
Definitions

For axially deformed nuclei, the spinors solutions of the Hartree-Fock equations can be expanded into an
axially-deformed harmonic oscillator basis. Which in cylindrical coordinates takes the form:
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Where α = {nr,ml, nz,ms} labels an eigenstate of the harmonic oscillator, f± is the spinor expansion
coefficient in the THO basis, and m is the total angular momentum projection. And φα(r, σ) represent
the HO eigenstate, which may be explicitly written:
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Where
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With {br, bz} the oscillators lengths, the dimensionless variables
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(5)

And the normalisation constants
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The derivatives of (3) and (4) can be computed in cylindrical coordinates using,
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Which gives,
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L′nr,ml(η) = [2(nr + 1)Lnr+1,ml(η)− (2nr +ml + 2− η)Lnr,ml(η)]

And
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H ′nz (ξ) = [ξHnz (ξ)−Hnz+1(ξ)]

For a cylindrical basis, one might be more efficient by defining the set of operators in spherical represen-
tation {p+, p−, p3}.
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Defined by the derivatives:
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Correction energy

The center-of-mass correction energy can be written:

Ecorrcm =
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(12)
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Thus one shall compute the expectation value of a two-body operator for an HFB vacuum. [?]〈
Φ
∣∣P2

∣∣Φ〉
〈Φ |Φ〉

= [Tr(Pρ)]
2

+ Tr(P 2ρ)− Tr(PρPρ)− Tr [Pκ(Pκ)∗] (13)

Thus one must compute the matrix elements Pi,j = 〈i | p̂ | j〉. Where p̂ = −i~∇. The components of the
momentum operator are in the spherical representation.
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Then the average value of the one-body operator can be expressed in spherical representation according
to (13):

< P̂ 2 >= −2Tr(P+ρ)Tr(P−ρ) + [Tr(P zρ)]2 − 2Tr(P+P−ρ) + Tr((P z)2ρ) + Tr(P+ρP−ρ)

+ Tr(P−ρP+ρ)− Tr(P zρP zρ) + Tr(P+κ(P−κ)∗) + Tr(P−κ(P+κ)∗)− Tr(P zκ(P zκ))∗) (16)

Corrective Fields

Following [?] one can construct the corrective terms which modify the Hartree-Fock-Bogoliubov hamil-
tonian

Hcorr = H+ kC2 (17)

Where

C2 =

 2
〈
P̂
〉
P + P 2 − 2PρP 2PκtP

−(2PκtP )∗ −(2
〈
P̂
〉
P + P 2 − 2PρP )∗

 (18)

Where
2
〈
P̂
〉
P = −2Tr(P+ρ)P− − 2Tr(P−ρ)P+ + 2Tr(P zρ)P z (19)

P 2 = −2P+P− + (P z)2 (20)

−2PρP = 2P+ρP− + 2P−ρP+ − 2P zρP z (21)

2PκtP = −2P+κtP− − 2P−κtP+ + 2P zκtP z (22)

This term shall be computed and calculated at each iteration of the Hartree-Fock-Bogolioubov procedure.
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