\qquad
$2^{\text {nd }}$ Lecture: Basic techniques for graph algorithms
MPRI 2013-2014

Michel Habib

 habib@liafa.univ-Paris-Diderot.frhttp://www.liafa.univ-Paris-Diderot.fr/~habib

Sophie Germain, septembre 2013

Lecture : Basic techniques for graph algorithms MPRI 2013-2014

-Introduction

Co-graph recognition problem as a leading example (in french "fil rouge") to present various algorithmic techniques.
Nota Bene : the slides will be the unique official document of the course. If you solve all the exercises, your will be safe for the exam.

Lecture : Basic techniques for graph algorithms MPRI 2013-2014

-Introduction

Explorer (G, x) :
Ferme $(x) \leftarrow$ Vrai;
pre(x);
for all $x y \in U$ do
if $\operatorname{Ferme}(y)=$ Faux then
Explorer (G, y);
end if
post(x);
end for

Lecture : Basic techniques for graph algorithms MPRI 2013-2014
-Introduction

Tarjan's algorithm to compute strongly connected components

```
DFS(G)
    comptpre \(\leftarrow 1\);
    Resultat \(\leftarrow \emptyset\);
    for all \(v \in X\) do
        Ferme \((x) \leftarrow\) Faux;
    end for
    for all \(v \in X\) do
        if Ferme \((x)=\) Faux then
            Explorer ( \(G, x\) );
        end if
    end for
```

ost (x)
post $(x) \leftarrow$ comptpost ;
comptpost \leftarrow comptpost +1 ;
Et les deux fonctions suivantes utilisant deux variables : comptpre et comptpost étant initialisées à 1 .
pre (x)

$$
\text { pre }(x) \leftarrow \text { comptpre } ;
$$

comptpre \leftarrow comptpre +1 ;
$2^{\text {nd }}$ Lecture: Basic techniques for graph algorithms MPRI 2013-2014
$L_{\text {Introduction }}$
$2^{\text {nd }}$ Lecture : Basic techniques for graph algorithms MPRI 2013-2014

Schedule

Introduction

Good algorithms and graph decompositions

Graph Representations

Cograph recognition : the naive approaches

Partition refinement techniques

Lecture : Basic techniques for graph algorithms MPRI 2013-2014

$\left\llcorner_{\text {Introduction }}\right.$

An example of nice algorithm

```
Depth First Search
```

Depth First Search
DFS(G)
DFS(G)
for all $v \in X$ do
for all $v \in X$ do
Ferme $(x) \leftarrow$ Faux;
Ferme $(x) \leftarrow$ Faux;
end for
end for
for all $v \in X$ do
for all $v \in X$ do
if $\operatorname{Ferme}(x)=$ Faux then
if $\operatorname{Ferme}(x)=$ Faux then
Explorer (G, x);
Explorer (G, x);
end if
end if
end for
end for
DFS(G):

```
DFS(G):
```

Lecture : Basic techniques for graph algorithms MPRI 2013-2014
$\left\llcorner_{\text {Introduction }}\right.$
$\operatorname{Explorer}(G, x)$:
Empiler(Resultat, x);
$\operatorname{Pile}(x) \leftarrow$ Vrai; Ferme $(x) \leftarrow$ Vrai;
pre $(x) \leftarrow$ comptpre; comptpre \leftarrow comptpre +1 ;
racine $(x) \leftarrow \operatorname{pre}(x)$;
for all $x y \in U$ do
if $\operatorname{Ferme}(y)=$ Faux then
Explorer (G,y);
$\operatorname{racine}(x) \leftarrow \min \{\operatorname{racine}(x)$, racine $(y)\}$;
else if $\operatorname{Pile}(y)=$ Vrai then
$\operatorname{racine}(x) \leftarrow \min \{$ racine (x), racine $(y)\}$;
end if
end for
if $\operatorname{racine}(x)=\operatorname{pre}(x)$ then
Dépiler Resultat jusqu'à x;
end if

Lecture : Basic techniques for graph algorithms MPRI 2013-2014
-Introduction

Fundamental questions about algorithms

1. How can we prove such a nice algorithm?
2. It has some greedy flavor, why?

Lecture : Basic techniques for graph algorithms MPRI 2013-2014
$\leftarrow_{\text {Good algorithms and graph decompositions }}$

Interval graphs

Let us consider an operation research problem :

- Storage of products in fridges : each product is given with an interval of admissible temperatures. Find the minimum number of fridges needed to store all the products (a fridge is at a given temperature).
- A solution is given by computing a minimum partition into maximal cliques.
- Fortunately for an interval graph, this can be polynomially computed
- So knowing that a graph is an interval graph can help to solve a problem.

Lecture : Basic techniques for graph algorithms MPRI 2013-2014

\measuredangle Graph Representations

Notations

Here we deal with finite loopless and simple undirected graphs.
For such a graph G
we denote by $V(G)$ the set of its vertices
and by $E(G)$ the edge set
By convention $|V|=n$ and $|E|=m$

Lecture : Basic techniques for graph algorithms MPRI 2013-2014
Good algorithms and graph decompositions

Our Claims or thesis
An efficient algorithm running on a discrete structure is always based:

- on a theorem describing a combinatorial structure
- a combinatorial decomposition of this discrete structure
- or in some other cases a geometric representation of the structure provides the algorithm.

Examples

- Chordal graph recognition and maximal clique trees (particular case of treewidth).
- Transitive orientation and modular decompostion.
- Max Flow and decomposing a flow in a sum of positive circuits.
- Greedy algorithms for minimum spanning trees and matroids
$2^{\text {nd }}$ Lecture : Basic techniques for graph algorithms MPRI 2013-2014
-Good algorithms and graph decompositions

Interval graphs are used to modelize time (in scheduling) but also to analyze DNA sequences
$2^{\text {nd }}$ Lecture: Basic techniques for graph algorithms MPRI 2013-2014
$\left\llcorner_{\text {Graph }}\right.$ Representations

Bound on the number of edges

Triangle free graphs
Show that if G has no triangle then
$|E| \leq \frac{|V|^{2}}{4}$
Planar graphs
Show that if G is a simple planar graph (i.e. without loop and parallel edge) then
$|E| \leq 3|V|-6$

Lecture : Basic techniques for graph algorithms MPRI 2013-2014
Graph Representations

Sparse graphs satisfy : $|E(G)| \in O(|V(G)|)$
Planar graphs are sparse, but also many graphs coming from applications are sparse
For example the WEB graph is sparse.
For sparse graphs one has to use an adjacency lists representation.

Lecture : Basic techniques for graph algorithms MPRI 2013-2014
\measuredangle Graph Representations

Matrice ordonnée par l'ordre alphabétique des noms des URL

$2^{\text {nd }}$ Lecture : Basic techniques for graph algorithms MPRI 2013-2014
Graph Representations

Un zoom autour de la diagonale

$2^{\text {nd }}$ Lecture : Basic techniques for graph algorithms MPRI 2013-2014
-Graph Representations

- Adjacency lists
$O(|V|+|E|)$ memory words
Adjacency test : xy is an arc in $O(|N(x)|)$
- Adjacency Matrix
$O\left(|V|^{2}\right)$ memory words (can be compressed)
Adjacency test : xy is an arc in $O(1)$
- Customized representations, a pointer for each arc ...

$2^{\text {nd }}$ Lecture : Basic techniques for graph algorithms MPRI 2013-2014

-Graph Representations

Quicksands

- A sentence like
"To compute this invariant or this property of a given graph G one needs to "see" (or visit) every edge at least once".
- False statement as for example the computation of twins resp. connected components on \bar{G} knowing G.

```
LGraph Representations
```


Auto-complemented representations

Initial Matrix					Tagged Matrix				
	1	2	3	4		$\overline{1}$	2	$\overline{3}$	4
1	1	1	1	0	1	0	1	0	0
2	0	0	1	0	2	1	0	0	0
3	1	0	1	1	3	0	0	0	1
4	1	0	0	0	4	0	0	1	0

Lecture : Basic techniques for graph algorithms MPRI 2013-2014
Graph Representations

- Implicit hypothesis : the memory words have k bits with $k>\lceil\log (|V|)\rceil$
- To be sure, consider the bit encoding level

Lecture : Basic techniques for graph algorithms MPRI 2013-2014

Graph Representations

For some large graphs, the Adjacency matrix, is not easy to obtain and manipulate.
But the neighbourhood of a given vertex can be obtained. (WEB Graph or graphs is Game Theory)

Can the advantages of the 2 previous representations can be mixed in a unique new one?
Adjacency lists : construction in $O(n+m)$
Incidence matrix : cost of the query : $x y \in E$? in $O(1)$
In other words
Using $O\left(n^{2}\right)$ space, but with linear time algorithms on graphs?
${ }^{\text {d }}$ Lecture : Basic techniques for graph algorithms MPRI 2013-2014
Graph Representations

- At most $2 n$ tags (bits)
$O\left(n+m^{\prime}\right)$ with $m^{\prime} \ll m$.
Dalhaus, Gustedt, McConnell 2000
- What can be computed using such representations ? Example : strong connected components of G, knowing \bar{G} ?

Lecture : Basic techniques for graph algorithms MPRI 2013-2014
\checkmark Graph Representations

- Find a minimum sized representation
- If G is undirected a minimum is unique.

Lecture : Basic techniques for graph algorithms MPRI 2013-2014
-Graph Representations

Exercise

Suppose that a graph $G=(V, E)$ is given by its adjacency lists and let σ be some total ordering of its vertices.

- How can we sort the adjacency with respect to σ (increasing)?
- What is the complexity of this operation?
- Let σ be the total ordering of the vertices with decreasing degrees, how to compute σ ?

$2^{\text {nd }}$ Lecture : Basic techniques for graph algorithms MPRI 2013-2014

\measuredangle Graph Representations

Complexity

Time : Linear time complexity (the size of the data structure A).
Memory : Twice the size of the adjacency lists $2|A|$
Exercise
Adapt the solution for directed graphs
$2^{\text {nd }}$ Lecture : Basic techniques for graph algorithms MPRI 2013-2014
Graph Representations

The previous solutions need that the data structure is available at once in the memory.
This will be implicit in the remaining of the course, as well as the RAM model.

Lecture : Basic techniques for graph algorithms MPRI 2013-2014
Graph Representations

What is an elementary operation for a graph?

- Traversing an edge or Visiting the neighbourhood?
- It explains the very few lower bounds known for graph algorithms on a RAM Machine.
- Our graph algorithms must accept any auto-complemented representation.
Partition Refinement

$2^{\text {nd }}$ Lecture : Basic techniques for graph algorithms MPRI 2013-2014

$\left\llcorner_{\text {Graph }}\right.$ Representations

Sorting an adjacency list

Suppose that a graph $G=(V, E)$ is given by its adjacency lists A and let σ be some total ordering of its vertices. How can we sort the adjacency with respect to σ (increasing)?

One solution
Build another adjacency list structure B from the old one by taking the vertices from $\sigma(n)$ down to $\sigma(1)$ in the following way: read $A(\sigma(i))$ and add $\sigma(i)$ in front of the lists of B corresponding to the neighbors of $\sigma(i)$
At the end of the process, the lists of B are sorted in the right way.

Lecture : Basic techniques for graph algorithms MPRI 2013-2014

\measuredangle Graph Representations

Sorting the vertices by their degrees

1. Compute the degrees by scanning the adjacency lists in an array D
2. Use any per value sorting algorithm (Radix or other) since all numbers are bounded by n for a simple graph.
3. Apply the previous algorithm to sort the adjacency lists.

Lecture : Basic techniques for graph algorithms MPRI 2013-2014
Cograph recognition : the naive approaches

How to find an induced P_{4} ?

- Very naive $O\left(n^{4}\right)$

Check every quadruple of vertices

- Less naive $O\left(m n^{2}\right)$:

For every edge $x y \in E(G)$
For every pair (z, t) of vertices with $z \in N(x)-N(y)$ and
$t \in N(y)-N(x)$
Check if $z t \notin E(G)$.

- $O\left(m^{2}\right)^{1}$

For every pair of edges : $z x, t y \in E(G)$
Check in $O(1)$ if they are the external edges of some P_{4} using the incidence matrix representation)

- O(nm)

For every $z \in V(G)$ compute $N(z)$ and $\overline{N(z)}$
Check if there exist $x \in N(z)$ and one edge $z t \in N(z)$
such that x splits (or distinguishes) z and t, using partition refinement techniques.

1. Could be interesting for sparse graphs.
$2^{\text {nd }}$ Lecture : Basic techniques for graph algorithms MPRI 2013-2014
Cograph recognition : the naive approaches

First linear-time algorithm

Derek G. Corneil and Yehoshua Perl and Lorna K. Stewart
A Linear Recognition Algorithm for Cographs,
SIAM J. Comput.,14, 4 (1985) 926-934.

Lecture : Basic techniques for graph algorithms MPRI 2013-2014
Cograph recognition : the naive approaches

- STEP 3 can be done in $O\left(\left|N\left(x_{i}\right)\right|\right)$, so a total complexity of $O(n+m)$.
- When it fails, x_{i} belongs to a P_{4}. (Case by case analysis).
- Comments : the existence of the cotree is very useful!

Exercises

1. Show that if G is a cograph, then either G is connected or disconnected and the 2 cases are exclusive.
2. How to compute Max Cut on a cograph ?
3. How to recognize if a graph is P_{5}-free?

Lecture : Basic techniques for graph algorithms MPRI 2013-2014
$\left\llcorner_{\text {Cograph recognition : the naive approaches }}\right.$

Sketch of the algorithm

1. Uses the existence of the cotree and incrementally build the cotree.
2. At each step a new vertex x_{i} is added.
3. Compute the minimal subtree A_{i} whose leaves contains $N\left(x_{i}\right) \cap G\left(\left\{x_{1}, \ldots, x_{i-1}\right\}\right)$.
4. If A_{i} has more leave than $N(x)$ STOP " G is not a cograph" ${ }^{2}$. Else if the root of A_{i} is labeled 1 add x_{i} as a leave just attached to this node.
Else consider the parent node of A_{i} (labeled 1), it has at least another child B. Add x_{i} as a leave just attached to the root of B.

2. this is a simplification, for details see the original paper

$2^{\text {nd }}$ Lecture : Basic techniques for graph algorithms MPRI 2013-2014
\square Partition refinement techniques

Definition

Partition Refinement

If $Q=\left\{C_{1}, \ldots C_{k}\right\}$ is a partition over a ground set X, for every $S \subseteq X$ we define from Q and S a new partition:
$\operatorname{Refine}(Q, S)=\left\{C_{1} \cap S, C_{1}-S, \ldots, C_{k} \cap S, C_{k}-S\right\}^{a}$
a. empty sets are removed

More formally

$\operatorname{Refine}(Q, S)=Q \wedge\{S, X-S\}$ in the partition lattice on X.

$2^{\text {nd }}$ Lecture : Basic techniques for graph algorithms MPRI 2013-2014

Partition refinement techniques

Implementation

$V=\left\{x_{1}, \ldots, x_{7}\right\}$
$P=\{C 1, C 2, C 3\}$ and $S=\left\{x_{3}, x_{4}, x_{5}\right\}$
Data Structure

Lecture : Basic techniques for graph algorithms MPRI 2013-2014
-Partition refinement techniques

First Step

$2^{\text {nd }}$ Lecture : Basic techniques for graph algorithms MPRI 2013-2014
-Partition refinement techniques

To implement this data structure we need at least :

- A doubled linked list L for the partition itself
- For each element of V, we need to maintain a reference to its position in the list
- For every element in L we need to maintain a reference to its part.
- Every part has to maintain a reference to its first element.

Lecture : Basic techniques for graph algorithms MPRI 2013-2014
$\left\llcorner_{\text {Partition refinement techniques }}\right.$

Second step

Maintain a list of the C^{\prime} 's that intersect S. List bounded by $|S|$.

Refine $(P, S)=\left\{C^{\prime} 1, C^{\prime \prime} 1, C 2, C^{\prime} 3, C^{\prime \prime} 3\right\}$
computed in $O(|S|)$

Lecture : Basic techniques for graph algorithms MPRI 2013-2014
-Partition refinement techniques

Of course it could be implemented using arrays instead of linked data structures. Furthermore this could be much more efficient in many programming languages (for example those in which list are badly implemented).
This technique is not only efficient theoretically (with respect to complexity measures) but also for practical purpose, since this technique can be implemented with a small overhead.
$2^{\text {nd }}$ Lecture : Basic techniques for graph algorithms MPRI 2013-2014
-Partition refinement techniques

Exercises

1. Propose an alternative implementation using arrays.
2. Propose an implementation in $O(|S|)$ of Refine stable which preserves a given initial ordering of the vertices of the elements x_{i}^{\prime} s of the parts.
3. Propose an implementation in an array compatible with an initial ordering and within the same complexity.
