

Dossier Ressources

SOMMAIRE

1 - Les ce	ellules photovoltaïques	

2 - Programme Grafcet du Panneau Solaire Asservi

3 - Notice d'utilisation du logiciel Automgen

4 - DR-MoteurCC

5 - Caractéristique du moteur référence JAPAN MOTOR DME44

6 - Notice d'utilisation du logiciel Digiview

7 - Notice d'utilisation de SolidWorks et CosmosMotion

8 - Notice d'utilisation du logiciel Did'acsyde

9 - Cdcf Panneau solaire asservi

1 – Les cellules photovoltaïques

Les cellules photovoltaïques

1. L'énergie solaire

Pourquoi les énergies renouvelables ?

Le Soleil constitue une énorme source d'énergie dans laquelle nous baignons en permanence. L'homme a compris depuis longtemps l'intérêt pour lui d'exploiter une telle source de lumière et de chaleur. Actuellement, il existe deux voies d'utilisation de l'énergie solaire qui transforment directement le rayonnement en chaleur ou en électricité, respectivement le solaire thermique et le solaire photovoltaïque. Toutefois, l'exploitation de cette source énergétique est récente et se développe mais reste encore très coûteuse.

L'énergie solaire fait partie des énergies renouvelables. Par définition, les énergies dites renouvelables sont potentiellement inépuisables. La nature peut les reconstituer assez rapidement, contrairement au gaz, au charbon et au pétrole, dont les réserves, constituées après des millions d'années, sont limitées. Les énergies solaire, éolienne, hydraulique, géothermique et de biomasse en sont les formes les plus courantes.

Trois facteurs militent en faveur des énergies renouvelables :

- la sauvegarde de l'environnement ;
- l'épuisement inévitable des ressources (pétrole, gaz, ..) limitées de la planète ;
- les considérations économiques (coût).

Les énergies renouvelables ne peuvent pas remplacer dès aujourd'hui toutes les énergies conventionnelles, mais elles peuvent enrichir la gamme des énergies exploitées à l'heure actuelle.

Le changement climatique attribuable à la pollution, et à ses effets sur le milieu naturel, est au premier rang des préoccupations environnementales depuis la conférence « Sommet de la Terre », en 1992. En outre, les deux crises du pétrole des années 70 ont contraint les pays industrialisés à bien examiner l'emploi qu'ils font de leurs ressources et à prendre des mesures pour ne plus dépendre quasi uniquement des hydrocarbures pour leurs besoins en combustibles. Ces pays entreprennent des recherches poussées pour trouver des substituts écologiques aux combustibles fossiles. Quant aux pays en voie de développement, il est d'une importance capitale pour eux de diversifier leurs sources d'énergie. Leur rapide croissance industrielle exerce de fortes pressions sur des ressources déjà limitées et accélère la dégradation des écosystèmes de la planète.

Les énergies renouvelables ont un attrait certain lorsqu'on considère qu'elles peuvent fournir de l'électricité, écologiquement et à bon marché, aux populations isolées des pays en voie de développement. Bien des localités n'ont en effet pas les moyens de se relier à un réseau d'électricité, mais elles peuvent tirer profit des techniques qui ont été mises au point pour domestiquer les sources naturelles d'électricité et de chaleur. Étant donné que trois milliards de personnes n'ont pas d'électricité, il ne fait aucun doute que les énergies renouvelables peuvent jouer un rôle clé et concourir au développement économique des régions pauvres.

Forme et potentiel de l'énergie solaire

Ce que l'on désigne par énergie solaire est le rayonnement émis dans toutes les directions par le Soleil et que la Terre reçoit à raison d'une puissance moyenne de 1,4 kW.m-2, pour une surface perpendiculaire à la direction Terre - Soleil. Ce flux solaire est atténué lors de la traversée de l'atmosphère par absorption ou diffusion, suivant les conditions météorologiques et la latitude du lieu ; au niveau du sol, la puissance restante est de l'ordre de 1 kW.m-2 sous nos latitudes. La quantité

Société DMS - Département STI

Ce document et les logiciels fournis sont protégés par les droits de la propriété intellectuelle et ne peuvent pas être copiés sans accord préalable écrit de DMS.

Copyright DMS 2009

d'énergie utilisable varie entre 800 et 7000 kWh.m-2 suivant le lieu.

Une petite idée de l'ensoleillement sur notre pays est donnée par la carte ci-dessous. Les régions les plus froides reçoivent un ensoleillement inférieur à 1220 kwh.m-2 /An, alors que les zones rouges reçoivent un ensoleillement supérieur à 1760 kwh.m-2 /An.

2. Les panneaux solaires

2.1. Principe des panneaux

Principe de fonctionnement du panneau solaire

Les panneaux solaires convertissent l'énergie lumineuse en énergie électrique. Ils sont composés de cellules photovoltaïques. Ces cellules sont constituées de matériaux semi-conducteurs qui peuvent libérer leurs électrons sous l'action d'une énergie (ici l'énergie lumineuse). La libération des électrons des matériaux constituant les cellules sous l'action des photons permet ainsi la production d'un courant électrique.

Il existe trois types de cellules photovoltaïques :

- Les cellules mono-cristallines : elles sont constituées d'un cristal à deux couches, le plus souvent du silicium. Elles ont un rendement entre 15 et 22 % mais elles sont chères à fabriquer.
- Les cellules poly-cristallines : elles sont constituées de plusieurs cristaux, ce qui diminue leur prix de fabrication. Cependant leur rendement n'est que de 10 à 13 %.
- Les cellules amorphes : elles ont un rendement très faible (5 à 10 %) mais leur prix est très bas.

Ce document et les logiciels fournis sont protégés par les droits de la propriété intellectuelle et ne peuvent pas être copiés sans accord préalable écrit de DMS. Copyright DMS 2009

Une cellule photovoltaïque est assimilable à une diode sensible, son fonctionnement est basé sur les propriétés matériaux semi-conducteurs. En effet, une cellule est constituée de deux couches minces d'un semi-conducteur. Ces deux couches sont dopées différemment :

- pour la couche N, apport d'électrons ;
- pour la couche P, déficit d'électrons.

L'énergie des photons lumineux captés par les électrons périphériques (couche N) leur permet de franchir la barrière de potentiel et d'engendrer un courant électrique continu. Pour effectuer la collecte de ce courant, des électrodes sont déposées par sérigraphie sur les deux couches de semi-conducteur L'électrode supérieure est une grille permettant le passage des rayons lumineux. Une couche anti-reflet est ensuite déposée sur cette électrode afin d'accroître la quantité de lumière absorbée.

Sous l'action de la lumière (photons) ces cellules génèrent une tension électrique qui se mesure en volt. La tension obtenue est de l'ordre de 0,5 V par cellule. Ces cellules sont ensuite assemblées en série et parallèle pour former des panneaux.

2.2. Les panneaux fixes

Pourquoi orienter les panneaux solaires ?

Le soleil se déplace au cours de la journée et suivant les saisons. Le panneau solaire, en revanche, se trouve généralement en position fixe, ce qui entraîne des pertes énergétiques précieuses. Une installation fixe, orientée, dans le cas idéal, vers le sud délivre une puissance qui croît très lentement tôt le matin et diminue fortement l'après-midi.

Production d'énergie électrique pour un panneau solaire

Une part importante de l'énergie récupérable est ainsi perdue. Si l'installation s'oriente constamment en direction du soleil, elle génère un maximum d'électricité. Une installation fixe de 1 kW et orientée de façon optimale, produit par jour d'ensoleillement, environ 5 kWh d'électricité solaire. La même installation de 1 kW avec « suiveur » fournit en revanche jusqu 'à 10 kWh par jour.

soleil détermine le rendement du panneau solaire. L'angle d'incidence Ø optimal est de 90°. Le rendement du panneau solaire est définit selon l'équation suivante :

R = 100 sin	· Angle d'incidence en degrés	R · Rendement en %
11 - 100.511	. Anyle u moluence en uegres	

Ainsi, seule une rotation automatique peut permettre au panneau solaire de délivrer une puissance maximale. En effet, si le panneau reste statique, la production d'électricité peut être réduite de 50 % à cause de l'orientation. Comme le rendement des cellules poly-cristallines ne dépasse que rarement 10 %, s'il y a une perte supplémentaire du rendement de 50 %, la production finale d'énergie pour une panneau solaire qui délivre un puissance de 100 W orienté de manière optimale ne sera, dans le cas d'une installation fixe que de 50 W alors qu'il reçoit plus de 1000 W.m².

2 – Programme Grafcet du Panneau Solaire Asservi

Programme Grafcet du panneau solaire asservi

Symboles :

Symboles	Variables	Commentaires
C1	%C1	Compteur de cycles de recherche d'azimut
C2	%C2	Compteur de cycles de recherche d'élévation
auto	%M100	Bit utilisateur de mode automatique sélectionné
le	iO	Butée fin de course Est
lo	i1	Butée fin de course Ouest
In	i2	Butée fin de course Nord
ls	i3	Butée fin de course Sud
au	i10	Arrêt d'urgence (coupure d'énergie)
repli	i11	Mode repli sélectionné
defauta	i20	Simulation d'azimut non trouvé
defaute	i21	Simulation d'élévation non trouvée
EST	00	Alimentation pour rotation panneau vers l'Est
OUEST	01	Alimentation pour rotation panneau vers l'Ouest
NORD	02	Alimentation pour rotation panneau vers le Nord
SUD	03	Alimentation pour rotation panneau vers le Sud
lux1	04	Seuil nuit/jour
lux2	05	Seuil couvert/ensoleillé
azim	o20	Azimut trouvé
azime	o21	Azimut plus à l'Est
azimo	o22	Azimut plus à l'Ouest
elev	o30	Elévation trouvée
elevs	031	Elévation plus au Sud
elevn	032	Elévation plus au Nord

Grafcet :

Société DMS - Département STI

 106 avenue Tolosane – 31520 RAMONVILLE SAINT AGNE – ☎ : + 33 (0)5 62 88 72 72 □ : + 33 (0)5 62 88 72 79 Site internet : www.dmseducation.com Email : info@dmseducation.com

 Ce document et les logiciels fournis sont protégés par les droits de la propriété intellectuelle et ne peuvent pas être copiés sans accord préalable écrit de DMS. Copyright DMS 2009

3 – Notice d'utilisation du logiciel Automgen

Simulateur de la commande du panneau solaire asservi sous Automgen 7 et IRIS

PRÉSENTATION

Présentation générale

Ce simulateur de la commande du panneau solaire asservi permet d'étudier, de simuler et de mettre au point la commande séquentielle du panneau.

Il est réalisé sous Automgen 7 et IRIS. À l'ouverture l'application se présente comme l'indique la copie d'écran de la figure 1.

Dans la partie droite de l'écran se trouvent 5 fenêtres IRIS qui permettent de **commander le panneau**, de **régler certains paramètres**, de **simuler l'évolution des paramètres du soleil**, de **simuler des défauts** et de **montrer l'évolution dynamique du panneau**.

Une description complète de ces fenêtre est donnée ci-après.

Fenêtres IRIS

Pupitre de commande

Il permet aussi d'agir sur un **bouton d'arrêt d'urgence** de type "coup de poing à accrochage", qui n'existe pas sur le système didactisé mais qui permet de simuler une coupure de courant. Le comportement est le suivant :

- lorsque l'arrêt d'urgence n'est pas actionné (fig. 2), le voyant au dessous est allumé (couleur vert), indiquant ainsi que le système est en service ;
- lorsque l'arrêt d'urgence est actionné (*fig. 4*), le voyant au dessous est éteint (couleur vert pâle), indiquant ainsi que le système est hors service.

Pupitre de réglage

La carte électronique de commande du système didactisé comporte un certain nombre de résistances réglables. Deux d'entre elles permettent de régler la sensibilité de la photopile (voir le dossier technique correspondant) en fonction de la luminosité ambiante et suivant deux seuils :

- **seuil nuit/jour** qui définit la valeur de la luminosité à partir de laquelle le système peut commencer à fonctionner ;
- seuil couvert/ensoleillé qui définit la valeur de la luminosité en dessous de laquelle, même en plein jour, le système doit se replier par manque de lumière directive.

Le pupitre de réglage (fig. 5) permet, à l'aide de curseurs, de fixer les valeurs des seuils précédents. Des afficheurs matérialisent les valeurs correspondantes exprimées en "lux".

Lux1 (variation possible de 0 à 7 000 lux) et Lux2 (variation possible de 7 000 à 30 000 lux) sont des variables binaires associées à ces seuils. Elles ont pour valeur :

- '0' si la luminosité du soleil est inférieure ou égale à la valeur définie correspondante ;
- '1' dans le cas contraire.

Simulateur de défauts

Défaut azimut

Paramètres du soleil

Pendant le fonctionnement du panneau solaire, des défauts imprévisibles peuvent venir le perturber : assombrissement inhabituel, problème électrique, etc.

Ces défauts doivent pouvoir être pris en compte dans la simulation du fonctionnement. C'est le rôle du simulateur de défauts *(fig. 6)* qui peut agir sur l'azimut comme sur l'élévation.

Un interrupteur bistable lumineux est utilisé pour chacun des défauts :

- en l'absence de défaut, l'interrupteur est enfoncé du côté haut et le voyant est éteint (*fig. 6, couleur sombre*);
- en présence de défaut, l'interrupteur est enfoncé du côté bas et le voyant est allumé (*fig. 7, couleur vive*).

La présence d'un défaut lors de la recherche de la source lumineuse provoque des allers et retours entre les capteurs qui limitent la rotation du mouvement concerné.

Chaque défaut comporte un afficheur qui comptabilise le nombte de cycles réalisés avant la disparition du défaut ou de l'abandon. (Un cycle est égal à un aller-retour complet.)

Ce panneau (*fig. 8*) permet de simuler les paramètres du soleil et leur évolution (**luminosité**, **position en azimut** et **en élévation**). Des curseurs sont utilisés pour cela et des afficheurs permettent de visualiser les valeurs :

- la luminosité peut varier de 0 à 30 000 lux. Deux voyants permettent de savoir si les seuils Lux1 et Lux2 sont franchis. Par exemple, sur la figure 8, le seuil Lux1 est franchi car le viyant est allumé (couleur jaune vif) alors que le seuil Lux2 ne l'est pas (couleur jaune terne);
- l'azimut peut varier de -90° Ouest à +90° Est ;
- l'élévation peut varier de 5° à 90° Nord.

Simulateur dynamique de la partie opérative

Le simulateur dynamique (fig. 9) permet de suivre en temps réel l'évolution de la partie opérative du système en réponse aux sollicitations de la partie commande.

Les boutons de la partie basse du simulateur permettent de de modifier la position du point d'observation.

Il est conseillé de ne rien toucher à ce pupitre.

Remarques

- Toutes ces fenêtres ne sont accessibles que lorsque la simulation est lancée (clic sur le bouton de la barre d'outils d'Automgen).
- Toutes les fenêtres, sauf celle du simulateur dynamique de la PO, permettent de générer des **consignes** et des **visualisations**. Toute ou partie de ces informations peuvent être prises en compte, ou non, dans la description du fonctionnement du panneau.

Utilisation

La description du fonctionnement du panneau étant saisie dans un ou plusieurs folios sous forme de grafcets, pour une simulation optimale du fonctionnement, il est conseillé de suivre et de réaliser les opérations dans l'ordre suivant :

- lancer la simulation (
- activer l'arrêt d'urgence ;
- régler les seuils de luminosité ;
- régler éventuellement les paramètres du soleil ;
- activer éventuellement des défauts ;
- choisir l'un des deux modes de fonctionnement ;
- désactiver l'arrêt d'urgence ;
- vérifier le fonctionnement dynamique du panneau relativement au comportement attendu en faisant varier tout ou partie des paramètres.

4 – DR-MoteurCC

DOCUMENT RESSOURCE

Modélisation d'un moteur à courant continu

Équations de fonctionnement

Le système étudié est équipé d'un **moteur à courant continu** qui peut être modélisé par les équations physiques suivantes :

D'un point de vue électrique, l'induit peut être caractérisé par une résistance en série avec une inductance et une force contre-électromotrice, ce qui conduit à l'équation de maille :

 $u(t) = R i(t) + L \frac{di(t)}{dt} + e(t)$ [1]

D'un point de vue mécanique, l'équation du système en rotation conduit à :

$$C_{m}(t) - C_{r}(t) - f \omega(t) = J \frac{d\omega(t)}{dt}$$
 [2]

Ce type de moteur répond aux équations électromagnétiques :

u(t) est la tension d'alimentation du moteur
e(t) est la tension de la fem
i(t) est l'intensité du courantA
R est la résistance de l'induit $\ldots \ldots \Omega$
L est l'inductance du bobinagem.H
J est l'inertie totale moteur-effecteur exprimée sur l'axe moteur
f est le paramètre de frottement « fluide » (visqueux)
c _m (t) est le couple moteurN.m
c _r (t) est le couple résistant éventuel (perturbation)
$ω$ (t) est la vitesse de rotation de l'arbre du moteur \dots rad.s ⁻¹
K _t est le coefficient de coupleN.m.A ⁻¹
K _e est le coefficient de vitesse

Hypothèses simplificatrices fréquentes

- Les frottements secs et visqueux sont nuls.
- L'inductance de l'induit du moteur est nulle.

 $-K_t = K_e$.

Remarque importante

Dans les documents qui précisent les caractéristiques des moteurs, les constructeurs donnent $1/K_e$ et non pas K_e . Dans ces conditions et en respectant les unités, on vérifie aisément que $K_t = K_e$.

5 – Caractéristique du moteur référence JAPAN MOTOR DME44

Dossier Ressources

Caractéristiques de la motorisation

Motorisation d'élévation

moteur

Références et caractéristiques techniques

Codeur DME44 JAPAN SERVO:

Type de capteur	Magnétique
Impulsion par tour	12 imp/tour
Voltage d'entrée	CC 5 V ±10%
Courant	5 mA
Sortie	
B/A	50±20%

Moteur JAPAN SERVO DME44SM6 :

 $K_e = K_t = 0,0273 \text{ V.s}$ R = 1,7 Ω L = 1,7mH

Magnetic Type

CONNECTION

Inertie du moteur $J_{moteur} = 20000g.mm^2 = 200g.cm^2$ Frottement sec : f = 0

				Rate	Rated			No load		Stall torque		Woight	
	Model	Output	Voltage	Tore	que	Current	Speed	Current	Speed	mNm	ozin	we	igni
		W	V	mN-m	oz-in	A	r/min	А	r/min	11111-111	02.111	g	lb
	DME44SA	9.2	12	24	3.47	1.31	3600	0.31	4300	150	22.22	300	0.66
. •													

DIMENSIONS Unit mm(inch) DME44SA, DME44SB

MODEL CODE	VOLTAGE	OUTPUT	CURRENT
SA	12V	9.2W	1.31A

Réducteur JAPAN SERVO HPA 6 DG 180:

6DG Le réducteur HPA est un réducteur à engrenages. i₁=180 Inertie sur arbre de sortie J_{red} = 2000 g.mm²

Réducteur roue et vis sans fin VARVEL SRS 28 i56:

 i_2 = 56 Inertie sur arbre de sortie J_{rvs} = 1700 g.mm²

Caractéristiques :

Module $m_x = 0.75$ Angle de la vis $\beta = 3^{\circ},03^{\circ}$ nombre de filet de la vis Z = 1 Rendement $\eta = 0.4$

CONNECTION

Dossier Ressources

Motorisation d'azimut

Références et caractéristiques techniques sont les mêmes pour le moteur en élévations.

Codeur DME44 JAPAN SERVO:

Magnetic Type

Réducteur JAPAN SERVO HPA 6 DG 100:

i₁=100

Inertie sur arbre de sortie J_{red} = 2000 g.mm²

Réducteur roue et vis sans fin VARVEL SRS 28 i28:

 i_2 = 28 Inertie sur arbre de sortie J_{rvs} = 1700 g.mm²

Caractéristiques :

Module $m_x = 1,5$ Angle de la vis $\beta = 6^{\circ},06'$ nombre de filet de la vis Z = 1 Rendement $\eta = 0,6$

Société DMS - Département STI

6 – Notice d'utilisation de l'interface Digimétrie

Notice d'utilisation du logiciel Digiview

1. PRESENTATION

Digiview est un logiciel d'acquisition numérique. Pour démarrer le logiciel, double cliquer sur l'icône O

2. UTILISATION AVEC LE PANNEAU SOLAIRE ASSERVI

Connecter la prise du boîtier Digimétrie à la voie de mesure. Mettre le système manuel.

en

mode

3. CHARGER LE PROJET A UTILISER

Les projets sont dans : C:\digimetrie.

Mesure-moteur-seul.ini qui donne la fréquence de rotation du moteur ;

Mesure-psa-impulsion.ini qui donne la fréquence de rotation du moteur, la tension aux bornes du moteur et l'intensité qui le traverse.

Mesure-psa-energie.ini qui a les mêmes caractéristiques que précédemment, mais sur une longue durée.

 EXE Macro
 MACRO

 CALC
 AIDE

 CARTE
 0
 1
 2
 3

 Esc=Stop F10=BRK

Pour effectuer une mesure, un clic dans la fenêtre Acq sur le bouton « AD EXE » démarre l'acquisition.

Une fois l'acquisition effectuée, il est nécessaire d'appliquer des outils de calculs pour lisser les courbes ou bien d'effectuer des opérations entre les voies. On utilise pour cela la fenêtre CALCULETTE (voir la partie calcul ci-après).

Site internet : <u>www.dmseducation.com</u> Email : <u>info@dmseducation.com</u> Ce document et les logiciels fournis sont protégés par les droits de la propriété intellectuelle et ne peuvent pas être copiés sans accord préalable écrit de DMS.

Copyright DMS 2009

4. EXPLOITATION DES RESULTATS A L'ECRAN

Pour visualiser les coordonnées des points sur l'écran, il faut activer le mode « coordonnées » qui se trouve dans le menu « Edit ».

Un clic droit prolongé avec un déplacement du curseur à la coordonnée voulu, donne en bas à droite de la fenêtre les valeurs où se trouve le pointeur.

DIGIMETRIE DigiV w I/O [freq_cpt] - [<0> IQUE: PSA-ELVEVATION.IA AD:TP[0]:W Outils Aide Edit Acquis Deř Cascade Shift+F5 Mosaïque Arranger les Fenêt Premier pla +25.00 V[0]: Sign rnier plar V[1]: Fréc Coupe +22.49 ✓ 1 <0>:WAD:TP[0]:WIN ANALOGIQUE:[PSA-ELVEVATION.IAD] +19.98 +17.46 +14.95

Par défaut, ce sont les ordonnées de la voie 0 qui s'affichent.

5. LE MODE MULTIAXES

Par défaut, dans le mode multiaxes, seules les ordonnées de la voie 0 peut changer. Pour pouvoir opérer sur les autres voies, cliquer sur le bouton droit de la souris, et sélectionner la voie voulue dans la fenêtre.

6. CALCULS

Pour exploiter des résultats, il est fort utile de lisser les courbes. Par défaut la fenêtre est ouverte. Pour l'ouvrir il faut cliquer dans Outils -> Calculette. Les données affichées à l'écran sont stockées dans un fichier qui s'appelle Tampon. Chaque voie porte un nom. Si l'on veut lisser la voie 3, il faudra écrire dans l'outil calculette T[0]V[3]=L[0]V[3], L[0] étant la fonction lissage. Pour appliquer la fonction à la voie, il est nécessaire de cliquer sur **Exe**.

Il est possible de faire toutes autres opérations. Par exemple, pour additionner les voies 1 et 2, puis afficher dans la voie 0, il faudra écrire : T[0]V[0]=T[0]V[1]+T[0]V[2].

Exemples : - Lissage de la voie 3 T[0]V[3]=L[0]V[3]- Diviser la voie 1 par 12 : T[0]V[1]=(1/12)*T[0]V[1]- Multiplier la voie 1 par -1 T[0]V[1]=-1*T[0]V[1]- Calcul de puissance dans la voie 0 en multipliant la voie 1 et la voie 2 : T[0]V[0]=T[0]V[1]*T[0]V[2]- Calcul de l'énergie dans la voie 3 en intégrant la puissance dans la voie 0 : T[0]V[3]=I1[0] V[0]

	Calculette 🔀
	Status 🚊
••	T[0]V[3]=L[0]V[3]
	Accés Nom fich:C:\Digimetrie\Lissage.CLC
••••	Couper Copier Coller Ajouter Exe CHARGER SAUVER Configurer
	Syntaxe :
	7 8 9 0 + * []] SIN LOG VAR
	4 5 6 . · \ () COS L10 IF 1 2 3 = CUT SQR Tpon
	Derivée 1 Derivée 2 Lissage Fréquence
	MACROS :
	Intégrale 1 Intégrale 2 de:(MIN) 0
	Pos Reset à (MAX) 0
	Unité: POINT Duitter Aide

7 – Notice d'utilisation de SolidWorks et CosmosMotion

Notice d'utilisation de SolidWorks - CosmosMotion

Présentation

Le logiciel se lance en double cliquant sur l'icône :

En ouvrant le fichier demandé, on obtient à l'écran le modèle 3D en vue isométrique et le Feature Manager à Gauche du dessin. Il est composé par défaut de l'arborescence de construction. Un onglet permet de choisir l'application que l'on désire. Dans le cas on l'on souhaite simuler le comportement dynamique du système, en cliquant sur l'onglet

« CosmosMotion », on active la configuration du système.

CosmosMotion

Pour démarrer la simulation, il suffit de cliquer sur la calculette du Manager.

Feature

Une fois la simulation faite, un clic droit sur les liaisons permet de tracer des courbes (déplacements, forces, puissance ...)

Ces courbes peuvent être exploités sous Excel par la suite en effectuant un clic droit sur la courbe.

Utilisation des outils de propriétés de masses

SolidWorks permet de connaître la masse, la position géométrique du centre de gravité et les axes et moments d'inertie d'un assemblage ou d'une pièce.

En ouvrant l'onglet Outils et en choisissant dans le menu « Propriétés de masse », une fenêtre s'ouvre et apparaît sur le dessin 3D les axes en couleur.

8 – Notice d'utilisation du logiciel Did'acsyde

Dossier Ressources

Notice d'utilisation du logiciel Did'acsyde

on Affichage Modeles Visi

ion Analyse Op

lyse Transfert Boucle

Fichier Ed

ichier : C:VDo

Présentation

Did'acsyde est un logiciel de simulation de systèmes dynamiques.

sélectionner le fichier de la question correspondante.

En double cliquant dans un schéma bloc, soit le paramètre est sous forme numérique, soit le paramètre est forme littérale. Dans le deuxième cas, il faudra renseigner sa (ses) valeur(s) numérique pour la simulation.

Réponse temporelle

valeur

Chaque

renseignée.

signifie autre chose.

En cliquant dans Analyse ® Réponse temporelle, une fenêtre s'ouvre permettant de renseigner les paramètres manquants.

numérique

Attention 3,20 se note : 3.20. La virgule

Il est possible de donner plusieurs valeurs. Pour cela il faut les séparer par des virgules.

doit

être

Préciser la (les) sortie(s) si elle(s) diffère(nt) de la valeur par défaut. Sinon, appuyer sur la touche « Entrer » du clavier.

DID'ACSYDE : Mode Alphanumerique	
TYPE : TRANSFERT-CONTINU NOM : SYST	_
VARIABLE(S) DE SORTIE POUR LA SIMULATION ("PP"] :	
>> REDUCTION(S) FORMELLE(S)	
>> DEFINITION DES PARAMETRES FORMELS rel =	•
4	Þ
rel =	
0,1,2	
0K Ånnuler	Aide

I	DID'ACSYDE : Mode Alphanumerique	_ 🗆 🗵	L'horizon temporel correspond à la durée. La
-	<pre>>> DEFINITION DES PARAMETRES FORMELS rel = 0,1,2 kcor = 0,0.1,0.2 >> REDUCTION(S) NUMERIQUE(S) HORIZON TEMPOREL : HORIZON TEMPOREL :</pre>		valeur renseignée est exprimée en seconde.
	HORIZON TEMPOREL :		com Email : info@dmseducation.com ntellectuelle et ne peuvent pas être copiés sans accord préalable écrit de DMS. MS 2009
	OK Annuler	Aide	

Exploitation des résultats

Une fois les calculs terminés, cliquer sur Visualisation pour voir les résultats. Pour ne pas visualiser une courbe proposée, cliquer sur la désignation correspondante pour la désactiver, puis cliquer sur Visualisation.

9 – Cdcf Panneau solaire asservi

Panneau solaire asservi Extrait du Cahier des charges fonctionnel

Analyse fonctionnelle externe

Fonction	Enoncé	Critère	Niveau
FP1	Convertir l'énergie émise par le soleil et la stocker dans la batterie de bord	Puissance maximale	55 W
FP2	Suivre le soleil dans sa trajectoire de façon automatique en utilisant l'énergie de la batterie du moteur	 Erreur de positionnement Energie dissipée pour maintien statique 	1° Nulle
FC1	Etre fixé sur le toit du camping-car		
FC2	Résister au milieu ambiant	 Résister au vent Résister aux impacts 	Force 5 Ballon
FC3	Etre agréable à l'œil		
FC4	Etre piloté par l'utilisateur		

Société DMS - Département STI

Site internet : www.dmseducation.com Email : info@dmseducation.com Ce document et les logiciels fournis sont protégés par les droits de la propriété intellectuelle et ne peuvent pas être copiés sans accord préalable écrit de DMS. Copyright DMS 2009

Analyse fonctionnelle interne

On donne les SADT suivant :

 Societe DMS - Departement STI

 106 avenue Tolosane – 31520 RAMONVILLE SAINT AGNE – 2 : + 33 (0)5 62 88 72 72 □ : + 33 (0)5 62 88 72 79 Site internet : www.dmseducation.com Email : info@dmseducation.com

 Ce document et les logiciels fournis sont protégés par les droits de la propriété intellectuelle et ne peuvent pas être copiés sans accord préalable écrit de DMS. Copyright DMS 2009