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I. INTRODUCTION

The correct description of a fermionic system in inter-
action shall take into account quantum and classical cor-
relations. Nuclear system makes no exception and the
impact of two-body correlations, namely pairing, have
shown all its importance since Bohr Mottelson and Pines
[1]. To describe this phenomenon several theoretical tech-
niques have been developed from the Bardeen Cooper
and Schrieffer ansatz [2], to the more advanced Bogoli-
ubov transformations[3]. The physical principle is to ex-
plicitly allow two fermions to form a quasi-bosonic pair.
These fermions are correlated in momentum space. For

example for spin-
1

2
particles the usual BCS ansatz may

be written as.

|Ψ0〉 =
∏
k

(
uk + vka†k,↑a

†
−k,↓

)
|0〉 (1)

Where a†,uk, vk are respectively the single-particle cre-
ation operator, and variational parameter which satisfy
the unitary relation u2

k + v2
k = 1. This equation translate

the fact that a Cooper pair is composed of two fermions
of opposite spin and of opposite momenta.

However one can also describe the ground-state includ-
ing more general, 4-body correlations, which has been al-
ready done long ago [5]. Usually the exact treatment of
these kinds of correlations is very heavy and almost im-
possible for realistic interactions. However one can also
include the 4-body correlations effects using a very spe-
cific ansatz which can be computed in a more convenient
way [6]. Nevertheless neither the pairing nor the quartet-
ing treatment It is necessary to develop others methods
which will give direct information on the spatial proper-
ties of the pairs. Several studies have been conducted on
this purpose in infinite matter [7] and the nuclei [8] in
the pairing case. In the quarteting, spatial studies have
also been performed[9] but a systematic analysis of the
spatial properties of the pair is an important challenge
to get a deeper understanding of the correlated substruc-
tures on the nucleus such as clusters [10] or neutron-
proton dimers which may have important experimental
consequences [11]. Those elements motivate a system-
atic study of those spatial properties of the pairs. The

following work will use relativistic functional described
in ref [12] in an axially symmetric model. In section II
we will recall the theoretical foundations of the relativis-
tic mean-field theory, then in section III we will focus on
the treatment of 2 and 4 body correlations within the
relativistic framework. In section IV we will introduce
the necessary tools to study the spatial properties of the
pairs in order to present our results and to conclude in
section V and VI.

II. RELATIVISTIC MEAN FIELD

The framework of this study is the one of relativis-
tic energy functional density, describing the nucleus in
terms of nucleons considered as pointlike Dirac particles,
while the interaction between them is described in term
of mesons exchange. The associated phenomenological
Lagrangian density is:

L = ψ̄
[
iγµ∂µ −M − gσσ − gωγµωµ − gργµ~ρ · ~τµ−

gπγ5γµ∂
µ~π · ~τ − eγµAµ

(
1− τ3

2

)]
ψ + Lk (2)

Where Lk being the kinetic part of this Lagrangian. The
arrows symbolize vectors of the Isospin SU(2) space. ψ
is a Dirac 4-spinor describing a nucleon of mass M. In Eq
(2) the nucleons interacts by the exchange of {σ, ρ, ω and
π} mesons. As described in [? ] the Dirac equation for
a single nucleon can be obtained by variation of (2) with
respect of ψ.

[iγµ∂
µ −M − Σ]ψ(x) = 0 (3)

where Σ represent the nucleon self-energy. Performing a
Legendre transform of (2) yields the Hamiltonian of the
problem

H =

∫
d3x ψ̄[i∇+M ] +

1

2

∫
d3x ψ̄

[
gσσ + gωγµω

µ

+ gργµ~ρ · ~τµ + gπγ5γµ∂
µ~π · ~τ + eγµA

µ

(
1− τ3

2

)]
ψ

(4)
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The nucleonic spinors on a one-body basis {ci, c†i} in in-
teraction representation:

ψ(x) =
∑
i

(
fi(x)e−iεitci

)
(5)

ψ†(x) =
∑
i

(
f̄i(x)eiεitc†i

)
(6)

Where the εi is the energy of the i-th state. In this basis
the Hamiltonian (4) take the form

H =
∑
i,j

c†i cj

∫
d3xf̄i[−iγ · ∇+M ]fj

+
1

2

∑
i,j,k,l

c†i c
†
jckcl

∑
m⊂{σ,ρ,ω,π,A}∫

d3x

∫
d3y f̄i(x)f̄j(y)Γm(x, y)Dm(x, y)fk(x)fl(y) (7)

where Dm(x, y) is the propagator for the m-th boson and
Γm(x, y) is the dressed nucleon-meson interaction ver-
tex. Here the ground state Φ0 can be approximated by
a Slater determinant.

|Φ0〉 =
∏
i

c†i |0〉 (8)

Where |0〉 is the single-particle vacuum. The relativistic
energy density is now obtained by taking the mean value
of (4) on

E [ρb] = 〈Φ|H|Φ〉 (9)

Where ρb is the baryonic density of the system defined

as the 1-body operator ρb =
∑
i,j 〈Φ0|c†jci|Φ0〉. Expres-

sion (9) explicitly contains direct (Hartree) and exchange
(Fock) terms. In the present case using the Hartree ap-
proximation by neglecting the exchange terms. The min-
imization of the functional (9) leads to the Relativistic
Hartree (RH) equations, solved in a self-consistent way
in an axially deformed harmonical oscillator basis.

III. CORRELATIONS TREATMENT

A. Two-body correlations

To include the effect of pairing correlations we use a
finite-range interaction [13] which mimic a Gogny pair-
ing, can be written in coordinate space:

V (~r1, ~r2, ~r
′
1, ~r
′
2) = −gδ(~R− ~R′)G(r)G(r′)

1

2
(1−Pσ) (10)

Where G(r) are gaussian functions that reflect the finite

range of the interaction, ~R and ~r are respectively the
center-of-mass and relative coordinates. The operator

(1− Pσ) projects on the 1S0 channel while the δ insures
the translational invariance of this expression, while g is
the coupling constant of the interaction. All the calcu-
lations are performed in an axially-deformed oscillator
basis this interaction is separable which allows an accu-
rate and a fast numerical treatment. Following the usual
textbook approach we have used the usual Bogoliubov
transform to take into account two-body correlations in
the ground-state wavefunction, which can be written us-
ing quasi-particles operators βk

|Φ〉 =
∏
k

βk |0〉 (11)

Which in the single-particle basis can be expanded

|Φ〉 =
∏
k

(∑
α

U∗αkaα + V ∗αka
†
α

)
|0〉 (12)

Where {aα, a†α} are the single-particle ladders operators.
The important point in (11) is that we explicitely al-
low pair formation which cause U(1) symmetry breaking
translated by the fact that

N̂ |φ〉 6= N |φ〉 (13)

Where N̂ = a†a is the usual particle-number operator.
Then using the ansatz (12) one can solve the Relativistic-
Hartree-Bogoliubov (RHB) equations. To solve this
equations a self-coherent mean field algorithm have been
adapted from [4] to include pairing and quarteting effects.

B. Four-body correlations

1. Quartet wavefunction

A first way to treat 4-body correlations is to construct
a new ansatz including this possibility, thus a generalisa-
tion of a BCS ground state will take the form:

|Ψ0〉 =
∏
k,k′

(
ukk′ + vkk′a

†
k,↑a

†
−k,↓a

†
k′,↑a

†
−k′,↓

)
|0〉 (14)

The quarteting model [6] is a convenient way to take
into account an import part of the 4-body correlations.
The principle is to split the spectra of the considered
nucleus in two sets, an inert core including the of lower
energy levels and above them, a valence space on which
calculations will be performed. But it should be noted
that all the states are calculated from a microscopic RH
approach. The key point is that the valence space shall
be described by a quartet wavefunction |Ξ〉. Defining a
pair creation operator

P †i,τ = a†ia
†
ī

(15)

as usual the a†i create a nucleon on a state i and ī denote
the time reversed state and τ label the total iospin projec-
tion value. From (15) one can construct a collective-pair
creation operator.
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Γ†τ =
∑
i

xiP
†
iτ (16)

where xi is a variational mixing parameter.
Adopting two simplifying assumptions[14] i) Isospin sym-
metry ii) Isovector coupling outweight isoscalar. These
assumptions allow to write the valence wavefunction us-
ing (16) as:

|Ξ〉 =
(
2Γ†1Γ†−1 − Γ† 2

0

)nq |0〉 (17)

Where nq is the number of quartet considered. Equa-
tion (17) describes a coherent superposition of collective
{nn, pp, np} pairs with a total angular momentum J=0
(This is valid only for a rotationally invariant basis) and
a total isospin T=0. It should be noted that, in oppo-
site to (12), the wavefunction (17) conserves exactly the
particle number. The vector state describing the nucleus
is

|Ψtot〉 = |Ψcore〉 ⊗ |Ξ〉 (18)

As in section III A Using (18) to expand (9):

E [ρb] = 〈Ψtot|H|Ψtot〉 = 〈Ψcore|H|Ψcore〉︸ ︷︷ ︸
Mean Field

+ 〈Ξ|H|Ξ〉︸ ︷︷ ︸
Quartet term

(19)
Thus the minimization of (19) provides the Relativistic
Hartree Quarteting (RHQ) equations. Both RHB and
RHQ equations have been solved in a fully self-consistent
way, meaning that the quartet wavefunction is computed
at each mean field iteration until convergence.

2. Numerical implementation

To numerically solve the RHQ equations in a reason-
able time (less than an hour on a laptop CPU) the valence
space |ζ〉 is limited to a finite number of state. The spec-
trum is then separated into the nearest doubly-magic core
and a finite number of state up to the cut-off Λ, in fact
the numbers of active states in the valence space above
the inert RMF core. The quarteting interaction coupling
constant is fitted to the N=Z binding energies, then for
each nuclei the Λ parameter is fine-tuned to reproduce
accurately the binding energy. It is important to note
that here because of the fact that the only cases to be
considered are the N=Z nuclei, the active valence space
considered is symmetric under isospin conjugation.

Nucleus Core Λ (levels above the core)
20Ne 16O 10
24Mg 16O 14
44Ti 40Ca 12
64Ge 56Ni 10

TABLE I: Parameter used to solve the RHQ equations

IV. SPATIAL PROPERTIES

A. Pair Wavefunction

In order to keep the explicit covariance of our theory
one shall define the pair wavefunction in the most gen-
eral way. An usual prescription is (@JP: Ref cond.matt
ajouter)

ψpair(~r1, ~r2) = 〈~r1, ~r2|ρ̂pair〉 =
∑
i,j

ψ̄τi
ī

(~r1)γ5ψ
τj
j (~r2)

(20)
where the ψτi is a Dirac 4-Spinor, describing a nucleon at
a level i, of isospin τ represented in configuration space.

ψτi (~r) =
1√
2π


f+
i (~r)

f−i (~r)

ig+
i (~r)

ig−i (~r)

 (21)

ψτ
ī

is obtained via the time-reversal operation

ψτī = Tψi (22)

which for a relativistic model, may be written not only
as a spin reversal operator, but in term of the charge
conjugation and the generalized Pauli matrix:

T = iΣK =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

K (23)

where K is the complex conjugate operator.
Thus (20) can be expressed directly as a combination of
the components of (21).

ψpair(~r1, ~r2) =
∑

(i,j)∈V

xixj
[
f−i (~r1) · g+

j (~r2)

− f+
i (~r1) · g−j (~r2) + g−i (~r1) · f+

j (~r2)− g+
i (~r1) · f−j (~r2)

]
(24)

With V being the valence space. The wavefunction de-
fine at equation (20) can be computed after convergence
of RHB or RHQ code. This wavefunction will be anal-
ysed for the 3 possibles types of pair {nn, pp, np}. In
the RHQ case for each quartet a pair density is defined
which is a superposition of all possible pair of the same
type. This allows a comparison with the pair generated
within the Bogolioubov formalism and the one generated
by the quarteting model. From this expression one can
easily derive an important parameter, the average size of
a pair.

〈
ξ
〉

=

√∫
|~r2 − ~r1|2 · |ψpair(~r1, ~r2)|2d~r1d~r2∫

|ψpair(~r1, ~r2)|2d~r1d~r2
(25)

〈
ξ
〉

is the coherence length used to describe Cooper pair
[15], up to a normalization factor.
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B. Coordinates choice

The pair wavefunction in {~r1, ~r2} space has been de-
rived in section IV A. This wavefunction is a function of
the individual position of the nucleons composing of the
pair. However to analyse the structure this set of coordi-
nates is not the most adapted. One shall rather use the
relative and center-of-mass coordinates to describe the
pair.

FIG. 1: Definition of the center-of-mass and relative co-
ordinates

As mentioned earlier we expanded the wavefunction
on a deformed oscillator basis. To get the expression of
this function in the new coordinate system we use Talmi-
Moshinsky transformations [16].

Each state is labeled by three quantum numbers (two
for the radial dependence, one for the axial), namely,
{nr⊥ ,mr⊥ , nz}

Thus the product of two harmonical oscillator wave-
functions can be written in {~r1, ~r2} using the relation:

φ(~rcm) · φ(~rrel) =

∞∑
n1,n2

M(ncm,mcm)(nrel,mcm)
(n1,m1)

φn1,m1
(~r1)φn2,m2

(~r2)

(26)

where {~r1, ~r2} and {~rcm, ~rrel} are respectively the in-
trinsic and center-of-frame coordinates defined on Fig.1,
φn,m is a deformed oscillator wavefunction labelled by the
{n,m} quantum numbers. The recurrence relations used
to compute the Talmi-Moshinsky Bracket can be found
in appendix. Once this transformation achieved one can
analyse the properties of the so-defined pair wavefunction
in coordinate space.

V. RESULTS

A. Impact on the structure

The impact of pairing and quarteting correlations on
nuclear structure is important already at a one-body op-
erator level; the density. Fig2 displays the quadrupole
deformation map for both cases.

FIG. 2: Quadrupolar deformation map for 64Ge for pair-
ing (blue) and quarteting (red). The inserts represents
the density in the Nucleus reference frame

It is remarkable that for both pairing and quarteting
the values of the quadrupole moment which minimize the
binding energy are the same, while in average the quartet
case is more bound that the pairing case. (@E/JP: Com-
mentaire sur le fait que a ”stabilise” les configurations
dformes ?)

B. Size of the pairs

1. Averaged value

To quantify the difference between Bogoliubov and
quarteting correlations, a first variable of interest is the
size-of-pair defined by (25). The calculation for an iden-
tical deformation and a constant correlation energy in
order to be sensitive only to the differences between the
models is performed. Table II displays 〈ξ〉 in the Bogoli-
ubov and quartet case:

Nucleus β2 Ecorr (MeV) 〈ξbogo〉 (fm) 〈ξquart〉 (fm)
20Ne 0.25 7.53 10.5 12.3
44Ti 0.00 5.21 17.6 13.2
64Ge 0.23 6.61 21.2 14.5

TABLE II: Pair size in fm

However, one can see that there is not a systematic
difference between the models while studying only this
variable for different nuclei. This is related to the fact
that we are computing an averaged value which don’t al-
low us to gather all the physical information contained
in (24). We shall then go a step further and use (26)
to study the 2-body operators in an adapted reference
frame, using center-of-mass coordinates. Performing the
corresponding transformation yields (20) in the center of
mass reference frame. Which allows to compare the pair
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size at each point of the nucleus using either Bogoliubov
model or the quarteting model Fig.3 to show the corre-
sponding results for the 64Ge, which have a non-vanishing
pairing energy (Epair ' 5.6 MeV) in the ground-state,
this is the first time in this framework that this compu-
tation is done. One shall be really clear about the physics
lying beyond 3 which represent along the symmetry axis
of the nucleus the relative distance between two nucleons
correlated in momentum. This does not give informa-
tion about the exact localization of the pair, but instead
state give, for a fixed position on this axis, the distance
between the two paired nucleons. Hence one can see that
for the ground-state of 64Ge the pair embedded within a
quartet are smaller than the usual Bogoliubov pair.

FIG. 3: Size of the pair in the 64Ge ground-state for
Bogoliubov and Quarteting model

2. Spatial repartition

FIg.6 display on the left side, the ground-state density
of 20Ne,40Ca and 64Ge while on the right side is shown in
the same basis the pair size as a function of the position
of the considered pair. At the surface of the nuclei the
size of the correlated pair is very small while at the center
of the nucleus the size between the nucleons constituting
the pair is maximal in agreement with [8]. For 20Ne the
pair distance is significantly decreasing at the position of
the clusters. These result generalize the current under-
standing of pair localisation in nuclei, showing that the
finite size constrain, because of the Pauli principle, the
pairs to be localized at the surface, but show also that
at the positions of clusters the pairs are also localised.
(@El/JP: Je retravaille ce paragraphe)

FIG. 4: (Left)Pair size in fm (Right) 20Ne Density in
fm−3. Dashed red line indicate the position of a cluster.

FIG. 5: (Left)Pair size in fm (Right) 40Ca Density in
fm−3

FIG. 6: (Left)Pair size in fm (Right) 64Ge Density in
fm−3. Dashed red line indicate the position of a cluster.

VI. CONCLUSIONS

In this work we propose the first treatment of quartets
correlations within the framework of relativistic mean-
field theory. Four-body-like correlations have a direct
incidence on one-body operators such as the baryonic
density. This impact is quantitatively different from
the usual effect of pairing correlations treated within
the Hartree-Bogoliubov formalism even at the density
level. The quarteting approach displays several advan-
tages with respect to the Bogoliubov one. First of all
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this quarteting model allows momentum correlations of
a system of 4-nucleons, this is suited to the study of
the apparition of α-like clusters. Moreover by preserv-
ing U(1) gauge symmetry this model conserves the exact
particle number. The drawbacks are mostly of numeri-
cal origin. The choice of the core and the cutoff, even if
optimized, introduces two new parameters to the model,
but progress on the implementation can be expected to
allow no-core calculations at least for light nuclei. The
Talmi-Moshinsky transformations used to study the two-
body operators allowed us to have a direct insight on the
spatial structure of the correlated pairs. This system-
atic study of the differences between pairing and quar-
teting models have shown another deep difference of the
two approaches. While Bogoliubov theory predicts very-
delocalised pairs as shown in Fig.3 the quartet model
predicts for most of the nuclei smaller inter-nucleonic
distance within the correlated structures. This state-
ment explains that for systems which present important
pairing the global structures tends to get homogenized
while this trend is less apparent while considering quar-
tets correlations. As it has been shown in previous sec-
tions where a nuclei present clusterised structures, the

correlated nucleons at the position of the clusters are
localized. This leads to an interesting remark, are the
nucleons contributing to cluster formation, spatially lo-
calized within the so-formed cluster ? This study tends
to indicate that this is indeed the case, however to get a
complete answer one have to study the 4-body wavefunc-
tions constructed by generalizing (20). This so-defined
wavefunction will contain all the information to study
quartet localization and would then be comparable to
other well-known clusters model as THSR [17] model.
This work can also be one of the starting point to give a
microscopic justification to algebraic model of the nuclei.

Appendix A: Talmi-Moshinsky coefficients

Imposing axial symmetry we may write any variable
as

ψ(~r) = ψ(~r⊥) · ψ(z) (A1)
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Université de Bucarest, 2013.

[15] M. Kadin Spatial Structure of the Cooper Pair Journal
of Superconductivity and Novel Magnetism May 2007,
Volume 20, Issue 4, pp 285-292

[16] K. Srinivasa Rao Identity for Harmonic Oscillator Brack-
ets Int. Journal Of Theoretical Physics Vol 24, No 1
(1985)

[17] A. Tohsaki, H. Horiuchi, P. Schuck, and G. Ropke, Alpha
Cluster Condensation in 12C and 16O Phys. Rev. Lett.87,
192501 (2001)


