# 6<sup>th</sup> Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014

6<sup>th</sup> Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014

Michel Habib habib@liafa.univ-Paris-Diderot.fr http://www.liafa.univ-Paris-Diderot.fr/-habib

Sophie Germain, 29 octobre 2013

 $6^{th}$  Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014 Introduction

#### Definition

A graph is chordal iff it has no chordless cycle of length  $\geq$  4 or equivalently it has no induced cycle of length  $\geq$  4.

Chordal graphs are hereditary

#### Interval graphs are chordal

Applications :

- Perfect phylogeny. Many NP-complete problems for general graphs are polynomial for chordal graphs.
- Graph theory. Treewidth (resp. pathwidth) are very important graph parameters that measure distance from a chordal graph (resp. interval graph).

6<sup>th</sup> Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014

6<sup>th</sup> Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014

#### Schedule

Introduction

Representation of chordal graphs

More structural insights of chordal graphs

Properties of reduced clique graphs

 $6^{th}$  Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014  $\Box$  Introduction

### Lexicographic Breadth First Search (LexBFS)

Data: a graph G = (V, E) and a start vertex s Result: an ordering  $\sigma$  of VAssign the label  $\emptyset$  to all vertices label(s)  $\leftarrow \{n\}$ for  $i \leftarrow n \ge 1$  do Pick an unumbered vertex v with lexicographically largest label  $\sigma(i) \leftarrow v$ foreach unnumbered vertex w adjacent to v do label(w)  $\leftarrow$  label(w). $\{i\}$ end end



It is just a Breadth First Search (BFS for short) with a strange tie-break rule !

 $6^{th}$  Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014  $\Box$  Introduction

### The reference for a graph algorithm theorem

LexBFS Characterization [Rose, Tarjan et Lueker 1976] A graph is chordal *G* iff every LexBFS ordering of *G* provides a simplicial elimination scheme.



 $6^{tb}$  Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny  $\,$  MPRI 2013–2014  $\,$  Introduction



#### Simplicial elimination scheme

 $\sigma = [x_1 \dots x_i \dots x_n]$  is a simplicial elimination scheme if  $x_i$  is simplicial in the subgraph  $G_i = G[\{x_i \dots x_n\}]$ 



6<sup>th</sup> Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014

6<sup>th</sup> Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014

# Playing with the elimination scheme

#### Easy Exercises :

- 1. Find a minimum Coloring (resp. a clique of maximum size) of a chordal graph in O(|V| + |E|). Consequences : chordal graphs are perfect. At most |V| - 1 maximal cliques (best upper bound, since stars have exactly |V| - 1 maximal cliques).
- 2. Find a minimum Coloring (resp. a clique of maximum size) of an interval graph in O(|V|)using the interval representation.

6<sup>th</sup> Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014 Lintroduct

## Chordal graphs

Apply LexBFS from n downto 1 Use the ordering n downto 1 for the greedy coloring. Let  $k = \omega(G)$ .

Since every added vertex x is simplicial and  $|N(x)| \le k - 1$ , it exists at least one missing color in its neighbourhood of the already colored subgraph.

The value k is reached for the last vertex belonging to each maximum clique of G.



6<sup>th</sup> Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014

### Perfectly orderable graphs

Although  $\omega(G)$  and  $\chi(G)$  can be computed in polynomial time for perfect graphs using the ellipsoid method, greedy coloring does not work for all perfect graphs.

A graph G is said to be perfectly orderable if there exists an ordering  $\pi$  of the vertices of G, such that any induced subgraph is optimally colored by the greedy algorithm using the subsequence of  $\pi$  induced by the vertices of the subgraph. Chordal graphs are perfectly orderable.

#### How can we prove such a theorem?

- 1. A direct proof, finding the invariants?
- 2. Find some structure of chordal graphs
- 3. Understand how LexBFS explores a chordal graph
- 4. We will consider the 3 viewpoints.

#### 6<sup>th</sup> Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014

### Greedy colorings

#### Definitions

Clique number  $\omega(G) = \max \operatorname{maximum} \operatorname{size} \operatorname{of} \operatorname{a} \operatorname{clique} \operatorname{in} G$ Chromatic number  $\chi(G) = \min \operatorname{minimum} \operatorname{coloring} \operatorname{of} G$ .  $\forall G, \chi(G) \geq \omega(G)$ 

#### Greedy colorings

Color with integers from [1, k]Following a vertex ordering, process successively the vertices using the greedy rule :

Take the minimum color not already in the neighbourhood

# 6<sup>th</sup> Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014

3 2 5 6, 5, 4, 3, 2, 1 LexBFS ordering

6<sup>th</sup> Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014

### Perfect Graphs

G such that for every induced subgraphs  $H \subseteq G$  $\omega(G) = \chi(G)$ 

#### Consequences

Therefore  $\omega(G) = \chi(G)$  for chordal graphs. Since being chordal graphs is an hereditary property, chordal graphs are perfect.

6<sup>th</sup> Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014 6<sup>th</sup> Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014 For which graphs the greedy coloring works? 1 5 6 2 Bad news : 4 3 NP-complete to recognize perfectly orderable graphs. Greedy coloring can be far from the optimum, even for subclasses of perfect graphs. 1 4 2 3 2 1  $6^{th}$  Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 L Introduction 6<sup>th</sup> Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013-2014 1 1 The study of the relationships between  $\omega(G)$  and  $\chi(G)$  is 2 fundamental for algorithmic graph theory. 2 1. 1930 Wagner's conjecture and treewidth 3 3 2. 1950 Shannon Problem and Perfect graphs and semi-definite programming 6 1 5 4 2 3 6<sup>th</sup> Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 6<sup>th</sup> Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 tation of chordal graph n of chordal graphs About Representations Fundamental objects to play with Maximal Cliques Interval graphs are chordal graphs under inclusion Minimal Separators How can we represent chordal graphs? A subset of vertices S is a minimal separator if GAs an intersection of some family? if there exist  $a, b \in G$  with  $ab \notin G$ , such that a and This family must generalize intervals on a line b are not connected in G - S. and S is minimal for inclusion with this property .

 $6^{th}$  Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014  $\Box$  Representation of chordal graphs

An example



3 minimal separators  $\{b\}$  for f and a,  $\{c\}$  for a and e and  $\{b, c\}$  for a and d.

 $6^{th}$  Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 Representation of chordal graphs

If  ${\cal G}=(V,E)$  is connected then for every  $a,b\in V$  such that  $ab\notin E$ 

then there exists at least one minimal separator.

But there could be an exponential number of minimal separators.

6<sup>th</sup> Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 Representation of chordal graphs

### VIN : Maximal Clique trees

A maximal clique tree (clique tree for short) is a tree  ${\cal T}$  that satisfies the following three conditions :

- Vertices of T are associated with the maximal cliques of G
- Edges of T correspond to minimal separators.
- For any vertex x ∈ G, the cliques containing x yield a subtree of T.

6<sup>th</sup> Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 Representation of chordal graphs

#### Démonstration.

Suppose not. Consider a family of subtrees that pairwise intersect. For each vertex x of the tree T, if x belongs to every subtree of the family, it contradicts the hypothesis. Therefore at least one subtree does not contain x. If the subtrees belongs to two different components of T-x this would contradict the pairwise intersection of the subtrees. Therefore all the subtrees are in exactly one component of T-x (N.B. some subtrees may contain x). Direct exactly one edge of T from x to this component. This yields a directed graph G, which has exactly n vertices and n directed edges. Since T is a tree, it contains no cycle, therefore it must exist a pair of symmetric edges in G, which contradicts the pairwise intersection.

 $6^{th}$  Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014  $\Box$  Representation of chordal graphs

### Subtrees in a tree

Using results of Dirac 1961, Fulkerson, Gross 1965, Buneman 1974, Gavril 1974 and Rose, Tarjan and Lueker 1976 :

For a connected graph, the following statements are equivalent and characterize chordal graphs :

- (i) G has a simplicial elimination scheme
- (ii) Every minimal separator is a clique
- (iii) G admits a maximal clique tree.
- (iv) G is the intersection graph of subtrees in a tree.
- (v) Any MNS (LexBFS, LexDFS, MCS) provides a simplicial elimination scheme.

 $6^{th}$  Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 Representation of chordal graphs

### An example



6<sup>th</sup> Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014

### Helly Property

#### Definition

A subset family  $\{T_i\}_{i \in I}$  satisfies Helly property if  $\forall J \subseteq I$  et  $\forall i, j \in J$   $T_i \cap T_j \neq \emptyset$  implies  $\cap_{i \in I} T_i \neq \emptyset$ 

#### Exercise

Subtrees in a tree satisfy Helly property.

 $6^{th}$  Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014  $\Box$  Representation of chordal graphs

### Back to chordal graphs

#### Chordal graph recognition

- 1. Apply a LexBFS on G O(n+m)
- 2. Check if the reverse ordering is a simplicial elimination scheme O(n + m)
- 3. In case of failure, exhibit a certificate : i.e. a cycle of length  $\geq$  4, without a chord. O(n)

 $6^{th}$  Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 L Representation of chordal graphs

Two subtrees intersect iff they have at least one vertex in common. By no way, these representations can be uniquely defined !

 $6^{th}$  Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014  $\Box$  Representation of chordal graphs

Proof of the chordal characterization theorem

- Clearly (iii) implies (iv)
- ► For the converse, each vertex of the tree corresponds to a clique in *G*.

But the tree has to be pruned of all its unnecessary nodes, until in each node some subtree starts or ends. Then nodes correspond to maximal cliques.

We need now to relate these new conditions to chordal graphs.
(iii) implies (i) since a maximal clique tree yields a simplicial elemination scheme.

(iv) implies chordal since a cycle without a chord generates a cycle in the tree.

 $({\rm iv})$  implies (ii) since each edge of the tree corresponds to a minimal separator which is a clique



#### Theorem

Every minimal separator belongs to every maximal clique tree.

#### Lemma

Every minimal separator is the intersection of at least 2 maximal cliques of  ${\ensuremath{\mathcal{G}}}.$ 

 $6^{th}$  Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014  $\Box$  More structural insights of chordal graphs

# Proof of the theorem

#### Démonstration.

Therefore  $S = C' \cap C''$ . These two maximal cliques belong to any maximal clique tree T of G. Let us consider the unique path  $\mu$  in T joigning C' to C''.

All the internal maximal cliques in  $\mu$  must contain *S*. Suppose that all the edges of  $\mu$  are labelled with minimal separators strictly containing *S*, then we can construct a path in *G* from C' - S to C'' - S avoiding *S*, a contradiction. So at least one edge of  $\mu$  is labelled with *S*.

 $6^{th}$  Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014  $\Box$  More structural insights of chordal graphs

#### Reduced clique graph

the *reduced clique graph*  $C_r(G)$  of G = graph on maximal cliques of G where CC' is an edge of  $C_r(G) \iff C \cap C'$  is a minimal separator.



6<sup>th</sup> Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 Properties of reduced clique graphs

Combinatorial structure of  $C_r(G)$ 

# Lemma 1 : M.H and C. Paul 95

If  $C_1, C_2, C_3$  is a cycle in  $C_r(G)$ , with  $S_{12}, S_{23}$  and  $S_{23}$  be the associated minimal separators then two of these three separators are equal and included in the third.

### Lemma 2 : M.H. and C. Paul 95 Let $C_1, C_2, C_3$ be 3 maximal cliques, if $C_1 \cap C_2 = S_{12} \subset S_{23} = C_2 \cap C_3$ then it yields a triangle in $C_r(G)$

6<sup>th</sup> Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 More structural insights of chordal graphs

### Proof of the lemma

#### Démonstration.

Since G is chordal, every minimal separator S is a clique. Let us consider  $G_1$  a connected component of G-S. Let  $x_1, \ldots, x_k$  be the vertices of  $G_1$  having a maximal neighbourhood in S. If k = 1 then  $x_1$  must be universal to S, since S is a minimal separator.

Else, consider a shortest path  $\mu$  in  $G_1$  from  $x_1$  to  $x_k$ . Necessarily  $x_1$  (resp.  $x_k$ ) has a private neighbour z (resp. t) in S. Else they would have the same maximal neighbourhood in S, and since S is a minimal separator, this neighbourhood must be S. Then the cycle  $[x_1, \mu, x_k, t, z]$  has no chord, a contradiction. Therefore  $x_1 \cup S$  is a clique, and is contained in some maximal clique C in  $G_1$ . We finish the proof by considering another connected component of G - S.

 $6^{th}$  Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 More structural insights of chordal graphs

### Clique graph

the clique graph  $\mathcal{C}(G)$  of G = intersection graph of maximal cliques of G



 $6^{th}$  Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014  $\Box$  More structural insights of chordal graphs



6<sup>th</sup> Lecture : Structural aspects of chordal graphs and their relationships with perfect phylogeny MPRI 2013–2014 Properties of reduced clique graphs

### Lemma 3 : Equality case

- Let  $C_1, C_2, C_3$  be 3 maximal cliques, if  $S_{12} = S_{23}$  then :
- ▶ either the  $C_1 \cap C_3 = S_{13}$  is a minimal separator
- $\blacktriangleright$  or the edges  $C_1C_2$  and  $C_2C_3$  cannot belong together to a maximal clique tree of G.



Maximum spanning trees Maximal Cardinality Search can be seen as Prim algorithm for computing a maximal spanning tree of  $C_r(G)$ .