8ème Cours:
 Treewidth et al.

Michel Habib

habib@liafa.univ-Paris-Diderot.fr
http://www.liafa.univ-Paris-Diderot.fr/~habib

Sophie Germain, 12 novembre 2013

```
seme Cours: Treewidth et al.
L
```

Is it worth to work on graph decompositions?

- Apply divide and conquer techniques to solve hard problems on difficult instances.
- Find efficient encoding to store graphs
- Find structural properties (comparability graphs, tournaments ..)
- Byproduct. Many efficient algorithms are based on a decomposition technique.
Example : ear decomposition for planarity testing.

```
Bème Cours: Treewidth et al.
Motivations for graph decompositions
```


Using Google Scholar on 12 november 2012

- Graph Decomposition 902000 answers
- Treewidth 10000 answers
- NP-complete 160000 answers NP-hard 173000 answers

Beme Cours: Treewidth et al.

$\left\llcorner_{\text {Treewidth }}\right.$

Partial k-trees

A partial k-tree is a partial subgraph of a k-tree (deleting edges and vertices)

Definition
Treewith $(G)=$ least integer k s.t. G is a partial k-tree.

Beme Cours: Treewidth et al.

Schedule

Motivations for graph decompositions
Treewidth
Duality : brambles and treewidth
Graph Minors
Big theorems on Graph Minors
Other width parameters
Cliquewidth
Branch decomposition and connectivity functions
Coping with branchwidth
Relationships between treewidth and branchwidth
Rankwidth
Some relationships between these widths

```
8ème Cours: Treewidth et al.
Motivations for graph decompositions
```

Measure the distance from a given graph to a tree

Easy cases

Some graphs are like trees : chordal graphs, cographs and some variations of P_{4}-free graphs ...

General case
One can associated a tree to a graph : modular decomposition tree, split decomposition tree ...

Bad news
Most graphs are prime.

8ème Cours: Treewidth et al.
 $\left\llcorner_{\text {Treewidth }}\right.$

k-trees

Recursive Definition

A clique with $k+1$ vertices is a k-tree. If G is a k-tree, then we obtain another k-tree G^{\prime} by adding a new vertex and joining this vertex to a k-clique of G.

Clearly a k-tree is a chordal graph.
1-trees =ordinary trees
2-trees $=$ series-parallel networks

8ème Cours: Treewidth et al.
-Treewidth

Beme Cours: Treewidth et al.
$\left\llcorner_{\text {Treewidth }}\right.$

8ème Cours: Treewidth et al.
$L_{\text {Treewidth }}$
$\left\llcorner_{\text {Treewidth }}\right.$

Tree decomposition

$G=(V, E)$ has a tree decomposition $D=(S, T)$
S is a collection of subsets of V called bags, T a tree whose vertices are elements of S such that
(0) The union of elements in S is V
(i) $\forall e \in E, \exists i \in I$ with $e \in G\left(S_{i}\right)$.
(ii) $\forall x \in V$, the elements of S containing x form a subtree of T.

Definition
$\operatorname{Decomp}(G)=\operatorname{Min}_{D}\left(\operatorname{Max}_{S_{i} \in S}\left\{\left|S_{i}\right|-1\right\}\right)$

Bème Cours: Treewidth et al.

$\left\llcorner_{\text {Treewidth }}\right.$

Equivalences

1. $\forall G$, $\operatorname{Treewidth}(G)=\operatorname{Decomp}(G)$
2. Treewidth $(G)=\operatorname{Min}_{H}$ triangulation of $G\{\omega(H)-1\}$
3. Computing treewidth is NP-hard.

8ème Cours: Treewidth et al.

$\left\llcorner_{\text {Treewidth }}\right.$

Some examples

1. G is a tree iff $\operatorname{treewidth}(G)=1$
2. $\operatorname{treewidth}\left(K_{n}\right)=n-1$
3. If G is a cycle then $\operatorname{treewidth}(G)=2$. (It can be seen as two chains in parallel, i.e. a series-parallel graph)
4. $\operatorname{treewidth}\left(K_{n, m}\right)=\min (n, m)$
5. treewidth $\left(G_{n, m}\right)=\min (n, m)$, the lower bound is hard to obtain!
6. treewidth (G) (resp. pathwidth) measures the distance from G to a tree (resp. to a chain)

H

Bème Cours: Treewidth et al.
 $\left\llcorner_{\text {Treewidth }}\right.$

Other definitions of trewidth in terms of cop-robber games, using graph grammars
But it turns out that this parameter is a fundamental parameter for graph theory.

8ème Cours: Treewidth et al.
$\left\llcorner_{\text {Treewidth }}\right.$

Easy properties

If G is chordal then $\operatorname{treewidth}(G)=\omega(G)-1$
treewidth $(G)=k$ iff G can be decomposed using only separators of size less than k.

Fundamental lemma
Let $a b$ an edge of T some tree decomposition of G and T_{1}, T_{2} be the two connected components of $T-a b$, then $V_{a} \cap V_{b}$ is a
separator between $V_{1}-V_{2}$ and $V_{2}-V_{1}$, where $V_{1}=\cup_{i \in T_{1}} V_{i}$ and $V_{2}=\cup_{j \in T_{2}} V_{j}$.

8ème Cours: Treewidth et al.
$\left\llcorner_{\text {Treewidth }}\right.$

Proof of the lemma

Démonstration.
Let $a b$ be an edge of a tree decomposition T of $G . T-a b$ is disconnected into T_{1} and T_{2}, two subtrees of T.
Let $V_{1}=\cup_{t \in T_{1}} V_{t}$ and $V_{2}=\cup_{t \in T_{2}} V_{t}$. If $V_{a} \cap V_{b}$ is not a
separator, then it exists $u \in V_{1}-V_{2}$ and $v \in V_{2}-V_{1}$ and $u v \in E$.
But then in which bag can the edge $u v$ belongs to ? Since using
property (i) of tree decomposition each edge must belong to some bag. This cannot be in T_{1}, neither in T_{2}, a contradiction.

8ème Cours: Treewidth et al.

$\left\llcorner_{\text {Treewidth }}\right.$

Computations of treewidth

- There exists polynomial approximation algorithms
- For every fixed k, it exists a linear algorithm to check wether Treewidth $(G) \leq k$ Bodlaender 1992. (Big constant for the linearity).
- Find an efficient algorithm for small values $3,4,5 \ldots$ is still a research problem

seme Cours: Treewidth et al.

$\left\llcorner_{\text {Treewidth }}\right.$

Some applications of treewidth

- Pacman from V. Limouzy

Playing with Pacman is equivalent to compute the treewidth of a special graph (3 or 4)

- Treewidth of some Internet subgraph Laurent Viennot For a network of routers $N, 80 \leq \operatorname{treewidth}(N) \leq 160$

Bème Cours: Treewidth et al.

$\left\llcorner_{\text {Treewidth }}\right.$

1. $\operatorname{Treewidth}(G)=\operatorname{Min}_{H}$ chordal completion of $G\{\omega(H)-1\}$
2. $\operatorname{MinFillin}(G)=\operatorname{Min}_{H=(V, F)}$ chordal completion of $G\{|F|\}$
3. Pathwidth $(G)=\operatorname{Min}_{H}$ intervalcompletion of $G\{\omega(H)-1\}$
4. $\operatorname{MinIntervalcompletion~}(G)=$
$\operatorname{Min}_{H=(V, F)}$ intervalcompletion of $G\{|F|\}$
5. Theorem Arnborg, Corneil, Proskurowski, 1987 : These 4 problems are NP-hard.

For the previous lemma, we only use the definition of any tree-decomposition, not an optimal one. It also explains the use of property (i) in the definition of tree decomposition.

seme Cours: Treewidth et al.
 $\left\llcorner_{\text {Treewidth }}\right.$

Metaconsequence

For most graph parameters Π, there exists an exact algorithm in $O\left(2^{O(\text { treewidth }(G)}\right)$.

Balanced separator
Every graph $G,|G| \geq k+4$, with $\operatorname{treewidth}(G)=k$ admits a separator S of size $k+1$ such that $G-S$ is partitionned into A, B, with no edge between A and B and :

$$
\frac{1}{3}(n-k-1) \leq|A|,|B| \leq \frac{2}{3}(n-k-1)
$$

The study of the interplay between logics and combinatorial structures
yields knowledge on complexity theories

seme Cours. Treewiath et al.
 $\left\llcorner_{\text {Treewidth }}\right.$

B. Courcelle studying graph rewriting systems or graph grammars obtained :

Meta-Theorem

Any graph problem that can be expressed with a formula of the Monadic Second Order logic (MSO)
if G has bounded treewidth then it exists a linear algorithm to solve this problem on G.

Why Meta
A unique theorem for a whole class of problems on a class of graphs.
ème Cours: Treewidth et al.
$\left\llcorner_{\text {Treewidth }}\right.$

Monadic Second Order Logic

For graphs
$x_{1}, \ldots x_{n}$ variables
X_{i} subset of vertices
Atoms :
$E(x, y)$ true iff $x y$ is an edge of G
$X(x)$ true if $x \in X$
Classical logical connectors (equality, implication, negation ...) to make formulas
Quantification over variables and subsets of vertices are allowed.

seme Cours: Treewidth et al
 $\left\llcorner_{\text {Treewidth }}\right.$

Not all graph problems can be expressed in MSO. Isomorphism for example or computing the permanent of a matrix.
MSO_{1} vertices variables
MSO_{2} also edge variables
(Nearly the same logics for our purpose).

Bème Cours: Treewidth et al.
 $\left\llcorner_{\text {Treewidth }}\right.$

Linear?

Linear but with a giant constant :
$\left(2^{2^{2 \cdots}}\right)^{h}$.
h the size of this exponential tower which depends on the MSOL formula
ème Cours: Treewidth et al.

- Treewidth

Grohe, Frick 2005
h is unbounded unless $P=N P$.
seme Cours: Treewidth et al.
-Duality : brambles and treewidth

A Duality Theorem

Brambles
$G=(V, E) ; \mathcal{B}=\left\{X_{i} \mid X_{i} \subseteq V\right\}$ such that:
$G\left(X_{i}\right)$ connected and $\forall i, j G\left(X_{i} \cup X_{j}\right)$ connected.
A transversal of a bramble is a set $\tau \subseteq V$ such that $\forall i \tau \cap X_{i} \neq \emptyset$ $b n(G)=\operatorname{Max}_{\text {transversalof }}(\min |\tau|)$

Duality Theorem Roberston Seymour 86
For every graph G, $\operatorname{treewidth~}(G)=b n(G)-1$

8ème Cours: Treewidth et al.
$\left\llcorner_{\text {Duality: }}\right.$ brambles and treewidt
$\left\llcorner_{\text {Duality : brambles and treewidth }}\right.$

Lower bound 1
Consider the family $\{\{\mathrm{d}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{e}, \mathrm{f}\},\{\mathrm{g}, \mathrm{c}\}\}$ which satisfies the properties of a bramble
With a transversal $\{d, b, c, f\}$ of minimum of size 4.
Therefore using bramble theorem threewidth $(G) \geq 3$

Bème Cours: Treewidth et al.
$\left\llcorner_{\text {Duality : brambles and treewidth }}\right.$

- For a connected graph G, the set of all connected subgraphs with $\left\lceil\frac{n}{2}\right\rceil$ vertices is a bramble of G
seme Cours: Treewidth et al.
-Duality : brambles and treewidth
$\operatorname{bn}(G) \leq \operatorname{treewidth}(G)+1$

Démonstration.

Let us consider an optimal tree decomposition T and a bramble \mathcal{B} Every $X_{i} \in \mathcal{B}$ corresponds to a subtree $T_{X_{i}}$ in T, using connectivity (i).

Furthermore condition (ii) implies $\forall i, j, T_{X_{i}} \cap T_{X_{j}} \neq \emptyset$
Using Helly property on these subtrees, they all have a common vertex t. The bag associated with t meets every element of the bramble and is a transversal for \mathcal{B}.
The size of t is $\leq \operatorname{treewidth}(G)+1$.

```
8ème Cours: Treewidth et al
-Duality : brambles and treewidth
```

Therefore this example has exactly treewidth 3
Bème Cours: Treewidth et al.
-Duality : brambles and treewidth

Bramble again

This Min(Max) Max(Min) theorem gives evidence for treewith computations
as for example for the grid.
Consider the bramble made up with all the crosses it has a transversal of size $\min (n, m)$,
therefore $\operatorname{treewidth}\left(G_{n, m}\right) \geq \min (n, m)-1$

