$5^{\text {th }}$ Lecture : Modular decomposition

MPRI 2013-2014

Michel Habib

habib@liafa.univ-Paris-Diderot.fr
http://www.liafa.univ-Paris-Diderot.fr/~habib

Sophie Germain, 22 octobre 2013
$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014

Examen le mardi 26 novembre de 9 h à 12 h
Salle habituelle
$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
LIntroduction

The problem has to be defined in each model and sometimes it could be hard.

- What is the right notion for a coloration in a directed graph ?
- No directed cycle unicolored, seems to be the good one.
- It took 20 years to find the right notion of oriented matroïd
- What is the right notion of treewidth for directed graphs?
- Still an open question. It seems that all tentative definitions loose many properties of the undirected case treewidth.

[^0]http ://math.nie.edu.sg/fmdong/Research/articles/beautiful
Second Neighbourhoods Conjecture
P.D. Seymour 1990

Every digraph without 2-circuits has a vertex with at least as many second neighbours as first neighbours.
Second neighbours, $S N(x)$ is the set of vertices at exact distance 2 of x.
Therefore we are looking for x such that $|S N(x)| \geq|N(x)|$.

[^1]
Schedule

Introduction

Graph searches

Applications of LBFS on structured graph classes

Chordal graphs

Cograph recognition
A nice conjecture

$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014

$\left\llcorner_{\text {Introduction }}\right.$

A hierarchy of graph models

1. Undirected graphs (graphes non orientés)
2. Tournaments (Tournois), sometimes 2-circuits are allowed.
3. Signed graphs (Graphes signés) each edge is labelled + or (for example friend or enemy)
4. Oriented graphs (Graphes orientés), each edge is given a unique direction (no 2-circuits)
An interesting subclass are the DAG Directed Acyclic Graphs (graphes sans circuit), for which the transitive closure is a partial order (ordre partiel)
5. Partial orders and comparability graphs an intersting particular case.
Duality comparability - cocomparability
(graphes de comparabilité - graphes d'incomparabilité)
6. Directed graphs or digraphs (Graphes dirigés)

$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
 $\mathrm{L}_{\text {Introduction }}$

For partial orders, comparability graphs or uncomparability graphs the independant set and maximum clique problems are polynomial.

Lecture : Modular decomposition MPRI 2013-2014
$\square_{\text {Introduction }}$

- If G has a sink then the results is true.
- So the conjecture is true for DAGs.
- The interesting case is for strongly connected graphs.
$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
$\left\llcorner_{\text {Introduction }}\right.$

5 Lecture : Modular decomposition MPRI 2013-2014
-Introduction
Another nice result on degrees : the politician's theorem

Characterization

Let G a connected undirected graph $|G| \geq 3$ such that for every $x, y \in N(G)$, we have $|N(x) \cap N(y)|=1$
then G is a star of triangles (a windmill graph).
The politician version
Suppose in a group of at least three people we have the situation that any pair of persons have precisely one common friend. Then there exists always a person (the politician) who is everybody friend.

Paul Erdös, Alfred Rényi and Vera Sòs' proof

- $|V(G)|=3$, only the triangle which is a windmill graph satisfies the degree condition.
- G has no induced C_{4}.
- For every pair x, y of non universal vertices, necessarily $d(x)=d(y)=k$.
- Using some argument from algebra, we obtain $k=2$ and the existence of an universal vertex.
- For the complete proof, see : "Proofs from the BOOK", by Martin Aigner and Günter M. Ziegler, Springer-Verlag, \geq Second Edition.

Graph searches are very well known and often used :

1. "Fil d'ariane" in the Greek mythology.
2. Euler (1735) for solving the famous walk problem in Kœnisberg
3. Tremaux (1882) and Tarry (1895) introducing DFS to solve maze problems
4. Fleury, proposed a nice algorithm to compute an Euler Tour, cited in E. Lucas, Récréations mathématiques, Paris, 1891.
5. Computer scientists from 1950, in particular in the 70's, R.E. Tarjan for new applications of DFS...
6. 4 points characterizations Corneil, Krueger (2008), and the definition of LDFS a new interesting basic search.
[^2]
Variations

Graph Traversal more or less equivalent to graph search
The set of visited vertices is not supposed to be connected (used for computing connected components for example)

Graph Searching for cops and robbers games on a graph
The name Graph searching is also used in this context, with a slightly different meaning. Relationships with width graph parameters such as treewidth.
$\left\llcorner_{\text {Applications of LBFS on structured graph classes }}\right.$

Lexicographic Breadth First Search (LBFS)

Data: a graph $G=(V, E)$ and a start vertex s
Result: an ordering σ of V
Assign the label \emptyset to all vertices
label $(s) \leftarrow\{n\}$
for $i \leftarrow n$ à 1 do
Pick an unumbered vertex v with lexicographically largest label
$\sigma(i) \leftarrow v$
foreach unnumbered vertex w adjacent to v do

$$
\operatorname{label}(w) \leftarrow \operatorname{label}(w) \cdot\{i\}
$$

end

$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
$L_{G r a p h}$ searches

Some definitions

Graph Search

The graph is supposed to be connected so as the set of visited vertices. After choosing an initial vertex, a search of a connected graph visits each of the vertices and edges of the graph such that a new vertex is visited only if it is adjacent to some previously visited vertex.
At any point there may be several vertices that may possibly be visited next. To choose the next vertex we need a tie-break rule. The breadth-first search (BFS) and depth-first search (DFS) algorithms are the traditional strategies for determining the next vertex to visit.
$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
$L_{\text {Graph searches }}$

Our main question

Main Problem

What kind of knowledge can we learn about the structure of a given graph via graph searching (i.e. with one or a series of successive graph searches)?

Goals

- Building bottom up graph algorithms from well-known graph searches
- Develop basic theoretic tools for the structural analysis of graphs
- Applications on huge graphs :

No need to store sophisticated data structures, just some labels on each vertex,

It is just a breadth first search with a tie break rule. We are now considering a characterization of the order in which a LBFS explores the vertices. Before let us implement it using partition refinement in linear time.
$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
$\left\llcorner_{\text {Applications of }}\right.$ LBFS on structured graph classes

An example

$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
-Applications of LBFS on structured graph classes

Consequences

- Using partition refinement allows to avoid the managment of the labels
The vertices with lexicographic maximum labels belongs necessarily to the right most part.
- LBFS can be implemented in $O(|V(G)|+|E(G)|)$

Importance of 4 points conditions for graph classe recognition

Many classes of graphs or partial orders can be characterized by the existence of a particular ordering of the vertices with some forbidden configuration on three points.
Examples with forbidden configuration on three points :

1. Interval graphs : ordering of the left ends of the intervals
2. Chordal : simplicial elimination ordering.
3. Co-comparability : transitivity violation of the complement graph
4. Permutation : transitivity violation of the graph and its complement.

Algorithm $\operatorname{LexBFS}(G, \tau)$
Input : A graph $G=(V, E)$ and an initial ordering τ of the vertices.
Output: An ordering σ of the vertices of G.
$L \leftarrow(V) ; i \leftarrow 1$;
while $\exists P_{i} \neq \emptyset$ in $L=\left(P_{1}, \ldots, P_{k}\right)$ do
Let P_{l} be the leftmost nonempty cell
Remove the first vertex x (smallest with respect to τ) from P_{l}
$\sigma(x) \leftarrow i ; i \leftarrow i+1$; for each cell $P_{j}, j \geq I$ do

Let $P^{\prime}=\left\{v \mid v \in N(x) \cap P_{j}\right\}$;
if P^{\prime} is nonempty and $P^{\prime} \neq P_{j}$, then
Remove P^{\prime} from P_{j}
Insert P^{\prime} to the left of P_{j} in L

end for

end while
return (σ)

$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014

$__{\text {Applications of LBFS on structured graph classes }}$

TABLE: Step by step LexBFS of G. The resulting ordering is $\sigma: \mathbf{x} \mathbf{y} \mathbf{w} \mathbf{z u v a d} \mathbf{c} \mathbf{b} \mathbf{e}$.

$\sigma(\alpha)$	α	$N^{\prime}(\alpha)$	Cells	
	\times	$\{y \mathrm{u} v \mathrm{wz}$ \}	xdyuevwcazb	
1			yuvwz	decab
2	y	$\{\mathrm{wzdecab}\}$	w z u v	decab
3	w	$\{\mathrm{zdecab}\}$	z uv	ecab
4	z	\{u va\}	uv a	ecb
5	u	$\{v a d e c b\}$	v a d	c b
6	v	\{adecb\}	a de c	
7	a	\{ \}	decb	
8	d	\{ c b $\}$	c b e	
9	c	\{ \}	b e	
10	b	\{ \}	e	
11	e	\{ \}		

$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
LApplications of LBFS on structured graph classes

LBFS orderings of the vertices

Property (LexB)
For an ordering σ on V, if $a<_{\sigma} b<_{\sigma} c$ and $a c \in E$ and $a b \notin E$, then it must exist a vertex d such that $d<_{\sigma} a$ et $d b \in E$ et $d c \notin E$.

Theorem

For a graph $G=(V, E)$, an ordering σ sur V is a LBFS of G iff σ satisfies property (LexB).
Forbidden 3 points suborderings

Consequences

LexBFS is involved in many recognition algorithms for these classes of graphs.

- Apply a LexBFS on \bar{G} giving an ordering σ
- If G is a comparability graph the last vertex of σ, can be taken as a source in a transitive orientation of G.
- The starting point for comparability and permutation graph recognition algorithms.
$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
$\left\llcorner_{\text {Applications of LBFS on structured graph classes }}\right.$

Why LBFS behaves so nicely on well-structured graphs

A nice recursive property
On every tie-break set S, LBFS operates on $G(S)$ as a legitimate LBFS.
proof
Consider $a, b, c \in S$ such that $a<_{\sigma} b<_{\sigma} c$ and $a c \in E$ and $a b \notin E$, then it must exist a vertex d such that $d<_{\sigma}$ a et $d b \in E$ et $d c \notin E$. But then necessarily $d \in S$.

Remark
Analogous properties are false for other classical searches.

[^3]
Definition

A graph is a chordal graph if every cycle of length ≥ 4 has a chord.
Also called triangulated graphs, (cordaux in french)

1. First historical application : perfect phylogeny.
2. Many NP-complete problems for general graphs are polynomial for chordal graphs.
3. Second application : graph theory. Treewidth (resp. pathwidth) are very important graph parameters that measure distance from a chordal graph (resp. interval graph).

$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
 $\left\llcorner_{\text {Chordal graphs }}\right.$

Chordal graph

A vertex is simplicial if its neighbourhood is a clique.
Simplicial elimination scheme
$\sigma=\left[x_{1} \ldots x_{i} \ldots x_{n}\right]$ is a simplicial elimination scheme if x_{i} is simplicial in the subgraph $G_{i}=G\left[\left\{x_{i} \ldots x_{n}\right\}\right]$

Seminal paper

D.G. Corneil et R. M. Krueger, A unified view of graph searching, SIAM J. Discrete Math, 22, Num 4 (2008) 1259-1276
In which characterizations of the orderings yielded by wel-known graph searches are provided.
Namely: Generic Search, DFS, BFS, LBFS, LDFS

Lecture : Modular decomposition MPRI 2013-2014
$\left\llcorner_{\text {Applications of }}\right.$ LBFS on structured graph classes

LexBFS versus LBFS!

Google Images query : LBFS (thanks to Fabien) yields :

First Answer

$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
$\left\llcorner_{\text {Chordal }}\right.$ graphs

Two Basic facts

1. Chordal graphs are hereditary
2. Interval graphs are chordal

Lecture : Modular decomposition MPRI 2013-2014
$\left\llcorner_{\text {Chordal }}\right.$ graphs

A characterization theorem for chordal graphs

Theorem

Dirac 1961, Fulkerson, Gross 1965, Gavril 1974, Rose, Tarjan, Lueker 1976.
For a connected graph G the following items are equivalent :
(0) G is chordal (every cycle of length ≥ 4 has a chord).
(i) G has a simplicial elimination scheme
(ii) Every minimal separator is a clique

Minimal Separators

A subset of vertices S is a minimal separator if G
if there exist $a, b \in G$ such that a and b are not connected in
$G-S$.
and S is minimal for inclusion with this property
$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
$\left\llcorner_{\text {Chordal graphs }}\right.$

An example

3 minimal separators $\{b\}$ for f and $a,\{c\}$ for a and e and $\{b, c\}$ for a and d.

Lecture : Modular decomposition MPRI 2013-2014
$\left\llcorner_{\text {Chordal graphs }}\right.$

Proof of the theorem
then there exists at least one minimal separator
But there could be an exponential number of minimal separators.
Consider 2 stars a, x_{1}, \ldots, x_{n} (centered in a) and b, y_{1}, \ldots, y_{n}
(centered in b) and then add all the edges $x_{i} y_{i}$ for $1 \leq i \leq n$.
There exist 2^{n} minimal separators for the vertices a and b.

$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
 $\left\llcorner_{\text {Chordal graphs }}\right.$

$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
$\left\llcorner_{\text {Chordal graphs }}\right.$

But then from the triple d, a, b, it exists $d^{\prime}<d$ with $d^{\prime} a \in E$ and $d^{\prime} b \notin E$. Furthermore $d^{\prime} d \notin E$..
And using the triple $\mathrm{d}^{\prime}, \mathrm{d}$, a, we start an infinite chain
Remark
Most of the proofs based on some characteristic ordering of the vertices are like that, with no extra reference to the algorithm itself.

Lecture : Modular decomposition MPRI 2013-2014
$\left\llcorner_{\text {Chordal graphs }}\right.$

Theorem [Tarjan et Yannakakis, 1984]
G is chordal iff every LexBFS ordering yields a simplicial elimination scheme.

Proof:
Let c be a non simplicial vertex.
There exist $a<b \in N(c)$ avec $a b \notin E$.
Using characterization of LexBFS orderings, it exists $d<a$ with $d b \in E$ and $d c \notin E$. Since G is chordal, necessarily $a d \notin E$.

Lecture : Modular decomposition MPRI 2013-2014
$\left\llcorner_{\text {Chordal graphs }}\right.$

Chordal graphs recognition so far

Chordal graph recognition

1. Apply a LexBFS on $G O(n+m)$
2. Check if the reverse ordering is a simplicial elimination scheme $O(n+m)$
3. In case of failure, exhibit a certificate : i.e. a cycle of length ≥ 4, without a chord. $O(n)$

The ultimate Algorithm Using LexBFS ?

A cograph recognition algorithm [BCHP03]

1. $\sigma \leftarrow \operatorname{LexBFS}(G)$
$\bar{\sigma} \leftarrow \operatorname{LexBFS}^{-}(\bar{G}, \sigma)$
2. If σ and $\bar{\sigma}$ both have the NS-property then
3.1 Answer " G is a cograph"
3.2 Build $M D(G)$
3. Else Output a P_{4}
$\left\llcorner_{\text {Cograph recognition }}\right.$

Lecture : Modular decomposition MPRI 2013-2014
$\left\llcorner_{\text {Cograph recognition }}\right.$

Computing $\bar{\sigma}=$ LexBFS $^{-}(\bar{G}, \sigma)$

$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
$\left\llcorner_{\text {Cograph recognition }}\right.$

Some research problems

Generalization to arbitrary graphs?

1. There are many similarities between two-LexBFS-sweep algorithm and the linear implementation of Ehrenfeucht et al.'s algorithm [DGM01]
2. LexBFS is useful for the transitive orientation problem. Could it lead to a simple linear time algorithm for this problem?
3. Or another graph search, for example acting symmetrically on G and \bar{G}.
4. Certifying algorithms?
5. Generalizations of modular decomposition (with some errors for real world graphs)
$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
$\left\llcorner_{A}\right.$ nice conjecture

Characterization :

A graph is a cocomparability graph iff it admits a cocomp ordering.
Recognition status :
There exists a linear time algorithms which computes a cocomp ordering (McConnell and Spinrad).
But the certifying step needs more $O(m n)$ or $O(M M)$.

Linear-time particular case for permutation graphs

1. Compute cocomp orderings σ and τ for G and \bar{G}.
2. Compute a representation of G as a permutation graph using σ and τ.
3. Certify the representation. This certifying step is also linear, using the geometric representation.

Since we focus on the ordering of the vertices as the result of a graph search, now we can compose graph searches in a natural way. Therefore we can denote by $M\left(G, x_{0}\right)$ the order of the vertices obtained by applying M on G starting from the vertex x_{0}.

Definition of the + Rule
Let M be a graph search and σ an ordering of the vertices of G, $M^{+}(G, \sigma)$ be the ordering of the vertices obtained by applying M on G starting from the vertex $\sigma(1)$ and tie-breaking using σ in decreasing order.

Why this Rule?
The + Rule forces to keep the ordering of the previous sweep in case of tie-break
${ }^{51}$ Lecture : Modular decomposition MPRI 2013-2014
$\left\llcorner_{\text {A nice conjecture }}\right.$

- Graph searches operate on total orderings :

Step 0: $\sigma=M\left(G, x_{0}\right)$
Step 1: $M(G, \sigma)$
Step 2: $M^{2}(G, \sigma)=M(G, M(G, \sigma))$
Step i : $M^{i}(G, \sigma)=M\left(G, M^{i-1}(G, \sigma)\right)$

- For which search M and graph G does there exist fixed points?
- Unfortunately a formal study of this composition remains to be done!
- Also called multisweep algorithms.
$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
$\left\llcorner_{\text {A nice conjecture }}\right.$

REPEATED LBFS

Require: $G=(V, E)$
Ensure: an ordering σ $\sigma \leftarrow \operatorname{LBFS}(\mathrm{G})$
for $i=2$ to $|V|$ do
$\sigma \leftarrow$ LBFS $^{+}(\mathrm{G}, \sigma)$
end for
Algorithm 1: LBFS $^{+}$multi-sweep

$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014

$\left\llcorner_{\text {A nice conjecture }}\right.$

Example

- $\sigma=\operatorname{LBFS}^{+}(G, \theta): v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}, v_{11}$
- $\theta=\operatorname{LBFS}^{+}(G, \sigma): v_{11}, v_{5}, v_{10}, v_{8}, v_{7}, v_{4}, v_{2}, v_{6}, v_{9}, v_{3}, v_{1}$
$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
$L_{\text {A nice conjecture }}$

1. Such an idea was already used for planarity testing in some algorithm (de Fraysseix and Rosentiehl 1980) with 2 consecutive DFS.
2. Algorithms for strongly connected components by Kosaraju 1978, Sharir 1981 In our framework
1) $D F S(G)$
2) $\operatorname{DFS}\left(G^{-}\right.$, post $\left.^{d}\right)$
3. To compute efficiently the diameter of a graph using successive BFS

- $\tau:=\operatorname{LBFS}(G): v_{5}, v_{4}, v_{3}, v_{2}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}, v_{11}, v_{1}$
$\rightarrow \pi=\operatorname{LBFS}^{+}(G, \tau): v_{1}, v_{2}, v_{9}, v_{8}, v_{7}, v_{6}, v_{4}, v_{5}, v_{3}, v_{10}, v_{11}$
- $\theta=\operatorname{LBFS}^{+}(G, \pi): v_{11}, v_{5}, v_{10}, v_{8}, v_{7}, v_{4}, v_{2}, v_{6}, v_{9}, v_{3}, v_{1}$
- $\sigma=\operatorname{LBFS}^{+}(G, \theta): v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}, v_{11}$
$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
$\left\llcorner_{A}\right.$ nice conjecture

Known results about cocomparability and LBFS

Property (Korte, Mohring 1981)
If G is a cocomparability graph, then the last vertex of $\operatorname{LBFS}(G)$ can be taken as a source in some transitive orientation of \bar{G}.
Leads to good transitive orientation and interval recognition algorithms.

Property (Corneil, Olariu, Stewart 1999)
If G is an AT-free graph, 2 consecutive LBFS computes a dominating path.

Property (Corneil 1999)
For every cocomp graph G, it exists a cocomp ordering which is a LBFS ordering.

Property (Corneil, MH., Kőhler 2011)
If G is a cocomparability graph and σ a cocomp ordering then $\operatorname{LBFS}^{+}(G, \sigma)$ is also a cocomp ordering.
$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
$L_{\text {A nice conjecture }}$

Landscape for interval graphs
$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
$\left\llcorner_{A}\right.$ nice conjecture

The particular case of interval graphs

Property (Corneil, Kőhler 2010)
If $G=(V, E)$ is an interval graph, that REPEATED LBFS finds a interval ordering in less than $|V|$ iterations

Theorem (Corneil, Olariu and Stewart 2010)
For an interval graph, a series of $5+1$ special consecutive LBFS ${ }^{+}$ produces an interval ordering.

Theorem (Li, Wu 2012)
For an interval graph, a series of 4 searches produces an interval ordering.
$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
$\left\llcorner_{\text {A nice conjecture }}\right.$

Our Results 2013

Theorem (Dusart, MH. 2013)
LBFS ${ }^{+}$applied on a cocomparability graph produces in $O(n)$ steps a cocomp ordering.

Best possible
Using a Ma's family of interval graphs (2000), this result is best possible, i.e., a constant number of LBFS would not be enough for all graphs.

Consequences
Since for interval graphs a MNS ordering which is a cocomp ordering is also an interval ordering it gives the Corneil and Köhler's unpublished result.

$5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
 $\left\llcorner_{\text {A nice conjecture }}\right.$

${ }^{5^{t h}}$ Lecture : Modular

Consequences

Dusart, MH 2013

It gives a very easy to program, $O(n m)$ cocomparability graph recognition.

Quasi fixed point
In all examples so far, Repeated LBFS+ on a cocomp always reaches in $O(n)$ a quasi-fixed point (i.e., a 2 -loop), going back and forth on one cocomp ordering and its dual (reverse).
Is this always true?
Even for interval graphs it is still a conjecture.

Conjecture

Repeated LBFS ${ }^{+}$on a cocomp always reaches in $O(n)$ a quasi-fixed point (i.e., a 2 -loop), going back and forth on one cocomp ordering and its dual (reverse).
This can the subject of a MPRI internship

[^0]: $5^{\text {mh }}$ Lecture : Modular decomposition MPRI 2013-2014

[^1]: -Introduction

[^2]: $5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
 $\left\llcorner_{\text {Graph searches }}\right.$

[^3]: $5^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
 $\left\llcorner_{\text {Chordal graphs }}\right.$

