The atomic nucleus : A natural laboratory of complexity

Raphaël-David Lasseri

4, July 2017
Institut de Physique Nucléaire, CNRS, Université Paris-Saclay

Definitions

The atomic nucleus
Complexity
Description(s)
Generalities
Many-body techniques

State-of-the-art descriptions
Problems
Beyond Mean Field
Approaches
Conclusions
We are still there
Outlook

Definitions

Is it a nucleus?

A building block of matter

- Small and dense region at the center of the Atom
- Inferred by Rutherford
- "Made" of protons and neutrons

Is it a nucleus ?

A building block of matter ?

- Small and dense region at the center of the Atom
- Inferred by Rutherford
- "Made" of protons and neutrons

Is it a nucleus?

A building block of matter

- Small and dense region at the center of the Atom
- Inferred by Rutherford
- "Made" of protons and neutrons

What are the correct d.o.f to describe it ?

What is a nucleus ?

A quantum-many-body system:

- Sensitive to 3 fundamental interactions (EM,W,S)

Electromagnetic

Weak

- Composed of non-elementary fermions
- Stroncly correlated system of finite size

Strong Interaction

What is a nucleus?

A quantum-many-body system:

- Sensitive to 3 fundamental interactions (EM,W,S)
- Composed of non-elementary fermions
- Strongly correlated system of finite size

What is a nucleus ?

A quantum-many-body system:

- Sensitive to 3 fundamental interactions (EM,W,S)
- Composed of non-elementary fermions
- Strongly correlated system of finite size

What is a nucleus ?

A quantum-many-body system:

- Sensitive to 3 fundamental interactions (EM,W,S)
- Composed of non-elementary fermions
- Strongly correlated system of finite size

The nucleus is a complex system

Complexity - A challenging description

Consequences:

- No systematic analytical treatment of the problem.
- A wide variety of phenomena.

Complexity - A challenging description

Consequences:

- No systematic analytical treatment of the problem.
- A wide variety of phenomena.

Deformation:

Complexity - A challenging description

Consequences:

- No systematic analytical treatment of the problem.
- A wide variety of phenomena.

Clustering:

Complexity - A challenging description

Consequences:

- No systematic analytical treatment of the problem.
- A wide variety of phenomena.

Superfluidity:

What can one measure ?

Some observables

Ground-State:

- Energy (Separation)
- Radii

What can one measure ?

Some observables

Ground-State:

- Energy (Separation)
- Radii

What can one measure ?

Some observables

Excited-states:

- Energies (Spectroscopy)
- Electric moments

What can one measure ?

Some observables

Excited-states:

- Energies (Spectroscopy)
- Electric moments

Description(s)

Nuclear "Philosophy" - A complicated compromise

- A scaling problem
- Treatment of the many-body problem
- Decerintion of the
interaction

Nuclear "Philosophy" - A complicated compromise

- A scaling problem
- Treatment of the many-body problem
- Description of the interaction

Nuclear "Philosophy" - A complicated compromise

- A scaling problem
- Treatment of the many-body problem
- Description of the interaction

Nuclear "Philosophy" - A complicated compromise

- A scaling problem
- Treatment of the many-body problem
- Description of the interaction

We need a compromise!

The quantum Many-body problem

- Exact
- Ab-initio
- EDF

Summary: Explicit treatment of the total wave-function

- $\hat{H} \Psi=E \Psi$
- Very accurate with a true interaction.
- Extremly coastly and heavy (Power-law scaling)

The quantum Many-body problem

- Exact
- Ab-initio

Summary: Explicit treatment of truncated total wave-function

- $\Psi=\sum_{I} c_{I} \Phi_{I}$
- Predictive with an effective interaction
- Very coastly and heavy (Combinatorial scaling)

The quantum Many-body problem

- Exact
- Ab-initio
- EDF

Summary: Mean-field like treatment of the wave-function

- $[\hat{H}, \hat{\rho}]=0$
- Almost universal, but uses a phenomenological interaction
- Quite computationaly easy (Polynomial scaling)

Energy Functionals - A Phenomenological approach

An example Relativistic Mean Field Theory (RMF)

Energy Functionals - A Phenomenological approach

An example Relativistic Mean Field Theory (RMF)

Interpretation in term of mesons exchange

A brief summary

Hamiltonian

Wick
Theorem

$$
E[\rho]=\left\langle\Phi_{0}\right| \mathcal{H}[\rho]\left|\Phi_{0}\right\rangle
$$

Minimization
\Downarrow
Equations of motion

$$
\begin{gathered}
\mathcal{L}_{\text {int }}=g_{\sigma} \bar{\psi} \sigma \psi+g_{\omega} \bar{\psi} \gamma_{\mu} \omega^{\mu} \psi+ \\
g_{\rho} \bar{\psi} \gamma_{\mu} \bar{\rho}^{\mu} \cdot \vec{\tau} \psi+g_{\pi} \bar{\psi} \gamma_{5} \bar{\pi} \cdot \vec{\tau} \psi \\
\mathcal{H}=\hat{T}_{i, j}+\hat{V}_{\text {eff }}
\end{gathered}
$$

- Mesons: $\left(\partial_{\mu} \partial^{\mu}+M^{2}\right) \phi^{\nu}=j^{\nu}$
- Nucleons : $\left(p-m_{\text {eff }}+\Sigma\right) \psi=0$

State-of-the-art descriptions

Correlations

Some "observable" problems

Correlations

Some "observable" problems

Odd-even staggering \Rightarrow Pairing correlations

Correlations

Symmetry breaking:

- Capture additional correlations
- For any sym. group. ($\mathrm{U}(1), \mathrm{O}(3)$, etc...)

Correlations

Symmetry breaking:

And projection:

- Integrate over the
configurations
- $\hat{P}^{A}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i \psi(\hat{N}-A)} d \psi$
- Capture additional correlations
- For any sym. group. ($\mathrm{U}(1), \mathrm{O}(3)$, ,tc...)

Correlations

Symmetry breaking:

And projection:

- Integrate over the configurations
- $\hat{P}^{A}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i \psi(\hat{N}-A)} d \psi$
- Capture additional correlations
- For any sym. group. ($\mathrm{U}(1), \mathrm{O}(3)$, etc...)

Pairing correlations

Kind of pairs

BCS/Bogoliubov
Projection

Spatial properties of pairing correlations

How is a pair localized?

Spatial properties of pairing correlations

How is a pair localized ?

Motivations

- Better understanding of pairing impact on the structural properties
- Are the pairs a good d.o.f?
- Important for experimental studies ${ }^{1}$

[^0]
Reparametrization

$$
\left(\vec{r}_{1}, \vec{r}_{2}\right) \rightarrow\left(\vec{R}_{c m}, \vec{r}_{r e l}\right)
$$

$$
\hat{O}\left(r_{1}, r_{2}\right) \rightarrow \text { Talmi transformation } \rightarrow \hat{O}\left(r_{\mathrm{cm}}, r_{\text {rel }}\right)
$$

High numerical cost !

Insight on the structure

Two useful variables:

$$
\kappa\left(r_{1}, r_{2}\right)=\sum_{k} u_{k} v_{k} \psi_{k}\left(r_{1}\right) \gamma^{0} \psi_{\bar{k}}\left(r_{2}\right)
$$

Insight on the structure

Two useful variables:

$$
\Psi\left(r_{1}, r_{2}\right)=\sum_{k} \frac{u_{k}}{v_{k}} \psi_{k}\left(r_{1}\right) \gamma^{0} \psi_{\bar{k}}\left(r_{2}\right)
$$

Coherence Lengths

Defined as

$$
\sqrt{\frac{\int d r_{\mathrm{rel}} r_{\mathrm{rel}}^{4} \hat{O}\left(r_{\mathrm{cm}}, r_{\mathrm{rel}}\right)}{\int d r_{\mathrm{rel}} r_{\mathrm{rel}}^{2} \hat{O}\left(r_{\mathrm{cm}}, r_{\mathrm{rel}}\right)}}
$$

Results and applications

Isotopic study

Results and applications

Isotopic study

Results and applications

Isotopic study

Conclusions

Summary

New powerfull tools to study spatial correlations

- Accurate reproduction of physical properties (Pauli blocking, saturation ...)
- A step toward a better understanding of experimental observables.
- Impact of restoration techniques on nuclear structure.

A dynamic field

Nuclear physics is an active research field!

Major intrinsic open subjects:

- Theoretical link between QCD and N-N Interaction
- Systematic and simultaneous restorations
- New (non-spurious) many-body techniques.
- Precise study of correlations

A dynamic field

Nuclear physics is an active research field!
Major intrinsic open subjects:

- Theoretical link between QCD and N-N Interaction
- Systematic and simultaneous restorations
- New (non-spurious) many-body techniques.
- Precise study of correlations

Cross-fertilizing topics

Detection of Majorana neutrinos

- Precise study of double-beta decays
- Dependence on nuclear reactions knowledge

Cross-fertilizing topics

Lorentz-symmetry breaking ${ }^{2}$

- Very strong dependance on nuclear structure knowledge
- Major cosmological impact

[^1]
Questions

Thank you!

[^0]: ${ }^{1}$ R. Subedi et al., Science 320 (2008) 1476

[^1]: ${ }^{2}$ H.Pians-Le Bars, C. Guerlin, R-D.L, J-P. Ebran, Q.G. Baily, S.Bize, E.Khan, P.Wolf Phys.Rev.D 95,075026

