
1er Cours : Introduction MPRI 2013–2014

1er Cours : Introduction

MPRI 2013–2014

Michel Habib
habib@liafa.univ-Paris-Diderot.fr

http://www.liafa.univ-Paris-Diderot.fr/~habib

Sophie Germain, septembre 2013

1er Cours : Introduction MPRI 2013–2014

Schedule of this introduction course

Our research group

Cographs

Graphs are good models

How to define a good graph algorithm ?
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Our research group

Academic year : 2013-2014

◮ Research team : Distributed algorithms and graphs, LIAFA :

◮ Part I
Practical graph algorithms
Michel Habib (Pr Univ. Paris Diderot)

◮ Part II
Treewith
Structure theorems (minors theory and graph decompositions
Robertson and Seymour)
Pierre Charbit (MdC, Univ. Paris Diderot)

◮ contact : Prenom.Nom@liafa.univ-Paris-Diderot.fr

1er Cours : Introduction MPRI 2013–2014

Our research group

Themes

◮ Bioinformatics (mainly phylogeny and other graph problems)

◮ Networks and Distributed systems

◮ Analysis of huge graphs in social sciences (ranking, clustering)

GANG

An INRIA–LIAFA project on graphs an networks, dir. Laurent
Viennot

SAE

Systématique, Adaptation, Evolution : A biological group at
UPMC with Eric Bapteste and Philippe Lopez

Social sciences

ANR Project AlgoPol (Politics of Algorithms), a collaboration with
Dominique Cardon (Orange Lab) and Christophe Prieur (LIAFA)
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Programme détaillé de la partie I

◮ Graph Classes and (geometric) representations

◮ Partition refinement tools.

◮ Chordal graphs.

◮ A theory on graph searches

◮ Graph decompositions (modular decomposition, join . . .).

◮ Important graph parameters : treewidth, rankwidth,
cliquewidth.
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Programme II

◮ Algorithms for cocomparability graphs and partially ordered
sets

◮ Applications
◮ Computations in networks (flow, diameter, pagerank . . .)
◮ Parametrized complexity
◮ Phylogenetics and other problems from comparative genomics.
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Typical questions

◮ Recognition algorithms, if possible linear-time and certifying.

◮ Efficient decomposition algorithms

◮ Computations of compact encodings and representation

◮ Random generation and enumeration

◮ Routing protocols and diameter estimation

◮ Computation of some invariant (for example min coloring or
max clique).
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Goals

◮ Reach a good level of knowledge on graph algorithms (many
students FAQ)

◮ Understand the greedy algorithms

◮ Try to understand why some simple heuristics works for most
practical data

◮ Understand how to use structural results to design algorithms

◮ Panorama of research
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Google et Facebook
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Next challenges

◮ Merging the Web and social networks ?

◮ Recommender Algorithms (bipartite graph clustering) or
reasoning with heterogeneous data.
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Big Capital !
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Some applications

1. Shortest paths computations in Google maps

2. Community detections in Big data (NSA, CIA, FBI . . .but also
Google, Facebook, Carrefour, . . .)

3. (Un)Fortunately this course provides tools to solve these two
practical problems
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Practical issues

Graphs made up with vertices and edges (or arcs) provide a very
powerful tool to model real-life problems. Weights on vertices or
edges can be added.
Many applications involve graph algorithms, in particular many
facets of computer science !
Also many new leading economical applications Google PageRank
and FaceBook are graph based
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Theoretical side

Why such a course ?

Fagin’s theorems in structural complexity

Characterizations of P and NP using graphs and logics fragments.

NP

The class of all graph-theoretic properties expressible in existential
second-order logic is precisely NP.

P

The class of all graph-theoretic properties expressible in Horn
existential second-order logic with successor is precisely P.

1er Cours : Introduction MPRI 2013–2014

Cographs

Which class of graphs ? First example the Cographs

Complement-reducible graphs
S. Seinsche. On a property of the class of n-colorable graphs.
Journal on Combinatorial Theory (B), 16 :191–193, 1974.

Recursive Definition

The class of cographs is the smallest class of graphs containing
G0 = K1 and closed under series and parallel compositions.
They can be represented via a tree (called a cotree) using these
operations, the leaves being the vertices.
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Cographs

An example
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Cographs properties

Hereditary

Every induced subgraph of a cograph is a cograph.

Characterisation Theorem

A graph is a cograph iff it does not contain a P4 (path of length 3
with 4 vertices) as an induced subgraph.

Easy induction

With the cotree representation. a

a. Proof valid only in the finite case !
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Cographs

Cographs an interesting class of graphs
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Figure: a) A cograph G . b) An embedding of the cotree TG of G .
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Properties of the cotree

◮ Vertices of the cotree can be labelled with 0 (parallel) and 1
(series).

◮ From G to G just exchange 0’s and 1’s in the cotree. So one
extra bit is enough to encode both of them.

◮ xy ∈ E iff LCA(x , y) in the cotree is labelled with 1

◮ The cotree provides an exact coding of the graph in
O(|V (G )|). And the query xy ∈ E (G )? can be answered in
O(1) using LCA operations.
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Twins

Twins

x , y ∈ V are false- (resp. true-) twins if N(x) = N(y) (resp.
N(x) ∪ {x} = N(y) ∪ {y}.
x , y are false twins in G iff x , y are true twins in G .

Elimination scheme

G is a cograph iff it exists an ordering of the vertices
s.t. xi has a twin (false or true) in G{xi+1, . . . xn}
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Cograph applications

◮ Fork, Join operations.

◮ Series parallel electrical networks

◮ Series-parallel orders (applications to scheduling)

◮ Quantum physics : ”Two-colorable graph states with maximal
Schmidt measure” Simone Severini1, University of York, U.K.
2005
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Other applications

1. Redondancy elimination in graphs

2. Applications of quasi-twins :
data compression in bipartite graphs,
Identifying customers : if you change your phone card but
keep the same set of correspondants
(FBI . . .)
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Not so easy algorithmic questions

◮ How to recognize and certify in linear time, if a graph is a
cograph ?
Yes case, build a cotree.
No case, exhibit a P4.

◮ How to compute in linear time the classes of (false) twins ?
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Eventually the class of cograph has :

◮ A forbidden induced subgraph characterization

◮ A recursive definition and a tree structure

◮ An efficient encoding

◮ An elimination scheme
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Using cotrees one can plynomially solve on cographs, NP-complete
problems in the general case :

◮ Maximum clique

◮ Coloration

◮ If G is connected then Diameter(G ) ≤ 2

◮ Eighenvalues . . .
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Using the cotree in a bottom up way

◮ Max clique
Consider the cotree as an expression to evaluate with the
following rules :
put a 1 on a leaf
interpret a 1 (resp. 0) node of the cotree as a + (resp. max)

◮ Min coloration
same rules

◮ Therefore Max clique = Min Coloration
ω(G ) = χ(G ) and cographs are perfect graphs
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Cographs

If the cotree is given, Max clique and Min coloration can be
computed in O(|V (G )|) for a cograph G .
Else we need to compute the cotree and the algorithm requires
O(|V (G )|+ |E (G )|).

1er Cours : Introduction MPRI 2013–2014

Cographs

But they are not so simple (a cograph may have an exponential
number of maximal cliques !).
This is why last year we had 2 internships introducing and studying
extensions of cographs, namely ”switch cographs” and
”k-cographs”.
Keeping the tree-structure but allowing new operations.
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Research problem

1. Find efficient algorithms to compute quasi-twins and
generalize to community detections in social networks, in a
dynamic settings.

2. More difficult !
Find a polynomial algorithm for graph isomorphism
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Graphs are good models

The great importance of the right model

It is crucial to use all the characteristics of the problem you want
to solve and find a good model. Two examples from Peter
Winkler’s nice book on Mathematical Puzzles :
All the discrete structures considered here are supposed to be finite.

1. An odd number of soldiers in a field in such a way that all
pairwise distances are different. Each soldier is told to keep an
eye on the nearest other soldier.
Show that at least one soldier is not being watched.

2. A problem on rectangles :
A large rectangle of the plane is partitioned into smaller
rectangles, each of witch has either integer height or integer
width (or both). Prove that the large rectangle also has this
property.
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Graphs are good models

Uses of geometric representations

◮ Computing a maximum clique (of maximum size) or an
efficient representation of an interval graph.

◮ Numerous algorithms on planar graphs use the existence of a
dual graph. ( Ex : flows transform into paths)
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Graphs are good models

Boxicity dimension

To each species on can associate the k principal parameters needed
for its survival. Each parameter has a range of possible values.
For human beings these parameters could be : temperature, air
pression, air quality (% of CO (carbon monoxide), . . .).
To each species one can associate a box in the k-dimensional
space. Therefore two species may have lived together iff their
boxes intersect.
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How to define a good graph algorithm ?

Which algorithms ?

◮ Optimal ?

◮ Linear ?

◮ Efficient ?

◮ Simple ?

◮ Easy to program ?
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How to define a good graph algorithm ?

In our work on optimization problems on graphs, we will met
several complexity barriers :

◮ Polynomial versus NP hard
In this case an algorithm running in O(n75.m252) could be a
nice result !

◮ Linear versus Boolean matrix multiplication
Algorithms running in O(n.m), hard to find a lower bound !

◮ Practical issues need linear algorithms in order to be applied
◮ on huge graphs such as Web graph . . ..
◮ many times such as inheritance in object oriented

programming.
◮ Need for heuristics !
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How to define a good graph algorithm ?

Brute Force or naive algorithms

For some problem

1. Enumerate the set S of solutions

2. Select the optimal one

3. Show that |S | is polynomial in the size of the problem
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How to define a good graph algorithm ?

Variations

1. Find the best way to enumerate S (for example a Gray code
in O(|S |) constant time per element)

2. Many variations . . .

3. Sometimes the problem is NP-hard and the the game is to
find the exponential algorithm with the lowest exponent.


