$6th$ Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014

6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014

Michel Habib habib@liafa.univ-Paris-Diderot.fr http://www.liafa.univ-Paris-Diderot.fr/~habib

Sophie Germain, 29 octobre 2013

6 th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 Introduction

Definition

A graph is chordal iff it has no chordless cycle of length ≥ 4 or equivalently it has no induced cycle of length \geq 4.

Chordal graphs are hereditary

Interval graphs are chordal

Applications :

- ► Perfect phylogeny. Many NP-complete problems for general graphs are polynomial for chordal graphs.
- ▶ Graph theory. Treewidth (resp. pathwidth) are very important graph parameters that measure distance from a chordal graph (resp. interval graph).

6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014 Introduction

It is just a Breadth First Search (BFS for short) with a strange tie-break rule !

6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014

Schedule

Introduction

Representation of chordal graphs

More structural insights of chordal graphs

Properties of reduced clique graphs

6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014

Lintroduction

Lexicographic Breadth First Search (LexBFS)

Data: a graph $G = (V, E)$ and a start vertex s Result: an ordering σ of V Assign the label \emptyset to all vertices $label(s) \leftarrow \{n\}$ for $i \leftarrow n$ à 1 do Pick an unumbered vertex v with lexicographically largest label $\sigma(i) \leftarrow v$ foreach unnumbered vertex w adjacent to v do $label(w) \leftarrow label(w).$ {i} end end

6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014 Introduction 1 $\begin{array}{ccc} 0 & & I \end{array}$ \cup 4 \mathcal{J} \perp

6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014 Introduction

The reference for a graph algorithm theorem

LexBFS Characterization [Rose, Tarjan et Lueker 1976] A graph is chordal G iff every LexBFS ordering of G provides a simplicial elimination scheme.

Chordal graph 5 $\frac{1}{4}$ $\frac{8}{3}$ 8 6×7 2 A vertex is simplicial if its neighbourhood is a clique.

Simplicial elimination scheme

 $\sigma = [x_1 \dots x_i \dots x_n]$ is a simplicial elimination scheme if x_i is simplicial in the subgraph $G_i = G[\{x_i \dots x_n\}]$

6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014 Introduction

Playing with the elimination scheme

Easy Exercises :

- 1. Find a minimum Coloring (resp. a clique of maximum size) of a chordal graph in $O(|V| + |E|)$. Consequences : chordal graphs are perfect. At most $|V| - 1$ maximal cliques (best upper bound, since stars have exactly $|V| - 1$ maximal cliques).
- 2. Find a minimum Coloring (resp. a clique of maximum size) of an interval graph in $O(|V|)$ using the interval representation.

6 th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 Introduction

Chordal graphs

Apply LexBFS from n downto 1 Use the ordering n downto 1 for the greedy coloring. Let $k = \omega(G)$. Since every added vertex x is simplicial and $|N(x)| \leq k - 1$, it exists at least one missing color in its neighbourhood of the already colored subgraph. The value k is reached for the last vertex belonging to each maximum clique of G.

6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014 Introduction

3

1

2

3

1

2

6, 5, 4, 3, 2, 1 LexBFS ordering

Perfectly orderable graphs

6

1

4

3

5

2

Although $\omega(G)$ and $\chi(G)$ can be computed in polynomial time for perfect graphs using the ellipsoid method, greedy coloring does not work for all perfect graphs.

A graph G is said to be perfectly orderable if there exists an ordering π of the vertices of G, such that any induced subgraph is optimally colored by the greedy algorithm using the subsequence of π induced by the vertices of the subgraph. Chordal graphs are perfectly orderable.

How can we prove such a theorem ?

- 1. A direct proof, finding the invariants ?
- 2. Find some structure of chordal graphs
- 3. Understand how LexBFS explores a chordal graph

6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014

4. We will consider the 3 viewpoints.

6 th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 Introduction

Greedy colorings

Introduction

Definitions

Clique number $\omega(G)$ = maximum size of a clique in G Chromatic number $\chi(G)$ = minimum coloring of G. $\forall G, \chi(G) \geq \omega(G)$

Greedy colorings

Color with integers from $[1, k]$ Following a vertex ordering, process successively the vertices using the greedy rule :

Take the minimum color not already in the neighbourhood

6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014 Introduction

6, 5, 4, 3, 2, 1 LexBFS ordering

6 th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 Introduction

Perfect Graphs

G such that for every induced subgraphs $H \subseteq G$ $\omega(G) = \chi(G)$

Consequences

Therefore $\omega(G) = \chi(G)$ for chordal graphs. Since being chordal graphs is an hereditary property, chordal graphs are perfect.

6 th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 Introduction For which graphs the greedy coloring works ? Bad news : NP-complete to recognize perfectly orderable graphs. Greedy coloring can be far from the optimum, even for subclasses of perfect graphs. 6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014

Lintroduction **6 5 4 3 3 2 1 2 2 1 1 4** 6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014

Lintroduction Lintroduction **Introduction** 6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014 **6 1 5 4 2 3 3 3 2 1 1 2** 6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014

Lintroduction The study of the relationships between $\omega(G)$ and $\chi(G)$ is fundamental for algorithmic graph theory. 1. 1930 Wagner's conjecture and treewidth 2. 1950 Shannon Problem and Perfect graphs and semi-definite programming ntation of chordal graphs About Representations \blacktriangleright Interval graphs are chordal graphs ► How can we represent chordal graphs? \triangleright As an intersection of some family ? \triangleright This family must generalize intervals on a line 6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014 **LECLINGTON**
 LRepresentation of chordal graphs Fundamental objects to play with Maximal Cliques under inclusion Minimal Separators A subset of vertices S is a minimal separator if G if there exist $a, b \in G$ with $ab \notin G$, such that a and b are not connected in $G - S$. and S is minimal for inclusion with this property. 6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014 L Representation of chordal graph An example *a f b* c e 6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014 **LEGENE PRODUCED**
 L
 Representation of chordal graphs If $G = (V, E)$ is connected then for every $a, b \in V$ such that $ab \notin E$ then there exists at least one minimal separator.

But there could be an exponential number of minimal separators.

3 minimal separators $\{b\}$ for f and a, $\{c\}$ for a and e and $\{b, c\}$ for a and d.

d

6 \hbar Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 Representation of chordal graphs

VIN : Maximal Clique trees

A maximal clique tree (clique tree for short) is a tree T that satisfies the following three conditions :

- \triangleright Vertices of T are associated with the maximal cliques of G
- \blacktriangleright Edges of T correspond to minimal separators.
- For any vertex $x \in G$, the cliques containing x yield a subtree of T.

th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 .
tation of chordal graphs

Démonstration

Suppose not. Consider a family of subtrees that pairwise intersect. For each vertex x of the tree T , if x belongs to every subtree of the family, it contradicts the hypothesis. Therefore at least one subtree does not contain x . If the subtrees belongs to two different components of $T-x$ this would contradict the pairwise intersection of the subtrees. Therefore all the subtrees are in exactly one component of $T-x$ (N.B. some subtrees may contain x). Direct exactly one edge of T from x to this component. This yields a directed graph G , which has exactly n vertices and n directed edges. Since T is a tree, it contains no cycle, therefore it must exist a pair of symmetric edges in G, which contradicts the pairwise intersection.

 \Box

6 th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 **Intation of chordal graphs**

Subtrees in a tree

Using results of Dirac 1961, Fulkerson, Gross 1965, Buneman 1974, Gavril 1974 and Rose, Tarjan and Lueker 1976 :

For a connected graph, the following statements are equivalent and characterize chordal graphs :

- (i) G has a simplicial elimination scheme
- (ii) Every minimal separator is a clique
- (iii) G admits a maximal clique tree.
- (iv) G is the intersection graph of subtrees in a tree.
- (v) Any MNS (LexBFS, LexDFS, MCS) provides a simplicial elimination scheme.

6 $^{\prime\prime}$ Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 Representation of chordal graphs

An example

6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014 Representation of chordal graphs

Helly Property

Definition

A subset family $\{T_i\}_{i\in I}$ satisfies Helly property if $\forall J \subseteq I$ et $\forall i, j \in J$ $\mathcal{T}_i \cap \mathcal{T}_j \neq \emptyset$ implies $\cap_{i \in I} \mathcal{T}_i \neq \emptyset$

Exercise

Subtrees in a tree satisfy Helly property.

6 th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 research
Antation of chordal graphs

Back to chordal graphs

Chordal graph recognition

- 1. Apply a LexBFS on G $O(n + m)$
- 2. Check if the reverse ordering is a simplicial elimination scheme $O(n + m)$
- 3. In case of failure, exhibit a certificate : i.e. a cycle of length \geq 4, without a chord. $O(n)$

6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014 - Representation of chordal graphs

Two subtrees intersect iff they have at least one vertex in common. By no way, these representations can be uniquely defined !

6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014 Representation of chordal graphs

Proof of the chordal characterization theorem

- \blacktriangleright Clearly (iii) implies (iv)
- ▶ For the converse, each vertex of the tree corresponds to a clique in G .

But the tree has to be pruned of all its unnecessary nodes, until in each node some subtree starts or ends. Then nodes correspond to maximal cliques.

▶ We need now to relate these new conditions to chordal graphs. (iii) implies (i) since a maximal clique tree yields a simplicial elemination scheme.

(iv) implies chordal since a cycle without a chord generates a cycle in the tree.

(iv) implies (ii) since each edge of the tree corresponds to a minimal separator which is a clique

6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014 More structural insights of chordal graphs

Theorem

Every minimal separator belongs to every maximal clique tree.

Lemma

Every minimal separator is the intersection of at least 2 maximal cliques of G.

th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 Ictural insights of chordal graph

Proof of the theorem

Démonstration.

Therefore $S = C' \cap C''$. These two maximal cliques belong to any maximal clique tree T of G. Let us consider the unique path μ in T joigning C' to C'' .

All the internal maximal cliques in μ must contain S. Suppose that all the edges of μ are labelled with minimal separators strictly containing S, then we can construct a path in G from $C' - S$ to $C'' - S$ avoiding S, a contradiction. So at least one edge of μ is labelled with S.

6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014 - More structural insights of chordal graph

Reduced clique graph

the *reduced clique graph* $C_r(G)$ of $G =$ graph on maximal cliques of G where CC' is an edge of $\mathcal{C}_r(G) \iff C \cap C'$ is a minimal separator.

6 h_{\parallel} Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014. Properties of reduced clique graphs

Combinatorial structure of $C_r(G)$

Lemma 1 : M.H and C. Paul 95 If C_1 , C_2 , C_3 is a cycle in $C_r(G)$, with S_{12} , S_{23} and S_{23} be the associated minimal separators then two of these three separators are equal and included in the third.

Lemma 2 : M.H. and C. Paul 95 Let C_1 , C_2 , C_3 be 3 maximal cliques, if $C_1 \cap C_2 = S_{12} \subset S_{23} = C_2 \cap C_3$ then it yields a triangle in $C_r(G)$ 6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014 More structural insights of chordal graphs

Proof of the lemma

Démonstration.

Since G is chordal, every minimal separator S is a clique. Let us consider G_1 a connected component of G-S. Let x_1, \ldots, x_k be the vertices of G_1 having a maximal neighbourhood in S . If $k = 1$ then x_1 must be universal to S, since S is a minimal separator.

Else, consider a shortest path μ in G_1 from x_1 to x_k . Necessarily x_1 (resp. x_k) has a private neighbour z (resp. t) in S. Else they would have the same maximal neighbourhood in S , and since S is a minimal separator, this neighbourhood must be S. Then the cycle $[x_1, \mu, x_k, t, z]$ has no chord, a contradiction. Therefore $x_1 \cup S$ is a clique, and is contained in some maximal clique C in G_1 . We finish the proof by considering another connected component of $G - S$.

 \Box

 $6th$ Lecture : Structural aspects of chordal g
 \Box More structural insights of chordal graphs $\frac{h}{\pi}$ Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014

Clique graph

 \Box

the *clique graph* $C(G)$ of $G =$ intersection graph of maximal cliques of G

6th Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014 L More structural insights of chordal graph

6 $\frac{h}{h}$ Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 es of reduced clique graphs

Lemma 3 : Equality case

- Let C_1 , C_2 , C_3 be 3 maximal cliques, if $S_{12} = S_{23}$ then :
- riangleright either the $C_1 \cap C_3 = S_{13}$ is a minimal separator
- or the edges C_1C_2 and C_2C_3 cannot belong together to a maximal clique tree of G.

Maximum spanning trees Maximal Cardinality Search can be seen as Prim algorithm for computing a maximal spanning tree of $C_r(G)$.