$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014

Michel Habib

habib@liafa.univ-Paris-Diderot.fr
http://www.liafa.univ-Paris-Diderot.fr/~habib

Sophie Germain, 15 octobre 2013
$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014

Examen le mardi 26 novembre de 9 h à 12 h ,
Salle habituelle
$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
LIntroduction

Algorithm 5: Recognition test

Input: Let $\sigma=x_{1}, \ldots, x_{n}$ be a permutation of the vertex set of a graph G, σ is represented as a doubly linked list.

Output: σ a list of vertices

begin
Let x_{0} and x_{n+1} be added to σ (these vertices are dummies which are not twins with any other vertex)
Let z be the current vertex, initially $z \leftarrow x_{1}$
Let $\operatorname{succ}(z)$ (resp. prec(z)) be the vertex following (resp. preceding z) in σ while $z \neq x_{n+1}$ do
if z and $\operatorname{prec}(z)$ are twins (true or false) in $G(\sigma)$ then remove $\operatorname{prec}(z)$ from σ
else
if z and $\operatorname{succ}(z)$ are twins (true or false) in $G(\sigma)$ then
$z \leftarrow \operatorname{succ}(z)$
remove $\operatorname{prec}(z)$ from σ
se $z \leftarrow \operatorname{succ}(z)$
if $\left|\sigma-\left\{x_{0}, x_{n+1}\right\}\right|=1$ then return G is a cograph else return $G(\sigma)$ contains a P_{4}
end

4 $_{\text {th }}^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
Introduction $^{\text {20 }}$

Elimination scheme
G is a cograph iff it exists an ordering of the vertices
s.t. x_{i} has a twin (false or true) in $G\left\{x_{i+1}, \ldots x_{n}\right\}$

Theorem

This algorithm finds an elimination scheme iff σ is a factoring permutation of a cograph.

Proof :

Main Invariant: For any $k \geq 1$, the subsequence $\sigma_{k}\left(\left[z_{0}, z_{k}[)\right.\right.$ does not contain any twins vertices in $G\left(\sigma_{k}\right)$
If the algorithms finds an elimination scheme characteristic of cographs (using twins), then we know that G is a cograph.

Schedule

Introduction

Modular Decomposition Algorithms
Historical Notes
Bottom up Techniques
Top Down techniques

$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
 $\left\llcorner_{\text {Introduction }}\right.$

A nice algorithm

A very simple algorithm to buid to recognize a cograph from a factoring permutation.
Analogous to Jarvis's algorithm for computing the convex hull of a set of points in the plane.

Lecture : Modular decomposition MPRI 2013-2014
$\left\llcorner_{\text {Introduction }}\right.$

Exercises :

1. In case of failure, where is the P_{4} ?
2. In case of success, how to derive the tree?

A logarithmic process

Let \mathcal{P} be a problem on a set \mathcal{S} of data structures, and Size a function from \mathcal{S} to $\mathbb{R}^{+} . \mathcal{H}$ is a divide-and-conquer algorithm with respect to Size solving \mathcal{P} if :

- there exists a set $\mathcal{T} \subseteq \mathcal{S}$ of trivial inputs on which \mathcal{H} solves \mathcal{P} in $O(1)$ time;
- any $S \in \mathcal{S}$ with $\operatorname{Size}(S) \leq 1$ is a trivial input, namely $S \in \mathcal{T}$;
- for all $S \notin \mathcal{T}, \mathcal{H}(\mathcal{S})$
- first divides S into some sub-instances S_{1}, \ldots, S_{k} holding $\operatorname{Size}\left(S_{i}\right)>0$ for all i and holding
$\operatorname{Size}\left(S_{1}\right)+\cdots+\operatorname{Size}\left(S_{k}\right) \leq \operatorname{Size}(S)$,
- then recurses with $\mathcal{H}\left(S_{1}\right), \ldots, \mathcal{H}\left(S_{k}\right)$,
- and finally combines the results in order to provide the output of $\mathcal{H}(\mathcal{S})$.

Proof :

by induction on $s=\operatorname{Size}(S)$. If S is not trivial and S_{1}, \ldots, S_{k} are such that $s_{k}=\operatorname{Size}\left(S_{k}\right)$ is greater than any $s_{i}=\operatorname{Size}\left(S_{i}\right)$, then

$$
\begin{aligned}
\operatorname{Div}(S) & +\operatorname{Com}(S)+\sum_{i=1}^{k} C\left(S_{i}\right) \leq \alpha \times\left(\sum_{i=1}^{k-1} s_{i}+\sum_{i=1}^{k} s_{i} \log s_{i}\right) \\
& \leq \alpha \times\left(\sum_{i=1}^{k-1} s_{i}+\sum_{i=1}^{k-1} s_{i} \log \frac{s}{2}+s_{k} \log s\right) \\
& \leq(\alpha \times s \log s)
\end{aligned}
$$

$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
$\square_{\text {Modular Decomposition Algorithms }}$

- Historical Notes

Historical notes

The big list of published algorithms for modular decomposition
(N.B. Perhaps some items are missing ... please give me the missing references)

- Cowan, James, Stanton $1972 O\left(n^{4}\right)$
- Maurer $1977 O\left(n^{4}\right)$ directed graphs
- Blass $1978 O\left(n^{3}\right)$
- Habib, Maurer $1979 O\left(n^{3}\right)$
- Habib $1981 O\left(n^{3}\right)$ directed graphs
- Corneil, Perl, Stewart 1981, $O(n+m)$ cograph recognition
- Cunningham $1982 O\left(n^{3}\right)$ directed graphs
- Buer, Mohring $1983 O\left(n^{3}\right)$
- McConnell $1987 O\left(n^{3}\right)$
- McConnell, Spinrad $1989 O\left(n^{2}\right)$ incremental
- Adhar, Peng $1990 O\left(\log ^{2} n\right), O(n m)$ proc. parallel, cographs, CRCW-PRAM

4h Lecture : Modular decomposition MPRI 2013-2014

$\square_{\text {Modular Decomposition Algorithms }}$
$L_{\text {Historical Notes }}$

- Habib, Huchard, Sprinrad $1995 O(n+m)$ inheritance graphs
- McConnell $1995 O\left(n^{2}\right)$ 2-structures, incremental
- Capelle, Habib $1997 O(n+m)$ if a factoring permutation is given
- Dahlhaus, Gustedt, McConnell 1997 O($n+m$)
- Dahlhaus, Gustedt, McConnell $1999 O(n+m)$ directed graphs
- Habib, Paul, Viennot $1999 O(n+m \log n)$ via a factoring permutation
- McConnell, Spinrad $2000 O(n+m \log n)$
- Habib, Paul $2001 O(n+m)$ cographs via a factoring permutation
- Capelle, Habib, Montgolfier $2002 O(n+m)$ directed graphs if a factoring permutation is provided
- Shamir, Sharan $2003 O(n+m)$ cographs, fully-dynamic
- McConnell, Montgolfier $2003 O(n+m)$ directed graphs
- Habib, Montgolfier, Paul $2003 O(n+m)$ computes a factoring permutation

proposition

Let \mathcal{H} be a divide-and-conquer algorithm, and α be such that, for all $S \in \mathcal{S} \backslash \mathcal{T}$,
$\operatorname{Div}(S)+\operatorname{Com}(S) \leq \alpha \times\left(\operatorname{Size}(S)-\max _{i=1}^{k} \operatorname{Size}\left(S_{i}\right)\right)$, where S_{1}, \ldots, S_{k} is the partition of S given by $\mathcal{H}(\mathcal{S})$. Then, for all input $S \in \mathcal{S}, \mathcal{H}(\mathcal{S})$ runs at most in $\alpha \times \operatorname{Size}(S) \log \operatorname{Size}(S)$ time. This bound is best possible.

$4^{4 n}$ Lecture : Modular decomposition MPRI 2013-2014

$\left\llcorner_{\text {Introduction }}\right.$

Remarks
The standard optimisation technique used in Merge sort results in the same bound. However, the size of the input given to Merge sort is granted to geometrically decrease (by half) as inductive levels grow, implying that the induction depth is lesser than $\log \operatorname{Size}(S)$. On the other hand, this result still holds even when the induction depth is linear on $\operatorname{Size}(S)$.
For a graph G, $\operatorname{Size}(G)=|V(G)|+|E(G)|$

$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014

$L_{\text {Modular Decomposition Algorithms }}$
L Historical Notes

- Lin, Olariu $1991 O(\log n), O(n m)$ proc. parallel, cographs, EREW-PRAM
- Spinrad $1992 O(n+$ malpha $(m, n))$
- Cournier, Habib $1993 O(n+$ malpha($m, n)$)
- Ehrenfeucht, Gabow, McConnell, Spinrad $1994 O\left(n^{3}\right)$ 2-structures
- Ehrenfeucht, Harju, Rozenberg $1994 O\left(n^{2}\right)$ 2-structures, incremental
- McConnell, Spinrad $1994 O(n+m)$
- Cournier, Habib $1994 O(n+m)$
- Bonizzoni, Della Vedova $1995 O\left(n^{3 k-5}\right)$ Committee decomposition for hypergraphs
- Dahlhaus $1995 O\left(\log ^{2} n\right), O(n+m)$ proc. parallel, cographs, CRCW-PRAM
Dahlhaus $1995 O\left(\log ^{2} n\right), O(n+m)$ proc. parallel, CRCW-PRAM

[^0]- Simpler Linear-Time Modular Decomposition via Recursive Factorizing Permutation Tedder, Corneil, Habib, Paul, ICALP
(1) $2008: 634-646$
$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
-Modular Decomposition Algorithms
-Historical Notes
Why it is so important?
[Jerry Spinrad' book 03]
The new [linear time] algorithm [MS99] is currently too complex to describe easily [...] The first $O\left(n^{2}\right)$ partitioning algorithms were similarly complex ; I hope and believe that in a number of years the linear algorithm can be simplified as well.
$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
Modular Decomposition Algorithms
$L_{\text {Historical Notes }}$
- A very basic graph algorithmic problem (similar to graph isomorphism problem).
- A better understanding of graph algorithms and their data structures.

4hecture : Modular decomposition MPRI 2013-2014
$\leftarrow_{\text {Modular Decomposition Algorithms }}$

- Bottom up Techniques

Splitters

Definition

A splitter for a $A \subseteq V$, is a vertex $z \notin A$
s.t. $\exists x, y \in A$ with $z x \in E$ and $z y \notin E$.

Modules
$A \subseteq V$ is a module iff A does not have any splitter.
Usefull lemma
If z is a splitter for a $A \subseteq V$, then any module containing A must also contain z.
$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014

- Modular Decomposition Algorithms
$L_{\text {Historical Notes }}$

Applications of modular decomposition

- A very natural operation to define on discrete structures, searching regularities.
- A structure theory for comparability graphs
- A compact encoding using module contraction and if we keep at each prime node the structure of the prime graph.
- Divide and conquer paradigm can be applied to solve optimization problems. For example to test isomorphism.

$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014

$\square_{\text {Modular Decomposition Algorithms }}$
Bottom up Techniques

Minimal Modules

Minimal module containing a set

For every $A \subseteq V$ there exists a unique minimal module containing A

Proof:
Since the module family is partitive and therefore closed under \cap.

Submodularity

Let us denote by $s(A)$ the number of splitters of a set A, then s is a submodular function.

Definition
A function is submodular if
$\forall A, B \subseteq E$
$f(A \cup B)+f(A \cap B) \leq f(A)+f(B)$

This is the basic idea of Uno and Yagura's algorithm for the modular decomposition of permutation graphs in $O(n)$
$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
$\square_{\text {Modular Decomposition Algorithms }}$
Bottom up Techniques

Bottom-up Techniques

Sketch of the algorithm
For each pair of vertices $x, y \in V$
Compute the minimal module $m(x, y)$ containing x and y.
Closure with splitters
While there exists a splitter add it to the set.
Complexity
$O\left(n^{2} .(n+m)\right)$
$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
Modular Decomposition Algorithms

- Bottom up Techniques

One can derive a primality test since if there exists a non trivial module, it contains at least two vertices.

Lecture : Modular decomposition MPRI 2013-2014
-Modular Decomposition Algorithms

- Bottom up Techniques

For some problems Bottom-Up techniques are the best known.
$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
-Modular Decomposition Algorithms

- Bottom up Techniques

Origins: Golumbic, Kaplan, Shamir 1995
Input: $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right) 2$ undirected graphs such that $E_{1} \subseteq E_{2}$ and Π be a graph property.
Results : a sandwich graph $G_{s}=\left(V, E_{s}\right)$ satisfying property Π and such that $E_{1} \subseteq E_{s} \subseteq E_{2}$.
Edges of E_{1} are forced, those of E_{2} are optional ones, but those of $E_{3}=\overline{E_{2}}$ are forbidden.

Unfortunately most cases are NP-complete, as for example of Π - G_{s} being comparability, chordal, strongly chordal, ..
$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
Modular Decomposition Algorithms
$L_{\text {Bottom up Techniques }}$

Only few polynomial cases

- cographs Golumbic, Kaplan, Shamir (1995)
- sandwich module Cerioli, Everett, de Figueiredo, Klein (1998)

Natural question
Find efficient algorithms for these polynomial cases.
$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
Modular Decomposition Algorithms

- Bottom up Techniques

Minimal Sandwich Module

Splitter

For a subset $A \subseteq V$, a splitter is a vertex $z \notin A$
s.t. $\exists x, y \in A$ with $z x \in E_{1}$ and $z y \notin E_{2}$ (or equivalently $z y \in E_{3}$)
A splitter is also called bias vertex.
Algorithm
The computation of a minimal sandwich module can be done in $O\left(n^{2} .\left(n+m_{1}+m_{3}\right)\right)$.

Hard to do better with this idea, using a bottom up approach.
$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014

- Modular Decomposition Algorithms
$\left\llcorner_{\text {Bottom up Techniques }}\right.$

Sandwich module problem
Input: $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right) 2$ undirected graphs such that $E_{1} \subseteq E_{2}$.
Result : a sandwich graph $G_{s}=\left(V, E_{s}\right)$ having a non trivial module and such that $E_{1} \subseteq E_{s} \subseteq E_{2}$.
$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014

- Modular Decomposition Algorithms
$\left\llcorner_{\text {Top Down techniques }}\right.$

Brute Force Algorithm

Using the decomposition theorem, we only have to compute at most n times some connected components of G or its complement. $O(n .(n+m))$ complexity.

$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014

Modular Decomposition Algorithms
$\left\llcorner_{\text {Top Down techniques }}\right.$

Ehrenfeucht et al approach

$\mathcal{M}(G, v)$ is composed by $\{v\}$ and the maximal modules of G that do not contain v.

Principle of the Ehrenfeucht et al.'s algorithm

1. Compute $\mathcal{M}(G, v)$
2. Compute $M D\left(G_{/ \mathcal{M}(G, v)}\right)$
3. For each $\mathcal{X} \in \mathcal{M}(G, v)$ compute $M D(G[\mathcal{X}])$

Lecture : Modular decomposition MPRI 2013-2014
$\square_{\text {Modular Decomposition Algorithms }}$
-Top Down techniques

Computing $\mathcal{M}(G, v)$ via Partition Refinement

Splitter again

If z is a splitter of $A \subseteq V$ then any strong module contained in A is either contained in $N(z) \cap A$ or in $A-N(z)$.
$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
$\square_{\text {Modular Decomposition Algorithms }}$
-Top Down techniques

1. Particular partition refinement rule:

Do not refine its part
Just to maintain the invariant
Modular partition \leq Current partition
2. To obtain a logn

Avoid the biggest part
$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
$\left\llcorner_{\text {Modular Decomposition Algorithms }}\right.$
$\left\llcorner_{\text {Top Down techniques }}\right.$
Computation of $\operatorname{MD}\left(G_{/ \mathcal{M}(G, v)}\right)$

- The modules of $G_{/ \mathcal{M}(G, v)}$ are linearly nested any non-trivial module contains v
- The forcing graph $\mathcal{F}(G, v)$ has edge $\overrightarrow{x y}$ iff y separates x and v

[^1]
Complexity

- [Ehrenfeucht et al.'94] gives a $O\left(n^{2}\right)$ complexity. It is quite tricky to efficiently compute the forcing graph $\mathcal{F}(G, v)$.
- [MS00] gives a very simple $O(n+m \log n)$ algorithm based on vertex partitioning.
- [DGM'01] proposes a $O(n+m \cdot \alpha(n, m))$ and a more complicated $O(n+m)$ implementation.

Other algorithms

- [CH94] and [MS94] present the first linear algorithms.
- [MS99] present a new linear time algorithm which extends to transitive orientation.

4" Lecture: Modular decomposition MPRI 2013-2014
$\left\llcorner_{\text {Modular Decomposition Algorithms }}\right.$
$\left\llcorner_{\text {Top Down techniques }}\right.$
Computation of $\mathcal{M}(G, v)$
$\Rightarrow O(n+m \log n)$ time using vertex partitioning algorithm.

How to reconstruct the modular decomposition tree from the partition $\mathcal{M}(G, v)$?
The most difficult step in many algorithms.

```
\({ }^{4 n}\) Lecture : Modular decomposition MPRI 2013-2014
Modular Decomposition Algorithms
\(\left\llcorner_{\text {Top Down techniques }}\right.\)
```

- The strong connected components of the forcing graph $\mathcal{F}(G, v)$ provides the modules of of $G_{/ \mathcal{M}(G, v) \text {. }}$
- Recurse on each module.
$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
Modular Decomposition Algorithms
$\left\llcorner_{\text {Top Down techniques }}\right.$

Factoring permutations

The set of strong modules is nested into an inclusion tree (called the modular decomposition tree $M D(G)$ of G).

A factoring permutation is simply a left-right ordering of the leaves of a plane drawing of $M D(G)$.

Lecture : Modular decomposition MPRI 2013-2014
Modular Decomposition Algorithms
-Top Down techniques

Consequence : it always exists factoring permutations.
There are easier to compute that the modular decomposition tree
$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
Modular Decomposition Algorithms

- Top Down techniques

Splitter interpretation

Starting with the partition $\{N(x),\{x\}, \overline{N(x)}\}$, we maintain the following invariant
It exists a factoring permutation smaller than the current partition.
$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
Modular Decomposition Algorithms
$\left\llcorner_{\text {Top Down techniques }}\right.$
A hierarchy of models

1. Undirected graphs (graphes non orientés)
2. Tournaments (Tournois), sometimes 2-circuits are allowed.
3. Signed graphs (Graphes signés) each edge is labelled + or (for example friend or enemy)
4. Oriented graphs (Graphes orientés), each edge is given a unique direction (no 2-circuits)
An interesting subclass are the DAG Directed Acyclic Graphs (graphes sans circuit), for which the transitive closure is a partial order (ordre partiel)
5. Directed graphs or digraphs (Graphes dirigés)
$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014

- Modular Decomposition Algorithms
$\left\llcorner_{\text {Top Down techniques }}\right.$

Invariant
Any strong module is a factor of the partition.
$4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
-Modular Decomposition Algorithms
$\left\llcorner_{\text {Top Down techniques }}\right.$

Recognition of "geometric" graph classes

Geometric in a very wide meaning, it could be :

- Embedding with some condition (planar, outerplanar polylines, with convex bodies or some generalization (ρ-convex, i.e. each edge is a polyline with at most ρ segments).
- Embedding with limited crossings
- Intersection graphs of some geometric objects (interval, chordal, permutation, trapezoids, ...)

```
Lecture : Modular decomposition MPRI 2013-2014
Modular Decomposition Algorithms
```

 \(\left\llcorner_{\text {Top Down techniques }}\right.\)
 http ://math.nie.edu.sg/fmdong/Research/articles/beautiful Second Neighbourhoods Conjecture
P.D. Seymour 1990

Every digraph without 2-circuits has a vertex with at least as many second neighbours as first neighbours.
Second neighbours, $S N(x)$ is the set of vertices at exact distance 2 of x.
Therefore we are looking for x such that $|S N(x)| \geq|N(x)|$.

[^0]: Lecture : Modular decomposition MPRI 2013-2014
 Modular Decomposition Algorithms
 L Historical Notes

[^1]: $4^{\text {th }}$ Lecture : Modular decomposition MPRI 2013-2014
 $\square_{\text {Modular Decomposition Algorithms }}$
 -Top Down techniques

