alpha, \beta, \xi, \eta, t_{1}, t_{2}\right) \frac{\mathrm{d} t_{1} \mathrm{~d} t_{2}}{t_{1} t_{2}}
$$

There are issues with this computation, though:

- We were not careful about justifying interverting integrals and sums.
- In fact, it is not valid at all: some terms in the sum are not even integrable on $\left(\mathbb{R}_{+}^{\star}\right)^{2} / \mathfrak{o}^{\times}$. For example,
$H\left(0,0,1,1, t_{1}, t_{2}\right)=\left(t_{1} t_{2}\right)^{s+3 \nu_{1}-3 \nu_{2}}$
cannot be integrable at the same time at 0 and ∞.

The Link III

$$
I=2 \Lambda \sum_{(\alpha, \beta, \xi, \eta) \in \tilde{\Omega}} \iint_{\left(\mathbb{R}_{+}^{*}\right)^{2}} H\left(\alpha, \beta, \xi, \eta, t_{1}, t_{2}\right) \frac{\mathrm{d} t_{1} \mathrm{~d} t_{2}}{t_{1} t_{2}}
$$

There are issues with this computation, though:

- We were not careful about justifying interverting integrals and sums.
- In fact, it is not valid at all: some terms in the sum are not even integrable on $\left(\mathbb{R}_{+}^{*}\right)^{2} / 0^{\times}$. For example,
$H\left(0,0,1,1, t_{1}, t_{2}\right)=\left(t_{1} t_{2}\right)^{s+3 \nu_{1}-3 \nu_{2}}$
cannot be intearable at the same time at 0 and ∞.

The Link III

$$
I=2 \Lambda \sum_{(\alpha, \beta, \xi, \eta) \in \tilde{\Omega}} \iint_{\left(\mathbb{R}_{+}^{\star}\right)^{2}} H\left(\alpha, \beta, \xi, \eta, t_{1}, t_{2}\right) \frac{\mathrm{d} t_{1} \mathrm{~d} t_{2}}{t_{1} t_{2}}
$$

There are issues with this computation, though:

- We were not careful about justifying interverting integrals and sums.
- In fact, it is not valid at all: some terms in the sum are not even integrable on $\left(\mathbb{R}_{+}^{\star}\right)^{2} / \mathfrak{o}^{\times}$. For example,
$H\left(0,0,1,1, t_{1}, t_{2}\right)=\left(t_{1} t_{2}\right)^{s+3 \nu_{1}-3 v_{2}}$
cannot be integrable at the same time at 0 and ∞

The Link III

$$
I=2 \wedge \sum_{(\alpha, \beta, \xi, \eta) \in \tilde{\Omega}} \iint_{\left(\mathbb{R}_{+}^{\star}\right)^{2}} H\left(\alpha, \beta, \xi, \eta, t_{1}, t_{2}\right) \frac{\mathrm{d} t_{1} \mathrm{~d} t_{2}}{t_{1} t_{2}}
$$

There are issues with this computation, though:

- We were not careful about justifying interverting integrals and sums.
- In fact, it is not valid at all: some terms in the sum are not even integrable on $\left(\mathbb{R}_{+}^{\star}\right)^{2} / \mathfrak{o}^{\times}$. For example,

cannot be integrable at the same time at 0 and ∞

The Link III

$$
I=2 \Lambda \sum_{(\alpha, \beta, \xi, \eta) \in \Omega} \iint_{\left(\mathbb{R}_{+}^{\star}\right)^{2}} H\left(\alpha, \beta, \xi, \eta, t_{1}, t_{2}\right) \frac{\mathrm{d} t_{1} \mathrm{~d} t_{2}}{t_{1} t_{2}}
$$

There are issues with this computation, though:

- We were not careful about justifying interverting integrals and sums.
- In fact, it is not valid at all: some terms in the sum are not even integrable on $\left(\mathbb{R}_{+}^{\star}\right)^{2} / \mathfrak{o}^{\times}$. For example,

$$
H\left(0,0,1,1, t_{1}, t_{2}\right)=\left(t_{1} t_{2}\right)^{s+3 \nu_{1}-3 \nu_{2}}
$$

cannot be integrable at the same time at 0 and ∞.

Troop Reorganization

We find it necessary to partition Ω into smaller subsets and sort out who is integrable and who is not.
The right way to do this is by conditioning the parameters α, β, ξ, η on whether they are 0 or not.

	$\alpha=0 \quad \xi \neq 0$	$\alpha \neq 0 \quad \xi=0$	$\alpha \neq 0 \quad \xi \neq 0$	
$\beta=0$	$\eta \neq 0$	Excluded	Ω_{6}	Excluded
$\beta \neq 0$	$\eta=0$	Ω_{5}	Ω_{4}	Ω_{2}
$\beta \neq 0$	$\eta \neq 0$	Excluded	Ω_{3}	Ω_{1}

Notice that each of these sets is stable under the action of o We call $G_{\nu_{1}, \nu_{2}}^{\Omega_{i}}$ the part of $G_{\nu_{1}, \nu_{2}}$ corresponding to Ω_{i}.

Troop Reorganization

We find it necessary to partition Ω into smaller subsets and sort out who is integrable and who is not.
The right way to do this is by conditioning the parameters α, β, ξ, η on whether they are 0 or not.

| | $\alpha=0 \quad \xi \neq 0$ | $\alpha \neq 0 \quad \xi=0$ | $\alpha \neq 0 \quad \xi \neq 0$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\beta=0$ | $\eta \neq 0$ | Excluded | Ω_{6} | Excluded |
| $\beta \neq 0$ | $\eta=0$ | Ω_{5} | Ω_{4} | Ω_{2} |
| $\beta \neq 0$ | $\eta \neq 0$ | Excluded | Ω_{3} | Ω_{1} |

Notice that each of these sets is stable under the action of o We call $G_{\nu_{1}, \nu_{2}}^{\Omega_{i}}$ the part of $G_{\nu_{1}, \nu_{2}}$ corresponding to Ω_{i}

Troop Reorganization

We find it necessary to partition Ω into smaller subsets and sort out who is integrable and who is not.
The right way to do this is by conditioning the parameters α, β, ξ, η on whether they are 0 or not.

Notice that each of these sets is stable under the action of o We call $G_{\nu_{1}, \nu_{2}}^{\Omega_{i}}$ the part of $G_{\nu_{1}, \nu_{2}}$ corresponding to Ω_{i}

Troop Reorganization

We find it necessary to partition Ω into smaller subsets and sort out who is integrable and who is not.
The right way to do this is by conditioning the parameters α, β, ξ, η on whether they are 0 or not.

	$\alpha=0 \quad \xi \neq 0$	$\alpha \neq 0 \quad \xi=0$	$\alpha \neq 0 \quad \xi \neq 0$	
$\beta=0$	$\eta \neq 0$	Excluded	Ω_{6}	Excluded
$\beta \neq 0$	$\eta=0$	Ω_{5}	Ω_{4}	Ω_{2}
$\beta \neq 0$	$\eta \neq 0$	Excluded	Ω_{3}	Ω_{1}

Notice that each of these sets is stable under the action of o We call $G_{\nu_{1}, \nu_{2}}^{\Omega_{i}}$ the part of $G_{\nu_{1}, \nu_{2}}$ corresponding to Ω_{i}.

Troop Reorganization

We find it necessary to partition Ω into smaller subsets and sort out who is integrable and who is not.
The right way to do this is by conditioning the parameters α, β, ξ, η on whether they are 0 or not.

	$\alpha=0 \quad \xi \neq 0$	$\alpha \neq 0 \quad \xi=0$	$\alpha \neq 0 \quad \xi \neq 0$	
$\beta=0$	$\eta \neq 0$	Excluded	Ω_{6}	Excluded
$\beta \neq 0$	$\eta=0$	Ω_{5}	Ω_{4}	Ω_{2}
$\beta \neq 0$	$\eta \neq 0$	Excluded	Ω_{3}	Ω_{1}

Notice that each of these sets is stable under the action of \mathfrak{o}^{\times}.

Troop Reorganization

We find it necessary to partition Ω into smaller subsets and sort out who is integrable and who is not.
The right way to do this is by conditioning the parameters α, β, ξ, η on whether they are 0 or not.

	$\alpha=0 \quad \xi \neq 0$	$\alpha \neq 0 \quad \xi=0$	$\alpha \neq 0 \quad \xi \neq 0$	
$\beta=0$	$\eta \neq 0$	Excluded	Ω_{6}	Excluded
$\beta \neq 0$	$\eta=0$	Ω_{5}	Ω_{4}	Ω_{2}
$\beta \neq 0$	$\eta \neq 0$	Excluded	Ω_{3}	Ω_{1}

Notice that each of these sets is stable under the action of \mathfrak{o}^{\times}. We call $G_{\nu_{1}, \nu_{2}}^{\Omega_{i}}$ the part of $G_{\nu_{1}, \nu_{2}}$ corresponding to Ω_{i}.

Finally, Some Progress

Proposition

Let $s_{0}, s_{1}, s_{2}, \nu_{1}, \nu_{2}$ and s be complex numbers related by

Assume that s in is some bounded open set, $\operatorname{Re} \nu_{1}, \operatorname{Re} \nu_{2}$ and $\operatorname{Re}\left(\nu_{1}-\nu_{2}\right)$ are large. Then

Finally, Some Progress

Proposition

Let $s_{0}, s_{1}, s_{2}, \nu_{1}, \nu_{2}$ and s be complex numbers related by

$$
\left\{\begin{array} { r l }
{ 3 \nu _ { 1 } = s _ { 0 } + s _ { 1 } + 2 s _ { 2 } - 1 } \\
{ 3 \nu _ { 2 } = s _ { 0 } - s _ { 1 } - 2 s _ { 2 } + 2 } \\
{ s } & { = - 2 s _ { 1 } + 2 s _ { 2 } }
\end{array} \Longleftrightarrow \left\{\begin{array}{ll}
\frac{3 \nu_{1}+3 \nu_{2}}{2} & =s_{0}+\frac{1}{2} \\
\frac{3 \nu_{1}-3 \nu_{2}-2 s}{6} & =s_{1}-\frac{1}{2} \\
\frac{3 \nu_{1}-2 \nu_{2}+s}{6} & =s_{2}-\frac{1}{2}
\end{array}\right.\right.
$$

Assume that s in is some bounded open set, $\operatorname{Re} \nu_{1}, \operatorname{Re} \nu_{2}$ and $\operatorname{Re}\left(\nu_{1}-\nu_{2}\right)$ are large. Then

Finally, Some Progress

Proposition

Let $s_{0}, s_{1}, s_{2}, \nu_{1}, \nu_{2}$ and s be complex numbers related by

$$
\left\{\begin{array} { r l }
{ 3 \nu _ { 1 } = s _ { 0 } + s _ { 1 } + 2 s _ { 2 } - 1 } \\
{ 3 \nu _ { 2 } } & { = s _ { 0 } - s _ { 1 } - 2 s _ { 2 } + 2 } \\
{ s } & { = - 2 s _ { 1 } + 2 s _ { 2 } }
\end{array} \Longleftrightarrow \left\{\begin{array}{ll}
\frac{3 \nu_{1}+3 \nu_{2}}{2} & =s_{0}+\frac{1}{2} \\
\frac{3 \nu_{1}-3 \nu_{2}-2 s}{6} & =s_{1}-\frac{1}{2} \\
\frac{3 \nu_{1}-2 \nu_{2}+s}{6} & =s_{2}-\frac{1}{2}
\end{array}\right.\right.
$$

Assume that s in is some bounded open set, $\operatorname{Re} \nu_{1}, \operatorname{Re} \nu_{2}$ and $\operatorname{Re}\left(\nu_{1}-\nu_{2}\right)$ are large. Then

Finally Some Progress II

Proposition

$$
\begin{aligned}
& \iint_{\left(\mathbb{R}_{+}^{\star}\right)^{2} / \mathfrak{o}^{\times}} G_{\nu_{1}, \nu_{2}}^{\Omega_{1}}\left(t_{1}, t_{2}\right)\left(t_{1} t_{2}\right)^{s} \frac{\mathrm{~d} t_{1} \mathrm{~d} t_{2}}{t_{1} t_{2}}= \frac{4}{3} \zeta^{\star}\left(2 s_{0}\right) \\
& \times \sum_{\substack{\xi \in \mathfrak{D}^{-1}, n \in \mathbb{Z} \\
\xi, n \neq 0 \\
T r \xi+n=0}} \tau_{s_{1}-\frac{1}{2}}(|n|) \tau_{s_{2}-\frac{1}{2}}^{K, A}(\xi \mathfrak{D}) \\
& \quad \int_{0}^{+\infty} y^{\frac{3}{2}} K_{s_{1}-\frac{1}{2}}(2 \pi y|n|) K_{s_{2}-\frac{1}{2}}\left(2 \pi y\left|\xi^{(1)}\right|\right) K_{s_{2}-\frac{1}{2}}\left(2 \pi y\left|\xi^{(2)}\right|\right) y^{s_{0}-1} \frac{\mathrm{~d} y}{y}
\end{aligned}
$$

More Progress

Proposition

Same hypotheses as before. We have

$$
\begin{aligned}
& \quad \iint_{\left(\mathbb{R}_{+}^{\star}\right)^{2} / \mathfrak{o}^{\times}} G_{\nu_{1}, \nu_{2}}^{\Omega_{2}}\left(t_{1}, t_{2}\right)\left(t_{1} t_{2}\right)^{s} \frac{\mathrm{~d} t_{1} \mathrm{~d} t_{2}}{t_{1} t_{2}}=\frac{2}{3} \zeta^{\star}\left(2 s_{0}\right) \zeta^{\star}\left(2-2 s_{1}\right) \\
& \times \sum_{\substack{\xi \in \mathfrak{D}^{-1} \\
\xi \neq 0}} \tau_{s_{2}-\frac{1}{2}}^{K, A}(\xi \mathfrak{D}) \int_{0}^{+\infty} y^{2-s_{1}} K_{s_{2}-\frac{1}{2}}\left(2 \pi y\left|\xi^{(1)}\right|\right) K_{s_{2}-\frac{1}{2}}\left(2 \pi y\left|\xi^{(2)}\right|\right) y^{s_{0}-1} \frac{\mathrm{~d} y}{y}
\end{aligned}
$$

The Case of Ω_{3}

- Unfortunately, we run into trouble when trying to do a similar computation with $G_{\nu_{1}, \nu_{2}}^{\Omega_{3}}$.
- More precisely, along the way, we encounter

- This requires $\operatorname{Re} \frac{3 \nu_{1}-3 \nu_{2}-2 s}{6}$ to be negative, which contradicts the hypotheses made so far.

The Case of Ω_{3}

- Unfortunately, we run into trouble when trying to do a similar computation with $G_{\nu_{1}, \nu_{2}}^{\Omega_{3}}$.
- More precisely, along the way, we encounter

- This requires $\operatorname{Re} \frac{3 \nu_{1}-3 \nu_{2}-2 s}{6}$ to be negative, which contradicts the hypotheses made so far.

The Case of Ω_{3}

- Unfortunately, we run into trouble when trying to do a similar computation with $G_{\nu_{1}, \nu_{2}}^{\Omega_{3}}$.
- More precisely, along the way, we encounter

$$
\int_{0}^{+\infty} \mathrm{e}^{-x} x^{-\frac{3 \nu_{1}-3 \nu_{2}-2 s}{6}} \frac{\mathrm{~d} x}{x}
$$

- This requires Re $\frac{3 \nu_{1}-3 \nu_{2}-2 s}{6}$ to be negative, which contradicts the hypotheses made so far.

The Case of Ω_{3}

- Unfortunately, we run into trouble when trying to do a similar computation with $G_{\nu_{1}, \nu_{2}}^{\Omega_{3}}$.
- More precisely, along the way, we encounter

$$
\int_{0}^{+\infty} \mathrm{e}^{-x} x^{-\frac{3 \nu_{1}-3 \nu_{2}-2 s}{6}} \frac{\mathrm{~d} x}{x}
$$

- This requires $\operatorname{Re} \frac{3 \nu_{1}-3 \nu_{2}-2 s}{6}$ to be negative, which contradicts the hypotheses made so far.

A Workaround: Poisson's Summation Formula

Poisson's Summation Formula

This allows us to transform $G_{\nu_{1}, \nu_{2}}^{\Omega_{3} \cup \Omega_{4}}$ and obtain a new expression on which the former strategy works.

A Workaround: Poisson's Summation Formula

Poisson's Summation Formula

$$
\forall t>0 \quad \sum_{\eta \in \mathbb{Z}} \mathrm{e}^{-\pi \eta^{2} t}=\frac{1}{\sqrt{t}} \sum_{\eta \in \mathbb{Z}} \mathrm{e}^{-\frac{\pi \eta^{2}}{t}}
$$

This allows us to transform $G_{\nu_{1}, \nu_{2}}^{\Omega_{3} \cup \Omega_{4}}$ and obtain a new expression on which the former strategy works.

A Workaround: Poisson's Summation Formula

Poisson's Summation Formula

$$
\forall t>0 \quad \sum_{\eta \in \mathbb{Z}} \mathrm{e}^{-\pi \eta^{2} t}=\frac{1}{\sqrt{t}} \sum_{\eta \in \mathbb{Z}} \mathrm{e}^{-\frac{\pi \eta^{2}}{t}}
$$

This allows us to transform $G_{\nu_{1}, \nu_{2}}^{\Omega_{3} \cup \Omega_{4}}$ and obtain a new expression on which the former strategy works.

More Precisely...

Proposition

Same hypotheses as before. We have

$$
\begin{aligned}
& \iint_{\left(\mathbb{R}_{+}^{\star}\right)^{2} / 0^{\times}}\left(G_{\nu_{1}, \nu_{2}}^{\Omega_{3} \cup \Omega_{4}}\left(t_{1}, t_{2}\right)-V_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)\right)\left(t_{1} t_{2}\right)^{s} \frac{\mathrm{~d} t_{1} \mathrm{~d} t_{2}}{t_{1} t_{2}}=\frac{2}{3} \zeta^{\star}\left(2 s_{0}\right) \zeta^{\star}\left(2 s_{1}\right) \\
& \times \sum_{\substack{\xi \in \mathcal{D}^{-1} \\
\xi \neq 0}} \tau_{s_{2}-\frac{1}{2}}^{K, A}(\xi \mathfrak{D}) \int_{0}^{+\infty} y^{s_{1}+1} K_{s_{2}-\frac{1}{2}}\left(2 \pi y\left|\xi^{(1)}\right|\right) K_{s_{2}-\frac{1}{2}}\left(2 \pi y\left|\xi^{(2)}\right|\right) y^{s_{0}-1} \frac{\mathrm{~d} y}{y}
\end{aligned}
$$

More Precisely II

Proposition

where

$$
\begin{aligned}
& V_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)=\zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{2}-1\right)\left(t_{1} t_{2}\right)^{-\frac{3 \nu_{1}-3 \nu_{2}+3}{2}} \\
& E^{\star}\left(\frac{t_{1} \alpha_{1}^{(1)}-\mathrm{i} t_{2} \alpha_{1}^{(2)}}{t_{1} \alpha_{2}^{(1)}-\mathrm{i} t_{2} \alpha_{2}^{(2)}}, \frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right)
\end{aligned}
$$

and $\left(\alpha_{1}, \alpha_{2}\right)$ is a \mathbb{Z}-basis of \mathfrak{a}.

What about Ω_{5} and Ω_{6} ?

It can be shown that

What about Ω_{5} and Ω_{6} ?

It can be shown that

$G_{\nu_{1}, \nu_{2}}^{\Omega_{6}}\left(t_{1}, t_{2}\right)=\left(t_{1} t_{2}\right)^{-3 \nu_{2}-\frac{3 \nu_{1}}{2}} \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right)$

What about Ω_{5} and Ω_{6} ?

It can be shown that

$$
G_{\nu_{1}, \nu_{2}}^{\Omega_{5}}\left(t_{1}, t_{2}\right)=\left(t_{1} t_{2}\right)^{3 \nu_{1}+\frac{3 \nu_{2}}{2}} \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right)
$$

$$
\times E^{\star}\left(\frac{t_{1} \alpha_{1}^{(1)}+\mathrm{i} t_{2} \alpha_{1}^{(2)}}{t_{1} \alpha_{2}^{(1)}+\mathrm{i} t_{2} \alpha_{2}^{(2)}}, \frac{3 \nu_{2}}{2}\right)
$$

$G_{\nu_{1}, \nu_{2}}^{\Omega_{6}}\left(t_{1}, t_{2}\right)=\left(t_{1} t_{2}\right)^{-3 \nu_{2}-\frac{3 \nu_{1}}{2}} \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right)$

What about Ω_{5} and Ω_{6} ?

It can be shown that

$$
\begin{aligned}
& G_{\nu_{1}, \nu_{2}}^{\Omega_{5}}\left(t_{1}, t_{2}\right)=\left(t_{1} t_{2}\right)^{3 \nu_{1}+\frac{3 \nu_{2}}{2}} \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}\right.\left.+3 \nu_{2}-1\right) \\
& \times E^{\star}\left(\frac{t_{1} \alpha_{1}^{(1)}+\mathrm{i} t_{2} \alpha_{1}^{(2)}}{t_{1} \alpha_{2}^{(1)}+\mathrm{i} t_{2} \alpha_{2}^{(2)}}, \frac{3 \nu_{2}}{2}\right) \\
&\left.G_{\nu_{1}, \nu_{2}}^{\Omega_{6}}\left(t_{1}, t_{2}\right)=\left(t_{1} t_{2}\right)^{-3 \nu_{2}-\frac{3 \nu_{1}}{2} \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}\right.}+3 \nu_{2}-1\right) \\
& \times E^{\star}\left(\frac{t_{1} \alpha_{1}^{(1)}+\mathrm{i} t_{2} \alpha_{1}^{(2)}}{t_{1} \alpha_{2}^{(1)}+\mathrm{i} t_{2} \alpha_{2}^{(2)}}, \frac{3 \nu_{1}}{2}\right)
\end{aligned}
$$

In Summary

Letting

we obtain

In Summary

Letting

$$
f_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)=
$$

$$
\zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{2}-1\right)\left(t_{1} t_{2}\right)^{-\frac{3 \nu_{1}-3 \nu_{2}+3}{2}} E^{\star}\left(\frac{t_{1} \alpha_{1}^{(1)}-\mathrm{i} t_{2} \alpha_{1}^{(2)}}{t_{1} \alpha_{2}^{(1)}-\mathrm{i} t_{2} \alpha_{2}^{(2)}}, \frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right)
$$

we obtain

In Summary

Letting

$$
\begin{aligned}
& f_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)= \\
& \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{2}-1\right)\left(t_{1} t_{2}\right)^{-\frac{3 \nu_{1}-3 \nu_{2}+3}{2}} E^{\star}\left(\frac{t_{1} \alpha_{1}^{(1)}-\mathrm{i} t_{2} \alpha_{1}^{(2)}}{t_{1} \alpha_{2}^{(1)}-\mathrm{i}_{2} \alpha_{2}^{(2)}}, \frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \\
& \quad+\left(t_{1} t_{2}\right)^{3 \nu_{1}+\frac{3 \nu_{2}}{2} \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{1}-1\right) E^{\star}\left(\frac{t_{1} \alpha_{1}^{(1)}+\mathrm{i} t_{2} \alpha_{1}^{(2)}}{t_{1} \alpha_{2}^{(1)}+\mathrm{i} t_{2} \alpha_{2}^{(2)}}, \frac{3 \nu_{2}}{2}\right)} \\
& \quad+\left(t_{1} t_{2}\right)^{-3 \nu_{2}-\frac{3 u_{1}}{2} \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) E^{\star}\left(\frac{t_{1} \alpha_{1}^{(1)}+\mathrm{i} t_{2} \alpha_{1}^{(2)}}{t_{1} \alpha_{2}^{(1)}+\mathrm{i} t_{2} \alpha_{2}^{(2)}}, \frac{3 \nu_{1}}{2}\right)}
\end{aligned}
$$

we obtain

In Summary

Letting

$$
\begin{aligned}
& f_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)= \\
& \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{2}-1\right)\left(t_{1} t_{2}\right)^{-\frac{3 \nu_{1}-3 \nu_{2}+3}{2}} E^{\star}\left(\frac{t_{1} \alpha_{1}^{(1)}-\mathrm{i} t_{2} \alpha_{1}^{(2)}}{t_{1} \alpha_{2}^{(1)}-\mathrm{i} t_{2} \alpha_{2}^{(2)}}, \frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \\
& \quad+\left(t_{1} t_{2}\right)^{3 \nu_{1}+\frac{3 \nu_{2}}{2}} \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{1}-1\right) E^{\star}\left(\frac{t_{1} \alpha_{1}^{(1)}+\mathrm{i} t_{2} \alpha_{1}^{(2)}}{t_{1} \alpha_{2}^{(1)}+\mathrm{i} t_{2} \alpha_{2}^{(2)}}, \frac{3 \nu_{2}}{2}\right) \\
& \quad+\left(t_{1} t_{2}\right)^{-3 \nu_{2}-\frac{3 \nu_{1}}{2} \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) E^{\star}\left(\frac{t_{1} \alpha_{1}^{(1)}+\mathrm{i} t_{2} \alpha_{1}^{(2)}}{t_{1} \alpha_{2}^{(1)}+\mathrm{i} t_{2} \alpha_{2}^{(2)}}, \frac{3 \nu_{1}}{2}\right)}
\end{aligned}
$$

we obtain

In Summary

Letting

$$
\begin{aligned}
& f_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)= \\
& \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{2}-1\right)\left(t_{1} t_{2}\right)^{-\frac{3 \nu_{1}-3 \nu_{2}+3}{2}} E^{\star}\left(\frac{t_{1} \alpha_{1}^{(1)}-\mathrm{i} t_{2} \alpha_{1}^{(2)}}{t_{1} \alpha_{2}^{(1)}-\mathrm{i} t_{2} \alpha_{2}^{(2)}}, \frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \\
& \quad+\left(t_{1} t_{2}\right)^{3 \nu_{1}+\frac{3 \nu_{2}}{2}} \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{1}-1\right) E^{\star}\left(\frac{t_{1} \alpha_{1}^{(1)}+\mathrm{i} t_{2} \alpha_{1}^{(2)}}{t_{1} \alpha_{2}^{(1)}+\mathrm{i} t_{2} \alpha_{2}^{(2)}}, \frac{3 \nu_{2}}{2}\right) \\
& \quad+\left(t_{1} t_{2}\right)^{-3 \nu_{2}-\frac{3 \nu_{1}}{2} \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) E^{\star}\left(\frac{t_{1} \alpha_{1}^{(1)}+\mathrm{i} t_{2} \alpha_{1}^{(2)}}{t_{1} \alpha_{2}^{(1)}+\mathrm{i} t_{2} \alpha_{2}^{(2)}}, \frac{3 \nu_{1}}{2}\right)}
\end{aligned}
$$

we obtain

In Summary II

Theorem

Same hypotheses as before. We have

$$
R_{A}\left(s_{0}, s_{1}, s_{2}\right)=6 \iint_{\left(\mathbb{R}_{+}^{*}\right)^{2} / \mathfrak{o}^{\times}}\left(G_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)-f_{\nu_{1}, \nu_{2}}\left(t_{1}, t_{2}\right)\right)\left(t_{1} t_{2}\right)^{s} \frac{d t_{1} d t_{2}}{t_{1} t_{2}}
$$

What have we got so far?

- So, we have an identity linking our renormalized integral R_{A}, $G_{\nu_{1}, \nu_{2}}$ and $f_{\nu_{1}, \nu_{2}}$.
- Although w is a functional equation for $G_{\nu_{1}, \nu_{2}}$, it does not leave $f_{\nu_{1}, \nu_{2}}$ invariant.
- But, as it turns out, the integration over $\left(\mathbb{R}_{+}^{*}\right)^{2} / 0^{x}$ has the effect of creating this extra functional equation.
- This requires some work, though.

What have we got so far?

- So, we have an identity linking our renormalized integral R_{A}, $G_{\nu_{1}, \nu_{2}}$ and $f_{\nu_{1}, \nu_{2}}$.
- Although w is a functional equation for $G_{\nu_{1}, \nu_{2}}$, it does not leave $f_{\nu_{1}, \nu_{2}}$ invariant.
- But, as it turns out, the integration over $\left(\mathbb{R}^{*}\right)^{2} / 0^{x}$ has the effect of creating this extra functional equation.
- This requires some work, though.

What have we got so far?

- So, we have an identity linking our renormalized integral R_{A}, $G_{\nu_{1}, \nu_{2}}$ and $f_{\nu_{1}, \nu_{2}}$.
- Although w is a functional equation for $G_{\nu_{1}, \nu_{2}}$, it does not leave $f_{\nu_{1}, \nu_{2}}$ invariant.
- But, as it turns out, the integration over $\left(\mathbb{R}_{+}^{\star}\right)^{2} / 0^{\times}$has the effect of creating this extra functional equation.
- This requires some work, though.

What have we got so far?

- So, we have an identity linking our renormalized integral R_{A}, $G_{\nu_{1}, \nu_{2}}$ and $f_{\nu_{1}, \nu_{2}}$.
- Although w is a functional equation for $G_{\nu_{1}, \nu_{2}}$, it does not leave $f_{\nu_{1}, \nu_{2}}$ invariant.
- But, as it turns out, the integration over $\left(\mathbb{R}_{+}^{\star}\right)^{2} / \mathfrak{o}^{\times}$has the effect of creating this extra functional equation.
- This requires some work, though.

What have we got so far?

- So, we have an identity linking our renormalized integral R_{A}, $G_{\nu_{1}, \nu_{2}}$ and $f_{\nu_{1}, \nu_{2}}$.
- Although w is a functional equation for $G_{\nu_{1}, \nu_{2}}$, it does not leave $f_{\nu_{1}, \nu_{2}}$ invariant.
- But, as it turns out, the integration over $\left(\mathbb{R}_{+}^{\star}\right)^{2} / \mathfrak{o}^{\times}$has the effect of creating this extra functional equation.
- This requires some work, though.

Introduction and First Notations
Polar divisor considerations
Proof of the Main Theorem Acknowledgements

Hmm... Kinda nasty...

Hmm... Kinda nasty...

$$
\frac{R_{A}\left(s_{0}, s_{1}, s_{2}\right)}{3}=\int_{0}^{+\infty}\left(\mathcal{G}_{\nu_{1}, \nu_{2}}(v)\right.
$$

Hmm... Kinda nasty...

$$
\begin{aligned}
\frac{R_{A}\left(s_{0}, s_{1}, s_{2}\right)}{3}= & \int_{0}^{+\infty}\left(\mathcal{G}_{\nu_{1}, \nu_{2}}(v)\right. \\
& -v^{-\frac{3 \nu_{1}-3 \nu_{2}+3}{2}} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{2}-1\right) \\
& -v^{3 \nu_{1}+\frac{3 \nu_{2}}{2} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right)} \\
& -v^{\left.-3 \nu_{2}-\frac{3 \nu_{1}}{2} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right)\right) v^{s} \frac{d v}{v}}
\end{aligned}
$$

Hmm... Kinda nasty...

$$
\begin{aligned}
\frac{R_{A}\left(s_{0}, s_{1}, s_{2}\right)}{3}= & \int_{0}^{+\infty}\left(\mathcal{G}_{\nu_{1}, \nu_{2}}(v)\right. \\
& -v^{-\frac{3 \nu_{1}-3 \nu_{2}+3}{2}} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{2}-1\right) \\
& \quad-v^{3 \nu_{1}+\frac{3 \nu_{2}}{2}} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right)
\end{aligned}
$$

Hmm... Kinda nasty...

$$
\begin{aligned}
\frac{R_{A}\left(s_{0}, s_{1}, s_{2}\right)}{3}= & \int_{0}^{+\infty}\left(\mathcal{G}_{\nu_{1}, \nu_{2}}(v)\right. \\
& -v^{-\frac{3 \nu_{1}-3 \nu_{2}+3}{2}} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{2}-1\right) \\
& -v^{3 \nu_{1}+\frac{3 \nu_{2}}{2}} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
& \left.-v^{-3 \nu_{2}-\frac{3 \nu_{1}}{2}} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right)\right) v^{s} \frac{\mathrm{~d} v}{v}
\end{aligned}
$$

Final Modifications

- Replace v by $\frac{1}{v}$ in the first one.
- Regroup into one integral from 1 to
- Let $x=\sqrt{v}$, in order to get rid of those fractional powers.
- Shake.

Final Modifications

- Split this integral as $\int_{0}^{1}+\int_{1}^{+\infty}$.
- Replace v by $\frac{1}{v}$ in the first one.
- Regroup into one integral from 1 to
- Let $x=\sqrt{v}$, in order to get rid of those fractional powers.
- Shake.

Final Modifications

- Split this integral as $\int_{0}^{1}+\int_{1}^{+\infty}$.
- Replace v by $\frac{1}{v}$ in the first one.
- Regroup into one integral from 1 to
- Let $x=\sqrt{v}$, in order to get rid of those fractional powers.
- Shake.

Final Modifications

- Split this integral as $\int_{0}^{1}+\int_{1}^{+\infty}$.
- Replace v by $\frac{1}{v}$ in the first one.
- Regroup into one integral from 1 to $+\infty$.
- Let $x=\sqrt{v}$, in order to get rid of those fractional powers.
- Shake.

Final Modifications

- Split this integral as $\int_{0}^{1}+\int_{1}^{+\infty}$.
- Replace v by $\frac{1}{v}$ in the first one.
- Regroup into one integral from 1 to $+\infty$.
- Let $x=\sqrt{v}$, in order to get rid of those fractional powers.
- Shake.

Final Modifications

- Split this integral as $\int_{0}^{1}+\int_{1}^{+\infty}$.
- Replace v by $\frac{1}{v}$ in the first one.
- Regroup into one integral from 1 to $+\infty$.
- Let $x=\sqrt{v}$, in order to get rid of those fractional powers.
- Shake.

Nastier

$$
\begin{aligned}
\frac{R_{A}\left(s_{0}, s_{1}, s_{2}\right)}{3}= & \int_{1}^{+\infty}\left(\mathcal{G}_{\nu_{1}, \nu_{2}}\left(x^{2}\right) x^{2 s}+\mathcal{G}_{\nu_{1}, \nu_{2}}\left(x^{-2}\right) x^{-2 s}\right. \\
& -x^{-\left(3 \nu_{1}+3 \nu_{2}+3-2 s\right)} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{2}-1\right) \\
& -x^{6 \nu_{1}+3 \nu_{2}+2 s} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
& -x^{-\left(3 \nu+6 \nu_{2}-2 s\right)} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
& -x^{3 \nu_{1}-3 \nu_{2}+3-2 s} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}-2\right) \\
& -x^{-\left(6 \nu_{1}+3 \nu_{2}+2 s\right)} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
& \left.-x^{3 \nu_{1}+6 \nu_{2}-2 s} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right)\right) \frac{\mathrm{d} x}{x}
\end{aligned}
$$

Even Nastier

$$
\begin{aligned}
\frac{R_{A}\left(s_{0}, s_{1}, s_{2}\right)}{3}= & \int_{1}^{+\infty}\left(\mathcal{G}_{\nu_{1}, \nu_{2}}\left(x^{2}\right) x^{2 s}+\mathcal{G}_{\nu_{1}, \nu_{2}}\left(x^{-2}\right) x^{-2 s}\right. \\
& -x^{6 \nu_{1}+3 \nu_{2}+2 s} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
& -x^{3 \nu_{1}-3 \nu_{2}+3-2 s} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}-2\right) \\
& \left.-x^{3 \nu_{1}+6 \nu_{2}-2 s} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right)\right) \frac{\mathrm{d} x}{x} \\
& -\frac{1}{3 \nu_{1}-3 \nu_{2}+3-2 s} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{2}-1\right) \\
& -\frac{1}{3 \nu_{1}+6 \nu_{2}-2 s} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
& -\frac{1}{6 \nu_{1}+3 \nu_{2}+2 s} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right)
\end{aligned}
$$

Even Nastier

$$
\begin{aligned}
\frac{R_{A}\left(s_{0}, s_{1}, s_{2}\right)}{3}= & \int_{1}^{+\infty}\left(\mathcal{G}_{\nu_{1}, \nu_{2}}\left(x^{2}\right) x^{2 s}+\mathcal{G}_{\nu_{1}, \nu_{2}}\left(x^{-2}\right) x^{-2 s}\right. \\
& -x^{6 \nu_{1}+3 \nu_{2}+2 s} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
& -x^{3 \nu_{1}-3 \nu_{2}+3-2 s} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}-2\right) \\
& \left.-x^{3 \nu_{1}+6 \nu_{2}-2 s} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right)\right) \frac{\mathrm{d} x}{x} \\
& -\frac{1}{3 \nu_{1}-3 \nu_{2}+3-2 s} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{2}-1\right) \\
& -\frac{1}{3 \nu_{1}+6 \nu_{2}-2 s} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
& -\frac{1}{6 \nu_{1}+3 \nu_{2}+2 s} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right)
\end{aligned}
$$

Even More Nastier

$$
\begin{aligned}
\frac{R_{A}\left(s_{0}, s_{1}, s_{2}\right)}{3}= & \int_{1}^{+\infty}\left(\mathcal{G}_{\nu_{1}, \nu_{2}}\left(x^{2}\right) x^{2 s}+\mathcal{G}_{\nu_{1}, \nu_{2}}\left(x^{-2}\right) x^{-2 s}\right. \\
& -x^{6 \nu_{1}+3 \nu_{2}+2 s} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
& -x^{3 \nu_{1}-3 \nu_{2}+3-2 s} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}-2\right) \\
& -x^{3 \nu_{1}+6 \nu_{2}-2 s} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
& -x^{-\left(3 \nu_{1}+6 \nu_{2}-6-2 s\right)} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}-1\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-2\right) \\
& -x^{-\left(3 \nu_{1}-3 \nu_{2}-3-2 s\right)} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}-1\right) \zeta^{\star}\left(3 \nu_{2}\right) \\
& \left.-x^{-\left(6 \nu_{1}+3 \nu_{2}-6+2 s\right)} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-2\right) \zeta^{\star}\left(3 \nu_{1}-1\right)\right) \frac{\mathrm{d} x}{x}
\end{aligned}
$$

Even More Nastier II

$$
\begin{aligned}
& -\frac{1}{3 \nu_{1}-3 \nu_{2}+3-2 s} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{2}-1\right) \\
& -\frac{1}{3 \nu_{1}+6 \nu_{2}-2 s} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
& -\frac{1}{6 \nu_{1}+3 \nu_{2}+2 s} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
& +\frac{1}{3 \nu_{1}+6 \nu_{2}-6-2 s} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}-1\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-2\right) \\
& +\frac{1}{3 \nu_{1}-3 \nu_{2}-3-2 s} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}-1\right) \zeta^{\star}\left(3 \nu_{2}\right) \\
& +\frac{1}{6 \nu_{1}+3 \nu_{2}+2 s-6} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-2\right) \zeta^{\star}\left(3 \nu_{1}-1\right) .
\end{aligned}
$$

Even More Nastier

$$
\begin{aligned}
\frac{R_{A}\left(s_{0}, s_{1}, s_{2}\right)}{3}= & \int_{1}^{+\infty}\left(\mathcal{G}_{\nu_{1}, \nu_{2}}\left(x^{2}\right) x^{2 s}+\mathcal{G}_{\nu_{1}, \nu_{2}}\left(x^{-2}\right) x^{-2 s}\right. \\
& -x^{6 \nu_{1}+3 \nu_{2}+2 s} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
& -x^{3 \nu_{1}-3 \nu_{2}+3-2 s} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}-2\right) \\
& -x^{3 \nu_{1}+6 \nu_{2}-2 s} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
& -x^{-\left(3 \nu_{1}+6 \nu_{2}-6-2 s\right)} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}-1\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-2\right) \\
& -x^{-\left(3 \nu_{1}-3 \nu_{2}-3-2 s\right)} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}-1\right) \zeta^{\star}\left(3 \nu_{2}\right) \\
\quad & \left.-x^{-\left(6 \nu_{1}+3 \nu_{2}-6+2 s\right)} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-2\right) \zeta^{\star}\left(3 \nu_{1}-1\right)\right) \frac{\mathrm{d} x}{x}
\end{aligned}
$$

Even More Nastier

$$
\begin{aligned}
\frac{R_{A}\left(s_{0}, s_{1}, s_{2}\right)}{3}= & \int_{1}^{+\infty}\left(\mathcal{G}_{\nu_{1}, \nu_{2}}\left(x^{2}\right) x^{2 s}+\mathcal{G}_{\nu_{1}, \nu_{2}}\left(x^{-2}\right) x^{-2 s}\right. \\
\square & -x^{6 \nu_{1}+3 \nu_{2}+2 s} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
\square & -x^{3 \nu_{1}-3 \nu_{2}+3-2 s} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}-2\right) \\
\quad & -x^{3 \nu_{1}+6 \nu_{2}-2 s} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
\square & -x^{-\left(3 \nu_{1}+6 \nu_{2}-6-2 s\right)} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}-1\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-2\right) \\
& -x^{-\left(3 \nu_{1}-3 \nu_{2}-3-2 s\right)} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}-1\right) \zeta^{\star}\left(3 \nu_{2}\right) \\
\quad & \left.-x^{-\left(6 \nu_{1}+3 \nu_{2}-6+2 s\right)} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-2\right) \zeta^{\star}\left(3 \nu_{1}-1\right)\right) \frac{\mathrm{d} x}{x}
\end{aligned}
$$

Even More Nastier

$$
\begin{aligned}
\frac{R_{A}\left(s_{0}, s_{1}, s_{2}\right)}{3}= & \int_{1}^{+\infty}\left(\mathcal{G}_{\nu_{1}, \nu_{2}}\left(x^{2}\right) x^{2 s}+\mathcal{G}_{\nu_{1}, \nu_{2}}\left(x^{-2}\right) x^{-2 s}\right. \\
\square & -x^{6 \nu_{1}+3 \nu_{2}+2 s} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
\square & -x^{3 \nu_{1}-3 \nu_{2}+3-2 s} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}-2\right) \\
\square & -x^{3 \nu_{1}+6 \nu_{2}-2 s} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
\square & -x^{-\left(3 \nu_{1}+6 \nu_{2}-6-2 s\right)} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}-1\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-2\right) \\
\square & -x^{-\left(3 \nu_{1}-3 \nu_{2}-3-2 s\right)} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}-1\right) \zeta^{\star}\left(3 \nu_{2}\right) \\
\square & \left.-x^{-\left(6 \nu_{1}+3 \nu_{2}-6+2 s\right)} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-2\right) \zeta^{\star}\left(3 \nu_{1}-1\right)\right) \frac{\mathrm{d} x}{x}
\end{aligned}
$$

Even More Nastier

$$
\begin{aligned}
\frac{R_{A}\left(s_{0}, s_{1}, s_{2}\right)}{3}= & \int_{1}^{+\infty}\left(\mathcal{G}_{\nu_{1}, \nu_{2}}\left(x^{2}\right) x^{2 s}+\mathcal{G}_{\nu_{1}, \nu_{2}}\left(x^{-2}\right) x^{-2 s}\right. \\
\square & -x^{6 \nu_{1}+3 \nu_{2}+2 s} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
\square & -x^{3 \nu_{1}-3 \nu_{2}+3-2 s} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}-2\right) \\
\square & -x^{3 \nu_{1}+6 \nu_{2}-2 s} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
\square & -x^{-\left(3 \nu_{1}+6 \nu_{2}-6-2 s\right)} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}-1\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-2\right) \\
\square & -x^{-\left(3 \nu_{1}-3 \nu_{2}-3-2 s\right)} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}-1\right) \zeta^{\star}\left(3 \nu_{2}\right) \longrightarrow \\
\longrightarrow & \left.-x^{-\left(6 \nu_{1}+3 \nu_{2}-6+2 s\right)} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-2\right) \zeta^{\star}\left(3 \nu_{1}-1\right)\right) \frac{\mathrm{d} x}{x}
\end{aligned}
$$

Even More Nastier

$$
\begin{aligned}
\frac{R_{A}\left(s_{0}, s_{1}, s_{2}\right)}{3}= & \int_{1}^{+\infty}\left(\mathcal{G}_{\nu_{1}, \nu_{2}}\left(x^{2}\right) x^{2 s}+\mathcal{G}_{\nu_{1}, \nu_{2}}\left(x^{-2}\right) x^{-2 s}\right. \\
\square & -x^{6 \nu_{1}+3 \nu_{2}+2 s} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
\square & -x^{3 \nu_{1}-3 \nu_{2}+3-2 s} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}-2\right) \\
\quad & -x^{3 \nu_{1}+6 \nu_{2}-2 s} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
& -x^{-\left(3 \nu_{1}+6 \nu_{2}-6-2 s\right)} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}-1\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-2\right) \\
\square & -x^{-\left(3 \nu_{1}-3 \nu_{2}-3-2 s\right)} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}-1\right) \zeta^{\star}\left(3 \nu_{2}\right) \longrightarrow \\
\longrightarrow & \left.x^{-\left(6 \nu_{1}+3 \nu_{2}-6+2 s\right)} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-2\right) \zeta^{\star}\left(3 \nu_{1}-1\right)\right) \frac{\mathrm{d} x}{x}
\end{aligned}
$$

Even More Nastier

$$
\begin{aligned}
& \frac{R_{A}\left(s_{0}, s_{1}, s_{2}\right)}{3}=\int_{1}^{+\infty}\left(\mathcal{G}_{\nu_{1}, \nu_{2}}\left(x^{2}\right) x^{2 s}+\mathcal{G}_{\nu_{1}, \nu_{2}}\left(x^{-2}\right) x^{-2 s}\right. \\
& \square-x^{6 \nu_{1}+3 \nu_{2}+2 s} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
& \text { - }-x^{3 \nu_{1}-3 \nu_{2}+3-2 s} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}-2\right) \\
& \longrightarrow-x^{3 \nu_{1}+6 \nu_{2}-2 s} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
& \longrightarrow-x^{-\left(3 \nu_{1}+6 \nu_{2}-6-2 s\right)} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}-1\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-2\right) \\
& -x^{-\left(3 \nu_{1}-3 \nu_{2}-3-2 s\right)} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}-1\right) \zeta^{\star}\left(3 \nu_{2}\right) \\
& \left.\longrightarrow-x^{-\left(6 \nu_{1}+3 \nu_{2}-6+2 s\right)} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-2\right) \zeta^{\star}\left(3 \nu_{1}-1\right)\right) \frac{\mathrm{d} x}{x}
\end{aligned}
$$

Even More Nastier

$$
\begin{aligned}
& \frac{R_{A}\left(s_{0}, s_{1}, s_{2}\right)}{3}=\int_{1}^{+\infty}\left(\mathcal{G}_{\nu_{1}, \nu_{2}}\left(x^{2}\right) x^{2 s}+\mathcal{G}_{\nu_{1}, \nu_{2}}\left(x^{-2}\right) x^{-2 s}\right. \\
& \text { - }-x^{6 \nu_{1}+3 \nu_{2}+2 s} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
& \text { - }-x^{3 \nu_{1}-3 \nu_{2}+3-2 s} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}\right) \zeta^{\star}\left(3 \nu_{1}-2\right) \\
& \longrightarrow-x^{3 \nu_{1}+6 \nu_{2}-2 s} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-1\right) \\
& { }^{-\left(3 \nu_{1}+6 \nu_{2}-6-2 s\right)} L\left(\frac{3 \nu_{1}}{2}\right) \zeta^{\star}\left(3 \nu_{2}-1\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-2\right) \\
& -x^{-\left(3 \nu_{1}-3 \nu_{2}-3-2 s\right)} L\left(\frac{3 \nu_{1}+3 \nu_{2}-1}{2}\right) \zeta^{\star}\left(3 \nu_{1}-1\right) \zeta^{\star}\left(3 \nu_{2}\right) \\
& \left.\longrightarrow-x^{-\left(6 \nu_{1}+3 \nu_{2}-6+2 s\right)} L\left(\frac{3 \nu_{2}}{2}\right) \zeta^{\star}\left(3 \nu_{1}+3 \nu_{2}-2\right) \zeta^{\star}\left(3 \nu_{1}-1\right)\right) \frac{\mathrm{d} x}{x}
\end{aligned}
$$

Even More Nastier II

Acknowledgements

Thanks, yall!

Acknowledgements

Thanks, yall!

