

e 3

ordre partiel

e

e.,

G = (X, U) satisfying

 $x \leq_P y$ iff \exists a path from x to y in G.

If $xy \in U$ and it exists a path of length ≥ 2 from x to y in G, then xy is called a transitivity arc, else it is a covering arc.

Among the lattice of these acyclic graphs, they are two extremal ones :

 $G^t = (X, U^t)$ the transitive closure of P, for which $x \leq_P y$ iff $x, y \in U^t$.

 $G_r = (X, U_r)$ the transitive reduction of P, having no transivity arcs. Other names : Hasse diagram, directed covering graph. G^t has all possible transitivity arcs, while G_r has none.

Unfortunately these two representations of an order have not the same "complexity" or size. Since for a chain order, $G^t = (X, U^t)$ can be quadratic in size of $G_r = (X, U_r)$.

The transitive closure-reduction gap

It is not known if it is possible to extract $G^t = (X, U^t)$ or $G_r = (X, U_r)$ from a given representation G of P in linear time.

Examples

cographs and series-parallel orders Interval graphs and interval orders Permutation graphs and permutation orders also called 2-dimensional orders. Trapezoid graphs and trapezoid orders

 $\ensuremath{\operatorname{Figure}}$: A chordal graph which is not a comparability graph

L Definitions related to partial orders LDil Dilworth theorem Dilworth 1950 Using this duality can help to solve a problem (many examples of For every finite order P, The maximum size of an antichain (denoted by width(P)) is equal to the minimum size of a chain partition of P (denoted by $\theta(P)$). Consequences Comparability and cocomparability graphs are perfect.

8th Lecture : Graphs and orders MPRI 2013–2014 Dilworth theorem

8th Lecture : Graphs and orders MPRI 2013-2014

Proof

that).

It is well known that G is perfect iff \overline{G} is perfect. Dilworth's theorem just says that cocomp(P) is perfect and therefore also comp(P).

8th Lecture : Graphs and orders MPRI 2013–2014 Dilworth theorem Applications

Erdös, Szekeres 1935

From every sequence of pq + 1 integers one can always extract a decreasing subsequence of size p + 1 or an increasing one of size q+1.

8th Lecture : Graphs and orders MPRI 2013-2014 Dilworth theorem Applications

8th Lecture : Graphs and orders MPRI 2013-2014

Another min-max polynomial theorem similar to max flow min cut. Computation of width(P) can be done in $O(n^{5/2})$ using a maximum matching algorithm.

 8^{th} Lecture : Graphs and orders $\mbox{ MPRI 2013-2014}$ $\hfill Dilworth theorem$

Application for computing a maximum independent set in a comparability graph G

- 1. Transitively orient G as a partial order P
- 2. Compute a minimal path partition of P via a matching algorithm on a bipartite graph
- 3. Extract an independent set form this set of paths