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Introduction

Subtrees in a tree

Using results of Dirac 1961, Fulkerson, Gross 1965, Buneman
1974, Gavril 1974 and Rose, Tarjan and Lueker 1976 :

For a connected graph, the following statements are equivalent
and characterize chordal graphs :

(i) G has a simplicial elimination scheme

(ii) Every minimal separator is a clique

(iii) G admits a maximal clique tree.

(iv) G is the intersection graph of subtrees in a tree.

(v) Any MNS (LBF, LexDFS, MCS) provides a simplicial
elimination scheme.
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More structural insights of chordal graphs

Clique tree
clique tree of G = a minimum size tree model of G

for a clique tree T of G :
◮ vertices of T correspond precisely to the maximal cliques of G
◮ for every maximal cliques C ,C ′, each clique on the path in T

from C to C ′ contains C ∩ C ′

◮ for each edge CC ′ of T , the set C ∩ C ′ is a minimal separator

(an inclusion-wise minimal set separating two vertices)

Note : we label each edge CC ′ of T with the set C ∩ C ′.
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More structural insights of chordal graphs

Consequences of maximal clique tree

Theorem

Every minimal separator belongs to every maximal clique tree.

Lemma

Every minimal separator is the intersection of at least 2 maximal
cliques of G .

Corollary

There are at most n minimal separators.
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More structural insights of chordal graphs

Theorem

Every minimal separator belongs to every maximal clique tree.

Lemma

Every minimal separator is the intersection of at least 2 maximal
cliques of G .
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More structural insights of chordal graphs

Clique graph
the clique graph C(G ) of G = intersection graph of maximal
cliques of G

G C(G )
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More structural insights of chordal graphs

Reduced clique graph
the reduced clique graph Cr (G ) of G = graph on maximal cliques
of G where CC ′ is an edge of Cr (G ) ⇐⇒ C ∩ C ′ is a minimal
separator.
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More structural insights of chordal graphs
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Properties of reduced clique graphs

Combinatorial structure of Cr(G )

Lemma 1 : M.H and C. Paul 95

If C1,C2,C3 is a cycle in Cr (G ), with S12, S23 and S23 be the
associated minimal separators then two of these three separators
are equal and included in the third.

Lemma 2 : M.H. and C. Paul 95

Let C1,C2,C3 be 3 maximal cliques, if
C1 ∩ C2 = S12⊂S23 = C2 ∩ C3 then it yields a triangle in Cr (G )
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Properties of reduced clique graphs

Lemma 3 : Equality case

Let C1,C2,C3 be 3 maximal cliques, if S12 = S23 then :

◮ either the C1 ∩ C3 = S13 is a minimal separator

◮ or the edges C1C2 and C2C3 cannot belong together to a
maximal clique tree of G .
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Properties of reduced clique graphs
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Properties of reduced clique graphs

Theorem (Gavril 87, Shibata 1988, Blayr and Payton 93)

The clique trees of G are precisely the maximum weight spanning

trees of C(G ) where the weight of an edge CC ′ is defined as

|C ∩ C ′|.

Theorem (Galinier, Habib, Paul 1995)

The clique trees of G are precisely the maximum weight spanning

trees of Cr (G ) where the weight of an edge CC ′ is defined as

|C ∩ C ′|.
Moreover, Cr (G ) is the union of all clique trees of G.
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Properties of reduced clique graphs

Applications

◮ All clique trees have exactly the same labels, including
repetitions.
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Properties of reduced clique graphs

Maximal Cardinality Search : MCS

Data: a graph G = (V ,E ) and a start vertex s

Result: an ordering σ of V

Assign the label 0 to all vertices
label(s)← 1
for i ← n à 1 do

Pick an unumbered vertex v with largest label
σ(i)← v

foreach unnumbered vertex w adjacent to v do

label(w)← label(w) + 1
end

end
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Properties of reduced clique graphs

Maximum spanning trees

Maximal Cardinality Search can be seen as Prim algorithm for
computing a maximal spanning tree of Cr (G ).
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Properties of reduced clique graphs

◮ How to compute a clique tree ?

◮ How to generate all simplicial elimination schemes ?
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Properties of reduced clique graphs

LBF, MCS or MNS visit maximal cliques “consecutively” (i.e. when
the search explores a vertex x of a maximal clique C that does not
belong to any of the previously visited maximal cliques then all the
unvisited vertices of C will appear consecutively just after x).

Therefore when applying a search (LBFS, MCS or MNS) one can
compute a clique tree, by considering the strictly increasing
sequences of labels.
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Properties of reduced clique graphs
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b, a, c , e, d , h, f , g is a LBFS ordering.
we can find the maximal cliques b, a, c then b, c , e then b, e, d
then c , h then c , e, f and e, g .
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Properties of reduced clique graphs

Simplicial elimination schemes

1. Choose a maximal clique tree T

2. While T is not empty do
Select a vertex x ∈ F − S in a leaf F of T ;
F ← F − x ;
If F = S delete F ;
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Properties of reduced clique graphs

Canonical simplicial elimination scheme

1. Choose a maximal clique tree T

2. While T is not empty do
Choose a leaf F of T ;
Select successively all vertices in F − S

delete F ;
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Properties of reduced clique graphs

Remark

Does there exist other simplicial elimination scheme ?
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Properties of reduced clique graphs

Size of a maximal clique tree in a chordal graph

◮ Let G = (V ,E ) be a chordal graph.

◮ G admits at most |V | maximal cliques and therefore the tree
is also bounded by |V | (vertices and edges).

◮ But some vertices can be repeated in the cliques. If we
consider a simplicial elimination ordering the size of a given
maximal clique is bounded by the neighbourhood of the first
vertex of the maximal clique.

◮ Therefore any maximal clique tree is bounded by |V |+ |E |.
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Properties of reduced clique graphs

Size of Cr(G )

Considering a star on n vertices,
shows |Cr (G )| ∈ O(n2)
Not linear in the size of G



7th Lecture : Graph searches and graph classes (perfect phylogeny) MPRI 2013–2014

Properties of reduced clique graphs

Cr(G ) is not chordal !
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Properties of reduced clique graphs

Cr(G ) is not chordal !
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Properties of reduced clique graphs

In fact Cr (G ) is dually chordal (almost chordal)
and Cr (Cr (G )) is chordal.
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Graph Search Characterization

Generic Search

7

1

2

3

4

56

Invariant

At each step, an edge between a visited vertex and a unvisited one
is selected
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Graph Search Characterization

Generic search

S ← {s}
for i ← 1 to n do

Pick an unumbered vertex v of S
σ(i)← v

foreach unumbered vertex w ∈ N(v) do
if w /∈ S then

Add w to S

end
end

end
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Graph Search Characterization

Generic question ?

Let a, b et c be 3 vertices such that ab /∈ E et ac ∈ E .

a cb

Under which condition could we visit first a then b and last c ?
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Graph Search Characterization

Property (Generic)

For an ordering σ on V , if a < b < c and ac ∈ E and ab /∈ E , then
it must exist a vertex d such that d < b et db ∈ E

<

cba

d <

Theorem

For a graph G = (V ,E ), an ordering σ sur V is a generic search of
G iff σ satisfies property (Generic).
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Graph Search Characterization

Most of the searches that we will study are refinement of this
generic search
i.e. we just add new rules to follow for the choice of the next
vertex to be visited
Graph searches mainly differ by the management of the tie-break
set
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Graph Search Characterization

Property (BFS)

For an ordering σ on V , if a < b < c and ac ∈ E and ab /∈ E , then
it must exist a vertex d such that d < a et db ∈ E

d cba

Theorem

For a graph G = (V ,E ), an ordering σ sur V is a BFS of G iff σ
satisfies property (BFS).
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Graph Search Characterization

Proprerty (DFS)

For an ordering σ on V , if a < b < c and ac ∈ E and ab /∈ E , then
it must exist a vertex d such that a < d < b and db ∈ E .

d cba

Theorem

For a graph G = (V ,E ), an ordering σ sur V is a DFS of G iff σ
satisfies property (DFS).
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Graph Search Characterization

Applications of BFS

1. Distance computations (unit length), diameter and centers

2. BFS provides a useful layered structure of the graph

3. Using BFS to search an augmenting path provides a
polynomial implementation of Ford-Fulkerson maximum flow
algorithm.
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Graph Search Characterization

Applications of DFS

Some applications

◮ Planarity testing.

◮ Computation of 2-connected (resp. strongly connected)
components, 2-SAT solvers

◮ Computation of a linear extension (topological sorting) for an
acyclic digraph, applications to inheritance mechanisms. . . .
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Graph Search Characterization

Lexicographic Breadth First Search (LBFS)

Data: a graph G = (V ,E ) and a start vertex s

Result: an ordering σ of V

Assign the label ∅ to all vertices
label(s)← {n}
for i ← n to 1 do

Pick an unumbered vertex v with lexicographically largest label
σ(i)← v

foreach unnumbered vertex w adjacent to v do

label(w)← label(w).{i}
end

end
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Graph Search Characterization

Property (LexB)

For an ordering σ on V , if a < b < c and ac ∈ E and ab /∈ E , then
it must exist a vertex d such that d < a et db ∈ E et dc /∈ E .

d cba

Theorem

For a graph G = (V ,E ), an ordering σ sur V is a LBFS of G iff σ
satisfies property (LexB).
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Graph Search Characterization

Why LBFS behaves so nicely on well-structured graphs

A nice recursive property :
On every tie-break set S , LBFS operates on G (S) as a LBFS.
Analogous properties are false for other classical searches.
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Graph Search Characterization

Applications of LBFS

1. Most famous one : Chordal graph recognition

2. For many classes of graphs using LBFS ordering ”backward”
provides structural information on the graph.

3. Last visited vertex (or clique) has some property (example
simplicial for chordal graph)
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Graph Search Characterization

LDFS Lexicographic Depth First Search

BFS vs LBFS

BFS

d cba

LBFS

d cba

DFS vs LexDFS

DFS

d cba

LexDFS

d cba
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Graph Search Characterization

Property (LDFS)

For an ordering σ on V , if a < b < c and ac ∈ E and ab /∈ E , then
it must exist a vertex d such that a < d < b and db ∈ E and
dc /∈ E .

d cba

Theorem

For a graph G = (V ,E ), an ordering σ sur V is a LDFS of G iff σ
satisfies property (LDFS).
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Graph Search Characterization

Lexicographic Depth First Search (LexDFS)

Data: a graph G = (V ,E ) and a start vertex s

Result: an ordering σ of V

Assign the label ∅ to all vertices
label(s)← {0}
for i ← 1 to n do

Pick an unumbered vertex v with lexicographically largest label
σ(i)← v

foreach unnumbered vertex w adjacent to v do

label(w)← {i}.label(w)
end

end
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Graph Search Characterization
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Graph Search Characterization
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Graph Search Characterization
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Graph Search Characterization
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Graph Search Characterization
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Graph Search Characterization

LDFS

Complexity

Is it possible to compute a LDFS in O(n +m) ?

Spinrad, 2008 Best implementation so far needs O(n +mloglogn)
using Van der Boas trees.

Mouatadid, Kőhler, 2013 Linear time implementation on
cocomparability graphs (using partition refinement).

First application : D. Corneil, B. Dalton, M. H. 2013

Hamiltonicity on cocomparability graphs via LDFS.
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Graph Search Characterization

Maximal Neighbourhood Search (MNS)

MNS

Data: a graph G = (V ,E ) and a start vertex s

Result: an ordering σ of V

Assign the label ∅ to all vertices
label(s)← {0}
for i ← 1 to n do

Pick an unumbered vertex v with a maximal under inclusion
label
σ(i)← v

foreach unnumbered vertex w adjacent to v do

label(w)← {i} ∪ label(w)
end

end
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Graph Search Characterization

MNS property

Let σ be a total ordering V (G ), if a < b < c and ac ∈ E and
ab /∈ E , then it exsits d such that d < b, db ∈ E and dc /∈ E .

<

cba

d <
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Graph Search Characterization

Generic search

<

cba

d <

MNS

MNS is a kind of completion of Generic search similar to BFS
versus LBFS (resp. DFS versus LDFS). This explains why MNS
was first named LexGen.
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Graph Search Characterization

Theorem [Tarjan et Yannakakis, 1984]

G is a chordal graph iff every MNS computes a simplicial ordering.

Proof :

Let c be a non simplicial vertex (to the left). Thus it exists
a < b < c ∈ N(c) with ab /∈ E . Using MNS property, it exsits
d < b with db ∈ E and dc /∈ E . Since G is chordal, necessarily
ad /∈ E .
Either d < a, considering the triple d , a, b, it exists d ′ < a such
that d ′a ∈ E and d ′b /∈ E . Furthermore d ′d /∈ E .
Or a < d , considering the triple a, d , c , it exists d ′ < d such that
d ′d ∈ E and d ′c /∈ E . Furthermore ad ′ /∈ E .
In both cases a pattern is propagating to the left, a contradiction.
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Graph Search Characterization

Corollary

G is a chordal graph iff every MCS, LBFS, LDFS computes a
simplicial ordering.

Proof

Maximal for the cardinality, or maximal lexicographically are
particular cases of maximality under inclusion.

Implementation

MCS, LBFS provide linear time particular implementation sof
MNS. But they are many others, less famous.
But in its full generality no linear time implementation is known.

7th Lecture : Graph searches and graph classes (perfect phylogeny) MPRI 2013–2014

Graph Search Characterization

Conclusions

Using the 4-points configurations we can prove the following
inclusion ordering between searches

Strict inclusions

Generic Search
ր ↑ տ
ր ↑ տ

ր ↑ տ
BFS MNS DFS
↑ ր ↑ տ ↑
↑ ր ↑ տ ↑
↑ ր ↑ տ↑

LBFS MCS LDFS
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Graph Search Characterization

Search classification

Search Tie-break management

Generic search none (random)

BFS queue

DFS stack

LBFS Lexicographic maximal

LDFS Lexicographic maximal

MNS Maximal under inclusion

MCS Maximal for the cardinality
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Graph Search Characterization

Applications

◮ BFS to compute distances, diameter, centers
Heuristics for diameter

◮ DFS planarity, strongly connected components, 2-SAT, . . .

◮ LBFS, recognition of chordal graphs, interval graphs . . .
Recursive behavior on tie-break sets.
Heuristics for one consecutiveness property

◮ LDFS, long paths, minimum path cover
For cocomparability graphs LDFS computes layered ordering
of the complement partial order.
Heuristics for graph clustering, still many applications to be
discovered.
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Interval graphs

Definition

A cocomparability graph G is the complement of a comparability
graph, i.e., G admits a transitive orientation.

Definition :

For a total ordering τ of the set of vertices, an umbrella is a triple
of vertices a, b, c ∈ X such that : a <τ b <τ c and ac ∈ E and
ab, bc /∈ E . A cocomparability (cocomp for short) ordering is an
umbrella-free total ordering of the vertices of G .

Forbidden triple

a b c
An umbrella
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Interval graphs

Characterization Theorem for interval graphs

Gilmore and Hoffman 1964

(i) G is an interval graph, i.e. it can be represented as
the intersection graph of a family of intervals of the
real line.

(ii) It exists a total ordering τ of the vertices of V s.t.
∀x , y , z ∈ G with x ≤τ y ≤τ z and xz ∈ E then
xy ∈ E . An interval ordering.

(iii) G has a maximal clique path. (A maximal clique path
is just a maximal clique tree T, reduced to a path).

(iv) G is chordal and cocomparability.
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Interval graphs

Proof
(i)→(ii) For τ we take the ordering of vertices obtained by the

ordering of the leftcorners of the intervals. So x ≤τ y

iff left(x) ≤ left(y). ∀x , y , z ∈ G with x ≤τ y ≤τ z ,
every interval I (y) starting between left(x) and
left(z) must intersect I (x), if xz ∈ E . Therefore τ is
an ordering satisfying the condition.

(i)→(iii) The maximal cliques can be obtained from the
interval representation by a sweep from left to right
of a vertical line, which yields a maximal clique path.

(i)→(iv) We already see that every interval graph is a chordal
graph. Let us define a relation R on V (G ), as
follows :
xRy iff I (x) completely to the left of I (y). Clearly R

is a partial order and therefore G is a comparability
graph.
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Interval graphs

Proof II
(ii)→(i) To each vertex x we construct I (x) = [x , z ] where z

is the rightmost neighbour of x in τ . Using the
property of τ , we know that ∀y ∈ [x , z ], xy ∈ E (G ),
and therfore we have an interval representation of G .

(iii)→(i) From a maximal clique path, it is very easy to
construct the interval representation, by taking for
every vertex the list of consecutive maximal cliques
that contain it.

(ii)→(iv) First we remark that τd is a simplicial elimination
scheme. Furthermore τ is a cocomp ordering. If it
exists a, b, c ∈ V (G ), with ab, bc /∈ E (G ) and
a ≤τ b ≤τ c . Either I (a), I (b), I (c) pairwise do not
intersect and therefore ac /∈ E (G ), or I (a) and I (c)
intersect, but then using the defintion of τ this
implies ab ∈ E (G ), a contradiction.
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Interval graphs

Lemma 1(Corneil)

For every cocomparability graph G , there exists a LBFS ordering
which is a cocomp ordering.

Lemma 2

Any simplicial cocomp ordering is an interval ordering.

proof :

Let us consider τ simplicial from right to left which is a cocomp
ordering.
Let us consider ∀x , y , z ∈ V (G ) with x ≤τ y ≤τ z and xz ∈ E (G ).
Since τ is a cocomp ordering, necessarily xy or yz is an edge. If
xy ∈ E (G ), we are done. Else if yz ∈ E (G ) then using the
simpliciality of x , we have xy ∈ E (G ). In both cases τ is an
interval ordering.
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Interval graphs

Proof III

(iv) → (ii)

Using the previous lemma 1, we can consider a LBFS cocomp
ordering τ of G . Since G is chordal, τ is also simplicial (as any
LBFS), and we can use lemma 2 to end the proof.
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Interval graphs

All the previous proofs play only with orderings of the vertices and
4-points conditions.
The proofs of the next theorem are left as an exercise.
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Interval graphs

Characterization theorem for proper interval graphs

Roberts 1970, Wegner 1967, Loodges and Olariu 1993.

(i) G is a proper interval graph, i.e. it can be
represented as the intersection graph of a family of
intervals of the real line, in which no interval strictly
contains another interval.

(ii) It exists a total ordering τ of the vertices of V s.t.
∀x , y , z ∈ G with x ≤τ y ≤τ z and xz ∈ E then xy

and yz ∈ E . A proper interval ordering.

(iii) G is unit-interval graphs (i.e. it admits a
representation with intervals of the same length).

(iv) G is an interval graph and does not contain any K1,3.
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Interval graphs

So far we have seen

Chordal graph iff ∃ a simplicial ordering.

Interval graph iff ∃ an interval ordering.

Proper interval graph ∃ a proper interval ordering.

Cocomparability graph iff ∃ a cocomp ordering.
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Interval graphs

A description using forbidden configurations
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Interval graphs

Consequences

LBFS is involved in many recognition algorithms for these classes
of graphs, in fact due to the following property for cocomparability
and comparability graphs :

◮ If G is a cocomparability graph and σ a LBFS on G , then the
last vertex of σ, can be taken as a source in a transitive
orientation of G .

◮ This is the starting step for comparability and permutation
graph recognition algorithms, using partition refinement.
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Interval graphs

A hierarchy of some hereditary classes of graphs

Strict inclusions between classes

Perfect graphs
ր ↑ տ

ր ↑ տ
ր ↑ տ

Chordal Cocomp Comparability
↑ ր տ ↑
↑ ր տ ↑
↑ ր տ↑

Interval Permutation
↑ ↑

Proper Interval Cograph
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Interval graphs

A hierarchy of some hereditary classes of graphs

Minimum number of LBFS used in a recognition algorithm

Perfect graphs( ?)
ր ↑ տ

ր ↑ տ
ր ↑ տ

Chordal(1) Cocomp(n) Comparability(n)
↑ ր տ ↑
↑ ր տ ↑
↑ ր տ↑

Interval(5+1) Permutation
↑ ↑

Proper Interval(3) Cograph(2)
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Interval graphs

Conjectures

Perfect graphs( ?)
ր ↑ տ

ր ↑ տ
ր ↑ տ

Chordal(1) Cocomp(5+1) ? Comparability(5+1) ?
↑ ր տ ↑
↑ ր տ ↑
↑ ր տ↑

Interval(5+1) Permutation
↑ ↑

Proper Interval(3) Cograph(2)
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Interval graphs

To recognize an interval graph, we just have to compute a
maximal clique tree and check if it is a path ?
Difficulty : an interval graph has many clique trees among them
some are paths
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Interval graphs
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Interval graphs
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Interval graphs

Many linear time algorithms already proposed for interval graph
recognition ....
using nice algorithmic tools :
graph searches, modular decomposition, partition refinement,
PQ-trees . . .
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Interval graphs

Linear time recognition algorithms for interval graphs

◮ Booth and Lueker 1976, using PQ-trees.

◮ Korte and Mohring 1981 using LBFS and Modified PQ-trees.

◮ Hsu and Ma 1995, using modular decomposition and a
variation on Maximal Cardinality Search.

◮ Corneil, Olariu and Stewart SODA 1998, using a series of 6
consecutive LBFS, published in 2010.

◮ M.H, McConnell, Paul and Viennot 2000, using LexBFS and
partition refinement on maximal cliques.

◮ P. Li, Y. Wu 2011, using a series of 4 sort of LBFS

◮ . . .
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Interval graphs

A partition refinement algorithm working on maximal
cliques

1. Compute a tree T using LBF
If T is not a maximal clique tree ; then G is not chordal,
neither interval.

2. Start form the last maximal clique Refine the cliques with the
minimal separator.

3. Refine until each part is a singleton

4. If a part is not a singleton start recursively from the last clique
of this part according to LBFS.
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Interval graphs

7th Lecture : Graph searches and graph classes (perfect phylogeny) MPRI 2013–2014

Exercises

Exercise 1

Ends of a LexBFS

Many properties can be expressed on the last vertex of a LexBFS.
Example : if G is a chordal graph, the last vertex is simplicial .

1. Show that the last maximal clique visited can be taken as the
end of some chain of cliques if G is an interval graph.

2. Complexity of the following decision problem :

Data: a graph G = (V ,E ) and a given vertex x ∈ V

Result: Does there exist a LBFS of G ending at x ?
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Exercises

Exercise 2

If we consider the edges of the clique tree labelled with the size of
the minimal separators, show that :
for every maximal clique tree T

weight(T ) = Σ1≤i≤k |Ci | − n, where C1, . . .Ck are the maximal
cliques of G .


