
4th Lecture : Modular decomposition MPRI 2013–2014

4th Lecture : Modular decomposition
MPRI 2013–2014

Michel Habib
habib@liafa.univ-Paris-Diderot.fr

http://www.liafa.univ-Paris-Diderot.fr/~habib

Sophie Germain, 15 octobre 2013

4th Lecture : Modular decomposition MPRI 2013–2014

Schedule

Introduction

Modular Decomposition Algorithms
Historical Notes
Bottom up Techniques
Top Down techniques

4th Lecture : Modular decomposition MPRI 2013–2014

Examen le mardi 26 novembre de 9h à 12h,
Salle habituelle

4th Lecture : Modular decomposition MPRI 2013–2014

Introduction

A nice algorithm

A very simple algorithm to buid to recognize a cograph from a
factoring permutation.
Analogous to Jarvis’s algorithm for computing the convex hull of a
set of points in the plane.

4th Lecture : Modular decomposition MPRI 2013–2014

Introduction

4th Lecture : Modular decomposition MPRI 2013–2014

Introduction

An example

e

Parallèle

Série Série Série Série

b

c

d

u

v

a

z

y

x

w Parallèle Parallèle

Série

Parallèle

d wy u

e

z

ax

v

c b

4th Lecture : Modular decomposition MPRI 2013–2014

Introduction

Elimination scheme

G is a cograph iff it exists an ordering of the vertices
s.t. xi has a twin (false or true) in G{xi+1, . . . xn}

Theorem

This algorithm finds an elimination scheme iff σ is a factoring
permutation of a cograph.

Proof :

Main Invariant : For any k ≥ 1,the subsequence σk([z0, zk [) does
not contain any twins vertices in G (σk).
If the algorithms finds an elimination scheme characteristic of
cographs (using twins), then we know that G is a cograph.

4th Lecture : Modular decomposition MPRI 2013–2014

Introduction

Exercises :

1. In case of failure, where is the P4 ?

2. In case of success, how to derive the tree ?

4th Lecture : Modular decomposition MPRI 2013–2014

Introduction

A logarithmic process

Let P be a problem on a set S of data structures, and Size a
function from S to R

+. H is a divide-and-conquer algorithm with

respect to Size solving P if :

◮ there exists a set T ⊆ S of trivial inputs on which H solves P
in O(1) time ;

◮ any S ∈ S with Size(S) ≤ 1 is a trivial input, namely S ∈ T ;

◮ for all S /∈ T , H(S)
◮ first divides S into some sub-instances S1, . . . , Sk holding

Size(Si) > 0 for all i and holding
Size(S1) + · · ·+ Size(Sk) ≤ Size(S),

◮ then recurses with H(S1), . . ., H(Sk),
◮ and finally combines the results in order to provide the output

of H(S).

4th Lecture : Modular decomposition MPRI 2013–2014

Introduction

proposition

Let H be a divide-and-conquer algorithm, and α be such that, for
all S ∈ S \ T ,
Div(S) + Com(S) ≤ α× (Size(S)−maxk

i=1 Size(Si)), where
S1, . . . , Sk is the partition of S given by H(S). Then, for all input
S ∈ S, H(S) runs at most in α× Size(S) log Size(S) time. This
bound is best possible.

4th Lecture : Modular decomposition MPRI 2013–2014

Introduction

Proof :

by induction on s = Size(S). If S is not trivial and S1, . . . , Sk are
such that sk = Size(Sk) is greater than any si = Size(Si), then

Div(S) + Com(S) +
k
∑

i=1

C (Si) ≤ α×

(

k−1
∑

i=1

si +
k
∑

i=1

si log si

)

≤ α×

(

k−1
∑

i=1

si +
k−1
∑

i=1

si log
s

2
+ sk log s

)

≤ (α× s log s)

.

4th Lecture : Modular decomposition MPRI 2013–2014

Introduction

Remarks

The standard optimisation technique used in Merge sort results in
the same bound. However, the size of the input given to Merge sort
is granted to geometrically decrease (by half) as inductive levels
grow, implying that the induction depth is lesser than log Size(S).
On the other hand, this result still holds even when the induction
depth is linear on Size(S).
For a graph G , Size(G) = |V (G)|+ |E (G)|

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Historical Notes

Historical notes
The big list of published algorithms for modular decomposition
(N.B. Perhaps some items are missing . . . please give me the
missing references)

◮ Cowan, James, Stanton 1972 O(n4)
◮ Maurer 1977 O(n4) directed graphs
◮ Blass 1978 O(n3)
◮ Habib, Maurer 1979 O(n3)
◮ Habib 1981 O(n3) directed graphs
◮ Corneil, Perl, Stewart 1981, O(n +m) cograph recognition.
◮ Cunningham 1982 O(n3) directed graphs
◮ Buer, Mohring 1983 O(n3)
◮ McConnell 1987 O(n3)
◮ McConnell, Spinrad 1989 O(n2) incremental
◮ Adhar, Peng 1990 O(log2n),O(nm) proc. parallel, cographs,

CRCW-PRAM

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Historical Notes

◮ Lin, Olariu 1991 O(logn),O(nm) proc. parallel, cographs,
EREW-PRAM

◮ Spinrad 1992 O(n +malpha(m, n))
◮ Cournier, Habib 1993 O(n +malpha(m, n))
◮ Ehrenfeucht, Gabow, McConnell, Spinrad 1994 O(n3)

2-structures
◮ Ehrenfeucht, Harju, Rozenberg 1994 O(n2) 2-structures,

incremental
◮ McConnell, Spinrad 1994 O(n +m)
◮ Cournier, Habib 1994 O(n +m)
◮ Bonizzoni, Della Vedova 1995 O(n3k−5) Committee

decomposition for hypergraphs
◮ Dahlhaus 1995 O(log2n),O(n +m) proc. parallel, cographs,

CRCW-PRAM
◮ Dahlhaus 1995 O(log2n),O(n +m) proc. parallel,

CRCW-PRAM

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Historical Notes

◮ Habib, Huchard, Sprinrad 1995 O(n +m) inheritance graphs
◮ McConnell 1995 O(n2) 2-structures, incremental
◮ Capelle, Habib 1997 O(n +m) if a factoring permutation is

given
◮ Dahlhaus, Gustedt, McConnell 1997 O(n +m)
◮ Dahlhaus, Gustedt, McConnell 1999 O(n+m) directed graphs
◮ Habib, Paul, Viennot 1999 O(n +mlogn) via a factoring

permutation
◮ McConnell, Spinrad 2000 O(n +mlogn)
◮ Habib, Paul 2001 O(n +m) cographs via a factoring

permutation
◮ Capelle, Habib, Montgolfier 2002 O(n +m) directed graphs if

a factoring permutation is provided.
◮ Shamir, Sharan 2003 O(n +m) cographs, fully-dynamic
◮ McConnell, Montgolfier 2003 O(n +m) directed graphs
◮ Habib, Montgolfier, Paul 2003 O(n+m) computes a factoring

permutation

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Historical Notes

◮ Simpler Linear-Time Modular Decomposition via Recursive
Factorizing Permutation Tedder, Corneil, Habib, Paul, ICALP
(1) 2008 : 634-646.

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Historical Notes

Why it is so important ?

[Jerry Spinrad’ book 03]

The new [linear time] algorithm [MS99] is currently too complex to
describe easily [...] The first O(n2) partitioning algorithms were
similarly complex ; I hope and believe that in a number of years the
linear algorithm can be simplified as well.

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Historical Notes

Applications of modular decomposition

◮ A very natural operation to define on discrete structures,
searching regularities.

◮ A structure theory for comparability graphs

◮ A compact encoding using module contraction and if we keep
at each prime node the structure of the prime graph.

◮ Divide and conquer paradigm can be applied to solve
optimization problems. For example to test isomorphism.

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Historical Notes

◮ A very basic graph algorithmic problem (similar to graph
isomorphism problem).

◮ A better understanding of graph algorithms and their data
structures.

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Bottom up Techniques

Minimal Modules

Minimal module containing a set

For every A ⊆ V there exists a unique minimal module containing
A

Proof :

Since the module family is partitive and therefore closed under ∩.

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Bottom up Techniques

Splitters

Definition

A splitter for a A ⊆ V , is a vertex z /∈ A

s.t. ∃x , y ∈ A with zx ∈ E and zy /∈ E .

Modules

A ⊆ V is a module iff A does not have any splitter.

Usefull lemma

If z is a splitter for a A ⊆ V , then any module containing A must
also contain z .

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Bottom up Techniques

Submodularity

Let us denote by s(A) the number of splitters of a set A, then s is
a submodular function.

Definition

A function is submodular if
∀A,B ⊆ E

f (A ∪ B) + f (A ∩ B) ≤ f (A) + f (B)

This is the basic idea of Uno and Yagura’s algorithm for the
modular decomposition of permutation graphs in O(n).

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Bottom up Techniques

Bottom-up Techniques

Sketch of the algorithm

For each pair of vertices x , y ∈ V

Compute the minimal module m(x , y) containing x and y .

Closure with splitters

While there exists a splitter add it to the set.

Complexity

O(n2.(n +m))

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Bottom up Techniques

Primality testing

One can derive a primality test since if there exists a non trivial
module, it contains at least two vertices.

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Bottom up Techniques

For some problems Bottom-Up techniques are the best known.

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Bottom up Techniques

Origins : Golumbic, Kaplan, Shamir 1995

Input : G1 = (V ,E1) and G2 = (V ,E2) 2 undirected graphs such
that E1 ⊆ E2 and Π be a graph property.
Results : a sandwich graph Gs = (V ,Es) satisfying property Π and
such that E1 ⊆ Es ⊆ E2.
Edges of E1 are forced, those of E2 are optional ones, but those of
E3 = E2 are forbidden.

Unfortunately most cases are NP-complete, as for example of Π

◮ Gs being comparability, chordal, strongly chordal, . . .

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Bottom up Techniques

Only few polynomial cases

◮ cographs Golumbic, Kaplan, Shamir (1995)

◮ sandwich module Cerioli, Everett, de Figueiredo, Klein (1998)
. . .

Natural question

Find efficient algorithms for these polynomial cases.

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Bottom up Techniques

Sandwich module problem

Input : G1 = (V ,E1) and G2 = (V ,E2) 2 undirected graphs such
that E1 ⊆ E2.
Result : a sandwich graph Gs = (V ,Es) having a non trivial
module and such that E1 ⊆ Es ⊆ E2.

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Bottom up Techniques

Minimal Sandwich Module

Splitter

For a subset A ⊆ V , a splitter is a vertex z /∈ A

s.t. ∃x , y ∈ A with zx ∈ E1 and zy /∈ E2 (or equivalently zy ∈ E3)
A splitter is also called bias vertex.

Algorithm

The computation of a minimal sandwich module can be done in
O(n2.(n +m1 +m3)).

Hard to do better with this idea, using a bottom up approach.

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Top Down techniques

Brute Force Algorithm

Using the decomposition theorem, we only have to compute at
most n times some connected components of G or its complement.
O(n.(n +m)) complexity.

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Top Down techniques

Three explored directions

◮ Ehrenfeucht et al approach

◮ Using Factoring Permutation

◮ Using LexBFS (as for cographs) Next lecture.

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Top Down techniques

Ehrenfeucht et al approach

M(G , v) is composed by {v} and the maximal modules of G that
do not contain v .

 !!

series

v v

parallel

prime

series

series

parallel

series

 !!!

 !!

 !! !! !!

 !! !!

 !! !!

 !! !!

 !!!

 !!

 !!

 !! !! !! !!

 !! !! !!

Principle of the Ehrenfeucht et al.’s algorithm

1. Compute M(G , v)

2. Compute MD(G/M(G ,v))

3. For each X ∈ M(G , v) compute MD(G [X])

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Top Down techniques

Computing M(G , v) via Partition Refinement

Splitter again

If z is a splitter of A ⊆ V then any strong module contained in A

is either contained in N(z) ∩ A or in A− N(z).

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Top Down techniques

Computation of M(G , v)

⇒ O(n +m log n) time using vertex partitioning algorithm.

v

N(v) N(v)

xv

yv x

zv

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Top Down techniques

1. Particular partition refinement rule :
Do not refine its part
Just to maintain the invariant :
Modular partition ≤ Current partition

2. To obtain a logn

Avoid the biggest part

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Top Down techniques

How to reconstruct the modular decomposition tree from the
partition M(G , v) ?
The most difficult step in many algorithms.

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Top Down techniques

Computation of MD(G/M(G ,v))

◮ The modules of G/M(G ,v) are linearly nested :
any non-trivial module contains v

◮ The forcing graph F(G , v) has edge −→xy iff y separates x and v

6

1

2

3 4 5

v

6

3

6

4
5

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Top Down techniques

◮ The strong connected components of the forcing graph

F(G , v) provides the modules of of G/M(G ,v).

◮ Recurse on each module.

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Top Down techniques

Complexity

◮ [Ehrenfeucht et al.’94] gives a O(n2) complexity. It is quite
tricky to efficiently compute the forcing graph F(G , v) .

◮ [MS00] gives a very simple O(n +m log n) algorithm based on
vertex partitioning.

◮ [DGM’01] proposes a O(n +m.α(n,m)) and a more
complicated O(n +m) implementation.

Other algorithms

◮ [CH94] and [MS94] present the first linear algorithms.

◮ [MS99] present a new linear time algorithm which extends to
transitive orientation.

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Top Down techniques

Factoring permutations

The set of strong modules is nested into an inclusion tree (called
the modular decomposition tree MD(G) of G).

1 2 3 4 5 6 7 8 9 10 11

 ! ! ! ! !!!!!!!!!!!
 !! !!

1

2

3

4

5

6

7

8

9

10

11

1 9852 43 6 7 1110

8 9 10 11

2 3

2 3 4

6 7 10 11

 !

A factoring permutation is simply a left-right ordering of the leaves
of a plane drawing of MD(G).

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Top Down techniques

Consequence : it always exists factoring permutations.
There are easier to compute that the modular decomposition tree.

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Top Down techniques

Invariant

Any strong module is a factor of the partition.

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Top Down techniques

Splitter interpretation

Starting with the partition {N(x), {x},N(x)}, we maintain the
following invariant :
It exists a factoring permutation smaller than the current partition.

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Top Down techniques

Recognition of ”geometric” graph classes

Geometric in a very wide meaning, it could be :

◮ Embedding with some condition (planar, outerplanar . . .) with
polylines, with convex bodies or some generalization
(ρ-convex, i.e. each edge is a polyline with at most ρ
segments).

◮ Embedding with limited crossings

◮ Intersection graphs of some geometric objects (interval,
chordal, permutation, trapezoids, . . .)

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Top Down techniques

A hierarchy of models

1. Undirected graphs (graphes non orientés)

2. Tournaments (Tournois), sometimes 2-circuits are allowed.

3. Signed graphs (Graphes signés) each edge is labelled + or -
(for example friend or enemy)

4. Oriented graphs (Graphes orientés), each edge is given a
unique direction (no 2-circuits)
An interesting subclass are the DAG Directed Acyclic Graphs
(graphes sans circuit), for which the transitive closure is a
partial order (ordre partiel)

5. Directed graphs or digraphs (Graphes dirigés)

4th Lecture : Modular decomposition MPRI 2013–2014

Modular Decomposition Algorithms

Top Down techniques

http ://math.nie.edu.sg/fmdong/Research/articles/beautiful
Second Neighbourhoods Conjecture
P.D. Seymour 1990
Every digraph without 2-circuits has a vertex with at least as many
second neighbours as first neighbours.
Second neighbours, SN(x) is the set of vertices at exact distance 2
of x .
Therefore we are looking for x such that |SN(x)| ≥ |N(x)|.

