The atomic nucleus : A natural laboratory of complexity

Raphaël-David Lasseri

 $4, \ July \ 2017$

Institut de Physique Nucléaire, CNRS, Université Paris-Saclay

Definitions The atomic nucleus Complexity Description(s) Generalities Many-body techniques State-of-the-art descriptions Problems Beyond Mean Field Approaches Conclusions We are still there Outlook

Definitions

A building block of matter

- Small and dense region at the center of the Atom
- Inferred by Rutherford
- "Made" of protons and neutrons

A building block of matter ?

- Small and dense region at the center of the Atom
- Inferred by Rutherford
- "Made" of protons and neutrons

A building block of matter

- Small and dense region at the center of the Atom
- Inferred by Rutherford
- "Made" of protons and neutrons

What are the correct d.o.f to describe it ?

A quantum-many-body system:

- Sensitive to 3 fundamental interactions (EM,W,S)
- Composed of non-elementary fermions
- Strongly correlated system of <u>finite</u> size

A quantum-many-body system:

- Sensitive to 3 fundamental interactions (EM,W,S)
- Composed of non-elementary fermions
- Strongly correlated system of <u>finite</u> size

A quantum-many-body system:

- Sensitive to 3 fundamental interactions (EM,W,S)
- Composed of non-elementary fermions
- Strongly correlated system of <u>finite</u> size

A quantum-many-body system:

- Sensitive to 3 fundamental interactions (EM,W,S)
- Composed of non-elementary fermions
- Strongly correlated system of <u>finite</u> size

The nucleus is a complex system

Consequences:

- No systematic analytical treatment of the problem.
- A wide variety of phenomena.

Complexity – A challenging description

Consequences:

- No systematic analytical treatment of the problem.
- A wide variety of phenomena.

Deformation:

Complexity – A challenging description

Consequences:

- No systematic analytical treatment of the problem.
- A wide variety of phenomena.

Clustering:

Complexity – A challenging description

Consequences:

- No systematic analytical treatment of the problem.
- A wide variety of phenomena.

Superfluidity:

Ground-State:

- Energy (Separation)
- Radii

Ground-State:

- Energy (Separation)
- Radii

Excited-states:

- Energies (Spectroscopy)
- Electric moments

Excited-states:

- Energies (Spectroscopy)
- Electric moments

Description(s)

- A scaling problem
- Treatment of the many-body problem
- Description of the interaction

- A scaling problem
- Treatment of the many-body problem
- Description of the interaction

- A scaling problem
- Treatment of the many-body problem
- Description of the interaction

- A scaling problem
- Treatment of the many-body problem
- Description of the interaction

We need a compromise !

The quantum Many-body problem

- Exact
- Ab-initio
- EDF

Summary: Explicit treatment of the total wave-function

• $\hat{H}\Psi = E\Psi$

- Very accurate with a true interaction.
- Extremly coastly and heavy (Power-law scaling)

The quantum Many-body problem

- Exact
- Ab-initio
- EDF

=	=	=	+ 03 1 > 3	++01/0/6-	\equiv	÷+

2-narticle 2-hole

Summary: Explicit treatment of truncated total wave-function

•
$$\Psi = \sum_{I} c_{I} \Phi_{I}$$

- Predictive with an effective interaction
- Very coastly and heavy (Combinatorial scaling)

The quantum Many-body problem

- Exact
- Ab-initio
- EDF

Summary: Mean-field like treatment of the wave-function

• $[\hat{H}, \hat{\rho}] = 0$

- Almost universal, but uses a phenomenological interaction
- Quite computationaly easy (Polynomial scaling)

Energy Functionals – A Phenomenological approach

An example Relativistic Mean Field Theory (RMF)

Energy Functionals – A Phenomenological approach

An example Relativistic Mean Field Theory (RMF)

Interpretation in term of mesons exchange

$$\begin{aligned} \mathcal{L}_{\textit{int}} &= \mathbf{g}_{\sigma} \overline{\psi} \sigma \psi + \mathbf{g}_{\omega} \overline{\psi} \gamma_{\mu} \omega^{\mu} \psi + \\ \mathbf{g}_{\rho} \overline{\psi} \gamma_{\mu} \rho^{\vec{\mu}} \cdot \vec{\tau} \psi + \mathbf{g}_{\pi} \overline{\psi} \gamma_{5} \vec{\pi} \cdot \vec{\tau} \psi \end{aligned}$$

$$\mathcal{H} = \hat{T}_{i,j} + \hat{V}_{eff}$$

State-of-the-art descriptions

Some "observable" problems

Correlations

Some "observable" problems

 $\label{eq:odd-even} \begin{array}{l} \text{Odd-even staggering} \Rightarrow \text{Pairing} \\ \text{correlations} \end{array}$

Symmetry breaking:

- Capture additional correlations
- For any sym. group. (U(1),O(3),etc...)

Symmetry breaking:

And projection:

• Integrate over the configurations

•
$$\hat{P}^A = \frac{1}{2\pi} \int_0^{2\pi} e^{i\psi(\hat{N}-A)} d\psi$$

- Capture additional correlations
- For any sym. group. (U(1),O(3),etc...)

Symmetry breaking:

And projection:

• Integrate over the configurations

•
$$\hat{P}^A = \frac{1}{2\pi} \int_0^{2\pi} e^{i\psi(\hat{N}-A)} d\psi$$

- Capture additional correlations
- For any sym. group. (U(1),O(3),etc...)

Kind of pairs

$$\frac{|\Psi_0\rangle}{|\Psi_0\rangle} = \prod_k \left(u_k + v_k \underbrace{a_{k,\uparrow}^{\dagger} a_{-k,\downarrow}^{\dagger}}_{\text{Pair creation}} \right) \underbrace{\hat{P}^A |\Psi_0\rangle}_{\text{Sym. Broken}} = \underbrace{\frac{1}{N!} (\Gamma_{\tau}^{\dagger})^N |0\rangle}_{\text{Sym. Restored}}$$

13/22

How is a pair localized ?

How is a pair localized ?

<u>Motivations</u>

- Better understanding of pairing impact on the structural properties
- Are the pairs a good d.o.f ?
- Important for experimental studies¹

 $^{^1\}mathrm{R.}$ Subedi et al., Science 320 (2008) 1476

Reparametrization

 $\hat{O}(r_1, r_2) \rightarrow \boxed{\text{Talmi transformation}} \rightarrow \hat{O}(r_{\text{cm}}, r_{\text{rel}})$

High numerical cost !

Insight on the structure

Two useful variables:

 $\kappa(r_1, r_2) = \sum_k u_k v_k \psi_k(r_1) \gamma^0 \psi_{\bar{k}}(r_2)$

Insight on the structure

Two useful variables:

$$\Psi(r_1, r_2) = \sum_k \frac{u_k}{v_k} \psi_k(r_1) \gamma^0 \psi_{\bar{k}}(r_2)$$

Coherence Lengths

Defined as

 $\sqrt{\frac{\int dr_{\rm rel} r_{\rm rel}^4 \hat{O}(r_{\rm cm}, r_{\rm rel})}{\int dr_{\rm rel} r_{\rm rel}^2 \hat{O}(r_{\rm cm}, r_{\rm rel})}}$

Results and applications

Isotopic study

Results and applications

Isotopic study

Results and applications

Isotopic study

Conclusions

New powerfull tools to study spatial correlations

- Accurate reproduction of physical properties (Pauli blocking, saturation ...)
- A step toward a better understanding of experimental observables.
- Impact of restoration techniques on nuclear structure.

Nuclear physics is an active research field !

Major intrinsic open subjects:

- Theoretical link between QCD and N-N Interaction
- Systematic and simultaneous restorations
- New (non-spurious) many-body techniques.
- Precise study of correlations

Nuclear physics is an active research field !

Major intrinsic open subjects:

- Theoretical link between QCD and N-N Interaction
- Systematic and simultaneous restorations
- New (non-spurious) many-body techniques.
- Precise study of correlations

Detection of Majorana neutrinos

- Precise study of double-beta decays
- Dependence on nuclear reactions knowledge

Cross-fertilizing topics

Lorentz-symmetry $breaking^2$

- Very strong dependance on nuclear structure knowledge
- Major cosmological impact

²H.Pians-Le Bars, C. Guerlin, **R-D.L**, J-P. Ebran, Q.G. Baily, S.Bize, E.Khan, P.Wolf **Phys.Rev.D** 95,075026

Questions

Thank you !

