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Abstract. A novel feed forward Neural Network architecture is proposed based
on Shepard Interpolation. Shepard Interpolation is a method for approximating
multi-dimensional functions with known coordinate-value pairs [4]. In a
Shepard Interpolation Neural Network (SINN), weights and biases are deter-
ministically initiated to non-zero values. Furthermore, Shepard networks
maintain a similar accuracy as traditional Neural Networks with a reduction in
memory footprint and number of hyper parameters such as number of layers,
layer sizes and activation functions. Shepard Interpolation Networks greatly
reduce the complexity of Neural Networks, improving performance while
maintaining accuracy. The accuracy of Shepard Networks is evaluated on the
MNIST digit recognition task. The proposed architecture is compared to LeCun
et al. original work on Neural networks [9].

1 Introduction

Artificial Neural Networks are a biologically inspired class of Machine Learning
algorithms. They function by simulating an interconnected network of units called
“neurons” [1]. The network learns by adjusting the sensitivity of each neuron to its
various inputs, allowing the Neural Network to learn various behaviors [1].

However, Neural Networks need not be biologically inspired. In fact, Neural
Networks can be modeled as a non-linear transformation of one vector space to
another, more specifically transforming a vector of arbitrary size into a different vector
of arbitrary size [2].

Rn !Rm

where Rk is the set of real numbers in k dimensions.
In the case of a Neural Network with only one output neuron, the input vector can

be thought of as coordinates in an N dimensional space with the output representing the
value of a function at that point. The value calculated by a single output Neural
Network models a hyper-surface in N dimensions. Thus a network with multiple
outputs can be considered as a collection of distinct hyper-surfaces existing in the same
vector space.

There are several benefits to using Shepard Interpolation as a basis for Neural
Networks. Firstly, Shepard Networks possess only one trainable hidden layer and can
be thought of as a shallow network; the approach proposed allows for an arbitrary level
of nonlinearities using only one trainable hidden layer, eliminating problems associated
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with training deep Neural Networks. Shepard Networks are extensible. Each output
represents a hyper-surface in n dimensions, while the neurons in the network represent
known coordinate-value pairs shared across the output surfaces. Consequently, neurons
can be created from particular data points to deform the surfaced over a narrow range of
input values and increase the overall accuracy of the model.

2 Related Works

There are several common Neural Network architectures used in research. Often
existing architectures are modified and refined rather than novel architectures being
proposed. As a consequence of this there is an absence of works relating to Shepard
Interpolation applied directly to Neural Networks. A search revealed only one Neural
Network paper relating to Shepard Interpolation [3].

2.1 Shepard Convolutional Neural Networks

In the paper by Rimmy SJ Ren [3], a Shepard Layer is proposed as an addition to
convolutional Neural Networks [3]. The Shepard Interpolation method is used to
augment kernels for tasks such as inpainting. Convolutional Neural Networks have
been used for tasks such as filling in missing pixels in images or removing noise from
photos; traditional Convolutional Neural Networks however are poorly adapted to
certain types of low-level image processing.

The method proposed in the paper by Ren et al. utilises Shepard Interpolation to
provide more powerful kernels allowing increased precision when calculating the color
of a pixel based on its neighbors.

3 Shepard Interpolation Neural Network

If the outputs of a Neural Networks are imagined as modelling the topography of
hyper-surfaces, the problem of initiating Neural Networks, as well as, the problem of
choosing hyper-parameters such as activation functions and number of hidden layers
can be solved using multivariate analysis techniques.

The technique outlined in this paper uses a method know as Shepard (or inverse
weighing) Interpolation to dynamically populate a Neural Networks hidden layer.
Shepard Interpolation is a generalisation of Lagrange Polynomials [4]; it allows for the
numerical approximation of a multivariate function in N dimensions that passes through
a set of known coordinates ðx1; x2; . . .; xnÞ each having an associated value u [4]:

x1;1; x2;1; . . .; un;1
� �

; . . .; x1;m; x2;m; . . .; un;m
� �� �

xi;j; ui;j�R ð1Þ

Shepard Interpolation is geometric in nature. The Interpolation formula represents a
deformable surface that passes through a set of known nodes [6]. In the proposed
architecture, the deformation of the surface and the positions of the nodes are learned
through Gradient Descent.
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As an example, the one-dimensional form of Shepard Interpolation is as follows:
(Fig. 1)

u xð Þ ¼
PN

i¼1
wi xð ÞuiPN

i¼1
wiðxÞ

ui if d x; xið Þ ¼ 0 for some i

8
<
: : ð2Þ

wi xð Þ ¼ 1
d x; yið Þp : ð3Þ

In the formulation above, the exponent p is a parameter representing the curvature
of the interpolation function, while the function dðx; yÞ is defined as being a mathe-
matical metric [4]. In the physical sense a metric is a function defining the distance
between two points, in this case x and y. In the formal definition, a metric is a function
satisfying four conditions [5]:

dðx; yÞ� 0: Non-negativity ð4Þ

d x; yð Þ ¼ 0, x ¼ y: Identity of indiscernible ð5Þ

d x; yð Þ ¼ dðy; xÞ: Symmetry ð6Þ

d x; yð Þ� d x; zð Þþ dðz; yÞ: Triangle inequality : ð7Þ

Fig. 1. One-dimensional Shepard Interpolation, the three highlighted points represent the three
known data points, the line represents the deformable surface approximating the function. In a
Shepard Interpolation Neural Network, the three identified points (u1; u2; u3Þ would represent the
Inverse neurons, with the x and y values representing the input and output to the network
respectively.
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In the case of the Shepard Neural Networks, a Parametric Linear Rectifier function
is chosen as the distance metric. The equation for the Parametric Linear Rectifier is:

P x; yð Þ ¼ max ðaðx� yÞ; �aðx� yÞÞ: ð8Þ

Since the Parametric Linear Rectifier function calculates the difference between the
two real inputs x and y, it can be rewritten as a single variable function:

P x; yð Þ ¼ P x� yð Þ ¼ PðzÞ ¼ max ðaz;�azÞ: ð9Þ

The expression for the Shepard Interpolation can easily be generalized to higher
dimensions [6]. To extend Shepard Interpolation to N dimensions, a distance metric in
N dimensions is needed. Since the function P(z) is a metric, a summation P(z) for
multiple values of z is also a distance metric. By consequence the multivariate distance
function can be written:

d z1; z2. . .; znð Þ ¼
Xn

i¼1
PðziÞ: ð10Þ

Where x* ¼ x1; x2; ::xnð Þ and y* ¼ ðy1; y2; . . .; ynÞ are two distinct points in RN , z* ¼
x* � y* ¼ z1; z2. . .; znð Þ and d z1; z2. . .; znð Þ is a measure of the distance between the two
points x* and y*.

The formulation for the general case of Shepard Interpolation can be written:

u z*
� �

¼

PN

i¼1
wi z*ð ÞuiPN

j¼1
wjð z*Þ

ui if d z*
� �

¼ 0 for some i

8
><
>:

: ð11Þ

wj z*
� �

¼ 1Pn
i¼1 P zið Þ

� 	p : ð12Þ

3.1 Parametric Linear Rectifier Activation Function

In the context of a Neural Network, an activation function can be defined as:

/ðbþ
X

wixiÞ ð13Þ

There is a way to formulate the distance metric P x� yð Þ as a sub-case of the
definition of an activation function. If the Parametric Linear Rectifier activation
function is singly connected, in that it only takes one input value, it can be written that:

/ zð Þ ¼ d zð Þ: ð14Þ
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It is then obtained from Eq. 9 and the definition of an activation function that:

wxþ b ¼ x� y: ð15Þ

The final activation function is then obtained to be:

/ zð Þ ¼ max ðaðwxþ bÞ;�aðwxþ bÞÞ: ð16Þ

By supposing w ¼ 1 and b ¼ �y, a neuron with a single input can be determin-
istically created for a known input value y. The neuron has a guaranteed output of 0
when the input is equal to y and a positive output everywhere else. By changing the
values of a, b or w, the slope and offset of the output can be tuned.

In the Shepard Interpolation Neural Network architecture, these neurons are named
“Metric neurons” and form the first hidden layer of the network. Each Metric neuron
calculates a distance between the encoded position and the given input along a single
dimension. The Metric neurons are singly connected in their input as well as their
output. More specifically, the output of any one Metric neuron is only fed forward to a
single node in the following layer.

3.2 Inverse Activation Function

In the Shepard Interpolation Neural Network, information is encoded in
coordinate-value pairs. In the previous section, singly connected metric neurons cal-
culate a distance metric between a known point and a given point along a single axis.
The next layer in the Shepard Interpolation Neural Network is the Inverse layer,
comprised of “Inverse neurons”. Each Inverse neuron represents a known point in N
dimensions, with each Metric node to which it is connected representing its position
along the ith dimension.

In more practical terms, each Inverse neuron represents a wj term in Eqs. 11 and 12.
The activation function of the Inverse neuron is as follows:

wi z*
� �

¼ 1P
/ zið Þ½ �p : ð17Þ

When initiating an Inverse neuron, N Metric neurons are created from the given
initiation vector. The Metric neurons are then connected to the Inverse neuron which in
turn is added to the network. By creating Inverse neurons, more terms are appended to
the Shepard Interpolation formula (Eq. 11) and the overall accuracy of the network is
improved as more inflection points are added to the output surface, allowing for a better
curve fit of the desired function.

3.3 Normalization and Shepard Layer

The remaining layers in the network are the Normalization Layer and the Shepard
layer. Equation 11 can be factored in the following form:
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u z*
� �

¼
X

ui
wiðz*ÞPN
i¼1 wiðz*Þ

: ð18Þ

The term wið z*ÞPN

i¼1
wið z*Þ

is a normalization of the output of the Inverse layer. By con-

sequence, once the output of the Inverse layer has been calculated, it can be normalized

to form w
0

*

¼ ðw0
1;w

0
2; . . .;w

0
nÞ. The Normalization layer represents the normalization

operation on the output of the Inverse layer.

The normalized vector w
0

*

and the Shepard weights u* ¼ ðu1; u2; . . .; unÞ can be
substituted into Eq. 14 to form the final activation function of the Shepard Layer:

uðz*Þ ¼
X

uiw
0
i: ð19Þ

The Shepard neurons take as an input the normalized output of the Inverse layer,
and calculate a weighted sum to obtain the final output of the network. The initiation of
the Shepard neurons is deterministic, with the values of ui representing the height of the
surface at the known coordinates encoded in the corresponding Inverse neuron.

3.4 Proposed Architecture

Shepard interpolation can be formed by the composition of several activation functions.
The architecture of the Neural Network follows from the activation functions above:
(Fig. 2)

In theory, each term of the Shepard Interpolation represents a known point on a
hyper-surface. In order to increase the accuracy of the approximation, more terms can
be appended to the existing summation when more data is made available.

Fig. 2. This diagram represents Fig. 1. Encoded in Shepard Interpolation Neural Network form.
Each Inverse node “owns” a set of Metric nodes. After the Normalization layer the Shepard
nodes are fully connected to the output of the Inverse layer.
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Furthermore, the curvature of the interpolation can be adjusted to more accurately
represent the given data by learning the a through Gradient Descent or by changing the
p hyper parameter in Eqs. 16 and 17.

In practice, each Inverse neuron represents a known coordinate while the weights of
each neuron in the Shepard layer represent the value of the hyper-surfaces at the known
coordinates. The Metric nodes represent the mathematical metrics used in the inter-
polation function. The Neural Network learns the topology of the surface in the
Shepard layer. More interestingly however is that the Metric nodes each learn their own
unique distance function to represent the distance between an input vector and the
known “node” in the Shepard surface.

The Neural Network is initiated with all hidden layers’ empty. As labelled data is
made known, the network can encode data by generating metric neurons and adding
weights to the Shepard neurons, in order guarantee the output at a given input (see
Sect. 3.6 Distributed Node Initiation). Furthermore, the size of the network can be
constrained to a certain size, after which the network can continue increasing its’
accuracy through Gradient Descent.

3.5 Gradient Descent in a Shepard Network

The structure of a Shepard Neural Network is summarized by the following equations:
Inverse node:

/ xð Þ ¼ max ða wxþ bð Þ;�a wxþ bð ÞÞ ð20Þ

Transfer node:

wi x*
� �

¼ 1P
/ xið Þ½ �p ð21Þ

x* ¼ ðx1; x2; . . .; xnÞ ð22Þ

p ¼ 2 ð23Þ

Normalization node:

w* 0 ¼ w1P
wi

;
w2P
wi

; . . .;
wnP
wi


 �
ð24Þ

w* ¼ ðw1;w2; . . .;wnÞ ð25Þ

Shepard Node:

uðx*Þ ¼
X

ui � w
0
i ð26Þ
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u* ¼ u1; u2; . . .; unð Þ; Shepard nodeweights ð27Þ

w
0

*

¼ ðw0
1;w

0
2; . . .;w

0
nÞ ð28Þ

The only nodes that update their parameters during Gradient Descent are the
Shepard nodes, which update their weights, and the metric nodes, which update the
alpha value and the weight value. To update the parameters with Gradient Descent,
Back Propagation was used [7].

3.6 Distributed Node Initiation

During experimentation, it was empirically discovered that initial performance was best
when the initial nodes were initiated with a variety of different values across the outputs
of the network. In essence, when neurons are initiated, the encoded data point repre-
sents either a positive or negative classification for the output classes. When the net-
work is initiated with little variety of output classifications, the initial performance is
very poor. To compensate for this, the hidden layer is populated by neurons in such a
manner that each class receives an equal variety of data, allowing for a more accurate
generalization.

4 Experiments

The network architecture is evaluated by analyzing accuracy and efficiency. The
accuracy is measured by performing optical character recognition on the MNIST
dataset. The efficiency is analyzed by comparing the total number of learned parameters
in the Shepard network versus traditional fully connected Neural Networks.

The MNIST dataset is a collection of 60,000 training images and 10,000 validation
images. The images are provided as a list of vectors of dimensionality 785. The first
element of the vector represents the digit from 0 to 9 in the image while the last 784
elements represent the pixel values of the image of the digit in question. The images are
represented by a 28 × 28 matrix of integers from 0 to 255, representing a grayscale
photo of handwritten digits [8].

4.1 Experiment Setup

The Neural Networks were trained using Batch Gradient Descent, Gradient Momentum
as well as Learning Rate Annealing. After each epoch of training the accuracy of the
model was validated on the validation dataset. If the accuracy had decreased from the
previous epoch, the learning rates were multiplied by a constant value smaller than one,
to allow for smaller changes to the model in following epochs, otherwise the learning
rates remained constant.

All neurons were initiated before training using the Distributed Node Initiation. The
training of the Neural Networks was automated using the Nelder-Mead algorithm.
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4.2 Simplex Search to Optimize Performance

The Nelder-Mead algorithm (or simplex search) is a derivative-free multivariate opti-
mization algorithm [9]. A Neural Network can be imagined as a multivariate function
with the input parameters being the learning rates, with the output being the accuracy of
the classification on the MNIST validation set.

The Nelder-Mead search was used to automatically identify optimal learning rates,
allowing for more extensive experimentation.

The Nelder-Mead algorithm functions by exploiting the concept of a simplex in N
dimensions. Each vertex represents the set of input parameters and the corresponding
output. The algorithm will subsequently modify the coordinates by a multiplicity of
operations including reflexion, contraction and expansion. The result is that the simplex
iteratively makes its way up the surface of the function until it finds a maximum value,
in this case the maximum accuracy attainable by the Neural Network.

4.3 Results

The Shepard Interpolation Neural Network attained an accuracy of 95.0% for classi-
fication on the MNIST dataset using only 75 nodes. Each of the nodes with n inputs has
2n learnable parameters while the output nodes have m learnable parameters where m is
the number of neurons in the hidden layer. The total number of tunable parameters in
this Neural Network is thus:

output � hidden þ hidden � 2 � inputþ 1ð Þ ¼ 118 425 parameters

While the total number of tunable parameters in a fully connected Neural Network of
comparable accuracy is nþ 1 for each neuron, where n is the number of inputs to the
neuron. To calculate the total number of parameters for a 300 Neuron Neural network is:

nþ 1ð Þ � hiddenþ hiddenþ 1ð Þ � output ¼ 238 510 parameters

By simply using a different architecture, the memory footprint of the Neural Net-
work is reduced by 50% for the same accuracy. On top of this, the vast majority of
activation functions in the network are Parametric Rectifiers, which are many times less
expensive than the common Sigmoid activation function [10]. Furthermore, the dif-
ferent modifications to the Neural Network each boost its overall accuracy.

Experimental results for Shepard Interpolation Neural Networks

Neural network MNIST accuracy

Initiated all nodes on single digit 8–10%
Random initiation *40%
Distributed initiation 63.0%
Gradient descent+Distributed Initiation 94.91%
Gradient descent+Softmax+Distributed initiation 95.0%
500 neuron SINN 96.19%

SINN: Shepard Interpolation Neural Networks 357



5 Conclusion

Shepard Interpolation combined with intelligent node initiation can achieve similar
accuracy as conventional fully connected Neural Networks with a significant reduction
of memory footprint and overall computational costs.

The Shepard architecture is compatible with all of the current Neural Network
methodologies while providing the possibility of more compact and efficient learning
models.

References

1. Haykin, S.: Neural networks: a comprehensive foundation. Neural Netw. 2(2004) (2004)
2. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal

approximators. Neural networks 2(5), 359–366 (1989)
3. Ren, J.S.J., et al.: Shepard convolutional neural networks. In: Advances in Neural

Information Processing Systems (2015)
4. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In:

Proceedings of the 1968 23rd ACM National Conference. ACM (1968)
5. “Metric (mathematics)”: Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc.,

Web Date accessed 10 August 2016. https://en.wikipedia.org/wiki/Metric_(mathematics).
Date last updated (21 August 2016)

6. Gordon, W.J., Wixom, J.A.: Shepard’s method of “metric interpolation” to bivariate and
multivariate interpolation. Math. Comput. 32(141), 253–264 (1978)

7. Nielsen, M.A.: Neural Networks and Deep Learning. Determination Press (2015)
8. LeCun, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86

(11), 2278–2324 (1998)
9. Singer, S., Nelder, J.: Nelder-Mead algorithm. Scholarpedia 4(7), 2928 (2009)
10. Glorot, X., Antoine, B., Yoshua, B.: Deep sparse rectifier neural networks. Aistats 15(106),

275 (2011)

358 P. Williams



View-Based 3D Objects Recognition
with Expectation Propagation Learning

Adrien Bertrand1, Faisal R. Al-Osaimi2, and Nizar Bouguila1(B)

1 Concordia University, Montreal, QC, Canada
{ad bert,nizar.bouguila}@concordia.ca

2 Department of Computer Engineering, College of Computer Systems,
Umm Al-Qura University, Makkah, Saudi Arabia

frosaimi@uqu.edu.sa

Abstract. In this paper, we develop an expectation propagation learn-
ing framework for the inverted Dirichlet (ID) and Dirichlet mixture mod-
els. The main goal is to implement an algorithm to recognize 3D objects.
Those objects are in our case from a view-based 3D models database
that we have assembled. Following specific rules determined by analyz-
ing the results of our tests, we have been able to get promising recognition
rates. Experimental results are presented with different object classes by
comparing recognition rates and confidence levels according to different
tuning parameters.

1 Introduction

For quite some time, creating systems being able to detect and recognize (clas-
sify) objects, has been a very popular subject of research, as it goes well along
with many fields such as computer vision and pattern recognition. It is even
more the case nowadays thanks to a great increase in computing power. There
are several types of probabilistic classifiers often used. Such classifiers are capa-
ble to predict with a certain probability the class to which a given object should
belong. Mixture models, in particular, have been widely used, are efficient, and
attractive in terms of ease of implementation and flexibility. Their success comes
from their effectiveness in modeling large classes of natural measurements using
a small set of parameters. An important step when considering mixture models
is the choice of the per-components distributions. The Gaussian distribution has
been widely adopted [1]. But, it has been shown to be limited in several real-
life applications. Once a distribution is chosen according to the nature of data
in hand, the next step is the learning of parameters form the available data.
There are several learning frameworks available, although the most common
one is expectation-maximization (EM). Despite the fact that it is very sensitive
to initialization, it is an easily implementable approach and generally provides
acceptable results. However, in the recent years, there has been an upsurge of
research done towards more accurate mixture models for real-life applications
and learning frameworks that may be more adapted for them. A recent trend is
to use finite Dirichlet-based mixtures [2–4]. Recent studies have indeed shown
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G. Bebis et al. (Eds.): ISVC 2016, Part II, LNCS 10073, pp. 359–369, 2016.
DOI: 10.1007/978-3-319-50832-0 35


