
2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

2nd Lecture : Basic techniques for graph

algorithms

MPRI 2013–2014

Michel Habib
habib@liafa.univ-Paris-Diderot.fr

http://www.liafa.univ-Paris-Diderot.fr/~habib

Sophie Germain, septembre 2013

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Schedule

Introduction

Good algorithms and graph decompositions

Graph Representations

Cograph recognition : the naive approaches

Partition refinement techniques

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Introduction

Co-graph recognition problem as a leading example (in french ”fil
rouge”) to present various algorithmic techniques.
Nota Bene : the slides will be the unique official document of the
course. If you solve all the exercises, your will be safe for the exam.

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Introduction

An example of nice algorithm

Depth First Search
DFS(G) :

for all v ∈ X do

Ferme(x)← Faux ;
end for

for all v ∈ X do

if Ferme(x) = Faux then

Explorer(G , x);
end if

end for

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Introduction

Explorer(G , x) :

Ferme(x)← Vrai ;
pre(x);
for all xy ∈ U do

if Ferme(y) = Faux then

Explorer(G , y) ;
end if

post(x) ;
end for

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Introduction

Et les deux fonctions suivantes utilisant deux variables : comptpre
et comptpost étant initialisées à 1.
pre(x) :

pre(x)← comptpre ;
comptpre ← comptpre + 1 ;

post(x) :

post(x)← comptpost ;
comptpost ← comptpost + 1 ;

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Introduction

Tarjan’s algorithm to compute strongly connected

components

DFS(G) :

comptpre ← 1;
Resultat ← ∅;
for all v ∈ X do

Ferme(x)← Faux ;
end for

for all v ∈ X do

if Ferme(x) = Faux then

Explorer(G , x) ;
end if

end for

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Introduction

Explorer(G , x) :

Empiler(Resultat, x);
Pile(x)← Vrai ;Ferme(x)← Vrai ;
pre(x)← comptpre; comptpre ← comptpre + 1 ;
racine(x)← pre(x);
for all xy ∈ U do

if Ferme(y) = Faux then

Explorer(G , y);
racine(x)← min{racine(x), racine(y)} ;

else if Pile(y) = Vrai then

racine(x)← min{racine(x), racine(y)} ;
end if

end for

if racine(x) = pre(x) then
Dépiler Resultat jusqu’à x ;

end if

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Introduction

Fundamental questions about algorithms

1. How can we prove such a nice algorithm ?

2. It has some greedy flavor, why ?

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Good algorithms and graph decompositions

Our Claims or thesis

An efficient algorithm running on a discrete structure is always
based :

◮ on a theorem describing a combinatorial structure

◮ a combinatorial decomposition of this discrete structure.

◮ or in some other cases a geometric representation of the
structure provides the algorithm.

Examples

◮ Chordal graph recognition and maximal clique trees (
particular case of treewidth).

◮ Transitive orientation and modular decompostion.

◮ Max Flow and decomposing a flow in a sum of positive
circuits.

◮ Greedy algorithms for minimum spanning trees and matroids

◮

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Good algorithms and graph decompositions

Interval graphs

Let us consider an operation research problem :

◮ Storage of products in fridges : each product is given with an
interval of admissible temperatures.
Find the minimum number of fridges needed to store all the
products (a fridge is at a given temperature).

◮ A solution is given by computing a minimum partition into
maximal cliques.

◮ Fortunately for an interval graph, this can be polynomially
computed

◮ So knowing that a graph is an interval graph can help to solve
a problem.

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Good algorithms and graph decompositions

Interval graphs are used to modelize time (in scheduling)
but also to analyze DNA sequences.

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Graph Representations

Notations

Here we deal with finite loopless and simple undirected graphs.
For such a graph G

we denote by V (G) the set of its vertices
and by E (G) the edge set
By convention |V | = n and |E | = m

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Graph Representations

Bound on the number of edges

Triangle free graphs

Show that if G has no triangle then :

|E | ≤ |V |2

4

Planar graphs

Show that if G is a simple planar graph (i.e. without loop and
parallel edge) then :
|E | ≤ 3|V | − 6

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Graph Representations

Sparse graphs satisfy : |E (G)| ∈ O(|V (G)|)
Planar graphs are sparse, but also many graphs coming from
applications are sparse.
For example the WEB graph is sparse.
For sparse graphs one has to use an adjacency lists representation.

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Graph Representations

Matrice ordonnée par l’ordre alphabétique des noms des

URL

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Graph Representations

Un zoom autour de la diagonale

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Graph Representations

◮ Implicit hypothesis : the memory words have k bits with
k > ⌈log(|V |)⌉

◮ To be sure, consider the bit encoding level

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Graph Representations

◮ Adjacency lists
O(|V |+ |E |) memory words
Adjacency test : xy is an arc in O(|N(x)|)

◮ Adjacency Matrix
O(|V |2) memory words (can be compressed)
Adjacency test : xy is an arc in O(1)

◮ Customized representations, a pointer for each arc . . .

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Graph Representations

For some large graphs, the Adjacency matrix, is not easy to obtain
and manipulate.
But the neighbourhood of a given vertex can be obtained. (WEB
Graph or graphs is Game Theory)

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Graph Representations

Quicksands

◮ A sentence like :
”To compute this invariant or this property of a given graph
G one needs to ”see”(or visit) every edge at least once”.

◮ False statement as for example the computation of twins resp.
connected components on G knowing G .

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Graph Representations

Exercise

Can the advantages of the 2 previous representations can be mixed
in a unique new one ?
Adjacency lists : construction in O(n +m)
Incidence matrix : cost of the query : xy ∈ E? in O(1)

In other words

Using O(n2) space, but with linear time algorithms on graphs ?

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Graph Representations

Auto-complemented representations

Initial Matrix

1 2 3 4

1 1 1 1 0

2 0 0 1 0

3 1 0 1 1

4 1 0 0 0

Tagged Matrix

1 2 3 4

1 0 1 0 0

2 1 0 0 0

3 0 0 0 1

4 0 0 1 0

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Graph Representations

◮ At most 2n tags (bits).
O(n +m′) with m′ << m.
Dalhaus, Gustedt, McConnell 2000

◮ What can be computed using such representations ?
Example : strong connected components of G , knowing G ?

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Graph Representations

◮ Find a minimum sized representation

◮ If G is undirected a minimum is unique.

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Graph Representations

What is an elementary operation for a graph ?

◮ Traversing an edge or Visiting the neighbourhood ?

◮ It explains the very few lower bounds known for graph
algorithms on a RAM Machine.

◮ Our graph algorithms must accept any auto-complemented
representation.
Partition Refinement

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Graph Representations

Exercise

Suppose that a graph G = (V ,E) is given by its adjacency lists
and let σ be some total ordering of its vertices.

◮ How can we sort the adjacency with respect to σ (increasing) ?

◮ What is the complexity of this operation ?

◮ Let σ be the total ordering of the vertices with decreasing
degrees, how to compute σ ?

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Graph Representations

Sorting an adjacency list

Suppose that a graph G = (V ,E) is given by its adjacency lists A
and let σ be some total ordering of its vertices. How can we sort
the adjacency with respect to σ (increasing) ?

One solution

Build another adjacency list structure B from the old one by taking
the vertices from σ(n) down to σ(1) in the following way :
read A(σ(i)) and add σ(i) in front of the lists of B corresponding
to the neighbors of σ(i)
At the end of the process, the lists of B are sorted in the right way.

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Graph Representations

Complexity

Time : Linear time complexity (the size of the data structure A).
Memory : Twice the size of the adjacency lists 2|A|

Exercise

Adapt the solution for directed graphs

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Graph Representations

Sorting the vertices by their degrees

1. Compute the degrees by scanning the adjacency lists in an
array D

2. Use any per value sorting algorithm (Radix or other) since all
numbers are bounded by n for a simple graph.

3. Apply the previous algorithm to sort the adjacency lists.

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Graph Representations

The previous solutions need that the data structure is available at
once in the memory.
This will be implicit in the remaining of the course, as well as the
RAM model.

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Cograph recognition : the naive approaches

How to find an induced P4 ?

◮ Very naive O(n4) :
Check every quadruple of vertices

◮ Less naive O(mn2) :
For every edge xy ∈ E (G)
For every pair (z , t) of vertices with z ∈ N(x)− N(y) and
t ∈ N(y)− N(x)
Check if zt /∈ E (G).

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Cograph recognition : the naive approaches

◮ O(m2) 1

For every pair of edges : zx , ty ∈ E (G)
Check in O(1) if they are the external edges of some P4

(using the incidence matrix representation)

◮ O(nm)
For every z ∈ V (G) compute N(z) and N(z)
Check if there exist x ∈ N(z) and one edge zt ∈ N(z)
such that x splits (or distinguishes) z and t, using partition
refinement techniques.

1. Could be interesting for sparse graphs.

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Cograph recognition : the naive approaches

Exercises

1. Show that if G is a cograph, then either G is connected or
disconnected and the 2 cases are exclusive.

2. How to compute Max Cut on a cograph ?

3. How to recognize if a graph is P5-free ?

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Cograph recognition : the naive approaches

First linear-time algorithm

Derek G. Corneil and Yehoshua Perl and Lorna K. Stewart
A Linear Recognition Algorithm for Cographs,
SIAM J. Comput.,14, 4 (1985) 926-934.

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Cograph recognition : the naive approaches

Sketch of the algorithm

1. Uses the existence of the cotree and incrementally build the
cotree.

2. At each step a new vertex xi is added.

3. Compute the minimal subtree Ai whose leaves contains
N(xi) ∩ G ({x1, . . . , xi−1}).

4. If Ai has more leave than N(x) STOP ”G is not a cograph” 2.
Else if the root of Ai is labeled 1 add xi as a leave just
attached to this node.
Else consider the parent node of Ai (labeled 1), it has at least
another child B . Add xi as a leave just attached to the root of
B .

2. this is a simplification, for details see the original paper

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Cograph recognition : the naive approaches

◮ STEP 3 can be done in O(|N(xi)|), so a total complexity of
O(n +m).

◮ When it fails, xi belongs to a P4. (Case by case analysis).

◮ Comments : the existence of the cotree is very useful !

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Partition refinement techniques

Definition

Partition Refinement

If Q = {C1, . . .Ck} is a partition over a ground set X , for every
S ⊆ X we define from Q and S a new partition :
Refine(Q, S) = {C1 ∩ S ,C1 − S , . . . ,Ck ∩ S ,Ck − S} a

a. empty sets are removed

More formally

Refine(Q, S) = Q ∧ {S ,X -S} in the partition lattice on X .

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Partition refinement techniques

The method

The partition P is made up with a list of classes.
For each element x of the pivot set S , find the unique part C it
belongs to.
Then move (or mark) x in C and tag C

At last, separate all marked parts C into C ∩ S and C -S .

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Partition refinement techniques

Implementation

V = {x1, . . . , x7}
P = {C1,C2,C3} and S = {x3, x4, x5}

Data Structure

C1 C2 C3
x1

րւ
⇄ x3 ⇄

տցx5 ⇄ x2
րւ

⇄
տցx7 ⇄ x4

րւ
⇄

տցx6

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Partition refinement techniques

First Step

Processing x3

1,C1 C2 C3
x3

րւ
⇄ x1 ⇄

տցx5 ⇄ x2
րւ

⇄
տցx7 ⇄ x4

րւ
⇄

տցx6

Processing x4

1, C1 C2 1, C3
x3

րւ
⇄ x1 ⇄

տցx5 ⇄ x2
րւ

⇄
տցx7 ⇄ x4

րւ
⇄

տցx6

x5

2, C1 C2 1, C3
x5

րւ
⇄ x3 ⇄

տցx1 ⇄ x2
րւ

⇄
տցx7 ⇄ x4

րւ
⇄

տցx6

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Partition refinement techniques

Second step

Maintain a list of the Ci ′s that intersect S . List bounded by |S |.

Result

C’1 C”1 C2 C’3 C”3
x5

րւ
⇄

տցx3 ⇄
↑ x1

↓
⇄ x2

րւ
⇄

տցx7 ⇄
↑ x4

↓
⇄

↑ x6
↓

Refine(P , S) = {C ′1,C”1,C2,C ′3,C”3}
computed in O(|S |)

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Partition refinement techniques

To implement this data structure we need at least :

◮ A doubled linked list L for the partition itself

◮ For each element of V , we need to maintain a reference to its
position in the list

◮ For every element in L we need to maintain a reference to its
part.

◮ Every part has to maintain a reference to its first element.

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Partition refinement techniques

Of course it could be implemented using arrays instead of linked
data structures. Furthermore this could be much more efficient in
many programming languages (for example those in which list are
badly implemented).
This technique is not only efficient theoretically (with respect to
complexity measures) but also for practical purpose, since this
technique can be implemented with a small overhead.

2nd Lecture : Basic techniques for graph algorithms MPRI 2013–2014

Partition refinement techniques

Exercises

1. Propose an alternative implementation using arrays.

2. Propose an implementation in O(|S |) of Refine stable which
preserves a given initial ordering of the vertices of the
elements x ′

i
s of the parts.

3. Propose an implementation in an array compatible with an
initial ordering and within the same complexity.

