Introduction and First Notations Polar divisor considerations Proof of the Main Theorem Acknowledgements

Hidden Functional Equations for Rankin-Selberg transforms: New Results

David LECOMTE

Department of Mathematics Stanford University

Introduction and First Notations Polar divisor considerations Proof of the Main Theorem Acknowledgements

Outline

- Introduction and First Notations
 - The SL₂(Z) Eisenstein Series
 - The Hilbert Modular Eisenstein Series
 - Zagier's Renormalization
 - Previous Results and Present Goal
- 2 Polar divisor considerations
 - Identifying the Polar Divisor of R_A
 - Finding the Group of Π
 - An Upper Bound for |S|
- Proof of the Main Theorem
 - More Notations
 - First Computations
 - Along Came Poisson
 - Wrap It Up, David

Polar divisor considerations Proof of the Main Theorem Acknowledgements The SL₂(ℤ) Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

The $SL_2(\mathbb{Z})$ Eisenstein Series

•
$$E^*(z,s) = \frac{1}{2}\pi^{-s}\Gamma(s)\sum_{\substack{(m,n)\in\mathbb{Z}^2\\(m,n)\neq 0}}\frac{y^s}{|mz+n|^{2s}}$$
 $z\in\mathscr{H}$ Ress

• $E^*(z, s)$ is $SL_2(\mathbb{Z})$ -automorphic in the variable *z*.

• $E^*(z, s)$ is analytic in the variable s.

Polar divisor considerations Proof of the Main Theorem Acknowledgements The SL₂(Z) Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

The $SL_2(\mathbb{Z})$ Eisenstein Series

•
$$E^{\star}(z,s) = \frac{1}{2}\pi^{-s}\Gamma(s)\sum_{\substack{(m,n)\in\mathbb{Z}^2\\(m,n)\neq 0}}\frac{y^s}{|mz+n|^{2s}}$$
 $z\in\mathscr{H}$ Ress 1

• $E^*(z, s)$ is $SL_2(\mathbb{Z})$ -automorphic in the variable z.

• $E^*(z, s)$ is analytic in the variable s.

イロト イポト イヨト イヨト

Polar divisor considerations Proof of the Main Theorem Acknowledgements The SL₂(ℤ) Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

The $SL_2(\mathbb{Z})$ Eisenstein Series

•
$$E^{\star}(z,s) = \frac{1}{2}\pi^{-s}\Gamma(s)\sum_{\substack{(m,n)\in\mathbb{Z}^2\\(m,n)\neq 0}}\frac{y^s}{|mz+n|^{2s}}$$
 $z\in\mathscr{H}$ Ress 1

• $E^*(z, s)$ is $SL_2(\mathbb{Z})$ -automorphic in the variable z.

• $E^*(z, s)$ is analytic in the variable s.

Polar divisor considerations Proof of the Main Theorem Acknowledgements The SL₂(ℤ) Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

The $SL_2(\mathbb{Z})$ Eisenstein Series

•
$$E^{\star}(z,s) = rac{1}{2}\pi^{-s}\Gamma(s)\sum_{\substack{(m,n)\in\mathbb{Z}^2\\(m,n)\neq 0}}rac{y^s}{|mz+n|^{2s}}$$
 $z\in\mathscr{H}$ Ress 1

- $E^*(z, s)$ is $SL_2(\mathbb{Z})$ -automorphic in the variable z.
- $E^{\star}(z, s)$ is analytic in the variable s.

Polar divisor considerations Proof of the Main Theorem Acknowledgements The SL₂(Z) Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

Fourier Expansion

$$E^{*}(z,s) = y^{s}\zeta^{*}(2s) + y^{1-s}\zeta^{*}(2-2s) + 2\sqrt{y}\sum_{n\neq 0}\tau_{s-\frac{1}{2}}(|n|)K_{s-\frac{1}{2}}(2\pi|n|y)e^{2\pi inx}$$

where

•
$$\tau_{\omega}(n) = n^{-\omega} \sum_{\substack{d \mid n \\ d > 0}} d^{2\omega}$$
 is a divisor sum;
• $\mathcal{K}_{\omega}(y) = \frac{1}{2} \int_{0}^{+\infty} e^{-\frac{y}{2}(t+\frac{1}{t})} t^{\omega} \frac{dt}{t}$ is a Bessel function.

イロン イ団 とく ヨン イヨン

Polar divisor considerations Proof of the Main Theorem Acknowledgements The SL₂(Z) Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

Fourier Expansion

$$E^{\star}(z,s) = y^{s} \zeta^{\star}(2s) + y^{1-s} \zeta^{\star}(2-2s) + 2\sqrt{y} \sum_{n \neq 0} \tau_{s-\frac{1}{2}}(|n|) \mathcal{K}_{s-\frac{1}{2}}(2\pi |n|y) e^{2\pi i n x}$$

where

•
$$\tau_{\omega}(n) = n^{-\omega} \sum_{\substack{d \mid n \\ d > 0}} d^{2\omega}$$
 is a divisor sum;
• $\mathcal{K}_{\omega}(y) = \frac{1}{2} \int_{0}^{+\infty} e^{-\frac{y}{2}(t+\frac{1}{t})} t^{\omega} \frac{dt}{t}$ is a Bessel function.

イロン イ団 とく ヨン イヨン

Polar divisor considerations Proof of the Main Theorem Acknowledgements The SL₂(Z) Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

Fourier Expansion

$$E^{*}(z,s) = y^{s}\zeta^{*}(2s) + y^{1-s}\zeta^{*}(2-2s) + 2\sqrt{y}\sum_{n\neq 0}\tau_{s-\frac{1}{2}}(|n|)K_{s-\frac{1}{2}}(2\pi|n|y)e^{2\pi inx}$$

where

•
$$\tau_{\omega}(n) = n^{-\omega} \sum_{\substack{d|n \\ d>0}} d^{2\omega}$$
 is a divisor sum;
• $\mathcal{K}_{\omega}(y) = \frac{1}{2} \int_{0}^{+\infty} e^{-\frac{y}{2}(t+\frac{1}{t})} t^{\omega} \frac{dt}{t}$ is a Bessel function.

イロン イ団 とく ヨン イヨン

Polar divisor considerations Proof of the Main Theorem Acknowledgements The SL₂(Z) Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

Fourier Expansion

$$E^{*}(z,s) = y^{s}\zeta^{*}(2s) + y^{1-s}\zeta^{*}(2-2s) + 2\sqrt{y}\sum_{n\neq 0}\tau_{s-\frac{1}{2}}(|n|)\mathcal{K}_{s-\frac{1}{2}}(2\pi|n|y)e^{2\pi inx}$$

where

•
$$\tau_{\omega}(n) = n^{-\omega} \sum_{\substack{d|n \\ d>0}} d^{2\omega}$$
 is a divisor sum;
• $\mathcal{K}_{\omega}(y) = \frac{1}{2} \int_{0}^{+\infty} e^{-\frac{y}{2}(t+\frac{1}{t})} t^{\omega} \frac{dt}{t}$ is a Bessel function.

イロン イ団 とく ヨン イヨン

Polar divisor considerations Proof of the Main Theorem Acknowledgements The SL₂(Z) Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

What You Need to Know About τ_{ω} and K_{ω}

•
$$\tau_{\omega}(n) = \tau_{-\omega}(n)$$
 and $K_{\omega}(y) = K_{-\omega}(y)$;

• K_{ω} has rapid decay:

$$\forall y > 2$$
 $|K_{\omega}(y)| \leq M e^{-\frac{y}{2}}$

As a consequence, $E^*(z, s)$ is the uniform limit of its Fourier series, can be analytically continued to $\mathbb{C} \setminus \{0, 1\}$ and satisfies the functional equation

$$\forall z \in \mathscr{H} \quad \forall s \neq 0, 1 \qquad E^*(z, s) = E^*(z, 1-s)$$

• • • • • • • • • • • • •

Polar divisor considerations Proof of the Main Theorem Acknowledgements The SL₂(ℤ) Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

What You Need to Know About τ_{ω} and K_{ω}

•
$$\tau_{\omega}(n) = \tau_{-\omega}(n)$$
 and $K_{\omega}(y) = K_{-\omega}(y)$;

• K_{ω} has rapid decay:

$$\forall y > 2$$
 $|K_{\omega}(y)| \leq M e^{-\frac{y}{2}}$

As a consequence, $E^*(z, s)$ is the uniform limit of its Fourier series, can be analytically continued to $\mathbb{C} \setminus \{0, 1\}$ and satisfies the functional equation

$$\forall z \in \mathscr{H} \quad \forall s \neq 0, 1 \qquad E^*(z, s) = E^*(z, 1-s)$$

• • • • • • • • • • • • •

Polar divisor considerations Proof of the Main Theorem Acknowledgements The SL₂(ℤ) Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

What You Need to Know About τ_{ω} and K_{ω}

- $\tau_{\omega}(n) = \tau_{-\omega}(n)$ and $K_{\omega}(y) = K_{-\omega}(y)$;
- K_{ω} has rapid decay:

$$\forall y > 2$$
 $|K_{\omega}(y)| \leq M e^{-\frac{y}{2}}$

As a consequence, $E^*(z, s)$ is the uniform limit of its Fourier series, can be analytically continued to $\mathbb{C} \setminus \{0, 1\}$ and satisfies the functional equation

$$\forall z \in \mathscr{H} \quad \forall s \neq 0, 1 \qquad E^*(z, s) = E^*(z, 1-s)$$

Polar divisor considerations Proof of the Main Theorem Acknowledgements The SL₂(ℤ) Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

What You Need to Know About τ_{ω} and K_{ω}

•
$$au_{\omega}(n) = au_{-\omega}(n)$$
 and $K_{\omega}(y) = K_{-\omega}(y);$

• K_{ω} has rapid decay:

$\forall y > 2$ $|K_{\omega}(y)| \leq M e^{-\frac{y}{2}}$

As a consequence, $E^*(z, s)$ is the uniform limit of its Fourier series, can be analytically continued to $\mathbb{C} \setminus \{0, 1\}$ and satisfies the functional equation

$$\forall z \in \mathscr{H} \quad \forall s \neq 0, 1 \qquad E^*(z, s) = E^*(z, 1-s)$$

Introduction and First Notations Polar divisor considerations Proof of the Main Theorem The SL₂(Z) Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

What You Need to Know About τ_{ω} and K_{ω}

Acknowledgements

- $\tau_{\omega}(n) = \tau_{-\omega}(n)$ and $K_{\omega}(y) = K_{-\omega}(y);$
- K_{ω} has rapid decay:

$$\forall y > 2$$
 $|\mathcal{K}_{\omega}(y)| \leq M e^{-\frac{y}{2}}$

As a consequence, $E^{\star}(z,s)$ is the uniform limit of its Fourier series, can be analytically continued to $\mathbb{C} \setminus \{0,1\}$ and satisfies the functional equation

$$\forall z \in \mathscr{H} \quad \forall s \neq 0, 1 \qquad E^{\star}(z, s) = E^{\star}(z, 1-s)$$

Polar divisor considerations Proof of the Main Theorem Acknowledgements The $SL_2(\mathbb{Z})$ Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

The Setting

- Q → K is a totally real field extension with ring of integers
 o and discriminant D.
- There are exactly *N* distinct embeddings $K \hookrightarrow \mathbb{C}$, denoted as $\sigma_1, \ldots, \sigma_N$.
- For convenience, we write also

$$\forall \alpha \in \mathbf{K} \qquad \alpha^{(i)} = \sigma_i(\alpha)$$

• A is an ideal class in K and α an ideal in A^{-1} .

Polar divisor considerations Proof of the Main Theorem Acknowledgements The $SL_2(\mathbb{Z})$ Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

The Setting

- Q → K is a totally real field extension with ring of integers o and discriminant D.
- There are exactly *N* distinct embeddings $K \hookrightarrow \mathbb{C}$, denoted as $\sigma_1, \ldots, \sigma_N$.
- For convenience, we write also

$$\forall \alpha \in \mathbf{K} \qquad \alpha^{(i)} = \sigma_i(\alpha)$$

• A is an ideal class in K and α an ideal in A^{-1} .

Polar divisor considerations Proof of the Main Theorem Acknowledgements

The Setting

The $SL_2(\mathbb{Z})$ Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

- Q → K is a totally real field extension with ring of integers o and discriminant D.
- There are exactly *N* distinct embeddings $K \hookrightarrow \mathbb{C}$, denoted as $\sigma_1, \ldots, \sigma_N$.
- For convenience, we write also

 $\forall \alpha \in \mathbf{K} \qquad \alpha^{(i)} = \sigma_i(\alpha)$

• A is an ideal class in K and α an ideal in A^{-1} .

< ロ > < 同 > < 回 > < 回 >

Polar divisor considerations Proof of the Main Theorem Acknowledgements The $SL_2(\mathbb{Z})$ Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

The Setting

- Q → K is a totally real field extension with ring of integers o and discriminant D.
- There are exactly *N* distinct embeddings $K \hookrightarrow \mathbb{C}$, denoted as $\sigma_1, \ldots, \sigma_N$.
- For convenience, we write also

$$\forall \alpha \in \mathbf{K} \qquad \alpha^{(i)} = \sigma_i(\alpha)$$

• *A* is an ideal class in *K* and α an ideal in A^{-1} .

Polar divisor considerations Proof of the Main Theorem Acknowledgements The $SL_2(\mathbb{Z})$ Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

The Setting

- Q → K is a totally real field extension with ring of integers o and discriminant D.
- There are exactly *N* distinct embeddings $K \hookrightarrow \mathbb{C}$, denoted as $\sigma_1, \ldots, \sigma_N$.
- For convenience, we write also

$$\forall \alpha \in \mathbf{K} \qquad \alpha^{(i)} = \sigma_i(\alpha)$$

• A is an ideal class in K and α an ideal in A^{-1} .

Polar divisor considerations Proof of the Main Theorem Acknowledgements The $SL_2(\mathbb{Z})$ Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

The Hilbert Modular Eisenstein Series

•
$$E_{K,A}^{\star}(z,s) = \mathbb{N}(\mathfrak{a})^{2s} \pi^{-Ns} \Gamma(s)^{N} D^{s} \sum_{\substack{(\alpha,\beta) \in \mathfrak{a}^{2}/\mathfrak{o}^{\times} \\ (\alpha,\beta) \neq 0}} \prod_{i=1}^{N} \frac{Y_{i}^{s}}{\left|\alpha^{(i)} z + \beta^{(i)}\right|^{2s}}$$

where $z \in \mathscr{H}$ and Ress > 1.

- $E_{K,A}^{\star}(z,s)$ is $SL_2(\mathbb{Z})$ -automorphic in the variable z;
- $E_{K,A}^{*}(z,s)$ is analytic in the variable s.

Polar divisor considerations Proof of the Main Theorem Acknowledgements The $SL_2(\mathbb{Z})$ Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

The Hilbert Modular Eisenstein Series

•
$$E_{K,A}^{\star}(z,s) = \mathbb{N}(\mathfrak{a})^{2s} \pi^{-Ns} \Gamma(s)^{N} D^{s} \sum_{\substack{(\alpha,\beta) \in \mathfrak{a}^{2}/\mathfrak{o}^{\times} \\ (\alpha,\beta) \neq 0}} \prod_{i=1}^{N} \frac{y_{i}^{s}}{\left| \alpha^{(i)} z + \beta^{(i)} \right|^{2s}}$$

where $z \in \mathscr{H}$ and Re s > 1.

- $E_{K,A}^{\star}(z,s)$ is $SL_2(\mathbb{Z})$ -automorphic in the variable z;
- $E_{K,A}^{\star}(z, s)$ is analytic in the variable s.

Polar divisor considerations Proof of the Main Theorem Acknowledgements The $SL_2(\mathbb{Z})$ Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

The Hilbert Modular Eisenstein Series

•
$$E_{K,A}^{\star}(z,s) = \mathbb{N}(\mathfrak{a})^{2s} \pi^{-Ns} \Gamma(s)^{N} D^{s} \sum_{\substack{(\alpha,\beta) \in \mathfrak{a}^{2}/\mathfrak{o}^{\times} \\ (\alpha,\beta) \neq 0}} \prod_{i=1}^{N} \frac{y_{i}^{s}}{\left| \alpha^{(i)} z + \beta^{(i)} \right|^{2s}}$$

where $z \in \mathcal{H}$ and Re s > 1.

- $E_{K,A}^{\star}(z,s)$ is $SL_2(\mathbb{Z})$ -automorphic in the variable z;
- $E_{K,A}^{\star}(z, s)$ is analytic in the variable s.

Polar divisor considerations Proof of the Main Theorem Acknowledgements The $SL_2(\mathbb{Z})$ Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

The Hilbert Modular Eisenstein Series

•
$$E_{K,A}^{\star}(z,s) = \mathbb{N}(\mathfrak{a})^{2s} \pi^{-Ns} \Gamma(s)^{N} D^{s} \sum_{\substack{(\alpha,\beta) \in \mathfrak{a}^{2}/\mathfrak{o}^{\times} \\ (\alpha,\beta) \neq 0}} \prod_{i=1}^{N} \frac{y_{i}^{s}}{\left| \alpha^{(i)} z + \beta^{(i)} \right|^{2s}}$$

where $z \in \mathcal{H}$ and Re s > 1.

- $E_{K,A}^{\star}(z,s)$ is $SL_2(\mathbb{Z})$ -automorphic in the variable z;
- $E_{K,A}^{\star}(z, s)$ is analytic in the variable s.

Polar divisor considerations Proof of the Main Theorem Acknowledgements The $SL_2(\mathbb{Z})$ Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

Fourier Expansion

$$\begin{split} E_{K,A}^{\star}(z,s) &= y^{Ns} \zeta_{K,A}^{\star}(2s) + y^{N(1-s)} \zeta_{K,A}^{\star}(2-2s) \\ &+ 2^{N} y^{\frac{N}{2}} \sum_{\substack{\xi \in \mathfrak{D}^{-1} \\ \xi \neq 0}} \tau_{s-\frac{1}{2}}^{K,A}(\xi \mathfrak{D}) \Big(\prod_{i=1}^{N} K_{s-\frac{1}{2}}(2\pi y |\xi^{(i)}|) \Big) e^{2\pi i x \operatorname{Tr} \xi} \end{split}$$

where $\tau_{\omega}(\mathfrak{c}) = \mathbb{N}(\mathfrak{c})^{-\omega} \sum_{\substack{\mathfrak{b} \text{ ideal in A} \\ \mathfrak{b}|\mathfrak{c}}} \mathbb{N}(\mathfrak{b})^{2\omega}$ is a generalized divisor sum.

イロト イポト イヨト イヨト

Polar divisor considerations Proof of the Main Theorem Acknowledgements The $SL_2(\mathbb{Z})$ Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

Fourier Expansion

$$\begin{split} E^{\star}_{K,A}(z,s) &= y^{Ns} \zeta^{\star}_{K,A}(2s) + y^{N(1-s)} \zeta^{\star}_{K,A}(2-2s) \\ &+ 2^{N} y^{\frac{N}{2}} \sum_{\substack{\xi \in \mathfrak{D}^{-1} \\ \xi \neq 0}} \tau^{K,A}_{s-\frac{1}{2}}(\xi \mathfrak{D}) \Big(\prod_{i=1}^{N} K_{s-\frac{1}{2}}(2\pi y |\xi^{(i)}|) \Big) e^{2\pi i x \operatorname{Tr} \xi} \end{split}$$

where $\tau_{\omega}(\mathfrak{c}) = \mathbb{N}(\mathfrak{c})^{-\omega} \sum_{\substack{\mathfrak{b} \text{ ideal in A} \\ \mathfrak{b}|\mathfrak{c}}} \mathbb{N}(\mathfrak{b})^{2\omega}$ is a generalized divisor sum.

イロト イポト イヨト イヨト

Polar divisor considerations Proof of the Main Theorem Acknowledgements The $SL_2(\mathbb{Z})$ Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

Fourier Expansion

$$\begin{split} E^{\star}_{K,A}(z,s) &= y^{Ns} \zeta^{\star}_{K,A}(2s) + y^{N(1-s)} \zeta^{\star}_{K,A}(2-2s) \\ &+ 2^{N} y^{\frac{N}{2}} \sum_{\substack{\xi \in \mathfrak{D}^{-1} \\ \xi \neq 0}} \tau^{K,A}_{s-\frac{1}{2}}(\xi \mathfrak{D}) \Big(\prod_{i=1}^{N} K_{s-\frac{1}{2}}(2\pi y |\xi^{(i)}|) \Big) e^{2\pi i x \operatorname{Tr} \xi} \end{split}$$

where $\tau_{\omega}(\mathfrak{c}) = \mathbb{N}(\mathfrak{c})^{-\omega} \sum_{\substack{\mathfrak{b} \text{ ideal in A} \\ \mathfrak{b}|\mathfrak{c}}} \mathbb{N}(\mathfrak{b})^{2\omega}$ is a generalized divisor sum.

Polar divisor considerations Proof of the Main Theorem Acknowledgements The $SL_2(\mathbb{Z})$ Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

Zagier's Theorem

Theorem

Let F be an SL₂(\mathbb{Z})-automorphic function on \mathcal{H} . Suppose that there exists a function φ of the form

$$arphi(\mathbf{y}) = \sum_{i=1}^{\ell} c_i \mathbf{y}^{lpha_i} \ln^{n_i} \mathbf{y} \qquad lpha_i \in \mathbb{C} \quad n_i \in \mathbb{N}$$

such that $F(z) - \varphi(y) = \underset{y \to +\infty}{=} o(y^{-n})$ for every positive integer n. Then

$$R(s) = RN \int_{SL_2(\mathbb{Z})\setminus\mathscr{H}} E^*(z,s)F(z) \frac{dz}{y^2} = \int_{0}^{+\infty} (a_0(y) - \varphi(y))y^{s-1} \frac{dy}{y}$$

< ロ > < 同 > < 回 > < 回 >

Polar divisor considerations Proof of the Main Theorem Acknowledgements The $SL_2(\mathbb{Z})$ Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

Zagier's Theorem

Theorem

Let F be an SL₂(\mathbb{Z})-automorphic function on \mathcal{H} . Suppose that there exists a function φ of the form

$$arphi(\mathbf{y}) = \sum_{i=1}^{\ell} c_i \mathbf{y}^{\alpha_i} \ln^{n_i} \mathbf{y} \qquad lpha_i \in \mathbb{C} \quad n_i \in \mathbb{N}$$

such that $F(z) - \varphi(y) \underset{y \to +\infty}{=} o(y^{-n})$ for every positive integer n. Then

$$R(s) = RN \int_{SL_2(\mathbb{Z})\setminus\mathscr{H}} E^{\star}(z,s)F(z) \frac{dz}{y^2} = \int_{0}^{+\infty} (a_0(y) - \varphi(y))y^{s-1} \frac{dy}{y}$$

• • • • • • • • • • • • •

Polar divisor considerations Proof of the Main Theorem Acknowledgements The $SL_2(\mathbb{Z})$ Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

Zagier's Theorem: Ze Continuation

Theorem

where
$$a_0(y) = \int_0^1 F(x + iy) dx$$
, is well defined as an absolutely convergent integral for Res big enough. It has analytic continuation to \mathbb{C} , except for poles at 0, 1, the α_i 's and the $(1 - \alpha_i)$'s. Furthermore, $R(s) = R(1 - s)$.

Polar divisor considerations Proof of the Main Theorem Acknowledgements The SL₂(Z) Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

Previous Results

Were already studied by Professor BUMP:

• $RN \int_{SL_2(\mathbb{Z})\setminus\mathscr{H}} E^*(z, s_0) E^*_{K,A}(z, s_1) \frac{dz}{y^2}$ when *K* is a totally real cubic field and *A* is an ideal class;

•
$$RN \int_{SL_2(\mathbb{Z})\setminus\mathcal{H}} E^*(z,s_0)E^*(z,s_1)E^*(z,s_2)E^*(z,s_3)\frac{\mathrm{d}z}{y^2}$$

イロト イポト イヨト イヨト

Polar divisor considerations Proof of the Main Theorem Acknowledgements The $SL_2(\mathbb{Z})$ Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

Previous Results

Were already studied by Professor BUMP:

- $RN \int_{SL_2(\mathbb{Z})\setminus\mathscr{H}} E^*(z, s_0) E^*_{K,A}(z, s_1) \frac{dz}{y^2}$ when *K* is a totally real cubic field and *A* is an ideal class;
- $RN \int_{SL_2(\mathbb{Z})\setminus\mathcal{H}} E^*(z,s_0)E^*(z,s_1)E^*(z,s_2)E^*(z,s_3)\frac{\mathrm{d}z}{y^2}.$

Polar divisor considerations Proof of the Main Theorem Acknowledgements The $SL_2(\mathbb{Z})$ Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

Previous Results

Were already studied by Professor BUMP:

• $RN \int_{SL_2(\mathbb{Z})\setminus\mathscr{H}} E^*(z, s_0) E^*_{K,A}(z, s_1) \frac{dz}{y^2}$ when *K* is a totally real cubic field and *A* is an ideal class;

•
$$RN \int_{SL_2(\mathbb{Z})\setminus\mathscr{H}} E^*(z,s_0)E^*(z,s_1)E^*(z,s_2)E^*(z,s_3)\frac{\mathrm{d}z}{y^2}.$$

< ロ > < 同 > < 回 > < 回 >

Polar divisor considerations Proof of the Main Theorem Acknowledgements The $SL_2(\mathbb{Z})$ Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

Our Goal

We suspect that a similar phenomenon occurs and want to identify the full group of functional equations for the renormalized Rankin-Selberg transform

$$R_A(s_0, s_1, s_2) = \int_{SL_2(\mathbb{Z})\setminus \mathscr{H}} E^*(z, s_0) E^*(z, s_1) E^*_{K,A}(z, s_2) \frac{\mathrm{d}z}{y^2}$$

when K is a real quadratic field and A is an ideal class. Zagier's theorem, together with our knowledge of the objects involved, predict 16 functional equations. In fact,

• • • • • • • • • • • •

Polar divisor considerations Proof of the Main Theorem Acknowledgements The SL₂(Z) Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

Our Goal

We suspect that a similar phenomenon occurs and want to identify the full group of functional equations for the renormalized Rankin-Selberg transform

$$R_A(s_0, s_1, s_2) = \int\limits_{SL_2(\mathbb{Z})\backslash \mathscr{H}} E^{\star}(z, s_0) E^{\star}(z, s_1) E^{\star}_{K,A}(z, s_2) \frac{dz}{y^2}$$

when K is a real quadratic field and A is an ideal class. Zagier's theorem, together with our knowledge of the objects involved, predict 16 functional equations. In fact,

< < >> < </p>

Polar divisor considerations Proof of the Main Theorem Acknowledgements The SL₂(Z) Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

Our Goal

We suspect that a similar phenomenon occurs and want to identify the full group of functional equations for the renormalized Rankin-Selberg transform

$$R_A(s_0, s_1, s_2) = \int\limits_{SL_2(\mathbb{Z})\backslash \mathscr{H}} E^{\star}(z, s_0) E^{\star}(z, s_1) E^{\star}_{K,A}(z, s_2) \frac{dz}{y^2}$$

when K is a real quadratic field and A is an ideal class. Zagier's theorem, together with our knowledge of the objects involved, predict 16 functional equations. In fact,

< < >> < <</p>

Introduction and First Notations

Polar divisor considerations Proof of the Main Theorem Acknowledgements The $SL_2(\mathbb{Z})$ Eisenstein Series The Hilbert Modular Eisenstein Series Zagier's Renormalization Previous Results and Present Goal

Main Theorem

Theorem

а

Let K be a real quadratic field and A an ideal class. The function $R_A(s_0, s_1, s_2)$ has a group of functional equations of order 48. It is generated by the transformations

$$s_{0} \longmapsto 1 - s_{0} \qquad s_{1} \longmapsto 1 - s_{1} \qquad s_{2} \longmapsto 1 - s_{2} \qquad s_{0} \longleftrightarrow s_{1}$$

$$nd \qquad \begin{bmatrix} s_{0} \\ s_{1} \\ s_{2} \end{bmatrix} \stackrel{w}{\mapsto} \begin{bmatrix} -\frac{s_{0}}{2} + \frac{s_{1}}{2} + s_{2} \\ 1 - \frac{s_{0}}{2} + \frac{s_{1}}{2} - s_{2} \\ 1 - \frac{s_{0}}{2} - \frac{s_{1}}{2} \end{bmatrix}.$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

Strategy

The polar divisor Π of R_A is the subset of \mathbb{C}^3 at which R_A is undefined. Zagier's theorem provides us with a complete description of Π . All we have to do is identify the part φ of F that is not of rapid decay and hope it looks like

$$arphi(\mathbf{y}) = \sum_{i=1}^{\ell} c_i \mathbf{y}^{lpha_i} \ln \mathbf{y}^{n_i}$$

Once we know the α_i 's, we know Π .

Strategy

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

The polar divisor Π of R_A is the subset of \mathbb{C}^3 at which R_A is undefined.

Zagier's theorem provides us with a complete description of Π . All we have to do is identify the part φ of *F* that is not of rapid decay and hope it looks like

$$arphi(y) = \sum_{i=1}^{\ell} c_i y^{lpha_i} \ln y^{n_i}$$

Once we know the α_i 's, we know Π .

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

Strategy

The polar divisor Π of R_A is the subset of \mathbb{C}^3 at which R_A is undefined. Zagier's theorem provides us with a complete description of Π .

All we have to do is identify the part φ of F that is not of rapid decay and hope it looks like

$$arphi(y) = \sum_{i=1}^{\ell} c_i y^{lpha_i} \ln y^{n_i}$$

Once we know the α_i 's, we know Π .

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

Strategy

The polar divisor Π of R_A is the subset of \mathbb{C}^3 at which R_A is undefined. Zagier's theorem provides us with a complete description of Π . All we have to do is identify the part φ of *F* that is not of rapid decay and hope it looks like

$$arphi(y) = \sum_{i=1}^{\ell} c_i y^{lpha_i} \ln y^{n_i}$$

Once we know the α_i 's, we know Π .

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

Strategy

The polar divisor Π of R_A is the subset of \mathbb{C}^3 at which R_A is undefined. Zagier's theorem provides us with a complete description of Π . All we have to do is identify the part φ of *F* that is not of rapid decay and hope it looks like

$$arphi(\mathbf{y}) = \sum_{i=1}^{\ell} c_i \mathbf{y}^{lpha_i} \ln \mathbf{y}^{n_i}$$

Once we know the α_i 's, we know Π .

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

Strategy

The polar divisor Π of R_A is the subset of \mathbb{C}^3 at which R_A is undefined. Zagier's theorem provides us with a complete description of Π . All we have to do is identify the part φ of *F* that is not of rapid decay and hope it looks like

$$arphi(\mathbf{y}) = \sum_{i=1}^{\ell} c_i \mathbf{y}^{lpha_i} \ln \mathbf{y}^{n_i}$$

Once we know the α_i 's, we know Π .

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

Reminder

Remember that

$$\begin{split} E^{*}(z,s_{1}) &= y^{s_{1}}\zeta^{*}(2s_{1}) + y^{1-s_{1}}\zeta^{*}(2-2s_{1}) \\ &+ 2\sqrt{y}\sum_{n\neq 0}\tau_{s_{1}-\frac{1}{2}}(|n|)K_{s_{1}-\frac{1}{2}}(2\pi|n|y)e^{2\pi inx} \\ E^{*}_{K,A}(z,s_{2}) &= y^{2s_{2}}\zeta^{*}_{K,A}(2s_{2}) + y^{2(1-s_{2})}\zeta^{*}_{K,A}(2-2s_{2}) \\ &+ 4y\sum_{\substack{\xi \in \mathfrak{D}^{-1}\\\xi \neq 0}}\tau^{K,A}_{s_{2}-\frac{1}{2}}(\xi\mathfrak{D})\Big(\prod_{l=1}^{2}K_{s_{2}-\frac{1}{2}}(2\pi y|\xi^{(l)}|)\Big)e^{2\pi ix\operatorname{Tr}\xi} \\ F(z) &= E^{*}(z,s_{1})E^{*}_{K,A}(z,s_{2}) \end{split}$$

イロン イ団 とく ヨン イヨン

æ

Polar divisor considerations Proof of the Main Theorem Acknowledgements

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

Reminder

Remember that

$$\begin{split} E^{\star}(z,s_{1}) &= y^{s_{1}}\zeta^{\star}(2s_{1}) + y^{1-s_{1}}\zeta^{\star}(2-2s_{1}) \\ &+ 2\sqrt{y}\sum_{n\neq 0}\tau_{s_{1}-\frac{1}{2}}(|n|)K_{s_{1}-\frac{1}{2}}(2\pi|n|y)e^{2\pi inx} \\ E^{\star}_{K,A}(z,s_{2}) &= y^{2s_{2}}\zeta^{\star}_{K,A}(2s_{2}) + y^{2(1-s_{2})}\zeta^{\star}_{K,A}(2-2s_{2}) \\ &+ 4y\sum_{\substack{\xi \in \mathfrak{D}^{-1}\\\xi \neq 0}}\tau^{K,A}_{s_{2}-\frac{1}{2}}(\xi\mathfrak{D})\Big(\prod_{l=1}^{2}K_{s_{2}-\frac{1}{2}}(2\pi y|\xi^{(l)}|)\Big)e^{2\pi ix\operatorname{Tr}\xi} \\ F(z) &= E^{\star}(z,s_{1})E^{\star}_{K,A}(z,s_{2}) \end{split}$$

イロン イ団 とく ヨン イヨン

æ

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

Reminder

Remember that

$$\begin{split} E^{\star}(z,s_{1}) &= y^{s_{1}}\zeta^{\star}(2s_{1}) + y^{1-s_{1}}\zeta^{\star}(2-2s_{1}) \\ &+ 2\sqrt{y}\sum_{n\neq 0}\tau_{s_{1}-\frac{1}{2}}(|n|)K_{s_{1}-\frac{1}{2}}(2\pi|n|y)e^{2\pi inx} \\ E^{\star}_{K,A}(z,s_{2}) &= y^{2s_{2}}\zeta^{\star}_{K,A}(2s_{2}) + y^{2(1-s_{2})}\zeta^{\star}_{K,A}(2-2s_{2}) \\ &+ 4y\sum_{\substack{\xi\in\mathfrak{D}^{-1}\\\xi\neq 0}}\tau^{K,A}_{s_{2}-\frac{1}{2}}(\xi\mathfrak{D})\Big(\prod_{i=1}^{2}K_{s_{2}-\frac{1}{2}}(2\pi y|\xi^{(i)}|)\Big)e^{2\pi ix\operatorname{Tr}\xi} \\ F(z) &= E^{\star}(z,s_{1})E^{\star}_{K,A}(z,s_{2}) \end{split}$$

イロン イ団 とく ヨン イヨン

æ

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

Expression of φ

$\begin{aligned} \varphi(\mathbf{y}) &= \mathbf{y}^{s_1 + 2s_2} \zeta^*(2s_1) \zeta^*_{K,A}(2s_2) + \mathbf{y}^{2 + s_1 - 2s_2} \zeta^*(2s_1) \zeta^*_{K,A}(2 - 2s_2) \\ &+ \mathbf{y}^{1 - s_1 + 2s_2} \zeta^*(2 - 2s_1) \zeta^*_{K,A}(2s_2) + \mathbf{y}^{3 - s_1 - 2s_2} \zeta^*(2 - 2s_1) \zeta^*_{K,A}(2 - 2s_2) \end{aligned}$

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

Expression of φ

$$\begin{split} \varphi(\mathbf{y}) &= \mathbf{y}^{s_1 + 2s_2} \zeta^{\star}(2s_1) \zeta^{\star}_{K,A}(2s_2) + \mathbf{y}^{2+s_1 - 2s_2} \zeta^{\star}(2s_1) \zeta^{\star}_{K,A}(2-2s_2) \\ &+ \mathbf{y}^{1-s_1 + 2s_2} \zeta^{\star}(2-2s_1) \zeta^{\star}_{K,A}(2s_2) + \mathbf{y}^{3-s_1 - 2s_2} \zeta^{\star}(2-2s_1) \zeta^{\star}_{K,A}(2-2s_2) \end{split}$$

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

Cartesian Equation of Π

By Zagier's Theorem, the polar divisor of R_A is the union of the 14 hyperplanes

 $s_0 = s_1 + 2s_2$ $s_0 = 2 + s_1 - 2s_2$ $s_0 = 1 - s_1 + 2s_2$ $s_0 = 3 - s_1 - 2s_2$

 $s_0 = 1 - s_1 - 2s_2 \quad s_0 = -1 - s_1 + 2s_2 \quad s_0 = s_1 - 2s_2 \quad s_0 = -2 + s_1 + 2s_2$

 $s_0, s_1, s_2 = 0$ and $s_0, s_1, s_2 = 1$

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

Cartesian Equation of Π

By Zagier's Theorem, the polar divisor of R_A is the union of the 14 hyperplanes

 $s_0 = s_1 + 2s_2$ $s_0 = 2 + s_1 - 2s_2$ $s_0 = 1 - s_1 + 2s_2$ $s_0 = 3 - s_1 - 2s_2$

 $s_0 = 1 - s_1 - 2s_2 \quad s_0 = -1 - s_1 + 2s_2 \quad s_0 = s_1 - 2s_2 \quad s_0 = -2 + s_1 + 2s_2$

 $s_0, s_1, s_2 = 0$ and $s_0, s_1, s_2 = 1$

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

Cartesian Equation of П

By Zagier's Theorem, the polar divisor of R_A is the union of the 14 hyperplanes

 $s_0 = s_1 + 2s_2 \qquad s_0 = 2 + s_1 - 2s_2 \qquad s_0 = 1 - s_1 + 2s_2 \qquad s_0 = 3 - s_1 - 2s_2$

 $s_0 = 1 - s_1 - 2s_2 \quad s_0 = -1 - s_1 + 2s_2 \quad s_0 = s_1 - 2s_2 \quad s_0 = -2 + s_1 + 2s_2$

 $s_0, s_1, s_2 = 0$ and $s_0, s_1, s_2 = 1$

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

Cartesian Equation of П

By Zagier's Theorem, the polar divisor of R_A is the union of the 14 hyperplanes

 $s_0 = s_1 + 2s_2 \qquad s_0 = 2 + s_1 - 2s_2 \qquad s_0 = 1 - s_1 + 2s_2 \qquad s_0 = 3 - s_1 - 2s_2$

 $s_0 = 1 - s_1 - 2s_2 \quad s_0 = -1 - s_1 + 2s_2 \quad s_0 = s_1 - 2s_2 \quad s_0 = -2 + s_1 + 2s_2$

 $s_0, s_1, s_2 = 0$ and $s_0, s_1, s_2 = 1$

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

Cartesian Equation of Π

By Zagier's Theorem, the polar divisor of R_A is the union of the 14 hyperplanes

 $s_0 = s_1 + 2s_2 \qquad s_0 = 2 + s_1 - 2s_2 \qquad s_0 = 1 - s_1 + 2s_2 \qquad s_0 = 3 - s_1 - 2s_2$

 $s_0 = 1 - s_1 - 2s_2 \quad s_0 = -1 - s_1 + 2s_2 \quad s_0 = s_1 - 2s_2 \quad s_0 = -2 + s_1 + 2s_2$

 $s_0, s_1, s_2 = 0$ and $s_0, s_1, s_2 = 1$

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

So what does ∏ look like?

The 14 hyperplanes in \mathbb{C}^3 cut out a rhombic dodecahedron:

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

The Group of Π

The group S_{Π} of transformations leaving Π invariant is computed through standard counting arguments.

For example, S_{Π} acts transitively on the set of vertices that are connected to 4 other vertices.

There are 6 such vertices.

Each of them is fixed by 8 transformations: 4 reflexions and 4 rotations.

So $|S_{\Pi}| = 6 \times 8 = 48$.

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

The Group of Π

The group S_{Π} of transformations leaving Π invariant is computed through standard counting arguments.

For example, S_{Π} acts transitively on the set of vertices that are connected to 4 other vertices.

There are 6 such vertices.

Each of them is fixed by 8 transformations: 4 reflexions and 4 rotations.

So $|S_{\Pi}| = 6 \times 8 = 48$.

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

The Group of П

The group S_{Π} of transformations leaving Π invariant is computed through standard counting arguments.

For example, S_{Π} acts transitively on the set of vertices that are connected to 4 other vertices.

There are 6 such vertices.

Each of them is fixed by 8 transformations: 4 reflexions and 4 rotations.

So $|S_{\Pi}| = 6 \times 8 = 48$.

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

The Group of П

The group S_{Π} of transformations leaving Π invariant is computed through standard counting arguments.

For example, S_{Π} acts transitively on the set of vertices that are connected to 4 other vertices.

There are 6 such vertices.

Each of them is fixed by 8 transformations: 4 reflexions and 4 rotations.

So $|S_{\Pi}| = 6 \times 8 = 48$.

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

The Group of П

The group S_{Π} of transformations leaving Π invariant is computed through standard counting arguments.

For example, S_{Π} acts transitively on the set of vertices that are connected to 4 other vertices.

There are 6 such vertices.

Each of them is fixed by 8 transformations: 4 reflexions and 4 rotations.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

So $|S_{\Pi}| = 6 \times 8 = 48$.

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

The Group of Π

The group S_{Π} of transformations leaving Π invariant is computed through standard counting arguments.

For example, S_{Π} acts transitively on the set of vertices that are connected to 4 other vertices.

There are 6 such vertices.

Each of them is fixed by 8 transformations: 4 reflexions and 4 rotations.

So $|S_{\Pi}| = 6 \times 8 = 48$.

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

Relationship Between S and S_{Π}

There is an easy inclusion between *S* and *S*_Π. Every functional equation for R_A should leave Π invariant. So $S \subset S_{\Pi}$ and it follows that $|S| \leq 48$.

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

Relationship Between S and S_{Π}

There is an easy inclusion between S and S_{Π} .

Every functional equation for R_A should leave Π invariant. So $S \subset S_{\Pi}$ and it follows that $|S| \leq 48$.

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

Relationship Between S and S_{Π}

There is an easy inclusion between *S* and *S*_{Π}. Every functional equation for *R*_A should leave Π invariant. So $S \subset S_{\Pi}$ and it follows that $|S| \leq 48$.

Identifying the Polar Divisor of R_A Finding the Group of Π An Upper Bound for |S|

Relationship Between S and S_{Π}

There is an easy inclusion between *S* and S_{Π} .

Every functional equation for R_A should leave Π invariant.

So $S \subset S_{\Pi}$ and it follows that $|S| \leq 48$.

More Notations First Computations Along Came Poissor Wrap It Up, David

The $SL_3(\mathbb{Z})$ Eisenstein series I

- ν_1 and ν_2 are complex numbers with real part bigger than $\frac{2}{3}$.
- Ω is the set of quadruples $(\alpha, \beta, \xi, \eta) \in \mathfrak{a} \times (\mathfrak{a}\mathfrak{D})^{-1} \times \mathbb{Z} \times \mathbb{Z}$ with
 - α and ξ not simultaneously 0;
 - β and η not simultaneously 0;
 - Tr $\alpha\beta + \xi\eta = 0$.
- $c = \mathbb{N}(\mathfrak{a})^{-\frac{1}{2}} D^{-\frac{1}{4}};$
- t_1 and t_2 are positive real numbers.

A (10) F (10)

More Notations First Computations Along Came Poisson Wrap It Up, David

The $SL_3(\mathbb{Z})$ Eisenstein series I

• ν_1 and ν_2 are complex numbers with real part bigger than $\frac{2}{2}$.

• Ω is the set of quadruples $(\alpha, \beta, \xi, \eta) \in \mathfrak{a} \times (\mathfrak{a}\mathfrak{D})^{-1} \times \mathbb{Z} \times \mathbb{Z}$ with

- α and ξ not simultaneously 0;
- β and η not simultaneously 0;
- Tr $\alpha\beta + \xi\eta = 0$.
- $c = \mathbb{N}(\mathfrak{a})^{-\frac{1}{2}} D^{-\frac{1}{4}};$
- t_1 and t_2 are positive real numbers.

More Notations First Computations Along Came Poisson Wrap It Up, David

The $SL_3(\mathbb{Z})$ Eisenstein series I

- ν_1 and ν_2 are complex numbers with real part bigger than $\frac{2}{3}$.
- Ω is the set of quadruples $(\alpha, \beta, \xi, \eta) \in \mathfrak{a} \times (\mathfrak{a}\mathfrak{D})^{-1} \times \mathbb{Z} \times \mathbb{Z}$ with
 - α and ξ not simultaneously 0;
 - β and η not simultaneously 0;
 - Tr $\alpha\beta + \xi\eta = 0$.
- $c = \mathbb{N}(\mathfrak{a})^{-\frac{1}{2}} D^{-\frac{1}{4}};$
- t_1 and t_2 are positive real numbers.

More Notations First Computations Along Came Poisson Wrap It Up, David

The $SL_3(\mathbb{Z})$ Eisenstein series I

- ν_1 and ν_2 are complex numbers with real part bigger than $\frac{2}{3}$.
- Ω is the set of quadruples $(\alpha, \beta, \xi, \eta) \in \mathfrak{a} \times (\mathfrak{a}\mathfrak{D})^{-1} \times \mathbb{Z} \times \mathbb{Z}$ with
 - α and ξ not simultaneously 0;
 - β and η not simultaneously 0;
 - Tr $\alpha\beta + \xi\eta = 0$.
- $c = \mathbb{N}(\mathfrak{a})^{-\frac{1}{2}} D^{-\frac{1}{4}};$
- t_1 and t_2 are positive real numbers.

More Notations First Computations Along Came Poisson Wrap It Up, David

The $SL_3(\mathbb{Z})$ Eisenstein series I

- ν_1 and ν_2 are complex numbers with real part bigger than $\frac{2}{2}$.
- Ω is the set of quadruples $(\alpha, \beta, \xi, \eta) \in \mathfrak{a} \times (\mathfrak{a}\mathfrak{D})^{-1} \times \mathbb{Z} \times \mathbb{Z}$ with
 - α and ξ not simultaneously 0;
 - β and η not simultaneously 0;
 - Tr $\alpha\beta + \xi\eta = 0$.
- $c = \mathbb{N}(\mathfrak{a})^{-\frac{1}{2}} D^{-\frac{1}{4}};$
- t_1 and t_2 are positive real numbers.

More Notations First Computations Along Came Poisson Wrap It Up, David

The $SL_3(\mathbb{Z})$ Eisenstein series I

- ν_1 and ν_2 are complex numbers with real part bigger than $\frac{2}{2}$.
- Ω is the set of quadruples $(\alpha, \beta, \xi, \eta) \in \mathfrak{a} \times (\mathfrak{a}\mathfrak{D})^{-1} \times \mathbb{Z} \times \mathbb{Z}$ with
 - α and ξ not simultaneously 0;
 - β and η not simultaneously 0;
 - Tr $\alpha\beta + \xi\eta = 0$.
- $c = \mathbb{N}(\mathfrak{a})^{-\frac{1}{2}} D^{-\frac{1}{4}};$
- t_1 and t_2 are positive real numbers.

< □ > < □ > < □ > < □ > < □</p>

More Notations First Computations Along Came Poisson Wrap It Up, David

The $SL_3(\mathbb{Z})$ Eisenstein series I

- ν_1 and ν_2 are complex numbers with real part bigger than $\frac{2}{2}$.
- Ω is the set of quadruples $(\alpha, \beta, \xi, \eta) \in \mathfrak{a} \times (\mathfrak{a}\mathfrak{D})^{-1} \times \mathbb{Z} \times \mathbb{Z}$ with
 - α and ξ not simultaneously 0;
 - β and η not simultaneously 0;
 - Tr $\alpha\beta + \xi\eta = 0$.
- $c = \mathbb{N}(\mathfrak{a})^{-\frac{1}{2}}D^{-\frac{1}{4}};$
- t_1 and t_2 are positive real numbers.

More Notations First Computations Along Came Poisson Wrap It Up, David

The $SL_3(\mathbb{Z})$ Eisenstein series I

- ν_1 and ν_2 are complex numbers with real part bigger than $\frac{2}{2}$.
- Ω is the set of quadruples $(\alpha, \beta, \xi, \eta) \in \mathfrak{a} \times (\mathfrak{a}\mathfrak{D})^{-1} \times \mathbb{Z} \times \mathbb{Z}$ with
 - α and ξ not simultaneously 0;
 - β and η not simultaneously 0;
 - Tr $\alpha\beta + \xi\eta = 0$.
- $c = \mathbb{N}(\mathfrak{a})^{-\frac{1}{2}}D^{-\frac{1}{4}};$
- t_1 and t_2 are positive real numbers.

A ∰ ► A ∃ ► A

More Notations

First Computations Along Came Poisson Wrap It Up, David

The $SL_3(\mathbb{Z})$ Eisenstein Series II

Let
$$G_{\nu_1,\nu_2}(t_1, t_2) = \frac{1}{4} \pi^{-\frac{3\nu_1}{2}} \Gamma\left(\frac{3\nu_1}{2}\right) \pi^{-\frac{3\nu_2}{2}} \Gamma\left(\frac{3\nu_2}{2}\right) \zeta^*(3\nu_1 + 3\nu_2 + 1)$$

 $\times \sum_{(\alpha,\beta,\xi,\eta)\in\Omega} \left[\left(Ct_1\alpha^{(1)}\right)^2 + \left(Ct_2\alpha^{(2)}\right)^2 + \left(\frac{\xi}{t_1t_2}\right) \right]^{-\frac{3\nu_1}{2}} \times \left[\left(\frac{\beta^{(1)}}{ct_1}\right)^2 + \left(\frac{\beta^{(2)}}{ct_2}\right)^2 + (\eta t_1 t_2)^2 \right]^{-\frac{3\nu_2}{2}}$

イロト イポト イヨト イヨト

More Notations

First Computations Along Came Poisson Wrap It Up, David

The $SL_3(\mathbb{Z})$ Eisenstein Series II

Let
$$G_{\nu_1,\nu_2}(t_1, t_2) = \frac{1}{4} \pi^{-\frac{3\nu_1}{2}} \Gamma\left(\frac{3\nu_1}{2}\right) \pi^{-\frac{3\nu_2}{2}} \Gamma\left(\frac{3\nu_2}{2}\right) \zeta^*(3\nu_1 + 3\nu_2 + 1)$$

 $\times \sum_{(\alpha,\beta,\xi,\eta)\in\Omega} \left[\left(ct_1\alpha^{(1)}\right)^2 + \left(ct_2\alpha^{(2)}\right)^2 + \left(\frac{\xi}{t_1t_2}\right) \right]^{-\frac{3\nu_1}{2}}$
 $\times \left[\left(\frac{\beta^{(1)}}{ct_1}\right)^2 + \left(\frac{\beta^{(2)}}{ct_2}\right)^2 + (\eta t_1 t_2)^2 \right]^{-\frac{3\nu_2}{2}}$

イロト イポト イヨト イヨト

More Notations First Computations Along Came Poisso

The $SL_3(\mathbb{Z})$ Eisenstein series III

True facts about G_{ν_1,ν_2}

- $G_{\nu_1,\nu_2}(t_1, t_2)$ is well defined as a converging series when Re ν_1 and Re ν_2 are bigger than $\frac{2}{3}$;
- it has meromorphic continuation to \mathbb{C}^2 ;

•
$$G_{1-\nu_1-\nu_2,\nu_1}(t_1,t_2)=G_{\nu_1,\nu_2}(t_1,t_2).$$

Proof.

 $G_{
u_1,
u_2}(t_1,t_2)$ is a particular value of the $SL_3(\mathbb{Z})$ Eisenstein series.

A (1) > A (2) > A

More Notations First Computations Along Came Poissor Wrap It Up, David

The $SL_3(\mathbb{Z})$ Eisenstein series III

True facts about G_{ν_1,ν_2}

- G_{ν1,ν2}(t₁, t₂) is well defined as a converging series when Re ν₁ and Re ν₂ are bigger than ²/₃;
- it has meromorphic continuation to \mathbb{C}^2 ;

•
$$G_{1-\nu_1-\nu_2,\nu_1}(t_1,t_2) = G_{\nu_1,\nu_2}(t_1,t_2).$$

Proof.

 $G_{
u_1,
u_2}(t_1,t_2)$ is a particular value of the $SL_3(\mathbb{Z})$ Eisenstein series.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

More Notations First Computations Along Came Poissor Wrap It Up, David

The $SL_3(\mathbb{Z})$ Eisenstein series III

True facts about G_{ν_1,ν_2}

- G_{ν1,ν2}(t₁, t₂) is well defined as a converging series when Re ν₁ and Re ν₂ are bigger than ²/₃;
- it has meromorphic continuation to \mathbb{C}^2 ;
- $G_{1-\nu_1-\nu_2,\nu_1}(t_1,t_2)=G_{\nu_1,\nu_2}(t_1,t_2).$

Proof.

 $G_{
u_1,
u_2}(t_1,t_2)$ is a particular value of the $SL_3(\mathbb{Z})$ Eisenstein series.

More Notations First Computations Along Came Poisson Wrap It Up, David

The $SL_3(\mathbb{Z})$ Eisenstein series III

True facts about G_{ν_1,ν_2}

- G_{ν1,ν2}(t₁, t₂) is well defined as a converging series when Re ν₁ and Re ν₂ are bigger than ²/₃;
- it has meromorphic continuation to \mathbb{C}^2 ;

•
$$G_{1-\nu_1-\nu_2,\nu_1}(t_1,t_2)=G_{\nu_1,\nu_2}(t_1,t_2).$$

Proof.

 $G_{
u_1,
u_2}(t_1,t_2)$ is a particular value of the $SL_3(\mathbb{Z})$ Eisenstein series.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

More Notations First Computations Along Came Poisson Wrap It Up, David

The $SL_3(\mathbb{Z})$ Eisenstein series III

True facts about G_{ν_1,ν_2}

- G_{ν1,ν2}(t₁, t₂) is well defined as a converging series when Re ν₁ and Re ν₂ are bigger than ²/₃;
- it has meromorphic continuation to \mathbb{C}^2 ;

•
$$G_{1-\nu_1-\nu_2,\nu_1}(t_1,t_2)=G_{\nu_1,\nu_2}(t_1,t_2).$$

Proof.

 $G_{\nu_1,\nu_2}(t_1, t_2)$ is a particular value of the $SL_3(\mathbb{Z})$ Eisenstein series.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

More Notations First Computations Along Came Poisson Wrap It Up, David

Action of $\mathfrak{o}^{ imes}$ on $(\mathbb{R}^{\star}_+)^2$

Definition

If ϵ is a unit in \mathfrak{o} and t_1, t_2 are positive real numbers, we define

 $\epsilon(t_1, t_2) = \left(|\epsilon^{(1)}| t_1, |\epsilon^{(2)}| t_2 \right)$

Remarks

- $|\epsilon^{(1)}\epsilon^{(2)}| = |\mathbb{N}(\epsilon)|$ is a unit in \mathbb{Z} , so $|\epsilon^{(2)}| = |\epsilon|^{-1}$.
- As a consequence, $\epsilon(t_1, t_2) = (|\epsilon|t_1, |\epsilon|^{-1}t_2)$.
- By the Unit Theorem, there exists $\varepsilon \in \mathfrak{o}^{\times}$, such that

$$\mathfrak{p}^{\times} = \left\{ \pm \varepsilon^n \mid n \in \mathbb{Z} \right\} \quad \text{and} \quad \varepsilon > 1$$

More Notations First Computations Along Came Poisson Wrap It Up, David

Action of $\mathfrak{o}^{ imes}$ on $(\mathbb{R}^{\star}_+)^2$

Definition

If ϵ is a unit in \mathfrak{o} and t_1, t_2 are positive real numbers, we define

$$\epsilon(t_1, t_2) = \left(|\epsilon^{(1)}| t_1, |\epsilon^{(2)}| t_2 \right)$$

Remarks

•
$$|\epsilon^{(1)}\epsilon^{(2)}| = |\mathbb{N}(\epsilon)|$$
 is a unit in \mathbb{Z} , so $|\epsilon^{(2)}| = |\epsilon|^{-1}$.

• As a consequence, $\epsilon(t_1, t_2) = (|\epsilon|t_1, |\epsilon|^{-1}t_2)$.

• By the Unit Theorem, there exists $\varepsilon \in \mathfrak{o}^{\times}$, such that

$$\mathfrak{p}^{\times} = \left\{ \pm \varepsilon^n \mid n \in \mathbb{Z} \right\} \quad \text{and} \quad \varepsilon > 1$$

• • • • • • • • • • • • •

More Notations First Computations Along Came Poisson Wrap It Up, David

Action of $\mathfrak{o}^{ imes}$ on $(\mathbb{R}^{\star}_+)^2$

Definition

If ϵ is a unit in \mathfrak{o} and t_1, t_2 are positive real numbers, we define

$$\epsilon\left(t_{1}, t_{2}\right) = \left(|\epsilon^{(1)}|t_{1}, |\epsilon^{(2)}|t_{2}\right)$$

Remarks

•
$$|\epsilon^{(1)}\epsilon^{(2)}| = |\mathbb{N}(\epsilon)|$$
 is a unit in \mathbb{Z} , so $|\epsilon^{(2)}| = |\epsilon|^{-1}$.

• As a consequence, $\epsilon(t_1, t_2) = (|\epsilon|t_1, |\epsilon|^{-1}t_2)$.

• By the Unit Theorem, there exists $\varepsilon \in \mathfrak{o}^{ imes}$, such that

$$\mathfrak{p}^{\times} = \left\{ \pm \varepsilon^n \mid n \in \mathbb{Z} \right\} \quad \text{and} \quad \varepsilon > 1$$

• • • • • • • • • • • • •

More Notations First Computations Along Came Poisson Wrap It Up, David

Action of $\mathfrak{o}^{ imes}$ on $(\mathbb{R}^{\star}_+)^2$

Definition

If ϵ is a unit in \mathfrak{o} and t_1, t_2 are positive real numbers, we define

$$\epsilon(t_1, t_2) = \left(|\epsilon^{(1)}| t_1, |\epsilon^{(2)}| t_2 \right)$$

Remarks

- $|\epsilon^{(1)}\epsilon^{(2)}| = |\mathbb{N}(\epsilon)|$ is a unit in \mathbb{Z} , so $|\epsilon^{(2)}| = |\epsilon|^{-1}$.
- As a consequence, $\epsilon(t_1, t_2) = (|\epsilon|t_1, |\epsilon|^{-1}t_2)$.
- By the Unit Theorem, there exists $\varepsilon \in \mathfrak{o}^{\times}$, such that

 $arphi^{ imes} = ig\{ \pm arepsilon^n \mid n \in \mathbb{Z} ig\} \quad ext{ and } \quad arepsilon > 1 ig\}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

More Notations First Computations Along Came Poisson Wrap It Up, David

Action of $\mathfrak{o}^{ imes}$ on $(\mathbb{R}^{\star}_+)^2$

Definition

If ϵ is a unit in \mathfrak{o} and t_1, t_2 are positive real numbers, we define

$$\epsilon(t_1, t_2) = \left(|\epsilon^{(1)}| t_1, |\epsilon^{(2)}| t_2 \right)$$

Remarks

- $|\epsilon^{(1)}\epsilon^{(2)}| = |\mathbb{N}(\epsilon)|$ is a unit in \mathbb{Z} , so $|\epsilon^{(2)}| = |\epsilon|^{-1}$.
- As a consequence, $\epsilon(t_1, t_2) = (|\epsilon|t_1, |\epsilon|^{-1}t_2)$.
- By the Unit Theorem, there exists $\varepsilon \in \mathfrak{o}^{\times}$, such that

$$\mathfrak{o}^{ imes} = ig\{ \pm arepsilon^n \mid n \in \mathbb{Z} ig\} \qquad ext{and} \qquad arepsilon > 1 ig\}$$

More Notations First Computations Along Came Poisson Wrap It Up, David

Theorem

The action of \mathfrak{o}^{\times} on $(\mathbb{R}_+^{\star})^2$ has kernel $\{\pm 1\}.$ A fundamental domain is given by

$$(\mathbb{R}^{\star}_{+})^{2}/\mathfrak{o}^{ imes} = \left\{ (t_{1}, t_{2}) \in (\mathbb{R}^{\star}_{+})^{2} \mid \varepsilon^{-1} \leqslant rac{t_{2}}{t_{1}} \leqslant \varepsilon
ight\}$$

< ロ > < 同 > < 回 > < 回 > < 回 >

More Notations First Computations Along Came Poisson Wrap It Up, David

Theorem

The action of \mathfrak{o}^{\times} on $(\mathbb{R}_+^{\star})^2$ has kernel $\{\pm 1\}.$ A fundamental domain is given by

$$(\mathbb{R}^{\star}_+)^2/\mathfrak{o}^{ imes} = \left\{ (t_1, t_2) \in (\mathbb{R}^{\star}_+)^2 \mid arepsilon^{-1} \leqslant rac{t_2}{t_1} \leqslant arepsilon
ight\}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

More Notations First Computations Along Came Poisson Wrap It Up, David

Action of \mathfrak{o}^{\times} on Ω

Recall that

$$\Omega = \left\{ (\alpha, \beta, \xi, \eta) \in \mathfrak{a} \times (\mathfrak{a}\mathfrak{D})^{-1} \times \mathbb{Z}^2 \mid \begin{cases} (\alpha, \xi) \neq 0\\ (\beta, \eta) \neq 0\\ \operatorname{Tr} \alpha\beta + \xi\eta = 0 \end{cases} \right\}$$

Definition

If $\epsilon \in \mathfrak{o}^{\times}$ and $(\alpha, \beta, \xi, \eta) \in \Omega$, define

$$\epsilon(\alpha, \beta, \xi, \eta) = (\epsilon \alpha, \epsilon^{-1} \beta, \xi, \eta)$$

イロト イ団ト イヨト イヨト

More Notations First Computations Along Came Poisson Wrap It Up, David

Action of \mathfrak{o}^{\times} on Ω

Recall that

$$\Omega = \left\{ (\alpha, \beta, \xi, \eta) \in \mathfrak{a} \times (\mathfrak{a}\mathfrak{D})^{-1} \times \mathbb{Z}^2 \mid \begin{cases} (\alpha, \xi) \neq \mathbf{0} \\ (\beta, \eta) \neq \mathbf{0} \\ \mathsf{Tr} \, \alpha\beta + \xi\eta = \mathbf{0} \end{cases} \right\}$$

Definition

If $\epsilon \in \mathfrak{o}^{\times}$ and $(\alpha, \beta, \xi, \eta) \in \Omega$, define

$$\epsilon(\alpha, \beta, \xi, \eta) = (\epsilon \alpha, \epsilon^{-1} \beta, \xi, \eta)$$

イロト イポト イヨト イヨト

More Notations First Computations Along Came Poisson Wrap It Up, David

Action of \mathfrak{o}^{\times} on Ω

Recall that

$$\Omega = \left\{ (\alpha, \beta, \xi, \eta) \in \mathfrak{a} \times (\mathfrak{a}\mathfrak{D})^{-1} \times \mathbb{Z}^2 \mid \begin{cases} (\alpha, \xi) \neq \mathbf{0} \\ (\beta, \eta) \neq \mathbf{0} \\ \mathsf{Tr} \, \alpha\beta + \xi\eta = \mathbf{0} \end{cases} \right\}$$

Definition

If $\epsilon \in \mathfrak{o}^{\times}$ and $(\alpha, \beta, \xi, \eta) \in \Omega$, define

$$\epsilon(\alpha, \beta, \xi, \eta) = (\epsilon \alpha, \epsilon^{-1} \beta, \xi, \eta)$$

イロン イ団 とく ヨン イヨン

E

More Notations First Computations Along Came Poisson Wrap It Up, David

Identifying $\Omega/\mathfrak{o}^{\times}$

Let \mathscr{A} be a set of representatives of the principal ideals in \mathfrak{a} . In other words, $\mathscr{A} = \mathfrak{a}/\mathfrak{o}^{\times}$.

Theorem

The action of \mathfrak{o}^{\times} on Ω is faithful. A complete set of representatives for the orbits is

$$\tilde{\Omega} = \left\{ (\alpha, \beta, \xi, \eta) \in \mathscr{A} \times (\mathfrak{a}\mathfrak{D})^{-1} \times \mathbb{Z} \times \mathbb{Z} \mid \begin{cases} (\alpha, \xi) \neq 0\\ (\beta, \eta) \neq 0\\ Tr \alpha \beta + \xi \eta \end{cases} \right\}$$

More Notations First Computations Along Came Poisson Wrap It Up, David

Identifying $\Omega/\mathfrak{o}^{\times}$

Let \mathscr{A} be a set of representatives of the principal ideals in \mathfrak{a} . In other words, $\mathscr{A} = \mathfrak{a}/\mathfrak{o}^{\times}$.

Theorem

The action of \mathfrak{o}^{\times} on Ω is faithful. A complete set of representatives for the orbits is

$$\tilde{\Omega} = \left\{ (\alpha, \beta, \xi, \eta) \in \mathscr{A} \times (\mathfrak{a}\mathfrak{D})^{-1} \times \mathbb{Z} \times \mathbb{Z} \mid \begin{cases} (\alpha, \xi) \neq \mathbf{0} \\ (\beta, \eta) \neq \mathbf{0} \\ Tr \alpha \beta + \xi \eta \end{cases} \right\}$$

More Notations First Computations Along Came Poisson Wrap It Up, David

Identifying $\Omega/\mathfrak{o}^{\times}$

Let \mathscr{A} be a set of representatives of the principal ideals in \mathfrak{a} . In other words, $\mathscr{A} = \mathfrak{a}/\mathfrak{o}^{\times}$.

Theorem

The action of \mathfrak{o}^{\times} on Ω is faithful. A complete set of representatives for the orbits is

$$\tilde{\Omega} = \left\{ (\alpha, \beta, \xi, \eta) \in \mathscr{A} \times (\mathfrak{a}\mathfrak{D})^{-1} \times \mathbb{Z} \times \mathbb{Z} \mid \begin{cases} (\alpha, \xi) \neq 0\\ (\beta, \eta) \neq 0\\ Tr \alpha \beta + \xi \eta \end{cases} \right\}$$

More Notations First Computations Along Came Poisson Wrap It Up, David

Identifying $\Omega/\mathfrak{o}^{\times}$

Let \mathscr{A} be a set of representatives of the principal ideals in \mathfrak{a} . In other words, $\mathscr{A} = \mathfrak{a}/\mathfrak{o}^{\times}$.

Theorem

The action of \mathfrak{o}^{\times} on Ω is faithful. A complete set of representatives for the orbits is

$$\tilde{\Omega} = \left\{ (\alpha, \beta, \xi, \eta) \in \mathscr{A} \times (\mathfrak{a}\mathfrak{D})^{-1} \times \mathbb{Z} \times \mathbb{Z} \mid \begin{cases} (\alpha, \xi) \neq \mathbf{0} \\ (\beta, \eta) \neq \mathbf{0} \\ \mathcal{T}r\alpha\beta + \xi\eta \end{cases} \right\}$$

• • • • • • • • • • • • •

More Notations First Computations Along Came Poisson Wrap It Up, David

The Link

Define

•
$$\Lambda = \frac{1}{4} \pi^{-\frac{3\nu_1}{2}} \Gamma\left(\frac{3\nu_1}{2}\right) \pi^{-\frac{3\nu_2}{2}} \Gamma\left(\frac{3\nu_2}{2}\right) \zeta^* (3\nu_1 + 3\nu_2 + 1) \text{ and}$$

•
$$H(\alpha, \beta, \xi, \eta, t_1, t_2) = (t_1 t_2)^s \left[(ct_1 \alpha^{(1)})^2 + (ct_2 \alpha^{(2)})^2 + (\frac{\xi}{t_1 t_2}) \right]^{-\frac{3\nu_1}{2}} \times \left[\left(\frac{\beta^{(1)}}{ct_1}\right)^2 + \left(\frac{\beta^{(2)}}{ct_2}\right)^2 + (\eta t_1 t_2)^2 \right]^{-\frac{3\nu_2}{2}}$$

Then

•
$$G_{\nu_1,\nu_2}(t_1,t_2)(t_1t_2)^s = \Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\Omega} H(\alpha,\beta,\xi,\eta,t_1,t_2)$$

イロト イヨト イヨト イヨト

More Notations First Computations Along Came Poisson Wrap It Up, David

The Link

Define • $\Lambda = \frac{1}{4}\pi^{-\frac{3\nu_1}{2}}\Gamma\left(\frac{3\nu_1}{2}\right)\pi^{-\frac{3\nu_2}{2}}\Gamma\left(\frac{3\nu_2}{2}\right)\zeta^*(3\nu_1 + 3\nu_2 + 1)$ and • $H(\alpha, \beta, \xi, \eta, t_1, t_2) = (t_1t_2)^s \left[(ct_1\alpha^{(1)})^2 + (ct_2\alpha^{(2)})^2 + (\frac{\xi}{t_1t_2})\right]^{-\frac{3\nu_1}{2}}$ $\times \left[\left(\frac{\beta^{(1)}}{ct_1}\right)^2 + \left(\frac{\beta^{(2)}}{ct_2}\right)^2 + (\eta t_1t_2)^2\right]^{-\frac{3\nu_2}{2}}$

Then

•
$$G_{\nu_1,\nu_2}(t_1,t_2)(t_1t_2)^{\mathrm{s}} = \Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\Omega} H(\alpha,\beta,\xi,\eta,t_1,t_2)$$

More Notations First Computations Along Came Poisson Wrap It Up, David

The Link

Define

•
$$\Lambda = \frac{1}{4} \pi^{-\frac{3\nu_1}{2}} \Gamma\left(\frac{3\nu_1}{2}\right) \pi^{-\frac{3\nu_2}{2}} \Gamma\left(\frac{3\nu_2}{2}\right) \zeta^* (3\nu_1 + 3\nu_2 + 1) \text{ and}$$

•
$$H(\alpha, \beta, \xi, \eta, t_1, t_2) = (t_1 t_2)^s \left[(ct_1 \alpha^{(1)})^2 + (ct_2 \alpha^{(2)})^2 + (\frac{\xi}{t_1 t_2}) \right]^{-\frac{3\nu_1}{2}} \times \left[\left(\frac{\beta^{(1)}}{ct_1}\right)^2 + \left(\frac{\beta^{(2)}}{ct_2}\right)^2 + (\eta t_1 t_2)^2 \right]^{-\frac{3\nu_2}{2}}$$

Then

•
$$G_{\nu_1,\nu_2}(t_1,t_2)(t_1t_2)^s = \Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\Omega} H(\alpha,\beta,\xi,\eta,t_1,t_2)$$

イロト イヨト イヨト イヨト

More Notations First Computations Along Came Poisson Wrap It Up, David

The Link

Define

•
$$\Lambda = \frac{1}{4} \pi^{-\frac{3\nu_1}{2}} \Gamma\left(\frac{3\nu_1}{2}\right) \pi^{-\frac{3\nu_2}{2}} \Gamma\left(\frac{3\nu_2}{2}\right) \zeta^* (3\nu_1 + 3\nu_2 + 1) \text{ and}$$

•
$$H(\alpha, \beta, \xi, \eta, t_1, t_2) = (t_1 t_2)^s \left[(ct_1 \alpha^{(1)})^2 + (ct_2 \alpha^{(2)})^2 + (\frac{\xi}{t_1 t_2}) \right]^{-\frac{3\nu_1}{2}} \times \left[\left(\frac{\beta^{(1)}}{ct_1}\right)^2 + \left(\frac{\beta^{(2)}}{ct_2}\right)^2 + (\eta t_1 t_2)^2 \right]^{-\frac{3\nu_2}{2}}$$

Then

•
$$G_{\nu_1,\nu_2}(t_1,t_2)(t_1t_2)^s = \Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\Omega} H(\alpha,\beta,\xi,\eta,t_1,t_2)$$

イロト イヨト イヨト イヨト

More Notations First Computations Along Came Poisson Wrap It Up, David

The Link

Define

•
$$\Lambda = \frac{1}{4} \pi^{-\frac{3\nu_1}{2}} \Gamma\left(\frac{3\nu_1}{2}\right) \pi^{-\frac{3\nu_2}{2}} \Gamma\left(\frac{3\nu_2}{2}\right) \zeta^* (3\nu_1 + 3\nu_2 + 1) \text{ and}$$

•
$$H(\alpha, \beta, \xi, \eta, t_1, t_2) = (t_1 t_2)^s \left[(ct_1 \alpha^{(1)})^2 + (ct_2 \alpha^{(2)})^2 + (\frac{\xi}{t_1 t_2}) \right]^{-\frac{3\nu_1}{2}} \times \left[\left(\frac{\beta^{(1)}}{ct_1}\right)^2 + \left(\frac{\beta^{(2)}}{ct_2}\right)^2 + (\eta t_1 t_2)^2 \right]^{-\frac{3\nu_2}{2}}$$

Then

•
$$G_{\nu_1,\nu_2}(t_1,t_2)(t_1t_2)^s = \Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\Omega} H(\alpha,\beta,\xi,\eta,t_1,t_2)$$

イロト イヨト イヨト イヨト

More Notations First Computations Along Came Poisson Wrap It Up, David

The Link II

We want to work with
$$I = \iint_{(\mathbb{R}^+_+)/\mathfrak{o}^{\times}} G_{\nu_1,\nu_2}(t_1,t_2)(t_1t_2)^s \frac{\mathrm{d}t_1 \mathrm{d}t_2}{t_1t_2}$$
. Using our

two actions of \mathfrak{o}^{\times} ,

$$I = \Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\Omega} \iint_{(\mathbb{R}^{+}_{+})^{2}/\mathfrak{o}^{\times}} H(\alpha,\beta,\xi,\eta,t_{1},t_{2}) \frac{dt_{1}dt_{2}}{t_{1}t_{2}}$$
$$= \Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\tilde{\Omega}} \sum_{\epsilon\in\mathfrak{o}^{\times}} \iint_{(\mathbb{R}^{+}_{+})^{2}/\mathfrak{o}^{\times}} H(\epsilon(\alpha,\beta,\xi,\eta),t_{1},t_{2}) \frac{dt_{1}dt_{2}}{t_{1}t_{2}}$$
$$= \Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\tilde{\Omega}} \sum_{\epsilon\in\mathfrak{o}^{\times}} \iint_{\epsilon(\mathbb{R}^{+}_{+})^{2}/\mathfrak{o}^{\times}} H(\alpha,\beta,\xi,\eta,t_{1},t_{2}) \frac{dt_{1}dt_{2}}{t_{1}t_{2}}$$

イロト イ団ト イヨト イヨト

The Link II

More Notations First Computations Along Came Poisson Wrap It Up, David

We want to work with
$$I = \iint_{(\mathbb{R}^*_+)/\mathfrak{o}^{\times}} G_{\nu_1,\nu_2}(t_1,t_2)(t_1t_2)^s \frac{\mathrm{d}t_1\mathrm{d}t_2}{t_1t_2}$$
. Using our

two actions of \mathfrak{o}^{\times} ,

$$I = \Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\Omega} \iint_{(\mathbb{R}^{+}_{+})^{2}/\mathfrak{o}^{\times}} H(\alpha,\beta,\xi,\eta,t_{1},t_{2}) \frac{\mathrm{d}t_{1}\mathrm{d}t_{2}}{t_{1}t_{2}}$$
$$= \Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\tilde{\Omega}} \sum_{\epsilon\in\mathfrak{o}^{\times}} \iint_{(\mathbb{R}^{+}_{+})^{2}/\mathfrak{o}^{\times}} H(\epsilon(\alpha,\beta,\xi,\eta),t_{1},t_{2}) \frac{\mathrm{d}t_{1}\mathrm{d}t_{2}}{t_{1}t_{2}}$$
$$= \Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\tilde{\Omega}} \sum_{\epsilon\in\mathfrak{o}^{\times}} \iint_{\epsilon(\mathbb{R}^{+}_{+})^{2}/\mathfrak{o}^{\times}} H(\alpha,\beta,\xi,\eta,t_{1},t_{2}) \frac{\mathrm{d}t_{1}\mathrm{d}t_{2}}{t_{1}t_{2}}$$

イロン イ理 とく ヨン イヨン

The Link II

More Notations First Computations Along Came Poisson Wrap It Up, David

We want to work with
$$I = \iint_{(\mathbb{R}_+^*)/\mathfrak{o}^{\times}} G_{\nu_1,\nu_2}(t_1,t_2)(t_1t_2)^s \frac{\mathrm{d}t_1 \mathrm{d}t_2}{t_1t_2}$$
. Using our

two actions of \mathfrak{o}^{\times} ,

$$I = \Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\Omega} \iint_{(\mathbb{R}^{*}_{+})^{2}/\mathfrak{o}^{\times}} H(\alpha,\beta,\xi,\eta,t_{1},t_{2}) \frac{dt_{1}dt_{2}}{t_{1}t_{2}}$$
$$= \Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\tilde{\Omega}} \sum_{\epsilon\in\mathfrak{o}^{\times}} \iint_{(\mathbb{R}^{*}_{+})^{2}/\mathfrak{o}^{\times}} H(\epsilon(\alpha,\beta,\xi,\eta),t_{1},t_{2}) \frac{dt_{1}dt_{2}}{t_{1}t_{2}}$$
$$= \Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\tilde{\Omega}} \sum_{\epsilon\in\mathfrak{o}^{\times}} \iint_{\epsilon(\mathbb{R}^{*}_{+})^{2}/\mathfrak{o}^{\times}} H(\alpha,\beta,\xi,\eta,t_{1},t_{2}) \frac{dt_{1}dt_{2}}{t_{1}t_{2}}$$

イロト イポト イヨト イヨト

The Link II

More Notations First Computations Along Came Poisson Wrap It Up, David

We want to work with
$$I = \iint_{(\mathbb{R}^*_+)/\mathfrak{o}^{\times}} G_{\nu_1,\nu_2}(t_1,t_2)(t_1t_2)^s \frac{\mathrm{d}t_1 \mathrm{d}t_2}{t_1t_2}$$
. Using our

two actions of \mathfrak{o}^{\times} ,

$$I = \Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\Omega} \iint_{(\mathbb{R}^{*}_{+})^{2}/\mathfrak{o}^{\times}} H(\alpha,\beta,\xi,\eta,t_{1},t_{2}) \frac{\mathrm{d}t_{1}\mathrm{d}t_{2}}{t_{1}t_{2}}$$
$$= \Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\tilde{\Omega}} \sum_{\epsilon\in\mathfrak{o}^{\times}} \iint_{(\mathbb{R}^{*}_{+})^{2}/\mathfrak{o}^{\times}} H(\epsilon(\alpha,\beta,\xi,\eta),t_{1},t_{2}) \frac{\mathrm{d}t_{1}\mathrm{d}t_{2}}{t_{1}t_{2}}$$
$$= \Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\tilde{\Omega}} \sum_{\epsilon\in\mathfrak{o}^{\times}} \iint_{\epsilon(\mathbb{R}^{*}_{+})^{2}/\mathfrak{o}^{\times}} H(\alpha,\beta,\xi,\eta,t_{1},t_{2}) \frac{\mathrm{d}t_{1}\mathrm{d}t_{2}}{t_{1}t_{2}}$$

イロト イポト イヨト イヨト

The Link II

More Notations First Computations Along Came Poisson Wrap It Up, David

We want to work with
$$I = \iint_{(\mathbb{R}^*_+)/\mathfrak{o}^{\times}} G_{\nu_1,\nu_2}(t_1,t_2)(t_1t_2)^s \frac{\mathrm{d}t_1 \mathrm{d}t_2}{t_1t_2}$$
. Using our

two actions of \mathfrak{o}^{\times} ,

$$I = \Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\Omega} \iint_{(\mathbb{R}^{*}_{+})^{2}/\mathfrak{o}^{\times}} H(\alpha,\beta,\xi,\eta,t_{1},t_{2}) \frac{\mathrm{d}t_{1}\mathrm{d}t_{2}}{t_{1}t_{2}}$$
$$= \Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\tilde{\Omega}} \sum_{\epsilon\in\mathfrak{o}^{\times}} \iint_{(\mathbb{R}^{*}_{+})^{2}/\mathfrak{o}^{\times}} H(\epsilon(\alpha,\beta,\xi,\eta),t_{1},t_{2}) \frac{\mathrm{d}t_{1}\mathrm{d}t_{2}}{t_{1}t_{2}}$$
$$= \Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\tilde{\Omega}} \sum_{\epsilon\in\mathfrak{o}^{\times}} \iint_{\epsilon(\mathbb{R}^{*}_{+})^{2}/\mathfrak{o}^{\times}} H(\alpha,\beta,\xi,\eta,t_{1},t_{2}) \frac{\mathrm{d}t_{1}\mathrm{d}t_{2}}{t_{1}t_{2}}$$

イロト イポト イヨト イヨト

More Notations First Computations Along Came Poisson Wrap It Up, David

The Link III

 $I = 2\Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\tilde{\Omega}} \iint_{(\mathbb{R}^{*}_{+})^{2}} H(\alpha,\beta,\xi,\eta,t_{1},t_{2}) \frac{\mathrm{d}t_{1}\mathrm{d}t_{2}}{t_{1}t_{2}}$

There are issues with this computation, though:

- We were not careful about justifying interverting integrals and sums.
- In fact, it is not valid at all: some terms in the sum are not even integrable on (ℝ^{*}₊)²/o[×]. For example,

$$H(0,0,1,1,t_1,t_2) = (t_1t_2)^{s+3\nu_1-3\nu_2}$$

cannot be integrable at the same time at 0 and ∞ .

• • • • • • • • • • • • •

More Notations First Computations Along Came Poisson Wrap It Up, David

The Link III

$$I = 2\Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\tilde{\Omega}} \iint_{(\mathbb{R}^{\star}_{+})^{2}} H(\alpha,\beta,\xi,\eta,t_{1},t_{2}) \frac{\mathrm{d}t_{1}\mathrm{d}t_{2}}{t_{1}t_{2}}$$

There are issues with this computation, though:

- We were not careful about justifying interverting integrals and sums.
- In fact, it is not valid at all: some terms in the sum are not even integrable on (ℝ^{*}₊)²/o[×]. For example,

$$H(0, 0, 1, 1, t_1, t_2) = (t_1 t_2)^{s+3\nu_1 - 3\nu_2}$$

cannot be integrable at the same time at 0 and ∞ .

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

More Notations First Computations Along Came Poisson Wrap It Up, David

The Link III

$$I = 2\Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\tilde{\Omega}} \iint_{(\mathbb{R}^{\star}_{+})^{2}} H(\alpha,\beta,\xi,\eta,t_{1},t_{2}) \frac{\mathrm{d}t_{1}\mathrm{d}t_{2}}{t_{1}t_{2}}$$

There are issues with this computation, though:

- We were not careful about justifying interverting integrals and sums.
- In fact, it is not valid at all: some terms in the sum are not even integrable on (ℝ^{*}₊)²/o[×]. For example,

$$H(0,0,1,1,t_1,t_2) = (t_1 t_2)^{s+3\nu_1-3\nu_2}$$

cannot be integrable at the same time at 0 and ∞ .

• • • • • • • • • • • •

More Notations First Computations Along Came Poisson Wrap It Up, David

The Link III

$$I = 2\Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\tilde{\Omega}} \iint_{(\mathbb{R}^{\star}_{+})^{2}} H(\alpha,\beta,\xi,\eta,t_{1},t_{2}) \frac{\mathrm{d}t_{1}\mathrm{d}t_{2}}{t_{1}t_{2}}$$

There are issues with this computation, though:

- We were not careful about justifying interverting integrals and sums.
- In fact, it is not valid at all: some terms in the sum are not even integrable on (ℝ^{*}₊)²/o[×]. For example,

$$H(0,0,1,1,t_1,t_2) = (t_1 t_2)^{s+3\nu_1 - 3\nu_2}$$

cannot be integrable at the same time at 0 and ∞ .

• • • • • • • • • • • •

More Notations First Computations Along Came Poisson Wrap It Up, David

The Link III

$$I = 2\Lambda \sum_{(\alpha,\beta,\xi,\eta)\in\tilde{\Omega}} \iint_{(\mathbb{R}^{\star}_{+})^{2}} H(\alpha,\beta,\xi,\eta,t_{1},t_{2}) \frac{\mathrm{d}t_{1}\mathrm{d}t_{2}}{t_{1}t_{2}}$$

There are issues with this computation, though:

- We were not careful about justifying interverting integrals and sums.
- In fact, it is not valid at all: some terms in the sum are not even integrable on (ℝ^{*}₊)²/o[×]. For example,

$$H(0,0,1,1,t_1,t_2) = (t_1t_2)^{s+3\nu_1-3\nu_2}$$

cannot be integrable at the same time at 0 and ∞ .

• • • • • • • • • • • •

More Notations First Computations Along Came Poisson Wrap It Up, David

Troop Reorganization

We find it necessary to partition Ω into smaller subsets and sort out who is integrable and who is not.

The right way to do this is by conditioning the parameters α , β , ξ , η on whether they are 0 or not.

		$\alpha = 0 \xi \neq 0$	$\alpha \neq 0 \xi = 0$	$\alpha \neq 0 \xi \neq 0$
$\beta = 0$	$\eta \neq 0$	Excluded	Ω_6	Excluded
eta eq 0	$\eta = 0$	Ω_5	Ω_4	Ω_2
eta eq 0	$\eta \neq 0$	Excluded	Ω_3	Ω_1

Notice that each of these sets is stable under the action of \mathfrak{o}^{\times} . We call $G_{\nu_1,\nu_2}^{\Omega_i}$ the part of G_{ν_1,ν_2} corresponding to Ω_i .

More Notations First Computations Along Came Poisson Wrap It Up, David

Troop Reorganization

We find it necessary to partition $\boldsymbol{\Omega}$ into smaller subsets and sort out who is integrable and who is not.

The right way to do this is by conditioning the parameters α , β , ξ , η on whether they are 0 or not.

	$\alpha = 0 \xi \neq 0$	$\alpha \neq 0 \xi = 0$	$\alpha \neq 0 \xi \neq 0$
$\beta = 0$ $\eta \neq 0$	Excluded	Ω_6	Excluded
$\beta \neq 0$ $\eta = 0$	Ω_5	Ω_4	Ω_2
$\beta \neq 0 \eta \neq 0$	Excluded	Ω_3	Ω_1

Notice that each of these sets is stable under the action of \mathfrak{o}^{\times} . We call $G_{\nu_1,\nu_2}^{\Omega_i}$ the part of G_{ν_1,ν_2} corresponding to Ω_i .

More Notations First Computations Along Came Poisson Wrap It Up, David

Troop Reorganization

We find it necessary to partition Ω into smaller subsets and sort out who is integrable and who is not.

The right way to do this is by conditioning the parameters α , β , ξ , η on whether they are 0 or not.

	$\alpha = 0 \xi$	\neq 0 $\alpha \neq$ 0	$\xi = 0 \alpha$	\neq 0 $\xi \neq$ 0
$\beta = 0$ $\eta \neq$	0 Exclude	ed Ω ₆		Excluded
$eta eq 0 \eta =$	= 0 Ω ₅	Ω		Ω_2
$\beta \neq 0 \eta \neq$	0 Exclude	ed Ω ₃	3	Ω_1

Notice that each of these sets is stable under the action of \mathfrak{o}^{\times} . We call $G_{\nu_1,\nu_2}^{\Omega_i}$ the part of G_{ν_1,ν_2} corresponding to Ω_i .

More Notations First Computations Along Came Poisson Wrap It Up, David

Troop Reorganization

We find it necessary to partition Ω into smaller subsets and sort out who is integrable and who is not.

The right way to do this is by conditioning the parameters α , β , ξ , η on whether they are 0 or not.

_	$\alpha = 0 \xi \neq 0$	$\alpha \neq 0 \xi = 0$	$\alpha \neq 0 \xi \neq 0$
$\beta = 0 \eta \neq 0$	Excluded	Ω_6	Excluded
$\beta \neq 0 \eta = 0$	Ω_5	Ω_4	Ω2
$\beta \neq 0 \eta \neq 0$	Excluded	Ω_3	Ω ₁

Notice that each of these sets is stable under the action of \mathfrak{o}^{\times} . We call $G_{\nu_1,\nu_2}^{\Omega_i}$ the part of G_{ν_1,ν_2} corresponding to Ω_i .

More Notations First Computations Along Came Poisson Wrap It Up, David

Troop Reorganization

We find it necessary to partition Ω into smaller subsets and sort out who is integrable and who is not.

The right way to do this is by conditioning the parameters α , β , ξ , η on whether they are 0 or not.

	$\alpha = 0 \xi \neq 0$	$\alpha \neq 0 \xi = 0$	$\alpha \neq 0 \xi \neq 0$
$\beta = 0 \eta \neq 0$	Excluded	Ω_6	Excluded
$\beta \neq 0 \eta = 0$	Ω_5	Ω_4	Ω2
$\beta \neq 0 \eta \neq 0$	Excluded	Ω_3	Ω ₁

Notice that each of these sets is stable under the action of \mathfrak{o}^{\times} . We call $G_{\nu_1,\nu_2}^{\Omega_i}$ the part of G_{ν_1,ν_2} corresponding to Ω_i .

More Notations First Computations Along Came Poisson Wrap It Up, David

Troop Reorganization

We find it necessary to partition Ω into smaller subsets and sort out who is integrable and who is not.

The right way to do this is by conditioning the parameters α , β , ξ , η on whether they are 0 or not.

	$\alpha = 0 \xi \neq 0$	$\alpha \neq 0 \xi = 0$	$\alpha \neq 0 \xi \neq 0$
$\beta = 0 \eta \neq 0$	Excluded	Ω_6	Excluded
$\beta \neq 0 \eta = 0$	Ω_5	Ω_4	Ω2
$\beta \neq 0 \eta \neq 0$	Excluded	Ω_3	Ω ₁

Notice that each of these sets is stable under the action of \mathfrak{o}^{\times} . We call $G_{\nu_1,\nu_2}^{\Omega_i}$ the part of G_{ν_1,ν_2} corresponding to Ω_i .

More Notations First Computations Along Came Poisson Wrap It Up, David

Finally, Some Progress

Proposition

Let s_0 , s_1 , s_2 , ν_1 , ν_2 and s be complex numbers related by

$$\begin{cases} 3\nu_1 = s_0 + s_1 + 2s_2 - 1\\ 3\nu_2 = s_0 - s_1 - 2s_2 + 2\\ s = -2s_1 + 2s_2 \end{cases} \iff \begin{cases} \frac{3\nu_1 + 3\nu_2}{2} = s_0 + \frac{1}{2}\\ \frac{3\nu_1 - 3\nu_2 - 2s}{6} = s_1 - \frac{1}{2}\\ \frac{3\nu_1 - 2\nu_2 + s}{6} = s_2 - \frac{1}{2} \end{cases}$$

Assume that s in is some bounded open set, Re ν_1 , Re ν_2 and Re $(\nu_1 - \nu_2)$ are large. Then

< ロ > < 同 > < 回 > < 回 >

More Notations First Computations Along Came Poisson Wrap It Up, David

 $\langle \mathbf{n} \rangle \langle \mathbf{n} \rangle$

4

< ロ > < 同 > < 回 > < 回 >

Finally, Some Progress

Proposition

Let s_0 , s_1 , s_2 , ν_1 , ν_2 and s be complex numbers related by

$$\begin{cases} 3\nu_1 = s_0 + s_1 + 2s_2 - 1\\ 3\nu_2 = s_0 - s_1 - 2s_2 + 2\\ s = -2s_1 + 2s_2 \end{cases} \iff \begin{cases} \frac{3\nu_1 + 3\nu_2}{2} = s_0 + \frac{1}{2}\\ \frac{3\nu_1 - 3\nu_2 - 2s}{6} = s_1 - \frac{1}{2}\\ \frac{3\nu_1 - 2\nu_2 + s}{6} = s_2 - \frac{1}{2} \end{cases}$$

Assume that s in is some bounded open set, Re ν_1 , Re ν_2 and Re $(\nu_1 - \nu_2)$ are large. Then

More Notations First Computations Along Came Poisson Wrap It Up, David

Finally, Some Progress

Proposition

Let s_0 , s_1 , s_2 , ν_1 , ν_2 and s be complex numbers related by

$$\begin{cases} 3\nu_1 = s_0 + s_1 + 2s_2 - 1\\ 3\nu_2 = s_0 - s_1 - 2s_2 + 2\\ s = -2s_1 + 2s_2 \end{cases} \iff \begin{cases} \frac{3\nu_1 + 3\nu_2}{2} = s_0 + \frac{1}{2}\\ \frac{3\nu_1 - 3\nu_2 - 2s}{6} = s_1 - \frac{1}{2}\\ \frac{3\nu_1 - 2\nu_2 + s}{6} = s_2 - \frac{1}{2} \end{cases}$$

Assume that *s* in is some bounded open set, Re ν_1 , Re ν_2 and Re $(\nu_1 - \nu_2)$ are large. Then

More Notations First Computations Along Came Poisson Wrap It Up, David

Finally Some Progress II

Proposition

$$\begin{split} \iint_{(\mathbb{R}^{*}_{+})^{2}/\mathfrak{o}^{\times}} G^{\Omega_{1}}_{\nu_{1},\nu_{2}}(t_{1},t_{2})(t_{1}t_{2})^{s} \frac{\mathrm{d}t_{1}\mathrm{d}t_{2}}{t_{1}t_{2}} &= \frac{4}{3}\zeta^{\star}(2s_{0}) \\ & \times \sum_{\substack{\xi \in \mathfrak{D}^{-1}, n \in \mathbb{Z} \\ \xi, n \neq 0 \\ \mathrm{Tr}\xi + n = 0}} \tau_{s_{1}-\frac{1}{2}}(|n|)\tau^{K,A}_{s_{2}-\frac{1}{2}}(\xi\mathfrak{D}) \\ & \int_{0}^{+\infty} y^{\frac{3}{2}} \mathcal{K}_{s_{1}-\frac{1}{2}}(2\pi y|n|)\mathcal{K}_{s_{2}-\frac{1}{2}}(2\pi y|\xi^{(1)}|)\mathcal{K}_{s_{2}-\frac{1}{2}}(2\pi y|\xi^{(2)}|)y^{s_{0}-1}\frac{\mathrm{d}y}{y} \end{split}$$

イロト イ団ト イヨト イヨト

More Progress

More Notations First Computations Along Came Poisson Wrap It Up, David

Proposition

Same hypotheses as before. We have

$$\begin{split} &\iint_{\substack{(\mathbb{R}^{*}_{+})^{2}/\mathfrak{o}^{\times}}} G^{\Omega_{2}}_{\nu_{1},\nu_{2}}(t_{1},t_{2})(t_{1}t_{2})^{s} \frac{dt_{1}dt_{2}}{t_{1}t_{2}} &= \frac{2}{3}\zeta^{*}(2s_{0})\zeta^{*}(2-2s_{1})\\ &\times \sum_{\substack{\xi \in \mathfrak{D}^{-1}\\\xi \neq 0}} \tau^{K,A}_{s_{2}-\frac{1}{2}}(\xi\mathfrak{D}) \int_{0}^{+\infty} y^{2-s_{1}} \mathcal{K}_{s_{2}-\frac{1}{2}}(2\pi y|\xi^{(1)}|) \mathcal{K}_{s_{2}-\frac{1}{2}}(2\pi y|\xi^{(2)}|) y^{s_{0}-1} \frac{dy}{y} \end{split}$$

More Notations First Computations Along Came Poisson Wrap It Up, David

The Case of Ω_3

- Unfortunately, we run into trouble when trying to do a similar computation with G^{Ω3}_{ν1,ν2}.
- More precisely, along the way, we encounter

$$\int_{0}^{+\infty} e^{-x} x^{-\frac{3\nu_1 - 3\nu_2 - 2s}{6}} \frac{dx}{x}$$

• This requires Re $\frac{3\nu_1-3\nu_2-2s}{6}$ to be negative, which contradicts the hypotheses made so far.

More Notations First Computations Along Came Poisson Wrap It Up, David

The Case of Ω_3

- Unfortunately, we run into trouble when trying to do a similar computation with G^{Ω3}_{ν1,ν2}.
- More precisely, along the way, we encounter

$$\int_{0}^{+\infty} e^{-x} x^{-\frac{3\nu_1 - 3\nu_2 - 2s}{6}} \frac{dx}{x}$$

• This requires Re $\frac{3\nu_1-3\nu_2-2s}{6}$ to be negative, which contradicts the hypotheses made so far.

More Notations First Computations Along Came Poisson Wrap It Up, David

The Case of Ω_3

- Unfortunately, we run into trouble when trying to do a similar computation with G^{Ω3}_{ν1,ν2}.
- More precisely, along the way, we encounter

$$\int_{0}^{+\infty} e^{-x} x^{-\frac{3\nu_1 - 3\nu_2 - 2s}{6}} \frac{dx}{x}$$

• This requires Re $\frac{3\nu_1-3\nu_2-2s}{6}$ to be negative, which contradicts the hypotheses made so far.

More Notations First Computations Along Came Poisson Wrap It Up, David

The Case of Ω_3

- Unfortunately, we run into trouble when trying to do a similar computation with G^{Ω3}_{ν1,ν2}.
- More precisely, along the way, we encounter

$$\int_{0}^{+\infty} e^{-x} x^{-\frac{3\nu_{1}-3\nu_{2}-2s}{6}} \frac{dx}{x}$$

• This requires Re $\frac{3\nu_1-3\nu_2-2s}{6}$ to be negative, which contradicts the hypotheses made so far.

More Notations First Computations Along Came Poisson Wrap It Up, David

A Workaround: Poisson's Summation Formula

Poisson's Summation Formula

$$\forall t > 0 \qquad \sum_{\eta \in \mathbb{Z}} e^{-\pi \eta^2 t} = \frac{1}{\sqrt{t}} \sum_{\eta \in \mathbb{Z}} e^{-\frac{\pi \eta^2}{t}}$$

This allows us to transform $G_{\nu_1,\nu_2}^{\Omega_3\cup\Omega_4}$ and obtain a new expression on which the former strategy works.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

More Notations First Computations Along Came Poisson Wrap It Up, David

A Workaround: Poisson's Summation Formula

Poisson's Summation Formula

$$orall t > 0 \qquad \sum_{\eta \in \mathbb{Z}} \mathrm{e}^{-\pi \eta^2 t} = rac{1}{\sqrt{t}} \sum_{\eta \in \mathbb{Z}} \mathrm{e}^{-rac{\pi \eta^2}{t}}$$

This allows us to transform $G_{\nu_1,\nu_2}^{\Omega_3\cup\Omega_4}$ and obtain a new expression on which the former strategy works.

More Notations First Computations Along Came Poisson Wrap It Up, David

A Workaround: Poisson's Summation Formula

Poisson's Summation Formula

$$\forall t > 0$$
 $\sum_{\eta \in \mathbb{Z}} \mathbf{e}^{-\pi \eta^2 t} = \frac{1}{\sqrt{t}} \sum_{\eta \in \mathbb{Z}} \mathbf{e}^{-\frac{\pi \eta^2}{t}}$

This allows us to transform $G_{\nu_1,\nu_2}^{\Omega_3\cup\Omega_4}$ and obtain a new expression on which the former strategy works.

More Notations First Computations Along Came Poisson Wrap It Up, David

More Precisely...

Proposition

Same hypotheses as before. We have

$$\iint_{\substack{(\mathbb{R}^{*}_{+})^{2}/\mathfrak{o}^{\times}\\ \xi \in \mathfrak{D}^{-1}\\ \xi \neq 0}} \left(G_{\nu_{1},\nu_{2}}^{\Omega_{3}\cup\Omega_{4}}(t_{1},t_{2}) - V_{\nu_{1},\nu_{2}}(t_{1},t_{2}) \right) (t_{1}t_{2})^{s} \frac{\mathrm{d}t_{1}\mathrm{d}t_{2}}{t_{1}t_{2}} = \frac{2}{3}\zeta^{*}(2s_{0})\zeta^{*}(2s_{1})$$

$$\times \sum_{\substack{\xi \in \mathfrak{D}^{-1}\\ \xi \neq 0}} \tau_{s_{2}-\frac{1}{2}}^{K,A}(\xi\mathfrak{D}) \int_{0}^{+\infty} y^{s_{1}+1} K_{s_{2}-\frac{1}{2}}(2\pi y|\xi^{(1)}|) K_{s_{2}-\frac{1}{2}}(2\pi y|\xi^{(2)}|) y^{s_{0}-1} \frac{\mathrm{d}y}{y}$$

More Notations First Computations Along Came Poisson Wrap It Up, David

More Precisely II

Proposition

where

$$V_{\nu_1,\nu_2}(t_1,t_2) = \zeta^* (3\nu_1) \zeta^* (3\nu_2 - 1) (t_1 t_2)^{-\frac{3\nu_1 - 3\nu_2 + 3}{2}} \\ E^* \left(\frac{t_1 \alpha_1^{(1)} - i t_2 \alpha_1^{(2)}}{t_1 \alpha_2^{(1)} - i t_2 \alpha_2^{(2)}}, \frac{3\nu_1 + 3\nu_2 - 1}{2} \right)$$

and (α_1, α_2) is a \mathbb{Z} -basis of \mathfrak{a} .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

More Notations First Computations Along Came Poisson Wrap It Up, David

What about Ω_5 and Ω_6 ?

It can be shown that

$$\begin{split} G_{\nu_1,\nu_2}^{\Omega_5}(t_1,t_2) &= (t_1 t_2)^{3\nu_1 + \frac{3\nu_2}{2}} \zeta^*(3\nu_1) \zeta^*(3\nu_1 + 3\nu_2 - 1) \\ &\times E^* \bigg(\frac{t_1 \alpha_1^{(1)} + \mathrm{i} t_2 \alpha_1^{(2)}}{t_1 \alpha_2^{(1)} + \mathrm{i} t_2 \alpha_2^{(2)}}, \frac{3\nu_2}{2} \bigg) \end{split}$$

$$\begin{aligned} G_{\nu_1,\nu_2}^{\Omega_6}(t_1,t_2) &= (t_1 t_2)^{-3\nu_2 - \frac{3\nu_1}{2}} \zeta^* (3\nu_2) \zeta^* (3\nu_1 + 3\nu_2 - 1) \\ &\times E^* \left(\frac{t_1 \alpha_1^{(1)} + i t_2 \alpha_1^{(2)}}{t_1 \alpha_2^{(1)} + i t_2 \alpha_2^{(2)}}, \frac{3\nu_1}{2} \right) \end{aligned}$$

イロン イ団 とく ヨン イヨン

More Notations First Computations Along Came Poisson Wrap It Up, David

What about Ω_5 and Ω_6 ?

It can be shown that

$$\begin{split} G^{\Omega_5}_{\nu_1,\nu_2}(t_1,t_2) &= (t_1 t_2)^{3\nu_1 + \frac{3\nu_2}{2}} \zeta^*(3\nu_1) \zeta^*(3\nu_1 + 3\nu_2 - 1) \\ &\times E^* \bigg(\frac{t_1 \alpha_1^{(1)} + \mathrm{i} t_2 \alpha_1^{(2)}}{t_1 \alpha_2^{(1)} + \mathrm{i} t_2 \alpha_2^{(2)}}, \frac{3\nu_2}{2} \bigg) \end{split}$$

$$\begin{split} G_{\nu_1,\nu_2}^{\Omega_6}(t_1,t_2) &= (t_1 t_2)^{-3\nu_2 - \frac{3\nu_1}{2}} \zeta^* (3\nu_2) \zeta^* (3\nu_1 + 3\nu_2 - 1) \\ &\times E^* \bigg(\frac{t_1 \alpha_1^{(1)} + \mathrm{i} t_2 \alpha_1^{(2)}}{t_1 \alpha_2^{(1)} + \mathrm{i} t_2 \alpha_2^{(2)}}, \frac{3\nu_1}{2} \bigg) \end{split}$$

イロン イ団 とく ヨン イヨン

More Notations First Computations Along Came Poisson Wrap It Up, David

What about Ω_5 and Ω_6 ?

It can be shown that

$$\begin{aligned} G_{\nu_1,\nu_2}^{\Omega_5}(t_1,t_2) &= (t_1t_2)^{3\nu_1 + \frac{3\nu_2}{2}} \zeta^*(3\nu_1) \zeta^*(3\nu_1 + 3\nu_2 - 1) \\ &\times E^* \bigg(\frac{t_1 \alpha_1^{(1)} + it_2 \alpha_1^{(2)}}{t_1 \alpha_2^{(1)} + it_2 \alpha_2^{(2)}}, \frac{3\nu_2}{2} \bigg) \end{aligned}$$

$$\begin{split} G_{\nu_1,\nu_2}^{\Omega_6}(t_1,t_2) &= (t_1 t_2)^{-3\nu_2 - \frac{3\nu_1}{2}} \zeta^* (3\nu_2) \zeta^* (3\nu_1 + 3\nu_2 - 1) \\ &\times E^* \bigg(\frac{t_1 \alpha_1^{(1)} + \mathsf{i} t_2 \alpha_1^{(2)}}{t_1 \alpha_2^{(1)} + \mathsf{i} t_2 \alpha_2^{(2)}}, \frac{3\nu_1}{2} \bigg) \end{split}$$

イロン イ団 とく ヨン イヨン

More Notations First Computations Along Came Poisson Wrap It Up, David

What about Ω_5 and Ω_6 ?

It can be shown that

$$\begin{aligned} G_{\nu_1,\nu_2}^{\Omega_5}(t_1,t_2) &= (t_1t_2)^{3\nu_1 + \frac{3\nu_2}{2}} \zeta^*(3\nu_1) \zeta^*(3\nu_1 + 3\nu_2 - 1) \\ &\times E^* \bigg(\frac{t_1 \alpha_1^{(1)} + it_2 \alpha_1^{(2)}}{t_1 \alpha_2^{(1)} + it_2 \alpha_2^{(2)}}, \frac{3\nu_2}{2} \bigg) \end{aligned}$$

$$\begin{split} G_{\nu_1,\nu_2}^{\Omega_6}(t_1,t_2) &= (t_1 t_2)^{-3\nu_2 - \frac{3\nu_1}{2}} \zeta^* (3\nu_2) \zeta^* (3\nu_1 + 3\nu_2 - 1) \\ &\times E^* \bigg(\frac{t_1 \alpha_1^{(1)} + i t_2 \alpha_1^{(2)}}{t_1 \alpha_2^{(1)} + i t_2 \alpha_2^{(2)}}, \frac{3\nu_1}{2} \bigg) \end{split}$$

イロン イ団 とく ヨン イヨン

More Notations First Computations Along Came Poisson Wrap It Up, David

In Summary

Letting

$$\begin{split} f_{\nu_{1},\nu_{2}}(t_{1},t_{2}) &= \\ \zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{2}-1)(t_{1}t_{2})^{-\frac{3\nu_{1}-3\nu_{2}+3}{2}}E^{*}\bigg(\frac{t_{1}\alpha_{1}^{(1)}-it_{2}\alpha_{1}^{(2)}}{t_{1}\alpha_{2}^{(1)}-it_{2}\alpha_{2}^{(2)}},\frac{3\nu_{1}+3\nu_{2}-1}{2}\bigg) \\ &+(t_{1}t_{2})^{3\nu_{1}+\frac{3\nu_{2}}{2}}\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}+3\nu_{1}-1)E^{*}\bigg(\frac{t_{1}\alpha_{1}^{(1)}+it_{2}\alpha_{1}^{(2)}}{t_{1}\alpha_{2}^{(1)}+it_{2}\alpha_{2}^{(2)}},\frac{3\nu_{2}}{2}\bigg) \\ &+(t_{1}t_{2})^{-3\nu_{2}-\frac{3\nu_{1}}{2}}\zeta^{*}(3\nu_{2})\zeta^{*}(3\nu_{1}+3\nu_{2}-1)E^{*}\bigg(\frac{t_{1}\alpha_{1}^{(1)}+it_{2}\alpha_{1}^{(2)}}{t_{1}\alpha_{2}^{(1)}+it_{2}\alpha_{2}^{(2)}},\frac{3\nu_{1}}{2}\bigg) \end{split}$$

we obtain

イロト イヨト イヨト イヨト

More Notations First Computations Along Came Poisson Wrap It Up, David

In Summary

Letting

$$\begin{split} f_{\nu_{1},\nu_{2}}(t_{1},t_{2}) &= \\ \zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{2}-1)(t_{1}t_{2})^{-\frac{3\nu_{1}-3\nu_{2}+3}{2}}E^{*}\bigg(\frac{t_{1}\alpha_{1}^{(1)}-it_{2}\alpha_{1}^{(2)}}{t_{1}\alpha_{2}^{(1)}-it_{2}\alpha_{2}^{(2)}},\frac{3\nu_{1}+3\nu_{2}-1}{2}\bigg) \\ &+(t_{1}t_{2})^{3\nu_{1}+\frac{3\nu_{2}}{2}}\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}+3\nu_{1}-1)E^{*}\bigg(\frac{t_{1}\alpha_{1}^{(1)}+it_{2}\alpha_{1}^{(2)}}{t_{1}\alpha_{2}^{(1)}+it_{2}\alpha_{2}^{(2)}},\frac{3\nu_{2}}{2}\bigg) \\ &+(t_{1}t_{2})^{-3\nu_{2}-\frac{3\nu_{4}}{2}}\zeta^{*}(3\nu_{2})\zeta^{*}(3\nu_{1}+3\nu_{2}-1)E^{*}\bigg(\frac{t_{1}\alpha_{1}^{(1)}+it_{2}\alpha_{1}^{(2)}}{t_{1}\alpha_{2}^{(1)}+it_{2}\alpha_{2}^{(2)}},\frac{3\nu_{1}}{2}\bigg) \end{split}$$

we obtain

イロト イヨト イヨト イヨト

More Notations First Computations Along Came Poisson Wrap It Up, David

In Summary

Letting

$$\begin{split} f_{\nu_{1},\nu_{2}}(t_{1},t_{2}) &= \\ \zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{2}-1)(t_{1}t_{2})^{-\frac{3\nu_{1}-3\nu_{2}+3}{2}}E^{*}\bigg(\frac{t_{1}\alpha_{1}^{(1)}-it_{2}\alpha_{1}^{(2)}}{t_{1}\alpha_{2}^{(1)}-it_{2}\alpha_{2}^{(2)}},\frac{3\nu_{1}+3\nu_{2}-1}{2}\bigg) \\ &+(t_{1}t_{2})^{3\nu_{1}+\frac{3\nu_{2}}{2}}\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}+3\nu_{1}-1)E^{*}\bigg(\frac{t_{1}\alpha_{1}^{(1)}+it_{2}\alpha_{1}^{(2)}}{t_{1}\alpha_{2}^{(1)}+it_{2}\alpha_{2}^{(2)}},\frac{3\nu_{2}}{2}\bigg) \\ &+(t_{1}t_{2})^{-3\nu_{2}-\frac{3\nu_{4}}{2}}\zeta^{*}(3\nu_{2})\zeta^{*}(3\nu_{1}+3\nu_{2}-1)E^{*}\bigg(\frac{t_{1}\alpha_{1}^{(1)}+it_{2}\alpha_{1}^{(2)}}{t_{1}\alpha_{2}^{(1)}+it_{2}\alpha_{2}^{(2)}},\frac{3\nu_{1}}{2}\bigg) \end{split}$$

we obtain

イロト イヨト イヨト イヨト

More Notations First Computations Along Came Poisson Wrap It Up, David

In Summary

Letting

$$\begin{split} f_{\nu_{1},\nu_{2}}(t_{1},t_{2}) &= \\ \zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{2}-1)(t_{1}t_{2})^{-\frac{3\nu_{1}-3\nu_{2}+3}{2}}E^{*}\bigg(\frac{t_{1}\alpha_{1}^{(1)}-it_{2}\alpha_{1}^{(2)}}{t_{1}\alpha_{2}^{(1)}-it_{2}\alpha_{2}^{(2)}},\frac{3\nu_{1}+3\nu_{2}-1}{2}\bigg) \\ &+(t_{1}t_{2})^{3\nu_{1}+\frac{3\nu_{2}}{2}}\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}+3\nu_{1}-1)E^{*}\bigg(\frac{t_{1}\alpha_{1}^{(1)}+it_{2}\alpha_{1}^{(2)}}{t_{1}\alpha_{2}^{(1)}+it_{2}\alpha_{2}^{(2)}},\frac{3\nu_{2}}{2}\bigg) \\ &+(t_{1}t_{2})^{-3\nu_{2}-\frac{3\nu_{1}}{2}}\zeta^{*}(3\nu_{2})\zeta^{*}(3\nu_{1}+3\nu_{2}-1)E^{*}\bigg(\frac{t_{1}\alpha_{1}^{(1)}+it_{2}\alpha_{1}^{(2)}}{t_{1}\alpha_{2}^{(1)}+it_{2}\alpha_{2}^{(2)}},\frac{3\nu_{1}}{2}\bigg) \end{split}$$

we obtain

イロト イヨト イヨト イヨト

More Notations First Computations Along Came Poisson Wrap It Up, David

In Summary

Letting

$$\begin{split} f_{\nu_{1},\nu_{2}}(t_{1},t_{2}) &= \\ \zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{2}-1)(t_{1}t_{2})^{-\frac{3\nu_{1}-3\nu_{2}+3}{2}}E^{*}\bigg(\frac{t_{1}\alpha_{1}^{(1)}-it_{2}\alpha_{1}^{(2)}}{t_{1}\alpha_{2}^{(1)}-it_{2}\alpha_{2}^{(2)}},\frac{3\nu_{1}+3\nu_{2}-1}{2}\bigg) \\ &+(t_{1}t_{2})^{3\nu_{1}+\frac{3\nu_{2}}{2}}\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}+3\nu_{1}-1)E^{*}\bigg(\frac{t_{1}\alpha_{1}^{(1)}+it_{2}\alpha_{1}^{(2)}}{t_{1}\alpha_{2}^{(1)}+it_{2}\alpha_{2}^{(2)}},\frac{3\nu_{2}}{2}\bigg) \\ &+(t_{1}t_{2})^{-3\nu_{2}-\frac{3\nu_{1}}{2}}\zeta^{*}(3\nu_{2})\zeta^{*}(3\nu_{1}+3\nu_{2}-1)E^{*}\bigg(\frac{t_{1}\alpha_{1}^{(1)}+it_{2}\alpha_{1}^{(2)}}{t_{1}\alpha_{2}^{(1)}+it_{2}\alpha_{2}^{(2)}},\frac{3\nu_{1}}{2}\bigg) \end{split}$$

we obtain

イロン イ団 とく ヨン イヨン

More Notations First Computations Along Came Poisson Wrap It Up, David

In Summary II

Theorem

Same hypotheses as before. We have

$$R_{A}(s_{0}, s_{1}, s_{2}) = 6 \iint_{(\mathbb{R}^{*}_{+})^{2}/\mathfrak{o}^{\times}} (G_{\nu_{1}, \nu_{2}}(t_{1}, t_{2}) - f_{\nu_{1}, \nu_{2}}(t_{1}, t_{2}))(t_{1}t_{2})^{s} \frac{dt_{1}dt_{2}}{t_{1}t_{2}}$$

< □ > < □ > < □ > < □ > <

-

More Notations First Computations Along Came Poisson Wrap It Up, David

What have we got so far?

- So, we have an identity linking our renormalized integral R_A , G_{ν_1,ν_2} and f_{ν_1,ν_2} .
- Although *w* is a functional equation for G_{ν_1,ν_2} , it does not leave f_{ν_1,ν_2} invariant.
- But, as it turns out, the integration over (ℝ^{*}₊)²/o[×] has the effect of creating this extra functional equation.
- This requires some work, though.

A (10) F (10)

More Notations First Computations Along Came Poisson Wrap It Up, David

What have we got so far?

- So, we have an identity linking our renormalized integral R_A , G_{ν_1,ν_2} and f_{ν_1,ν_2} .
- Although *w* is a functional equation for G_{ν_1,ν_2} , it does not leave f_{ν_1,ν_2} invariant.
- But, as it turns out, the integration over (ℝ^{*}₊)²/o[×] has the effect of creating this extra functional equation.
- This requires some work, though.

< □ > < □ > < □ > < □ > < □</p>

More Notations First Computations Along Came Poisson Wrap It Up, David

What have we got so far?

- So, we have an identity linking our renormalized integral R_A , G_{ν_1,ν_2} and f_{ν_1,ν_2} .
- Although *w* is a functional equation for G_{ν_1,ν_2} , it does not leave f_{ν_1,ν_2} invariant.
- But, as it turns out, the integration over (ℝ^{*}₊)²/𝔅[×] has the effect of creating this extra functional equation.
- This requires some work, though.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

More Notations First Computations Along Came Poisson Wrap It Up, David

What have we got so far?

- So, we have an identity linking our renormalized integral R_A , G_{ν_1,ν_2} and f_{ν_1,ν_2} .
- Although *w* is a functional equation for G_{ν_1,ν_2} , it does not leave f_{ν_1,ν_2} invariant.
- But, as it turns out, the integration over (ℝ^{*}₊)²/𝔅[×] has the effect of creating this extra functional equation.

• This requires some work, though.

More Notations First Computations Along Came Poisson Wrap It Up, David

What have we got so far?

- So, we have an identity linking our renormalized integral R_A , G_{ν_1,ν_2} and f_{ν_1,ν_2} .
- Although *w* is a functional equation for G_{ν_1,ν_2} , it does not leave f_{ν_1,ν_2} invariant.
- But, as it turns out, the integration over (ℝ^{*}₊)²/𝔅[×] has the effect of creating this extra functional equation.
- This requires some work, though.

< □ > < □ > < □ > < □ > < □</p>

More Notations First Computations Along Came Poisson Wrap It Up, David

Hmm... Kinda nasty...

$$\frac{R_{A}(s_{0}, s_{1}, s_{2})}{3} = \int_{0}^{+\infty} \left(\mathcal{G}_{\nu_{1}, \nu_{2}}(v) - v^{-\frac{3\nu_{1} - 3\nu_{2} + 3}{2}} L\left(\frac{3\nu_{1} + 3\nu_{2} - 1}{2}\right) \zeta^{\star}(3\nu_{1}) \zeta^{\star}(3\nu_{2} - 1) - v^{3\nu_{1} + \frac{3\nu_{2}}{2}} L\left(\frac{3\nu_{2}}{2}\right) \zeta^{\star}(3\nu_{1}) \zeta^{\star}(3\nu_{1} + 3\nu_{2} - 1) - v^{-3\nu_{2} - \frac{3\nu_{1}}{2}} L\left(\frac{3\nu_{1}}{2}\right) \zeta^{\star}(3\nu_{2}) \zeta^{\star}(3\nu_{1} + 3\nu_{2} - 1) \right) v^{s} \frac{dv}{v}$$

イロト イポト イヨト イヨト

More Notations First Computations Along Came Poisson Wrap It Up, David

Hmm... Kinda nasty...

$$\frac{R_A(s_0, s_1, s_2)}{3} = \int_0^{+\infty} \left(\mathcal{G}_{\nu_1, \nu_2}(v) - v^{-\frac{3\nu_1 - 3\nu_2 + 3}{2}} L\left(\frac{3\nu_1 + 3\nu_2 - 1}{2}\right) \zeta^*(3\nu_1) \zeta^*(3\nu_2 - 1) - v^{3\nu_1 + \frac{3\nu_2}{2}} L\left(\frac{3\nu_2}{2}\right) \zeta^*(3\nu_1) \zeta^*(3\nu_1 + 3\nu_2 - 1) - v^{-3\nu_2 - \frac{3\nu_1}{2}} L\left(\frac{3\nu_1}{2}\right) \zeta^*(3\nu_2) \zeta^*(3\nu_1 + 3\nu_2 - 1) \right) v^s \frac{dv}{v}$$

イロト イポト イヨト イヨト

More Notations First Computations Along Came Poisson Wrap It Up, David

Hmm... Kinda nasty...

$$\frac{R_{A}(s_{0}, s_{1}, s_{2})}{3} = \int_{0}^{+\infty} \left(\mathcal{G}_{\nu_{1}, \nu_{2}}(v) - v^{-\frac{3\nu_{1} - 3\nu_{2} + 3}{2}} L\left(\frac{3\nu_{1} + 3\nu_{2} - 1}{2}\right) \zeta^{\star}(3\nu_{1}) \zeta^{\star}(3\nu_{2} - 1) - v^{3\nu_{1} + \frac{3\nu_{2}}{2}} L\left(\frac{3\nu_{2}}{2}\right) \zeta^{\star}(3\nu_{1}) \zeta^{\star}(3\nu_{1} + 3\nu_{2} - 1) - v^{-3\nu_{2} - \frac{3\nu_{1}}{2}} L\left(\frac{3\nu_{1}}{2}\right) \zeta^{\star}(3\nu_{2}) \zeta^{\star}(3\nu_{1} + 3\nu_{2} - 1) \right) v^{s} \frac{dv}{v}$$

イロト イポト イヨト イヨト

More Notations First Computations Along Came Poisson Wrap It Up, David

Hmm... Kinda nasty...

$$\begin{aligned} \frac{R_A(s_0, s_1, s_2)}{3} &= \int_0^{+\infty} \left(\mathcal{G}_{\nu_1, \nu_2}(v) - v^{-\frac{3\nu_1 - 3\nu_2 + 3}{2}} L\left(\frac{3\nu_1 + 3\nu_2 - 1}{2}\right) \zeta^*(3\nu_1) \zeta^*(3\nu_2 - 1) - v^{3\nu_1 + \frac{3\nu_2}{2}} L\left(\frac{3\nu_2}{2}\right) \zeta^*(3\nu_1) \zeta^*(3\nu_1 + 3\nu_2 - 1) - v^{-3\nu_2 - \frac{3\nu_1}{2}} L\left(\frac{3\nu_1}{2}\right) \zeta^*(3\nu_2) \zeta^*(3\nu_1 + 3\nu_2 - 1) \right) v^s \frac{dv}{v} \end{aligned}$$

イロト イポト イヨト イヨト

More Notations First Computations Along Came Poisson Wrap It Up, David

Hmm... Kinda nasty...

$$\begin{aligned} \frac{R_A(s_0, s_1, s_2)}{3} &= \int_0^{+\infty} \left(\mathcal{G}_{\nu_1, \nu_2}(v) \right. \\ &\quad - v^{-\frac{3\nu_1 - 3\nu_2 + 3}{2}} L\left(\frac{3\nu_1 + 3\nu_2 - 1}{2}\right) \zeta^*(3\nu_1) \zeta^*(3\nu_2 - 1) \\ &\quad - v^{3\nu_1 + \frac{3\nu_2}{2}} L\left(\frac{3\nu_2}{2}\right) \zeta^*(3\nu_1) \zeta^*(3\nu_1 + 3\nu_2 - 1) \\ &\quad - v^{-3\nu_2 - \frac{3\nu_1}{2}} L\left(\frac{3\nu_1}{2}\right) \zeta^*(3\nu_2) \zeta^*(3\nu_1 + 3\nu_2 - 1) \right) v^s \frac{dv}{v} \end{aligned}$$

イロト イポト イヨト イヨト

More Notations First Computations Along Came Poisson Wrap It Up, David

Final Modifications

• Split this integral as
$$\int_{0}^{1} + \int_{1}^{+\infty}$$
.

- Replace v by $\frac{1}{v}$ in the first one.
- Regroup into one integral from 1 to $+\infty$.
- Let $x = \sqrt{v}$, in order to get rid of those fractional powers.
- Shake.

More Notations First Computations Along Came Poisson Wrap It Up, David

Final Modifications

• Split this integral as
$$\int_{0}^{1} + \int_{1}^{+\infty}$$
.

• Replace v by $\frac{1}{v}$ in the first one.

- Regroup into one integral from 1 to $+\infty$.
- Let $x = \sqrt{v}$, in order to get rid of those fractional powers.

Shake.

More Notations First Computations Along Came Poisson Wrap It Up, David

Final Modifications

• Split this integral as
$$\int_{0}^{1} + \int_{1}^{+\infty}$$
.

- Replace v by $\frac{1}{v}$ in the first one.
- Regroup into one integral from 1 to $+\infty$.
- Let $x = \sqrt{v}$, in order to get rid of those fractional powers.
- Shake.

More Notations First Computations Along Came Poisson Wrap It Up, David

Final Modifications

• Split this integral as
$$\int_{0}^{1} + \int_{1}^{+\infty}$$
.

- Replace v by $\frac{1}{v}$ in the first one.
- Regroup into one integral from 1 to $+\infty$.
- Let $x = \sqrt{v}$, in order to get rid of those fractional powers.
- Shake.

More Notations First Computations Along Came Poisson Wrap It Up, David

Final Modifications

• Split this integral as
$$\int_{0}^{1} + \int_{1}^{+\infty}$$
.

- Replace v by $\frac{1}{v}$ in the first one.
- Regroup into one integral from 1 to $+\infty$.
- Let $x = \sqrt{v}$, in order to get rid of those fractional powers.

Shake.

< ロ > < 同 > < 回 > < 回 >

More Notations First Computations Along Came Poisson Wrap It Up, David

Final Modifications

• Split this integral as
$$\int_{0}^{1} + \int_{1}^{+\infty}$$
.

- Replace v by $\frac{1}{v}$ in the first one.
- Regroup into one integral from 1 to $+\infty$.
- Let $x = \sqrt{v}$, in order to get rid of those fractional powers.
- Shake.

< ロ > < 同 > < 回 > < 回 >

More Notations First Computations Along Came Poisson Wrap It Up, David

Nastier

$$\begin{aligned} \frac{R_{A}(s_{0},s_{1},s_{2})}{3} &= \int_{1}^{+\infty} \left(\mathcal{G}_{\nu_{1},\nu_{2}}(x^{2})x^{2s} + \mathcal{G}_{\nu_{1},\nu_{2}}(x^{-2})x^{-2s} \\ &- x^{-(3\nu_{1}+3\nu_{2}+3-2s)}L(\frac{3\nu_{1}+3\nu_{2}-1}{2})\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}-1) \\ &- x^{6\nu_{1}+3\nu_{2}+2s}L(\frac{3\nu_{2}}{2})\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}+3\nu_{2}-1) \\ &- x^{-(3\nu+6\nu_{2}-2s)}L(\frac{3\nu_{1}}{2})\zeta^{*}(3\nu_{2})\zeta^{*}(3\nu_{1}+3\nu_{2}-1) \\ &- x^{3\nu_{1}-3\nu_{2}+3-2s}L(\frac{3\nu_{1}+3\nu_{2}-1}{2})\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}-2) \\ &- x^{-(6\nu_{1}+3\nu_{2}+2s)}L(\frac{3\nu_{2}}{2})\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}+3\nu_{2}-1) \\ &- x^{3\nu_{1}+6\nu_{2}-2s}L(\frac{3\nu_{1}}{2})\zeta^{*}(3\nu_{2})\zeta^{*}(3\nu_{1}+3\nu_{2}-1) \right) \frac{dx}{x} \end{aligned}$$

イロト イヨト イヨト イヨト

More Notations First Computations Along Came Poisson Wrap It Up, David

Even Nastier

$$\begin{split} \frac{R_{A}(s_{0},s_{1},s_{2})}{3} &= \int_{1}^{+\infty} \left(\mathcal{G}_{\nu_{1},\nu_{2}}(x^{2})x^{2s} + \mathcal{G}_{\nu_{1},\nu_{2}}(x^{-2})x^{-2s} \\ &- x^{6\nu_{1}+3\nu_{2}+2s}L(\frac{3\nu_{2}}{2})\zeta^{\star}(3\nu_{1})\zeta^{\star}(3\nu_{1}+3\nu_{2}-1) \\ &- x^{3\nu_{1}-3\nu_{2}+3-2s}L(\frac{3\nu_{1}+3\nu_{2}-1}{2})\zeta^{\star}(3\nu_{1})\zeta^{\star}(3\nu_{1}-2) \\ &- x^{3\nu_{1}+6\nu_{2}-2s}L(\frac{3\nu_{1}}{2})\zeta^{\star}(3\nu_{2})\zeta^{\star}(3\nu_{1}+3\nu_{2}-1) \right) \frac{dx}{x} \\ &- \frac{1}{3\nu_{1}-3\nu_{2}+3-2s}L(\frac{3\nu_{1}+3\nu_{2}-1}{2})\zeta^{\star}(3\nu_{1})\zeta^{\star}(3\nu_{2}-1) \\ &- \frac{1}{3\nu_{1}+6\nu_{2}-2s}L(\frac{3\nu_{1}}{2})\zeta^{\star}(3\nu_{2})\zeta^{\star}(3\nu_{1}+3\nu_{2}-1) \\ &- \frac{1}{6\nu_{1}+3\nu_{2}+2s}L(\frac{3\nu_{2}}{2})\zeta^{\star}(3\nu_{1})\zeta^{\star}(3\nu_{1}+3\nu_{2}-1) \end{split}$$

イロン イ団 とく ヨン イヨン

More Notations First Computations Along Came Poisson Wrap It Up, David

Even Nastier

$$\begin{split} \frac{R_A(s_0,s_1,s_2)}{3} &= \int\limits_{1}^{+\infty} \left(\mathcal{G}_{\nu_1,\nu_2}(x^2) x^{2s} + \mathcal{G}_{\nu_1,\nu_2}(x^{-2}) x^{-2s} \\ &- x^{6\nu_1 + 3\nu_2 + 2s} L\left(\frac{3\nu_2}{2}\right) \zeta^*(3\nu_1) \zeta^*(3\nu_1 + 3\nu_2 - 1) \\ &- x^{3\nu_1 - 3\nu_2 + 3 - 2s} L\left(\frac{3\nu_1 + 3\nu_2 - 1}{2}\right) \zeta^*(3\nu_1) \zeta^*(3\nu_1 - 2) \\ &- x^{3\nu_1 + 6\nu_2 - 2s} L\left(\frac{3\nu_1}{2}\right) \zeta^*(3\nu_2) \zeta^*(3\nu_1 + 3\nu_2 - 1) \right) \frac{dx}{x} \\ &- \frac{1}{3\nu_1 - 3\nu_2 + 3 - 2s} L\left(\frac{3\nu_1 + 3\nu_2 - 1}{2}\right) \zeta^*(3\nu_1) \zeta^*(3\nu_2 - 1) \\ &- \frac{1}{3\nu_1 + 6\nu_2 - 2s} L\left(\frac{3\nu_1}{2}\right) \zeta^*(3\nu_2) \zeta^*(3\nu_1 + 3\nu_2 - 1) \\ &- \frac{1}{6\nu_1 + 3\nu_2 + 2s} L\left(\frac{3\nu_2}{2}\right) \zeta^*(3\nu_1) \zeta^*(3\nu_1 + 3\nu_2 - 1) \end{split}$$

イロト イヨト イヨト イヨト

More Notations First Computations Along Came Poisson Wrap It Up, David

Even More Nastier

$$\frac{R_{A}(s_{0},s_{1},s_{2})}{3} = \int_{1}^{+\infty} \left(\mathcal{G}_{\nu_{1},\nu_{2}}(x^{2})x^{2s} + \mathcal{G}_{\nu_{1},\nu_{2}}(x^{-2})x^{-2s} - x^{6\nu_{1}+3\nu_{2}+2s}L(\frac{3\nu_{2}}{2})\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}+3\nu_{2}-1) - x^{3\nu_{1}-3\nu_{2}+3-2s}L(\frac{3\nu_{1}+3\nu_{2}-1}{2})\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}-2) - x^{3\nu_{1}+6\nu_{2}-2s}L(\frac{3\nu_{1}}{2})\zeta^{*}(3\nu_{2})\zeta^{*}(3\nu_{2}-1)\zeta^{*}(3\nu_{1}+3\nu_{2}-1) - x^{-(3\nu_{1}+6\nu_{2}-6-2s)}L(\frac{3\nu_{1}}{2})\zeta^{*}(3\nu_{2}-1)\zeta^{*}(3\nu_{1}+3\nu_{2}-2) - x^{-(3\nu_{1}-3\nu_{2}-3-2s)}L(\frac{3\nu_{1}+3\nu_{2}-1}{2})\zeta^{*}(3\nu_{1}-1)\zeta^{*}(3\nu_{2}) - x^{-(6\nu_{1}+3\nu_{2}-6+2s)}L(\frac{3\nu_{2}}{2})\zeta^{*}(3\nu_{1}+3\nu_{2}-2)\zeta^{*}(3\nu_{1}-1)\right)\frac{dx}{x}$$

イロン イ団 とく ヨン イヨン

More Notations First Computations Along Came Poisson Wrap It Up, David

Even More Nastier II

$$\begin{split} &-\frac{1}{3\nu_1 - 3\nu_2 + 3 - 2s}L\left(\frac{3\nu_1 + 3\nu_2 - 1}{2}\right)\zeta^*(3\nu_1)\zeta^*(3\nu_2 - 1) \\ &-\frac{1}{3\nu_1 + 6\nu_2 - 2s}L\left(\frac{3\nu_1}{2}\right)\zeta^*(3\nu_2)\zeta^*(3\nu_1 + 3\nu_2 - 1) \\ &-\frac{1}{6\nu_1 + 3\nu_2 + 2s}L\left(\frac{3\nu_2}{2}\right)\zeta^*(3\nu_1)\zeta^*(3\nu_1 + 3\nu_2 - 1) \\ &+\frac{1}{3\nu_1 + 6\nu_2 - 6 - 2s}L\left(\frac{3\nu_1}{2}\right)\zeta^*(3\nu_2 - 1)\zeta^*(3\nu_1 + 3\nu_2 - 2) \\ &+\frac{1}{3\nu_1 - 3\nu_2 - 3 - 2s}L\left(\frac{3\nu_1 + 3\nu_2 - 1}{2}\right)\zeta^*(3\nu_1 - 1)\zeta^*(3\nu_2) \\ &+\frac{1}{6\nu_1 + 3\nu_2 + 2s - 6}L\left(\frac{3\nu_2}{2}\right)\zeta^*(3\nu_1 + 3\nu_2 - 2)\zeta^*(3\nu_1 - 1). \end{split}$$

イロン イ団 とく ヨン イヨン

More Notations First Computations Along Came Poisson Wrap It Up, David

Even More Nastier

$$\frac{R_{A}(s_{0},s_{1},s_{2})}{3} = \int_{1}^{+\infty} \left(\mathcal{G}_{\nu_{1},\nu_{2}}(x^{2})x^{2s} + \mathcal{G}_{\nu_{1},\nu_{2}}(x^{-2})x^{-2s} - x^{6\nu_{1}+3\nu_{2}+2s}L(\frac{3\nu_{2}}{2})\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}+3\nu_{2}-1) - x^{3\nu_{1}-3\nu_{2}+3-2s}L(\frac{3\nu_{1}+3\nu_{2}-1}{2})\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}-2) - x^{3\nu_{1}+6\nu_{2}-2s}L(\frac{3\nu_{1}}{2})\zeta^{*}(3\nu_{2})\zeta^{*}(3\nu_{1}+3\nu_{2}-1) - x^{-(3\nu_{1}+6\nu_{2}-6-2s)}L(\frac{3\nu_{1}}{2})\zeta^{*}(3\nu_{2}-1)\zeta^{*}(3\nu_{1}+3\nu_{2}-2) - x^{-(3\nu_{1}-3\nu_{2}-3-2s)}L(\frac{3\nu_{1}+3\nu_{2}-1}{2})\zeta^{*}(3\nu_{1}-1)\zeta^{*}(3\nu_{2}) - x^{-(6\nu_{1}+3\nu_{2}-6+2s)}L(\frac{3\nu_{2}}{2})\zeta^{*}(3\nu_{1}+3\nu_{2}-2)\zeta^{*}(3\nu_{1}-1)\right)\frac{dx}{x}$$

イロト イ団ト イヨト イヨト

More Notations First Computations Along Came Poisson Wrap It Up, David

Even More Nastier

$$\frac{R_{A}(s_{0},s_{1},s_{2})}{3} = \int_{1}^{+\infty} \left(\mathcal{G}_{\nu_{1},\nu_{2}}(x^{2})x^{2s} + \mathcal{G}_{\nu_{1},\nu_{2}}(x^{-2})x^{-2s} - x^{6\nu_{1}+3\nu_{2}+2s}L(\frac{3\nu_{2}}{2})\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}+3\nu_{2}-1) - x^{3\nu_{1}-3\nu_{2}+3-2s}L(\frac{3\nu_{1}+3\nu_{2}-1}{2})\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}-2) - x^{3\nu_{1}+6\nu_{2}-2s}L(\frac{3\nu_{1}}{2})\zeta^{*}(3\nu_{2})\zeta^{*}(3\nu_{1}+3\nu_{2}-1) - x^{-(3\nu_{1}+6\nu_{2}-6-2s)}L(\frac{3\nu_{1}}{2})\zeta^{*}(3\nu_{2}-1)\zeta^{*}(3\nu_{1}+3\nu_{2}-2) - x^{-(3\nu_{1}-3\nu_{2}-3-2s)}L(\frac{3\nu_{1}+3\nu_{2}-1}{2})\zeta^{*}(3\nu_{1}-1)\zeta^{*}(3\nu_{2}) - x^{-(6\nu_{1}+3\nu_{2}-6+2s)}L(\frac{3\nu_{2}}{2})\zeta^{*}(3\nu_{1}+3\nu_{2}-2)\zeta^{*}(3\nu_{1}-1)\right)\frac{dx}{x}$$

イロト イ団ト イヨト イヨト

More Notations First Computations Along Came Poisson Wrap It Up, David

Even More Nastier

$$\frac{R_{A}(s_{0},s_{1},s_{2})}{3} = \int_{1}^{+\infty} \left(\mathcal{G}_{\nu_{1},\nu_{2}}(x^{2})x^{2s} + \mathcal{G}_{\nu_{1},\nu_{2}}(x^{-2})x^{-2s} - x^{6\nu_{1}+3\nu_{2}+2s}L(\frac{3\nu_{2}}{2})\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}+3\nu_{2}-1) - x^{3\nu_{1}-3\nu_{2}+3-2s}L(\frac{3\nu_{1}+3\nu_{2}-1}{2})\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}-2) - x^{3\nu_{1}+6\nu_{2}-2s}L(\frac{3\nu_{1}}{2})\zeta^{*}(3\nu_{2})\zeta^{*}(3\nu_{1}+3\nu_{2}-1) - x^{-(3\nu_{1}+6\nu_{2}-6-2s)}L(\frac{3\nu_{1}}{2})\zeta^{*}(3\nu_{2}-1)\zeta^{*}(3\nu_{1}+3\nu_{2}-2) - x^{-(3\nu_{1}-3\nu_{2}-3-2s)}L(\frac{3\nu_{1}+3\nu_{2}-1}{2})\zeta^{*}(3\nu_{1}-1)\zeta^{*}(3\nu_{2}) - x^{-(6\nu_{1}+3\nu_{2}-6+2s)}L(\frac{3\nu_{2}}{2})\zeta^{*}(3\nu_{1}+3\nu_{2}-2)\zeta^{*}(3\nu_{1}-1)\right)\frac{dx}{x}$$

イロト イ団ト イヨト イヨト

More Notations First Computations Along Came Poisson Wrap It Up, David

Even More Nastier

$$\frac{R_{A}(s_{0},s_{1},s_{2})}{3} = \int_{-\infty}^{+\infty} \left(\mathcal{G}_{\nu_{1},\nu_{2}}(x^{2})x^{2s} + \mathcal{G}_{\nu_{1},\nu_{2}}(x^{-2})x^{-2s} - x^{6\nu_{1}+3\nu_{2}+2s}L(\frac{3\nu_{2}}{2})\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}+3\nu_{2}-1) + x^{3\nu_{1}-3\nu_{2}+3-2s}L(\frac{3\nu_{1}+3\nu_{2}-1}{2})\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}-2) - x^{3\nu_{1}+6\nu_{2}-2s}L(\frac{3\nu_{1}}{2})\zeta^{*}(3\nu_{2})\zeta^{*}(3\nu_{2}+3\nu_{2}-1) - x^{-(3\nu_{1}+6\nu_{2}-6-2s)}L(\frac{3\nu_{1}}{2})\zeta^{*}(3\nu_{2}-1)\zeta^{*}(3\nu_{1}+3\nu_{2}-2) - x^{-(3\nu_{1}-3\nu_{2}-3-2s)}L(\frac{3\nu_{1}+3\nu_{2}-1}{2})\zeta^{*}(3\nu_{1}-1)\zeta^{*}(3\nu_{2}) - x^{-(6\nu_{1}+3\nu_{2}-6+2s)}L(\frac{3\nu_{2}}{2})\zeta^{*}(3\nu_{1}+3\nu_{2}-2)\zeta^{*}(3\nu_{1}-1)\right)\frac{dx}{x}$$

イロト イ団ト イヨト イヨト

More Notations First Computations Along Came Poisson Wrap It Up, David

Even More Nastier

$$\frac{R_{A}(s_{0},s_{1},s_{2})}{3} = \int_{1}^{+\infty} \left(\mathcal{G}_{\nu_{1},\nu_{2}}(x^{2})x^{2s} + \mathcal{G}_{\nu_{1},\nu_{2}}(x^{-2})x^{-2s} - x^{6\nu_{1}+3\nu_{2}+2s}L(\frac{3\nu_{2}}{2})\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}+3\nu_{2}-1) + x^{3\nu_{1}-3\nu_{2}+3-2s}L(\frac{3\nu_{1}+3\nu_{2}-1}{2})\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}-2) + x^{3\nu_{1}+6\nu_{2}-2s}L(\frac{3\nu_{1}}{2})\zeta^{*}(3\nu_{2})\zeta^{*}(3\nu_{1}+3\nu_{2}-1) + x^{-(3\nu_{1}+6\nu_{2}-6-2s)}L(\frac{3\nu_{1}}{2})\zeta^{*}(3\nu_{2}-1)\zeta^{*}(3\nu_{1}+3\nu_{2}-2) + x^{-(3\nu_{1}-3\nu_{2}-3-2s)}L(\frac{3\nu_{1}+3\nu_{2}-1}{2})\zeta^{*}(3\nu_{1}-1)\zeta^{*}(3\nu_{2}) + x^{-(6\nu_{1}+3\nu_{2}-6+2s)}L(\frac{3\nu_{2}}{2})\zeta^{*}(3\nu_{1}+3\nu_{2}-2)\zeta^{*}(3\nu_{1}-1)\right)\frac{dx}{x}$$

イロン イ団 とく ヨン イヨン

More Notations First Computations Along Came Poisson Wrap It Up, David

Even More Nastier

$$\frac{R_{A}(s_{0},s_{1},s_{2})}{3} = \int_{1}^{+\infty} \left(\mathcal{G}_{\nu_{1},\nu_{2}}(x^{2})x^{2s} + \mathcal{G}_{\nu_{1},\nu_{2}}(x^{-2})x^{-2s} - x^{6\nu_{1}+3\nu_{2}+2s}L(\frac{3\nu_{2}}{2})\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}+3\nu_{2}-1) - x^{3\nu_{1}-3\nu_{2}+3-2s}L(\frac{3\nu_{1}+3\nu_{2}-1}{2})\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}-2) - x^{3\nu_{1}+6\nu_{2}-2s}L(\frac{3\nu_{1}}{2})\zeta^{*}(3\nu_{2})\zeta^{*}(3\nu_{1}+3\nu_{2}-1) - x^{-(3\nu_{1}+6\nu_{2}-6-2s)}L(\frac{3\nu_{1}}{2})\zeta^{*}(3\nu_{2}-1)\zeta^{*}(3\nu_{1}+3\nu_{2}-2) - x^{-(3\nu_{1}-3\nu_{2}-3-2s)}L(\frac{3\nu_{1}+3\nu_{2}-1}{2})\zeta^{*}(3\nu_{1}-1)\zeta^{*}(3\nu_{2}) - x^{-(6\nu_{1}+3\nu_{2}-6+2s)}L(\frac{3\nu_{2}}{2})\zeta^{*}(3\nu_{1}+3\nu_{2}-2)\zeta^{*}(3\nu_{1}-1)\right)\frac{dx}{x}$$

イロン イ団 とく ヨン イヨン

More Notations First Computations Along Came Poisson Wrap It Up, David

Even More Nastier

$$\frac{R_{A}(s_{0},s_{1},s_{2})}{3} = \int_{-\infty}^{+\infty} \left(\mathcal{G}_{\nu_{1},\nu_{2}}(x^{2})x^{2s} + \mathcal{G}_{\nu_{1},\nu_{2}}(x^{-2})x^{-2s} - x^{6\nu_{1}+3\nu_{2}+2s}L(\frac{3\nu_{2}}{2})\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}+3\nu_{2}-1) - x^{3\nu_{1}-3\nu_{2}+3-2s}L(\frac{3\nu_{1}+3\nu_{2}-1}{2})\zeta^{*}(3\nu_{1})\zeta^{*}(3\nu_{1}-2) - x^{3\nu_{1}+6\nu_{2}-2s}L(\frac{3\nu_{1}}{2})\zeta^{*}(3\nu_{2})\zeta^{*}(3\nu_{1}+3\nu_{2}-1) - x^{-(3\nu_{1}+6\nu_{2}-6-2s)}L(\frac{3\nu_{1}}{2})\zeta^{*}(3\nu_{2}-1)\zeta^{*}(3\nu_{1}+3\nu_{2}-2) - x^{-(3\nu_{1}-3\nu_{2}-3-2s)}L(\frac{3\nu_{1}+3\nu_{2}-1}{2})\zeta^{*}(3\nu_{1}-1)\zeta^{*}(3\nu_{2}) - x^{-(6\nu_{1}+3\nu_{2}-6+2s)}L(\frac{3\nu_{2}}{2})\zeta^{*}(3\nu_{1}+3\nu_{2}-2)\zeta^{*}(3\nu_{1}-1)\right)\frac{dx}{x}$$

イロン イ団 とく ヨン イヨン

More Notations First Computations Along Came Poisson Wrap It Up, David

Even More Nastier II

Acknowledgements

Thanks, yall!

David LECOMTE Hidden Functional Equations

イロト イポト イヨト イヨト

E

Acknowledgements

Thanks, yall!

David LECOMTE Hidden Functional Equations

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

E