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Applications of partition refinement techniques

Modular decomposition
Uniqueness decomposition theorem
Partitive Families
Structural Aspects of Prime graphs

Factoring permutation

Three more cograph recognition algorithms
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No course next week.
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Applications of partition refinement techniques

Refining a partition

Definition

Let S ⊆ V , and P = {X1, . . . ,Xn} be a partition of V .
Q = Refine(S ,P) = {X1 ∩ S ,X1 − S , . . . ,Xn ∩ S ,Xn − S}
S is called a pivot.
NB Some sets can be empty and then ignored.

◮ Refine(S ,P) ≤ P

◮ Refine(S ,P) = P iff S is an union of parts of P

Duality

Refine(S ,P) = Refine(S ,P)
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Applications of partition refinement techniques

Classes of twin vertices

Definition

x and y are called false twins, (resp. true twins) if
N(x) = N(y) (resp. N(x) ∪ {x} = N(y) ∪ {y}))

Exercise of the first lecture

Propose a good algorithm to compute these classes
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Applications of partition refinement techniques

Algorithm Folklore

Data: G = (V ,E ) a graph with n vertices and m edges

Result: The classes of false twin vertices
Q ← {V }
for Every x ∈ V do

Q ← Refine(Q,N(x))
end
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Applications of partition refinement techniques

Proof

At the end, parts of Q have no splitter outside and therefore are
modules.
Furthermore they have no splitter inside the part.
They are made up with false twins (non connected).

Complexity

Σx∈V |N(x)| ∈ O(n +m)
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Other applications

Detection of multi-occurency in a list of subsets

Just construct the incidence bipartite elements–subsets and
compute the twins.

Recognition of a laminar family
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Laminar Family

A family F of subsets of a ground set X is laminar if :
∀F ′,F” ∈ F , either F ′,F” are disjoint or included.
Such a family is ordered by inclusion with a forest structure.

Computing the tree structure

Sort the elements of F by decreasing size.
Compute using partition refinement the sets contained in F0 ...
whole complexity in O(Σ|F |F∈F ).

3th Lecture : Partition refinement MPRI 2013–2014

Applications of partition refinement techniques

Degrees parts

Classification of the vertices in parts having the same degree.
A variation of the folklore algorithm for twins.

Generalized degree partition

Classification of the vertices in parts having the same degree with
respects to the other parts. To compute this partition we can use a
variation of the partition refinement.
DegreeRefine(P, S) :
computes the partition of S in parts having same degree with P
The computation of this partition is the first step of the main
isomorphism algorithms.
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Applications of partition refinement techniques

Tree isomorphism using Partition refinement

Compute the generalized degree partitions of the two graphs G
and H

Folklore Property

iF G and H are isomorphic then their partitions are identical.

Particular case of trees

For trees the converse is also true.
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Applications of partition refinement techniques

Graph search

Most of the classical graph searches can be implemented using
partition refinement and sometimes this gives a good way to obtain
an optimal implementation.
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Another exercice

Data: A family F of subets of V

Result: Compute the overlap components of F
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Applications of partition refinement techniques

Partition refinement a kind of technique dual to Union-Find.
Complementary uses :

◮ x et y belong to the same part → Union-Find

◮ x et y do not belong to the same part→ Partition refinement.
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Generic Refinement Algorithm

Input : P a partition and S a set of pivots
While S 6= ∅

Choose S ∈ S

P = Refine(S ,P)
add all new generated parts to S
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Hopcroft’s rule

In many applications when a part C is cut into 2 parts : C ′,C ′′ :
it is enough to consider as a pivot in the following only C ′ or C ′′

Hopcroft’s rule

Choose the smallest half
This assures an O(nlogn) algorithm.

proof

The number of time an element can be used in a pivot set, is
bounded by logn.
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Variant

Avoid the biggest one
This also assures an O(logn) factor in the complexity of the
algorithm
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Historical Notes

This technique is very powerfull not only for graph algorithms.
First used by Corneil for Isomorphism Algorithms 1970
Hopcroft Automata minimisation 1971
Cardon and Crochemore string sorting 1981
J. Spinrad Graph Partitioning (generic tool vertex spliting) 1986
Paigue, Tarjan 1987 (generic tool presented on three problems)
. . .
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Some applications

◮ Quicksort : Hoare, 1962

◮ Minimal deterministic automaton Hopcroft O(nlogn) 1971.

◮ Relational coarset partition Paige, Tarjan O(nlogn) 1987

◮ Coarsest functional partition Paigue, Tarjan O(nlogn) 1987
improved to O(n) by Paigue, Tarjan, Bonic 1985 and
Chrochemore 1982.

◮ String sorting O(nlogn)

◮ Doubly Lexicographic ordering Paige and Tarjan 1987
O(LlogL), using a 2-dimensional refinement technique.
where L = #ones in the matrix using a 2-dimensional
refinement technique.

3th Lecture : Partition refinement MPRI 2013–2014

Applications of partition refinement techniques

Many other applications on graphs

Partition refinement has many applications in graph algorithm
design, mainly for undirected graphs. Kind of generic tool to obtain
efficient algorithms easy to understand.
Vertex splitting, (also called vertex partitioning) when the
neighborhood N(x) is used as a pivot set. Provides a linear
algorithm if the neighbourhood of every vertex is used a constant
number of times.

◮ Interval graph recognition O(n +m) using partition
refinement on maximal cliques, 1-consecutiveness property
O(n +m), Habib, McConnell, Paul and Viennot 2000.

◮ Modular decomposition,

◮ Cograph recognition O(n +m), Habib, Paul 2000.

◮ Transitive orientation
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In some application the order between parts matters and we play
with ordered partitions.
Variations :

1. Parts are equipped with a counter representing its size.

2. Predicate ”left-to” between parts in an ordered partition in
O(1).

3. Implement a backtrack
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Exercise :

Implement the classical graph search : BFS and DFS using
partition refinement.
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Applications of partition refinement techniques

Research aspects

1. Find an efficient way to implement a backtrack operation
(Kind of UnRefine )

2. Generalize the applications of partition refinement to directed
graphs
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Modular decomposition

Modules

Modules

For a graph G = (V ,E ), a module is a subet of vertices A ⊆ V
such that
∀x , y ∈ A, N(x)− A = N(y)− A
The problem with this definition : must we check all subsets A ?

Trivial Modules

∅, {x} and V are modules.

Prime Graphs

A graph is prime if it admits only trivial modules.

3th Lecture : Partition refinement MPRI 2013–2014

Modular decomposition

Examples

Characterization of Modules

A subset of vertices M of a graph G = (V ,E ) is a module iff
∀x ∈ V \M, either M ⊆ N(x) or M ∩ N(x) = ∅
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Examples of modules

◮ connected components of G

◮ connected components of G

◮ any vertex subset of the
complete graph (or the stable)
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Modular decomposition

◮ Modular decomposition (algorithmic aspects)

◮ But also an operation on graphs : Modular composition
a graph grammar with a simple rule : replace a vertex by a
graph

◮ Very natural notion, (re)discovered under many names in
various combinatorial structures
such as :clan, homogeneous set, . . .

◮ An important tool in graph theory

3th Lecture : Partition refinement MPRI 2013–2014

Modular decomposition

Playing with the definition

Duality

A is a module of G implies A is a module of G .

Easy observations

◮ No prime undirected graph with ≤ 3 vertices (false for
directed graphs, as a directed triangle shows it)

◮ P4 the path with 4 vertices is the only prime on 4 vertices.

◮ P4 is isomorphic to its complement.
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Modular decomposition

Twins and strong modules

Twins

x , y ∈ V are false- (resp. true-) twins if N(x) = N(y) (resp.
N(x) ∪ {x} = N(y) ∪ {y}.
x , y are false twins in G iff x , y are true twins in G .
Classes of twins are particular modules (stable sets for false twins
and complete for true twins).

Strong modules

A strong module is a module that does not strictly overlap any
other module.
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Modular decomposition

Modular partition

A partition P of the vertex set of a graph G = (V ,E ) is a
modular partition of G if any part is a module of G .
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Let P be a modular partition of a graph G = (V ,E ). The
quotient graph G/P is the induced subgraph obtained by choosing
one vertex per part of P.
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Modular decomposition

Lemma (Mohring Radermacher 1984)

Let P be a modular partition of G = (V ,E ).
X ⊆ P is a module of G/P iff ∪M∈XM is a module of G.
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Modular decomposition

Uniqueness decomposition theorem

Modular Decomposition Theorem

Theorem (Gallai 1967)

Let G = (V ,E ) be a graph with |V | ≥ 4, the three following cases
are mutually exclusive :

1. G is not connected,

2. G is not connected,

3. G/M(G) is a prime graph, with M(G ) the modular partition
containing the maximal strong modules of G.



3th Lecture : Partition refinement MPRI 2013–2014

Modular decomposition

Uniqueness decomposition theorem

As a byproduct, we notice that a prime graph G satisfies :
G and G are connected
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Modular decomposition

Uniqueness decomposition theorem

Modular decomposition tree

Tree

A recursive a this theorem yields a tree T in which :

◮ The root corresponds to V

◮ Leaves are associated to vertices

◮ Each node corresponds to a strong module

There are 3 types of nodes :

Parallel, Series and Prime
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Modular decomposition

Uniqueness decomposition theorem

Another explanation

The set of strong modules is nested into an inclusion tree (called
the modular decomposition tree MD(G ) of G ).
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Modular decomposition

Partitive Families

Partitive Families

Lemma

If M and M ′ are two overlapping modules then

◮ (i) M \M ′is a module

◮ (ii) M ∩M ′ is a module

◮ (iii) M ∪M ′ is a module

◮ (iv) M∆M ′ is a module

◮ A family satisfying (i) - (iv) is called a partitive family

◮ A family satisfying (i) - (iii)) is called a weak partitive family
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Modular decomposition

Partitive Families

Chein Habib Maurer 1981

The set of all modules of an undirected graph (resp. a directed
graph)
constitutes a partitive family (resp. a weak partitive family).

Uniqueness decomposition theorem

Partitive (resp. weakly partitive) families admit a decomposition
tree with two (resp. three) types of nodes :

◮ degenerate (also called fragile)

◮ prime

◮ (resp. linear)
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Modular decomposition

Partitive Families

This tree representation theorem for partitive (resp. weakly
partitive) families F ⊆ 2|X |, yields an encoding of these families in
O(|X |).
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Modular decomposition

Partitive Families

Modular Decomposition Theorem for Directed Graphs

Theorem (Chein, Habib, Maurer 1981)

Let G = (V ,E ) be a directed graph with |V | ≥ 4, the four
following cases are mutually exclusive :

1. G is not connected, Parallel node

2. G is not connected, Series node

3. G ∗ is not strongly connected, Linear node

4. G/M(G) is a prime graph, with M(G ) the modular partition
containing the maximal strong modules of G, Prime node
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Modular decomposition

Structural Aspects of Prime graphs

Prime graphs are nested

Folklore Theorem

Let G be a prime graph (|G | ≥ 4), then G contains a P4.

Theorem Schmerl, Trotter, Ille 1991 . . .

Let G be a prime graph (|G | = n ≥ 4), then G contains a prime
graph on n − 1 vertices or a prime graph on n − 2 vertices.
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Modular decomposition

Structural Aspects of Prime graphs

A simple proof

A stronger statement, Cournier, Ille, 1991

For a prime graph there is at most one vertex not contained in a
P4.

Proof

As a prime graph G is necessarily connected and if ∃x ∈ V that
does not belong to a P4. Every connected component of N(x) is a
module, therefore N(x) must be a stable set.
If ∃x 6= y ∈ V that does not belong to a P4,
wlog assume xy /∈ E
But then y ∈ N(x) and therefore : N(y) ⊆ N(x).
By symmetry x , y must be false twins, a contradiction.
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Modular decomposition

Structural Aspects of Prime graphs

Nota Bene : this result also holds for infinite graphs !
So does our previous proof.
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Modular decomposition

Structural Aspects of Prime graphs

In fact if there is such a vertex x ∈ V ,
x is adjacent to the middle vertices of a P4.
(Such a subgraph is called a bull).

A bull is isomorphic to its complement.
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Factoring permutation

A factoring permutation of a graph G = (V ,E ) is a permutation
of V in which any strong module of G is a factor. [CH 97]
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Factoring permutation

◮ From G to factoring permutation : O(n +m log n) [HPV99]

◮ From factoring permutation to MD(G ) : O(n+m) [CdMH01]
[UY00] [BXHP05]
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Another explanation

The set of strong modules is nested into an inclusion tree (called
the modular decomposition tree MD(G ) of G ).
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A factoring permutation is simply a left-right ordering of the leaves
of a plane drawing of MD(G ).
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Factoring permutation

Consequence : it always exists factoring permutations.
There are easier to compute that the modular decomposition tree.
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Three more cograph recognition algorithms

Recall of the tree structure of cographs
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Three more cograph recognition algorithms

A very simple algorithm to buid the tree from the factoring
permutation.
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Three more cograph recognition algorithms

Factoring permutation

Factoring permutation (of cographs) via vertex partitioning

Starting with the partition {N(x), {x},N(x)}, we maintain the
following invariant :
It exists a factoring permutation smaller than the current partition.
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Invariant

Any strong module is a factor of the partition.
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Three more cograph recognition algorithms

1. Brute force, just partition refinement. Using recursivity. O(nm)

2. Using the rule : take the smallest half O(mlogn)

3. Using at most one vertex per part to refine the other parts.
Idea : only two parts (the extreme ones) refine nothing. Then
we can restart the procedure to the closest one to the initial
pivot.
In the whole a vertex is at moste used twice as a pivot.
O(n +m)
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Three more cograph recognition algorithms

Modular decomposition algorithms via partition refinement are very
similar than the cograph recognition algorithms just a little more
complicated.
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Three more cograph recognition algorithms


