Definitions

For axially deformed nuclei, the spinors solutions of the Hartree-Fock equations can be expanded into an axially-deformed harmonic oscillator basis. Which in cylindrical coordinates takes the form:

$$
\begin{equation*}
\Psi_{i}(\mathbf{r})=\binom{f_{i}^{+}\left(r_{\perp}, z\right) e^{i\left(m-\frac{1}{2}\right) \theta}}{f_{i}^{-}\left(r_{\perp}, z\right) e^{i\left(m+\frac{1}{2}\right) \theta}}=\sum_{\alpha} f_{\alpha}^{(i)} \phi_{\alpha}(\mathbf{r}, \sigma) \tag{1}
\end{equation*}
$$

Where $\alpha=\left\{n_{r}, m_{l}, n_{z}, m_{s}\right\}$ labels an eigenstate of the harmonic oscillator, $f^{ \pm}$is the spinor expansion coefficient in the THO basis, and m is the total angular momentum projection. And $\phi_{\alpha}(\mathbf{r}, \sigma)$ represent the HO eigenstate, which may be explicitly written:

$$
\begin{equation*}
\phi_{n_{r}, m_{l}, n_{z}, m_{s}}(\mathbf{r}, \sigma)=\psi_{n_{r}, m_{l}}(r) \psi_{n_{z}}(z) \frac{e^{i \theta m_{l}}}{\sqrt{2 \pi}} \chi_{m_{s}}(\sigma) \tag{2}
\end{equation*}
$$

Where

$$
\begin{gather*}
\psi_{n_{r}, m_{l}}(r)=\frac{\mathcal{N}_{n_{r}, m_{l}}}{b_{r}} \sqrt{2} \eta^{\frac{m_{l}}{2}} e^{-\frac{\eta}{2}} L_{n_{r}, m_{l}}(\eta) \tag{3}\\
\psi_{n_{z}}(z)=\frac{\mathcal{N}_{n_{z}}}{\sqrt{b_{z}}} e^{-\frac{\xi^{2}}{2}} H_{n_{z}}(\xi) \tag{4}
\end{gather*}
$$

With $\left\{b_{r}, b_{z}\right\}$ the oscillators lengths, the dimensionless variables

$$
\begin{equation*}
\eta=\frac{r^{2}}{b_{r}^{2}}, \xi=\frac{z}{b_{z}} \tag{5}
\end{equation*}
$$

And the normalisation constants

$$
\begin{equation*}
\mathcal{N}_{n_{r}, m_{l}}=\sqrt{\frac{n_{r}!}{\left(n_{r}+m_{l}\right)!}}, \mathcal{N}_{n_{z}}=\sqrt{\frac{1}{\sqrt{\pi} 2^{n_{z}} n_{z}!}} \tag{6}
\end{equation*}
$$

The derivatives of (3) and (4) can be computed in cylindrical coordinates using,

$$
\nabla=\left(\begin{array}{c}
\partial_{r} \tag{7}\\
\frac{\partial_{\theta}}{r} \\
\partial_{z}
\end{array}\right)
$$

Which gives,

$$
\begin{gather*}
\partial_{r} \psi_{n_{r}, m_{l}}(r)=\frac{\mathcal{N}_{n_{r}, m_{l}}}{b_{r}^{2}} \sqrt{2} \eta^{\frac{m_{l}-1}{2}} e^{-\frac{\eta}{2}} L_{n_{r}, m_{l}}^{\prime}(\eta) \tag{8}\\
L_{n_{r}, m_{l}}^{\prime}(\eta)=\left[2\left(n_{r}+1\right) L_{n_{r}+1, m_{l}}(\eta)-\left(2 n_{r}+m_{l}+2-\eta\right) L_{n_{r}, m_{l}}(\eta)\right]
\end{gather*}
$$

And

$$
\begin{align*}
& \partial_{z} \psi_{n_{r}, m_{l}}(r)=\frac{\mathcal{N}_{n_{z}}}{b_{z}^{\frac{3}{2}}} e^{-\frac{\xi^{2}}{2}} H_{n_{z}}(\xi)^{\prime} \tag{9}\\
& H_{n_{z}}^{\prime}(\xi)=\left[\xi H_{n_{z}}(\xi)-H_{n_{z}+1}(\xi)\right]
\end{align*}
$$

For a cylindrical basis, one might be more efficient by defining the set of operators in spherical representation $\left\{p^{+}, p^{-}, p^{3}\right\}$.

$$
\begin{equation*}
p^{+}=-\frac{1}{\sqrt{2}}\left(P_{x}+i P_{y}\right) ; p^{-}=\frac{1}{\sqrt{2}}\left(P_{x}-i P_{y}\right) ; p^{3}=P_{z} \tag{10}
\end{equation*}
$$

Defined by the derivatives:

$$
\begin{equation*}
\partial^{+}=-\frac{1}{\sqrt{2}} e^{i \theta}\left(\partial_{\perp}+\frac{i}{r_{\perp}} \partial_{\theta}\right) ; \partial^{-}=\frac{1}{\sqrt{2}} e^{-i \theta}\left(\partial_{\perp}-\frac{i}{r_{\perp}} \partial_{\theta}\right) ; \partial^{3}=\partial_{z} \tag{11}
\end{equation*}
$$

Correction energy

The center-of-mass correction energy can be written:

$$
\begin{equation*}
E_{c m}^{c o r r}=\frac{\left\langle\Phi_{H F B}\right| \mathbf{P}^{2}\left|\Phi_{H F B}\right\rangle}{2 m A} \tag{12}
\end{equation*}
$$

Thus one shall compute the expectation value of a two-body operator for an HFB vacuum. [?]

$$
\begin{equation*}
\frac{\langle\Phi| \mathbf{P}^{2}|\Phi\rangle}{\langle\Phi \mid \Phi\rangle}=[\operatorname{Tr}(P \rho)]^{2}+\operatorname{Tr}\left(P^{2} \rho\right)-\operatorname{Tr}(P \rho P \rho)-\operatorname{Tr}\left[P \kappa(P \kappa)^{*}\right] \tag{13}
\end{equation*}
$$

Thus one must compute the matrix elements $P_{i, j}=\langle i| \hat{p}|j\rangle$. Where $\hat{p}=-i \hbar \nabla$. The components of the momentum operator are in the spherical representation.

$$
\begin{equation*}
\mathbf{i} \frac{\left\langle i_{1}\right| p^{3}|i\rangle}{\hbar}=\frac{1}{b_{z}} \sum_{\alpha, \alpha 1} \delta_{n_{r}, m_{l}, m_{s}}^{n_{r 1}, m_{l 1}, m_{s 1}} f_{\alpha}^{(i)} f_{\alpha 1}^{\left(i_{1}\right)} \int d \xi \psi_{n_{z}}(\xi) \partial_{\xi} \psi_{n_{z 1}}(\xi) \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\left\langle i_{1}\right| p^{ \pm}|i\rangle}{\hbar}= \pm \frac{\mathbf{i}}{b_{r} \sqrt{2}} \sum_{\alpha, \alpha 1} \delta_{n_{z}, m_{l}+1, m_{s}}^{n_{z 1}, m_{l 1}, m_{s 1}} \int d \eta \psi_{n_{r}, m_{l}}(\eta)\left[2 \sqrt{\eta} \partial_{\eta} \psi_{n_{r 1}, m_{l 1}}(\eta) \mp \frac{m_{l 1}}{\sqrt{\eta}} \psi_{n_{r 1}, m_{l 1}}(\eta)\right] \tag{15}
\end{equation*}
$$

Then the average value of the one-body operator can be expressed in spherical representation according to (13):

$$
\begin{align*}
<\hat{P}^{2} & >=-2 \operatorname{Tr}\left(P^{+} \rho\right) \operatorname{Tr}\left(P^{-} \rho\right)+\left[\operatorname{Tr}\left(P^{z} \rho\right)\right]^{2}-2 \operatorname{Tr}\left(P^{+} P^{-} \rho\right)+\operatorname{Tr}\left(\left(P^{z}\right)^{2} \rho\right)+\operatorname{Tr}\left(P^{+} \rho P^{-} \rho\right) \\
& \left.+\operatorname{Tr}\left(P^{-} \rho P^{+} \rho\right)-\operatorname{Tr}\left(P^{z} \rho P^{z} \rho\right)+\operatorname{Tr}\left(P^{+} \kappa\left(P^{-} \kappa\right)^{*}\right)+\operatorname{Tr}\left(P^{-} \kappa\left(P^{+} \kappa\right)^{*}\right)-\operatorname{Tr}\left(P^{z} \kappa\left(P^{z} \kappa\right)\right)^{*}\right) \tag{16}
\end{align*}
$$

Corrective Fields

Following [?] one can construct the corrective terms which modify the Hartree-Fock-Bogoliubov hamiltonian

$$
\begin{equation*}
\mathcal{H}_{\text {corr }}=\mathcal{H}+k C_{2} \tag{17}
\end{equation*}
$$

Where

$$
C_{2}=\left(\begin{array}{cc}
2\langle\hat{P}\rangle P+P^{2}-2 P \rho P & 2 P \kappa^{t} P \tag{18}\\
-\left(2 P \kappa^{t} P\right)^{*} & -\left(2\langle\hat{P}\rangle P+P^{2}-2 P \rho P\right)^{*}
\end{array}\right)
$$

Where

$$
\begin{gather*}
2\langle\hat{P}\rangle P=-2 \operatorname{Tr}\left(P^{+} \rho\right) P^{-}-2 \operatorname{Tr}\left(P^{-} \rho\right) P^{+}+2 \operatorname{Tr}\left(P^{z} \rho\right) P^{z} \tag{19}\\
P^{2}=-2 P^{+} P^{-}+\left(P^{z}\right)^{2} \tag{20}\\
-2 P \rho P=2 P^{+} \rho P^{-}+2 P^{-} \rho P^{+}-2 P^{z} \rho P^{z} \tag{21}\\
2 P \kappa^{t} P=-2 P^{+} \kappa^{t} P^{-}-2 P^{-} \kappa^{t} P^{+}+2 P^{z} \kappa^{t} P^{z} \tag{22}
\end{gather*}
$$

This term shall be computed and calculated at each iteration of the Hartree-Fock-Bogolioubov procedure.

Bibliography

[1] Uncertainty analysis and symmetry restoration in nuclear self-consistent methods Yuan Gao.(2014)

