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Language of speech The following internship report contains a draft for a
research article. This article being written in English, it seems more logical
to me to write this report in English as well. For homogeneity, I wrote my
summary file in English too.

The general context In theoretical computer science, a difficult recurrent
problem is to separate objects according to their size being polynomial or ex-
ponential. Here, we focus on problems where solutions of size quasi-polynomial
O(n'°&™) can be easily found, but the main difficulty is to find solutions of size
polynomial. Such an opposition between polynomiality and quasi-polynomiality
is rather infrequent and deeply interesting.

The first problem under study is a problem of communication complexity
called Clique versus Independent Set Problem introduced by Yannakakis in 1991.
Given a publicly know graph, Alice is given a clique and Bob is given a stable
set, and they have to decide whether the clique and the stable set intersect.
The problem is to know how much information Alice and Bob have to share to
get the answer in the worst case. Surprisingly, few bounds are known, even if
the problem has been studied several times. In particular, the only valid lower
bound so far is the trivial one O(logn).

In parallel, Feder and Hell studied some particular constraint satisfaction
problems using a matrix M and called list-M partition problems. They proved
that each of these problems is either NP-complete, or quasi-polynomially solv-
able by a covering of all the solutions with a quasi-polynomial number of in-
stances of 2-SAT. Moreover, they classified the list-M partition problems for
small matrices M between NP-complete and polynomially solvable, except for
one special case, then called the stubborn problem. The complexity of the stub-
born problem was open for years, and was recently shown to be polynomial by
Cygan et al.

Last but no least, Alon Saks and Seymour conjectured in 1974 that if a
graph can be partitioned into k£ edge-disjoint complete bipartite graphs, then
its chromatic number y is at most k + 1. This question remained open for 20
years and was disproved recently by Huang and Sudakov, who constructed an
infinite family of graph for which x > k%/5. The question is now to decide
whether this gap can be made non-polynomial.

The research problem The initial question I worked on was the polynomial-
ity or non-polynomiality of the gap between x and k. It was left open by Huang



and Sudakov, who conjectured that the gap can be of order 2S(log” k) They
observed that this would imply a lower bound of Q(log2 n) for the communica-
tion complexity problem of Yannakakis, and would then closed a long-standing
open problem. I worked then on this link between both problems, and on other
ways to solve them. I worked also on a generalization of the Alon-Saks-Seymour
conjectured where the complete bipartites may overlap a bounded number of
times.

Your contribution The first new point is an equivalence (instead of an im-
plication) between a non-polynomial gap between x and k and a lower bound
better than O(logn) for the Clique vs Independent Set Problem. Moreover,
we find a new equivalence between these two problems and the non-polynomial
covering of all the solutions of the stubborn problem with particular instances of
2-SAT. We then study the Clique vs Independent Set Problem on two opposite
classes of graphs, namely random graphs which are unstructured and split-free
graphs which are well structured. We proved a O(logn) upper bound for this
problem, which implies a polynomial upper bound for the gap between y and
k, and for the size of a covering of all the solutions of the stubborn problem.
Finally, we proved that the generalization of the Alon-Saks-Seymour conjecture
where the bipartites can overlap is not stronger than the original one, this being
non-trivial.

Arguments supporting its validity My solution is a partial solution since
it does not solve the deep problem, but it is an important step forward since it
links several open problems in different domains. Each of my results is stated
together with a combinatorial proof. The classes of graphs I studied were at the
moment a hope for proving a non-polynomial gap between x and k. However,
it turned out that I was able to prove the exact opposite...

Summary and future work The next good question is of course to solve
one of these problems, and thanks to the equivalence the others would be solved
too. A reasonable approach would be to study the problem on perfect graphs,
since the scientific community know a lot about them, especially in terms of
structure. Also, studying which graphs operations preserve the property will
help us to distinguish for which graphs the gap is polynomial.
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Abstract

This report studies problems coming from three different domains of theoretical com-
puter science: Clique versus Independent set in communication complexity, the Alon-Saks-
Seymour conjecture in graph coloring and the stubborn problem in constraint satisfaction
problem. Each problem admits a quasi-polynomial size solution, meaning of size n'°8™
where n is the parameter, and the problem is to find a polynomial size solution. We prove
an equivalence theorem between the existence of a polynomial solution for every problem.
We study further the Clique versus Independent set problem on two particular classes of
graphs: random graphs and split-free graphs, for which we find a polynomial size solution.



1 Introduction

This report links problems coming from three different domains of theoretical computer science.
Let us make a brief overview of each domain in the light of the problems under study. The goal
is to give some context and intuition, while formal definitions will be given later.

Communication complexity and the Clique-Stable Set separation. Yannakakis intro-
duced in [23] the following communication complexity problem, called CL —1S: given a publicly
known graph I" on n vertices, Alice and Bob agree on a protocol, then Alice is given a clique and
Bob is given a stable set. They do not know which clique or which stable set was given to the
other one, and their goal is to decide whether the clique and the stable set intersect or not, by
minimizing the worst-case number of exchanged bits. Note that the intersection of a clique and
a stable set is at most one vertex. In the deterministic version, Alice and Bob send alternatively
messages one to each other, and the minimization is on the number of bits exchanged between
them. It is a long standing open problem to prove a (9(log2 n) lower bound for the deterministic
communication complexity. In the non-deterministic version, for b € {0,1}, an all powerful
prover sends a certificate in order to convince both Alice and Bob that the result is b. Then,
Alice and Bob exchange one final bit, saying whether they agree or disagree with the certificate.
The aim is to minimize the size of the certificate.

In this particular setting, a certificate proving that the clique and the stable set intersect
is just the name of a vertex in the intersection. Such a certificate has clearly a logarithmic
size. Convincing Alice and Bob that the clique and the stable set do not intersect is much more
complicated. A certificate can be a partition of the vertices into two parts such that the whole
clique is included in the first part, and the whole stable set is included in the second part. Such
a partition is called a cut that separates the clique and the stable set. A family of m cuts such
that for every clique and for every stable set, there is a cut in the family that separates the
clique and the stable set is called a CS-separator. Observe that Alice and Bob can agree on a
CS-separator at the beginning, and then the prover just sends the name of a cut that separates
the clique and the stable set: the certificate has size logy m. Hence if there is a CS-separator of
size polynomial in n, one can ensure a non-deterministic certificate of size O(logyn).

Yannakakis proved that there is a O(logy n) certificate for the C'L — IS problem if and only if
there is a CS-separator of polynomial size. The existence of such a CS-separator is called in the
following the clique-stable set separation problem. It appears from a geometric problem which
was studied both by Yannakakis [23] and by Lovasz [16]. The question is to determine if the stable
set polytope of a graph is the projection of a polytope in higher dimension, with a polynomial
number or facets (called extended formulation). The existence of such a polytope in higher
dimension implies the existence of a polynomial CS-separator for the graph. Moreover, they
proved that the answer is positive for several subclasses of perfect graphs, such as comparability
graphs and their complements, chordal graphs and their complements, and t-perfect graphs
which are a generalization of series-parallel graphs. The existence of an extended formulation
for general graphs has recently been answered negatively by Fiorini et al. [8].

Constraint satisfaction problem and the stubborn problem. The complexity of the
so-called list-M partition problems has been widely studied in the last decades (see [20] for an
overview). M stands for a fixed k x k symmetric matrix filled with 0, 1 and x* as illustrated on Fig.
1. Theinput is a graph G = (V, E) together with a list assignment £: V' — P({A41,..., Ax}) and
the question is to determine whether the vertices of G can be partitioned into k sets Aq,..., Ax
respecting two types of requirements. The first one is given by the list assignments, that is to
say v can be put in A; only if A; € £(v). The second one is described in M, namely: if M;; =0
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Figure 1: Matrix M for the stubborn problem.

(resp. M;; = 1), then A; is a stable set (resp. a clique), and if M; ; = 0 (resp. M; ; = 1), then A;
and Aj; are completely non-adjacent (resp. completely adjacent). If M;; = * (resp. M;; = %),
then A; can be any set (resp. A; and A; can have any kind of adjacency).

Feder et al. ([7], [6]) proved a quasi-dichotomy theorem. The list-M partition problems are
classified between NP-complete and quasi-polynomial time solvable (i.e. time O(n¢°8™) where ¢
is a constant). Moreover, many investigations have been made about small matrices M (k < 4)
to get a dichotomy theorem, meaning a classification of the list-M partition problems between
polynomial time solvable and NP-complete. Cameron et al. [3] reached such a dichotomy for
k < 4, except for one special case (and its complement) then called the stubborn problem (see Fig.
1 for the corresponding matrix), which remained only quasi-polynomial time solvable. Cygan et
al. [4] closed the question by finding a polynomial time algorithm solving the stubborn problem.
More precisely, they found a polynomial time algorithm for 3-CoOMPATIBLE COLORING, which
was introduced in [5] and said to be no easier than the stubborn problem. 3-COMPATIBLE COL-
ORING has also been introduced and studied in [14] under the name ADAPTED LisT COLORING,
and was proved to be a model for some strong scheduling problems.

These two problems under study are defined in the following way:
3-COMPATIBLE COLORING PROBLEM (3-CCP)
Input: An edge coloring fg of the complete graph on n vertices with 3 colors {A, B,C}.
Question: Is there a coloring of the vertices with {A, B, C'}, such that no edge has the same
color as both its endpoints?

STUBBORN PROBLEM

Input: A graph G = (V, E) together with a list assignment £ : V' — P({A1, Aa, A3, As}).
Question: Can V be partitioned into four sets A1, ..., A4 such that A4 is a clique, both A;
and Ao are stable sets, there is no edge between A; and As, and each vertex v belongs to A;

only if A; € L(v)?

Graph coloring and the Alon-Saks-Seymour conjecture. Given a graph G, the bipartite
packing, denoted by bp, is the minimum number of edge-disjoint complete bipartite graphs
needed to partition the edges of G. The Alon-Saks-Seymour conjecture [13]| states that if a
graph has bipartite packing k, then its chromatic number x is at most k4 1. It is inspired from
the Graham Pollak theorem [10] which states that bp(K,) = n — 1, and the conjecture has
interested several authors ([19],[9]). Huang and Sudakov found in [12] a counterexample to the
Alon-Saks-Seyour conjecture, twenty-five years after its statement. Actually they proved that
there is an infinite family of graphs for which x > bp6/ ®  The Alon-Saks-Seymour conjecture
can now be restated as the polynomial Alon-Saks-Seymour conjecture: is the chromatic number
polynomially upper bounded in terms of bp? Moreover, Alon and Haviv [1] observed that a
gap between x and bp such as Huang and Sudakov proved, implies for the Clique-Stable Set
separation problem a lower bound of n%5. This in turns implies a 6/5logy(n) — O(1) lower
bound on the non-deterministic communication complexity of C'L — I.S when the clique and the
stable set do not intersect.



A generalization of the bipartite packing of a graph is the t-biclique number, denoted by
bp;. It is the minimum number of complete bipartite graphs needed to cover the edges of the
graph such that each edge is covered at most ¢ times. It was introduced by Alon [17] to model
neighborly families of boxes, and the most studied question so far is finding tight bounds for
bp, (Kp).

Contribution The Clique-Stable set separation problem will be considered as our reference
problem, since it seems the easiest to handle and to work with. Our main result states equivalence
between the previously mentioned problems.

More precisely, we start in section 3 by proving that there is a polynomial CS-separator for
two classes of graphs: random graphs and split-free graphs. The proof for random graphs is
based on random cuts. For split-free graphs, it is based on Vapnik-Chervonenkis-dimension.
The interest is that random graphs seem totally unstructured, while on the contrary split-free
graph have strong structure properties.

In section 4, we highlight links between the clique-stable set separation problem and both
the stubborn problem and 3-CCP. The quasi-dichotomy theorem for list-M partitions proceeds
by covering all the solutions by O(n'°8™) particular instances of 2-SAT, called 2-list assignments.
A natural extension would be a covering of all the solutions with a polynomial number of 2-list
assignments. We prove that the existence of a polynomial covering of all the maximal solutions
(to be defined later) for the stubborn problem is equivalent to the existence of such a covering
for all the solutions of 3-CCP, which in turn is equivalent to the clique-stable set separation
problem.

In section 5, we extend Alon and Haviv’s observation and prove the equivalence between then
polynomial Alon-Saks-Seymour conjecture and the Clique-Stable separation. It follows from an
intermediate result which is also interesting in itself: for every integer ¢, the chromatic number
x can be bounded polynomially in terms of bp if and only if it can be bounded polynomially
on bp,.

2 Definitions

Let G = (V, E) be a graph and k be an integer. An edge uv € E links its two endpoints u and
v. The neighborhood N(x) of x is the set of vertices y such that xy € E. The non-neighborhood
NC(z) of 2is V\ (N(x)U{z}). For oriented graphs, N*(z) (resp. N~ (z)) denote the outcoming
(resp. incoming) neighborhood of z, i.e. the set of vertices y such that xy € E (resp. yx € E).
The subgraph induced by X C V denoted by G[X] is the graph with vertex set X and edge set
EN(X x X). A clique of size n, denoted by K,, is a complete induced subgraph. A stable
set is an induced subgraph with no edge. Note that a clique and a stable set intersect on at
most one vertex. Two subsets of vertices X,Y C V are completely adjacent if for all z € X,
y €Y, xy € E. They are completely non-adjacent if there are no edge between them. A graph
G = (V,E) is split if V.= V1 UV, and the subgraph induced by V; is a clique and the subgraph
induced by Vs is a stable set. A wvertez-coloring (resp. edge-coloring) of G with a set CoL of k
colors is a function fy (resp. fg) from V (resp. E) to COL.

A graph G is bipartite if V can be partitioned into (U, W) such that both U and W are
stable sets. Moreover, G is complete if U and W are completely adjacent. An oriented bipartite
graph is a bipartite graph together with an edge orientation such that all the edges go from U to
W. A hypergraph H = (V, E) is a generalization of a graph and is composed of a set of vertices
V and a set of hyperedges E C P(V).



3 Clique-Stable Set separation conjecture

The communication complexity problem C'L — IS can be formalized by a function f: X xY —
{0,1}, where X is the set of cliques and Y the set of stable sets. Alice is given a clique z, Bob
is given a stable set y, and then f(z,y) = 1 if and only if x and y intersect. It can also be
represented by a | X| x |Y| matrix M with M, , = f(z,y). As previously mentioned, we study
the non-deterministic version, where for b € {0, 1}, an all powerful prover sends a certificate of
size N°(f) in order to convince both Alice and Bob that the value of f is b. Then, Alice and
Bob exchange one final bit, saying whether they agree or disagree with the certificate. The aim
is to minimize N®(f) in the worst case.

The best upper bound so far on N°(f) is O(log?(n)) [23], which is actually a bound on the
deterministic communication complexity.

It is known in theory of communication complexity [15] that, for general f, N°(f) =
[logQ CP( f)] where C®(f) is the minimum number of monochromatic combinatorial rectangles
needed to cover the b-inputs of the communication matrix M (a monochromatic combinatorial
rectangle is a set of rows and columns such that the matrix restricted to this set of rows and
this set of columns is entirely filled by b). One can observe that a monochromatic combinatorial
rectangle that cover some 0-inputs of M corresponds to a cut that separates the cliques and the
stable sets involved in the rectangle. Thus finding the minimum NY(f) is equivalent to finding
the minimum number of cuts needed to separate all the cliques and the stable sets. In particular,
there is a O(logn) certificate for the CL — IS problem if and only if there is a CS-separator of
polynomial size.

A cut is a pair (A, B) such that AUB =V and AN B = @. It separates a clique C and a
stable set S if C C A and S C B. Note that a clique and a stable set can be separated if and
only if they do not intersect. Let Cg be the set of cliques of G and Sg be the set of stable sets
of G. We say that a family F of cuts is a CS-separator if for all (C,5) € Cg x Sg which do not
intersect, there exists a cut in F that separates C' and S.

Conjecture 1. (Clique-Stable Set separation Conjecture) There is a polynomial @Q, such that
for every graph G on n vertices, there is a CS-separator of size at most Q(n).

Proposition 2. Conjecture 1 holds if and only if a polynomial family F of cuts separates all
the mazimal (in sense of inclusion) cliques from the mazimal stable sets that do not intersect.

Proof. First note that one direction is direct. Let us prove the other one. Assume F is a
polynomial family that separates all the maximal cliques from the maximal stable sets that do not
intersect. Let Cuty z be the cut (N (x)Uz, V\{N(x),x}) and Cuts , be the cut (N(z), V\N(x)).
Let us prove that 7’ which is the family F together with the families Cut; , and Cuts , for all
x is a CS-separator.

Let (C,S) be a pair of clique and stable set. Extend C' and S by adding vertices to get a
maximal clique C and a maximal stable set S’. Either C’ and S’ do not intersect, and there is
a cut in F that separate C’ from S’ (thus C from S). Or C" and S’ intersect in = (recall that a
clique and a stable set intersect on at most one vertex): if z € C, then Cut; , separates C from
S, otherwise Cuts , does. O

Consequently, in the following, we will only focus on separating the maximal cliques from
the maximal stable sets. In this section, we study the Clique-Stable set separation conjecture
on random graphs and split-free graphs.



3.1 Random graphs

Random graphs are a typical example of unstructured graphs, hence they appear as a natural
candidate for a counterexample to the Clique-Stable set conjecture. However, the size of their
cliques and stable sets will enable some random cuts to separate them. Let n be a positive integer
and p € [0,1]. Several models of random graphs have been studied [2], and we will work on the
Erdgs-Rényi model. The random graph G(n,p) is a probability space over the set of graphs on
the vertex set {1,...,n} determined by Pr[ij € G] = p, with these events mutually independent.
We say that G(n,p) has clique number w if w satisfies E(number of cliques of size w) = 1. We
define similarly the independent number of G(n,p). An event £ occurs with high probability if
the probability of this event tends to 1 when n tends to infinity.

A family F of cuts on a graph G with n vertices is a complete (a, b, n)-separator if for every
pair (A, B) of subsets of vertices with |A| < a, |B| < b, there exists a cut (U, V \U) € F
separating A and B, namely A C U and B C V \ U. We say that G(n,p) has a polynomial
complete (a, b, n)-separator if there exists a polynomial P such that for all p € [0, 1], there exists
a complete (a, b, n)-separator of size P(n) in G(n,p) with high probability.

Theorem 3. G(n,p) has a polynomial complete (w, o, n)-separator where w and « are respec-
tively the cliqgue number and the independent number of G(n,p).

Proof. In the following, log; denotes the logarithm to base b, and log denotes the logarithm to
base 2. Without loss of generality, we assume p = 1 — 2-2187/a(") where a(n) is a function
of n. Let p’ =1—p, b=1/p and b’ = 1/p’. The independence number and clique number of
G(n,p) are given by the following formulas, depending on p (see [2]):

w = 2logy(n) — 2logy(log, n) + 2logy(e/2) + 1+ o(1)
a = 2logy (n) — 2logy (logy n) + 2logy (e/2) + 1+ o(1)

Draw a random partition (V3,V3) where each vertex is put in V) independently from the
others with probability p. Let (C,S) be a pair of clique and stable set of the graph. There
are at most 4" such pairs. The probability that C' C V; and S C V5 is at least p¥(1 — p)®.
Assume for a moment that p*(1 — p)® > 1/n8. Then (C,S) is separated by at least 1/n% of
all the partitions. By double counting, there exists a partition that separates at least 1/n% of
all the pairs. We delete these separated pairs, and there remains at most (1 — 1/n°) - 4" pairs.
The same probability for a pair (C,.S) to be cut by a random partition still holds, hence we can
iterate the process k times until (1 — 1/n®)¥ - 4" < 1. This is satisfied for ¥ = 2n” which is a
polynomial in n. Thus there is a complete (o, w, n)-separator of size polynomial in n.

The proof that p~(1 — p)® > 1/nS is detailed in Appendix A and uses Taylor series compu-
tation. For simplicity, we only show here the case when p = 1/2. Then :

e w=2log(n) + o(logn)
o a = 2log(n)+ o(logn)
Thus pw(l _ p)a _ 1/2410gn+o(logn) — pito(1) 0

Note here that no optimization was made on the constant of the polynomial. Some re-
finements in the proof can lead to a complete (w,,n)-separator of size O(n°T¢). Moreover,
an interesting question would be a lower bound on the constant of the polynomial needed to
separate the cliques and the stable sets in random graphs, in particular for the special case

p=1/2.



Figure 2: A net

3.2 Graph classes: the case of split-free graphs.

A graph T is called split if it is the union of a clique and a stable set. A graph G = (V, E) has
an induced T' if there exists X C V such that the induced graph G[X] is isomorphic to I'. We
denote by Cr the class of graph with no induced I'. For instance, if ' is the split graph described
on Fig. 2 and called a net, then Cr is the class of net-free graphs and contains comparability
graphs.

Let us first state some definitions concerning hypergraphs and VC-dimension. Let H =
(V, E) be a hypergraph. The transversality 7(H) is the minimum cardinality of a subset of
vertices intersecting each hyperedge. The transversality corresponds to an optimal solution of
the following integer linear program.

Objective function: min Z w(z)
eV
Subject to:

o forall x € V, w(z) € {0,1}.
o forallec E, ) . w(z)>1

The fractional transversality 7" is the fractional relaxation of the above linear programming.
The first condition is then replaced by: for all x € V, 0 < w(x) < 1. Note that removing the
constraint w(z) < 1 for all z € V does not change the solution as we want to minimize the
objective function. Indeed if w(y) > 1 for some y € V in a feasible solution w, getting w(y)
down to 1 will not violate any constraint, and will reduce strictly the objective function.

The Vapnik-Chervonenkis dimension or VC-dimension of a hypergraph H = (V| E) is the
maximum cardinality of a set of vertices A C V such that for every B C A thereis an edgee €
so that eN A = B. The following bound due to Haussler and Welzl [11] links the transversality,
the VC-dimension and the fractional transversality.

Lemma 4. FEvery hypergraph H with VC-dimension d satisfies
T(H) < 16d7*(H) log(dr*(H)).

Let us introduce the dual measure of VC-dimension. A set T of hyperedges forms a complete
Venn diagram is for all 7" C T, there exists a vertex v such that v € e if and only if e € T".
The dual Vapnik-Chervonenkis dimension (dual VC-dimension for short) of H is the maximum
size of a complete Venn diagram in H. In the remaining of the report, we only consider hyper-
graphs which are neighborhood hypergraphs, i.e. hypergraphs so that the hyperedges are the
neighborhoods of vertices in a given graph G. In this context, the VC-dimension and the dual
VC-dimension of a hypergraph coincide, since for all vertices = and y, = € N(y) if and only if
y € N(x). Consequently, for simplicity, in the following the dual VC-dimension will be called
VC-dimension.



Theorem 5. Let I be a fized split graph. Then the clique-stable set conjecture is verified on Cr.

Proof. The vertices of I' are partitioned into (V7, V2) where Vj is a clique and V5 is a stable set.
Let ¢ = max(|Vi],|V2|). Let t be the constant 32¢(log(p) + 1). Let G = (V, E) € Cr and let F
be the following family of cuts. For every subset {xi,...,xz,} of at most ¢ vertices which is a
clique (resp. a stable set), take U = Ni<j<,N(z;) (resp. U = Ui<i<»N(z;)), and put (U,V \ U)
in F. Since each member of F is defined with a set of at most ¢ vertices, the size of F is at most
O(n'). Let us now prove that F is a CS-separator.

Let (C,S) be a pair of maximal clique and stable set. We prove that (C,S) is separated by
F. Build an oriented graph B with vertex set CUS. For all z € C' and y € S, put the arc zy if
zy € E, and put the arc yz otherwise (see Fig. 3(b)). We use the following variant of Farkas’
lemma, from which we derive Lemma 7:

Lemma 6 (Farkas’ lemma [21]). Let A be a m x n matriz and b € R™. Then either:

1. There is a w € R™ such that Aw < b,

or 2. There is a y € R™ such that y > 0, yA =0 and yb < 0.

Lemma 7. For all oriented graph G = (V, E), there exists a weight function w :V — [0,1] such
that w(V) =1 and for all vertex x, w(N*(z)) > w(N~(z)).

Proof. Let us define a (2n + 1) x n matrix A obtained from the vertical concatenation of three
matrices. First, the transpose ‘Adj(G) of the adjacency matrix of G which will ensure the
constraints of type w(NT(x)) > w(N~(z)). Second, the matrix —Id,, which will ensure the
constraints of type w(z) > 0. And finally the auxiliary line vector (—1,...,—1) € R™. Define
b= %0,...,0,—1) € R¥n+L,

Then apply lemma 6. FEither case one occurs and then Aw < b: as expected, we get
w(NT(z)) > w(N~(z)) for all z € V thanks to 'Adj(G). Thanks to the other lines, we get
w(zx) > 0 for all x and w(V) > 1. We conclude by rescaling the weight function with a factor
1/w(V).

Otherwise, case two occurs and there is y € R?"*! : let w € R™ be the projection of y
on the first n coordinates. Then for all j € {1,...,2n 4+ 1}, y; > 0 so w(z) > 0 for all z;
moreover, since yA = 0 then for all z; € V, we have w(N ™ (z)) — w(N~(x)) — Ynti — Yon+1 =0
hence w(NT(x)) > w(N~(x)). Since yb < 0, then yo,+1 > 0 which ensures w(V) > 0: indeed,
otherwise for all z, w(z) = 0 and the previous equality becomes Y241 = —Yn+i < 0, which is a
contradiction. We conclude as before by rescaling with a factor 1/w(V). O

Corollary 8. In B, there exists either:
(1) a weight function w : C — RT such that w(C) = 2 and for all vertez x € S,w(N™T(x)) > 1.

or (ii) a weight function w : S — R such that w(S) = 2 and for all vertex x € C,w(N™T(x)) > 1.

Proof. Let w: V' — [0, 1] be a weight function satistying conditions of Lemma 7. Since w(V) = 1,
either w(C) > 0 or w(S) > 0. Assume w(C) > 0 (the other case is handled symmetrically).
Take a new weight function defined by w'(z) = 2w(z)/w(C) if x € C, and 0 otherwise. Then
for all z € S, on one hand w'(N™(z)) > w'(N~(z)) by extension of the property of w, and on
the other hand, N*(z) U N~ (z) = C by construction of B. Thus w'(N*t(z)) > w'(C)/2 =1
since w'(C') = 2. O

In the following, let assume we are in case (i). Case (ii) is handled symmetrically by switching
C' (resp. neighborhood) and S (resp. non-neighborhood).

Let us now build H a hypergraph with vertex set C'. For all z € S, build the hyperedge
C'\ Ng(x), that is the complementary in C' of the neighbors of = (see Fig. 3(c)).
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are replaced by forward arcs, and non-edges built from the non-neighborhood of vertices
are replaced by backward arcs. from S.

Figure 3: Tllustration of proof of Theorem 5. For more visibility in 3(b), forward arcs are drawn
in blue and backward arcs in yellow.

Lemma 9. The hypergraph H has fractional transversality 7° < 2.

Proof. Let w be the weight function given by Corollary 8. Let h be a hyperedge built from the
non-neighborhood of z € S. Recall that this non-neighborhood is precisely N*(z) in B, then
we have:

Y w(y) = w(N*(z)) > 1.

yEeh

Thus w satisfies the constraints of the fractional transversality, and w(C) < 2,ie. 7% <2. O
Lemma 10. H has VC-dimension bounded by 2 — 1.

Proof. Assume that there is a complete Venn-diagram D of size 2¢ in H. The aim is to exploit
the shattering to find an induced I', which builds a contradiction. Let s1,...s,,%1,...,%, be
the hyperedges composing D. In the following, we will abuse notation by calling s; (resp. t;)
both the hyperedge and the vertex of S whose non-neighborhood is precisely the hyperedge s;
(resp. t;). Recall that the forbidden split graph I is the union of a clique Vi = {z1,...,z,} and
a stable set Vo = {y1,...,y} (with r,7' < ¢). Let 2; € V1 and let {yi,,..., i, } = Np(z;) NV
be the set of its neighbors in V5.

Consider § = {s;,,...,si, } U{ti} (possible because |Vi|,|V2| < ¢). As D is a complete Venn
diagram, there exists 2} € C such that z; € Nsess and 7} ¢ Ugggss’, meaning that the set of
hyperedges containing 7 is precisely S. Now, forget about the existence of ¢1,...,t,, and look
at the subgraph of G induced by «,..., 2] and s1,...,s: z} has exactly the same shape of
neighborhood in {sy,..., s} as the neighborhood of x; in V5. Thus we have found an induced
I", which is impossible. O
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(a) An instance of 3- (b) A solution to the instance (¢) Another solution to the in-
CCPp (vertex coloring) together with stance with a compatible 2-list as-
a compatible 2-list assignment: signment.

each vertex has a 2-constraint.

Figure 4: Tlustration of definitions. Color correspondence: A=red ; B=blue ; . Both
2-list assignments together form a 2-list covering because any solution is compatible with at
least one of them.

Note that the presence of t1,...,t, is useful in case where two vertices of V; are twins with
respect to Vo, meaning that their neighborhoods intersected with V5 are the same. Then, the
complete Venn diagram does not ensure that at least two vertices are contained in exactly the
set of hyperedges S = {s;,,...,si,}, and no more. In fact, this remark leads us to assert that
the VC-dimension of H is bounded by ¢ + log¢. Indeed, we need only t1, ..., %, in addition
to s1,...,8,: for x; € Vi, code i in binary over log¢ bits and define S to be the union of
{Sir, ..., s} with the set of t; such that the j-th bit is one. This ensures that no two z;, zy
have the same S.

Applying Lemmas 4, 9 and 10 to H, we obtain

T(H) < 16d7*(H)log(dr*(H)) < 32¢p(log(p) + 1) = t.

Hence 7 is bounded by ¢ which only depends on H. There must be z1,...,z, € C such that each
hyperedge of H contains at least one x;. Thus for all y € S, there is an i such that z; € N(y).
Consequently, S C UlgigtNg(xi). Moreover, C C U = Ni<;<¢tNg(zi) U{z;} since z1,...,x, are
in the same clique C. This means that the cut (U, V' \ U) € F built from the subclique z1, ...z,
separates C' and S.

When case (ii) of Corollary 8 occurs, there are 7 vertices x1,...,2, € S such that for all
y € C, there exists z; € N(y). Thus C C U = Uj<i<tNg(zi) and S C UlgigtNg(wi)- The cut
(U, V\U) € F built from the stable set z1,...x, separates C' and S. O

4 3-CCP and the stubborn problem

The following definitions are illustrated on Fig. 4 and deal with list colorings. Formally, let G
be a graph and CoOL a set of k colors. A set of possible colors, called constraint, is associated
to each vertex. A vertex has an [-constraint if its set of possible colors has size . An [-list
assignment is a function £ : V' — P(CoL) that give each vertex an [-constraint. A solution &
is a coloring of the vertices S : V' — CoOL that respects some requirements depending on the
problem. We can equivalently consider S as a partition (Aj,..., Ag) with = € A; if and only if
S(z) = A; (note then that A; denotes both the color and the set of vertices having this color).
An [-list assignment £ is compatible with a solution S if for each vertex =, S(x) € L(z). A set
of [-list assignment covers a solution § if at least one of the [-list assignment is compatible with
S.
We recall the definitions of 3-CCP and the stubborn problem:



Ve

Figure 5: Diagram representing the stubborn problem. Cliques are represented by hatched sets,
stable sets by dotted sets. Completely non-adjacent sets are linked by a dashed edge. Grey lines
represent edges that may or may not appear in the graph.

3-COMPATIBLE COLORING PROBLEM (3-CCP)

Input: An edge coloring fg of K, with 3 colors {A, B,C}.

Question: Is there a coloring of the vertices with {4, B, C}, such that no edge has the same
color as both its endpoints?

STUBBORN PROBLEM (see Fig. 5)

Input: A graph G = (V, E) together with a list assignments £ : V' — P({A1, A2, A3, Aa}).
Question: Can V be partitioned into four sets Aq,..., A4 such that Ay is a clique, both Ay
and As are stable sets, A; and A3z are completely non-adjacent, and the partition is compatible
with L7

Given an edge-coloring fg on K, we say that a set of 2-list assignment is a 2-list covering
for 3-CCP on (K,, fr) if it covers all the solutions of 3-CCP on this instance. Moreover, 3-CCP
is said to have a polynomial 2-list covering if for all n and for all edge-coloring fg, there is a
2-list covering on (K, fg) whose cardinality is bounded by a polynomial in n. Symmetrically,
we want to define a 2-list covering for the stubborn problem. However, we will not be able to
cover polynomially all the solutions: for example on a stable set with the trivial 4-constraint on
each vertex, any partition of the vertices into three sets gives a solution (Aj, Ag, A3, (). Thus
we need a notion of maximal solutions. This notion is extracted from the notion of domination
(here Az dominates A;) in the language of general list-M partition problem (see [7]). Intuitively,
if £(v) contains both A; and A3 and v belongs to A; in some solution S, we can build a simpler
solution by putting v € A3 and leaving everything else unchanged. A solution (Aj, Ag, A3, Ayg)
of the stubborn problem on (G, £) is a mazimal solution if no member of A; satisfies A3 € L(v).
We may note that if Ag is contained in every £(v) for v € V, then every maximal solution of the
stubborn problem on (G, £) let A; empty. Now, a set of 2-list assignments is a 2-list covering for
the stubborn problem on (G, L) if it covers all the maximal solutions on this instance. Moreover,
it is called a polynomial 2-list covering if its size is bounded by a polynomial in the number of
vertices in G.

For edge-colored graphs, an aq, ..., ag-clique is a clique for which every edge has a color in
{a1,...,ax}. A split graph is the union of an a-clique and a (-clique. The a-edge-neighborhood
of = is the set of vertices y such that xy is an a-edge, i.e an edge colored with «. The majority
color of x € V is the color which appears the most often for the edges with endpoint = (in case
of ties, we arbitrarily cut them).

In this section, we prove that the existence of a polynomial 2-list covering for the stubborn
problem is equivalent to the existence of a polynomial one for 3-CCP, which in turn is equivalent
to the existence of a polynomial CS-separator. We may observe that the existence of a polynomial
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2-list covering does not imply the polynomial solvability of the problem: indeed, such a family
may not be computable in polynomial time.

We start by justifying the interest of 2-list covering and observing that we can always find a
quasi-polynomial 2-list covering for 3-CCP.

Observation 11. Given a polynomial number of 2-list assignments for 3-CCP, it is possible to
decide in polynomial time if there exists a solution covered by them.

Proof. Each 2-list assignment can be translated into an instance of 2-SAT. Each vertex has a
2-constraint {«, 8} from which we construct two variables z, and x5 and a clause x4V zg. Turn
To to true will mean that x is given the color a. Then we need also the clause —z, V g saying
that only one color can be given to z. Finally for all edge zy colored with «, we add the clause
o V 7Y if both variables exists. O

Theorem 12. [5] There exists an algorithm giving a 2-list covering of size O(nl°8™) for 3-CCP.
By Observation 11, this gives an algorithm in time O(n'°8™) which solves 3-CCP.

Proof. Let us build a tree of maximum degree n+ 1 and height O(log n) whose leaves will exactly
be the 2-list assignments needed to cover all the solutions. By a counting argument, such a tree
will have at most O(n!°8™) leaves. Let = be a vertex, without loss of generality we can assume
that  has majority color A. The solutions are easily partitioned between those where x is given
its majority color A, and those where x is given color B or C. From this simple remark, we
can build a tree with an unlabelled root, n children each labelled by a different vertex, and
an extra leave corresponding to the solutions where no vertex is colored by its majority color.
The latter forms a 2-list assignment since we forbid one color for each vertex. Fach labelled
child of the root, say its label is =, will consider only solutions where x is given its majority
color A, thus x has constraint {A}. Then in every such solution, each vertex linked to = by
an A-edge will be given the color B or C. Thus we associate the 2-constraint {B,C} to the
whole A-edge-neighborhood of z. Since the graph is complete and A is the majority color, this
A-edge-neighborhood represents at least 1/3 of all the vertices. We iterate the process on the
graph restricted to unconstrained vertices, and build a subtree rooted at node z. We do so for
the other labelled children of the root. The tree is ensured to have height O(logn) because we
erase at least 1/3 of the vertices at each level. O

The main result of this section is the following theorem:
Theorem 13. The following are equivalent:

1. For every graph G and every list assignment L : V. — P({A1, Ag, A3, Ay}), there is a
polynomial 2-list covering for the stubborn problem on (G, L).

2. For every n and every edge-coloring f : E(K,) — {A, B,C}, there is a polynomial 2-list
covering for 8-CCP on (K, f).

3. For every graph G, there is a polynomial CS-separator.
We decompose the proof into three lemmas, each of which describing one implication.

Lemma 14. (1 = 2): Suppose for every graph G and every list assignment L : V — P({A1,..., As}),
there is a polynomial 2-list covering for the stubborn problem on (G,L). Then for every graph n
and every edge-coloring f : E(K,) — {A, B,C}, there is a polynomial 2-list covering for 3-CCP

on (Ky, f).
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Proof. Let n € N, (K, f) be an instance of 3-CCP, and x a vertex of K. Let us build a
polynomial number of 2-list assignments that cover all the solutions where x is given color A.
Since the colors are symmetric, we just have to multiply the number of 2-list assignments by 3
to cover all the solutions. Let (A, B, C) be a solution of 3-CCP where = € A.

Claim 15. Let x be a verter and «, 58,7 be the three different colors. Let U be the a-edge-
neighborhood of x. If there is a By-clique Z of U which is not split, then there is no solution
where x is colored with «.

Proof. Consider a solution in which x is colored with a. All the vertices of Z are of color 8 or v
because they are in the a-edge-neighborhood of x. The vertices colored with £ form a ~-clique,
those colored by ~ form a S-clique. Hence Z is split. O

A vertex x is really 3-colorable if for each color «, every ~-clique of the a-edge-neighborhood
of x is a split graph. If a vertex is not really 3-colorable then, in a solution, it can be colored by
at most 2 different colors. Hence if K,,(V\z) has a polynomial 2-list covering, the same holds
for K,, by assigning the only two possible colors to x in each 2-list assignment.

Thus we can assume that z is really 3-colorable, otherwise there is a natural 2-constraint
on it. Since we assume that the color of x is A, we can consider that in all the following 2-list
assignments, the constraint {B,C} is given to the A-edge-neighborhood of z. Let us abuse
notation and still denote by (A, B,C') the partition of the C-edge-neighborhood of z, induced
by the solution (A4, B,C). As x is really 3-colorable, Claim 15 ensures that C' is a split graph
C’"w C" with C" a B-clique and C” a A-clique. The situation is described in Fig. 7(a). Let H
be the non-colored graph with vertex set the C-edge-neighborhood of x and there is an edge e
if and only if f(e) = B or f(e) = C (see Fig. 7(b)). Moreover, let H' be the non-colored graph
with vertex set the C-edge-neighborhood of 2 and there is an edge e if and only if f(e) = B (see
Fig. 7(c)). We consider (H, L) and (H', Ly) as two instances of the stubborn problem, where
Ly is the trivial list assignment that gives each vertex the constraint {A;, Aa, As, A4}.

By assumption, there exists F (resp. F’) a polynomial 2-list covering for the stubborn
problem on (H, Lg) (resp. (H', Ly)). We construct F” the set of 2-list assignment f” built from
all the pairs (f, f') € F x F' according to the rules described in Fig. 6 (intuition for such rules
is given in the next paragraph). F” aims at being a polynomial 2-list covering for 3-CCP on the
C-edge-neighborhood of z.

The following is illustrated on Fig. 7(b) and 7(c). Let S be the partition defined by A; = 0,
Ay =C" A3 = BUC" and Ay = A. We can check that A is a stable set and Ay is a clique (the
others restrictions are trivially satisfied by A; being empty and Ly being trivial). In parallel,
let S’ be the partition defined by A} = 0, A}, = B, A5 = AUC” and Ay = C’. We can also
check that A5 is a stable set and A/ is a clique. Thus S (resp. §’) is a maximal solution for the
stubborn problem on (H, Lg) (resp. (H',Lp)) inherited from the solution (A, B,C = C"w C")
for 3-CCP.

Let f € F (resp. f' € F') be a 2-list assignment compatible with S (resp. S’). Then f” € F”
built from (f, f') is a 2-list assignment compatible with (A, B, C).

Doing so for the B-edge-neighborhood of z and pulling everything back together gives a
polynomial 2-list covering for 3-CCP on (K, f).

O

Lemma 16. (2 = 3): Suppose for every n and every edge-coloring f : E(K,) — {A,B,C},
there is a polynomial 2-list covering for 3-CCP on (K, f). Then for every graph G, there is a
polynomial CS-separator.
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fv) f'() /()

AQ or Al,AQ * C

A3 or Al,A3 * B,C

A4 or Al,A4 * A
Ay, Ay * A,C
Ay, As * B,C

A3, Ay | Abor AL AL B
As, Ay Al or A AL A C
A3, A4 Aﬁl or All, Aﬁl C

Az, Ay Al Al B,C
As, Ay Al AL A, B
As, Ay AL A A,C

Figure 6: This table describes the rules used in proof of lemma 14 to built a 2-list assignment
f" for 3-CCP from a pair (f, f’) of 2-list assignment for two instances of the stubborn problem.
Symbol * stands for any constraint. For simplicity, we write X,Y (resp. X) instead of {X,Y}

(resp. {X}).

Proof. Let G = (V, E) be a graph on n vertices. Let f be the coloring on K, defined by f(e) = A
if e € E and f(e) = B otherwise. In the following (K, f) is considered as an instance of 3-CCP.
By hypothesis, there is a polynomial 2-list covering F for 3-CCP on (K, f). Let us prove that
we can derive from F a polynomial CS-separator C.

Let £ € F be a 2-list assignment. Define X (resp. Y, Z) the set of vertices which have
the constraint {A, B} (resp. {B,C}, {A,C}). Since no edge has color C, X is split. Indeed,
the vertices of color A form a B-clique and conversely. Given a graph, there is a linear number
of decompositions into a split graph [7]. Thus there are a linear number of decomposition
(Uk, Vi )k<en of X into a split graph where Uy, is a B-clique. For all k, the cut (Uy UY, VU Z)
is added in C. For each 2-list assignment we create a linear number of separators.

Let K be a clique and S a stable set of G which do not intersect. The edges of K are colored
by A, and those of S are colored by B. Then the coloration S(z) = Bif z € K, S(z) = A
if z € S and S(x) = C otherwise is a solution of (K, f). Left-hand side of Fig. 8 illustrates
the situation. There is a 2-list assignment £ in F which is compatible with this solution. As
before, let X (resp. Y, Z) be the set of vertices which have the constraint {A, B} (resp. {B,C},
{A,C}). Since the vertices of K are colored B, we have K C X UY (see right hand-side of Fig.
8). Likewise, S C XUZ. Then (KN X,SNX) forms a split partition of X. So, by construction,
there is a cut (KNX)UY,(SNX)UZ) € C which ensures that (K, S) is separated by C. [

Lemma 17. (3 = 1): Suppose for every graph G, there is a polynomial CS-separator. Then
for every graph G and every list assignment L :V — P({A1, Aa, A3, As}), there is a polynomial
2-list covering for the stubborn problem on (G, L).

Proof. Let (G, £) be an instance of the stubborn problem. By assumption, there is a polynomial
CS-separator for G.

Claim 18. If there are p cuts that separate all the cliques from the stable sets, then there are p?
cuts that separate all the cliques from the unions SUS’ (where S and S’ are stable sets).

Proof. Indeed, if (V1,V2) separates C' from S and (V{, VJ) separates C' from S’ then the new
cut (Vi NV, Vo UVy) satisfies C C Vi NV{ and SUS C Vo U V3. O
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Biedge-neighbourhopd

A odgc—noighbour} ‘
B-colored vertices A-colored vertices

-edge-neighbourhood

(a) Vertex z, its A-edge-neighborhood subject to the constraint {B,C}, and
its C-edge-neighborhood separated in different parts.

Solution to (H, L)

(b) Above, the graph H obtained (c) Above, the graph H' obtained
from the C-edge-neighborhood by from the C-edge-neighborhood by
keeping only B-edges and C-edges. keeping only B-edges. Below, the
Below, the solution of the stubborn solution of the stubborn problem.

problem.

Figure 7: Illustration of proof of lemma 14. Color correspondence: A—red ; B=blue ;
As before, cliques are represented by hatched sets, stable sets by dotted sets.

Figure 8: Illustration of proof of lemma 16. On the left hand-side, G is separated in 3 parts:
K, S, and the remaining vertices. Each possible configuration of edge- and vertex-coloring
are represented. On the right-hand-side, (X,Y, Z) is a 2-list assignment compatible with the
solution. X (resp. Y, Z) has constraint {A, B} (resp. {B,C}, {A,C}). Color correspondence:

A=red ; B=blue ;
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constr.{As, Az} if A3 € L(v)

constr.{A1, As} otherwise

G
o o
oA1 e

Az ¢ E(v) constraint {As, A4}

Figure 9: Illustration of proof of lemma 17. A solution to the stubborn problem together with
the cut that separates Ay from A; U As. The 2-list assignment built from this cut is indicated
in purple.

Let F2 be a polynomial family of cuts that separate all the cliques from union of two stable
sets, which exists by Claim 18. Then for all (U, W) € Fa, we build the following 2-list assignment
L'

1. fveU,let L'(v) = {43, A4}
2. Ifv e W and Az € L(v), then let £/'(v) = {As, A3}
3. Otherwise, v € W and As ¢ L(v), let £'(v) = {41, A2}

Now the set F’ of such 2-list assignment £’ is a 2-list covering for the stubborn problem on
(G, L): let S = (A1, Ag, A3, A4) be a maximal solution of the stubborn problem on this instance.
Then Ay is a clique and A, Ay are stable sets, so there is a separator (U, W) € Fy such that
Ay CU and A1 U Ay C W (see Fig. 9), and there is a corresponding 2-list assignment £’ € F.
Consequently, the 2-constraint £'(v) built from rules 1 and 3 are compatible with S. Finally, as
S is maximal, there is no v € A; such that Az € £(v): the 2-constraints built from rule 2 are
also compatible with S. ]

Proof of theorem 13. Lemmas 14, 16 and 17 conclude the proof of Theorem 13. O

5 Bipartite packing and graph coloring

The aim of this section is to prove that the polynomial Alon-Saks-Seymour conjecture is equiv-
alent to the Clique-Stable set separation conjecture. We first need an intermediate step using
a new version of the Alon-Saks-Seymour conjecture, called the Oriented Alon-Saks-Seymour
conjecture. Then we prove that bounding the chromatic number x polynomially in terms of
the t-biclique number bp, is equivalent to bounding x polynomially in terms of the bipartite
packing bp. Combining these two properties prove the statement.

5.1 Oriented Alon-Saks-Seymour conjecture

Given a graph G, the chromatic number x(G) of G is the minimum number of colors needed
to color the vertices such that two vertices connected by an edge do not have the same color.
The bipartite packing bp(G) of a graph G is the minimum number of edge-disjoint complete
bipartite graphs needed to partition the edges of G. The Alon-Saks-Seymour conjecture states
the following.
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Conjecture 19. (Alon, Saks, Seymour) If bp(G) < k, then x(G) < k+1

For complete graphs it is a well-known result, due to Graham and Pollak [10]. Indeed, n —1
edge-disjoint complete bipartite graphs are needed to partition the edges of K,,. A beautiful
algebraic proof of this theorem is due to Tverberg [22]. Conjecture 19 was disproved by Huang
and Sudakov in [12] who proved that y > kS/° for some graphs using a construction based
on Razborov’s graphs [18]. Nevertheless the existence of a polynomial bound is still open. In
the following we will consider an oriented version of the Alon-Saks-Seymour conjecture. The
oriented bipartite packing bp,,(G) of a non-oriented graph G is the minimum number of oriented
complete bipartite graphs such that each edge is covered by an arc in at least one direction (it
can be in both directions), but it cannot be covered twice in the same direction.

Conjecture 20. (Oriented Alon-Saks-Seymour Conjecture) There ezists a polynomial P such
that for every G, x(G) < P(bp,,(Q)).

Lemma 21. If the oriented Alon-Saks-Seymour conjecture is verified, then the Clique-Stable set
separation conjecture is verified.

Proof. Let G be a graph on n vertices. We want to separate all the pairs of cliques and stable
sets which do not intersect. Consider all the pairs (C, S) such that the clique C' does not intersect
the stable set S. Construct an auxiliary graph H as follows. The vertices of H are the pairs
(C,S) and there is an edge between a pair (C,S) and a pair (C",5’) if and only if there is a
vertex z € SNC’. Observe that the number of vertices of H is at most 4. The bipartite packing
of this graph is at most the number n of vertices of G. Indeed, let H, be the graph H restricted
to the edges for which x € SN C’. Put an orientation (C,S)(C’,S") on these edges. Observe
that the union of the oriented graphs H, for all = covers the graph H because if (C,S)(C’,S")
is an edge, then SN C’" # (). In addition, the graph H, is a complete bipartite graph: if there
is an edge which starts in (C,S) and if there is an edge which ends in (C’,S’) then z € S and
z € C" and finally there is an arc (C,S)(C’,S’). The graphs H, and H, cannot share an arc
because otherwise the intersection between a clique and a stable set would be at least 2 which
is impossible. Hence the oriented bipartite packing of this graph is at most n.
If the oriented Alon-Saks-Seymour conjecture is verified, x(H) < P(n). Consider a color of this
polynomial coloring. Let A be the set of vertices of this color. There is no edge between two
vertices of A, then the union of all the second components (stable sets) of the vertices of A do
not intersect the union of all the first components (cliques) of A. Indeed, if they intersect, there
is a clique C' which intersects a stable set S, hence there is an edge which is impossible.

The union of the cliques and the union of the stable sets do not intersect, hence it defines
a cut which separates all the pairs of A. The same can be done for every color. Then we can
separate all the pairs (C, S) by x(H) cuts, which is a polynomial in n if the Alon-Saks-Seymour
conjecture is verified. This achieves the proof. O

Lemma 22. If the Clique-Stable set separation conjecture is verified, then the oriented Alon-
Saks-Seymour conjecture is verified.

Proof. Let G = (V, E) be a graph with bipartite packing k. Construct an auxiliary graph H as
follows. It has k vertices which are the oriented complete bipartite graphs that cover the edges
of G. There is an edge between two pairs (Aj, B1) and (Ag, B) if and only if there is a vertex
x € A1 N As. Hence the complete bipartite graphs in which x appears at the left form a clique
of H (say the clique C, associated to x) and the complete bipartite graphs for which y appears
at the right form a stable set in H (say the stable set S, associated to y) . Indeed, it is quite
clear for the clique, and it is also true for the stable set because if y € B; N By and there is an
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edge resulting from =z € A; N Ag, then the arc xy is covered twice which is impossible. Note
that a clique or a stable set associated to a vertex can be empty, but this does not trigger any
problem.

By assumption there are P(k) (with P a polynomial) cuts which separate all the pairs (C,.5),
in particular which separate all the pairs (Cy, S;) for x € V. We color each vertex = by the
color of the cut separating (C,, S;). This coloring is proper: assume there is an edge from z to
y, and that = and y are given the same color. Then there exists a bipartite graph (A, B) that
cover the edge xy, hence (A, B) is in the clique associated to x and in the stable set associated
to y, which means they intersect: no cut can separate at the same time both C, from S, and
Cy from Sy, because it would then separate C, from .S,. This is impossible. Then we have a
coloring with at most P(k) colors, which is a polynomial in k. O

Theorem 23. The oriented Alon-Saks-Seymour conjecture is verified if and only if the Clique-
Stable set separation conjecture is verified.

Proof. This is straightforward using Lemmas 21 and 22. O

5.2 Generalization: t-biclique covering numbers

We study here a natural generalization of the Alon-Saks-Seymour conjecture, studied by Huang
and Sudakov in [12|. While the Alon-Saks-Seymour conjecture deals with partitioning the edges,
we relax here to a covering of the edges by complete bipartite graphs, meaning that an edge can
be covered several times. Formally, a t-biclique covering of an undirected graph G is a collection
of bipartite graphs that cover every edge of G at least once and at most ¢ times. The minimum
size of such a covering is called the t-biclique covering number, and is denoted by bp,(G). In
particular, bp, (G) is the usual biclique partition number bp(G).

In addition to being an interesting parameter to study in its own right, the ¢-biclique covering
number of complete graphs is also closely related to a question in combinatorial geometry about
neighborly families of boxes. It was studied by Zaks [24] and then by Alon [17], who proved
that R? has a t-neighborly family of k& standard boxes if and only if the complete graph Kj,
has a t-biclique covering of size d (see [12] for definitions and further details). Alon also gives
asymptotic bounds for bp,(K%):

(1+0(1))(#1/2) /K1 < bp,(Ky) < (1+ o(1))tkY" .

Our results are concerned not only with K} but for every graph G. It is natural to ask the
same question for bp,(G) as for bp(G), namely:

Conjecture 24 (Generalized Alon-Saks-Seymour conjecture of order t). There exists a polyno-
mial P such that for all graphs G, x(G) < P(bp,(Q)).

Observation 25. A t-biclique covering is a fortiori a t'-biclique covering for allt’ > t. Moreover,
the set of bp..(G) oriented bipartite graphs covering each edge at most once in each direction
can be seen as a non-oriented biclique covering which covers each edge at most twice. Hence, we
have the following inequalities:

S bp(G) S bpy(G) < bpy 1 (G) < ... bpy(G) < bp(G) < bpy(G) -

In particular, if the generalized Alon-Saks-Seymour conjecture of order t holds, then x(G) is
bounded by a polynomial in bp,(G) and thus by a polynomial in bp,(G), so the generalized
Alon-Saks-Seymour of order 1 holds.

We prove that the reverse is also true.
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Theorem 26. Let t € N*. The generalized Alon-Saks-Seymour conjecture of order t holds if
and only if it holds for order 1.

Before going to the proof, we need a few definitions: let G be a graph and let B = {Bj, ..., By}
be a family of bipartite complete graphs which covers the edges of G. Given an edge e, the
multiplicity m(e) of e is the number of bipartite graphs which contain the edge e. We associate
a positive side and a negative side to each bipartite graph, meaning that B; = (B;", B;") with
B} (resp. B; ) being a stable set and referred to as the positive (resp. negative) side of B;.
Given an edge xy, two half edges are associated to zy: (zy,x) and (xy,y). If B; covers the edge
xy, the half edge (zy, ) is a positive (resp. negative) half edge for B; if x is in the positive (resp.
negative) side of the bipartite graph and y in the other side. The vertex associated to the half
edge (e,x) is the vertex x. A tag is a pair consisting into a bipartite graph B; € B and a sign
(4 or —). The opposite tag of a tag is the same bipartite graph and the opposite sign. A bag is
a set of tags and two bags X and Y are opposite if for each tag in X, the opposite tag is in Y.

Proof of Theorem 26. As Observation 25 proves one direction, we focus on the other, and assume
that the generalized Alon-Saks-Seymour conjecture of order 1 holds. Let us prove the result by
induction on ¢, initialization for ¢ = 1 being obvious. Let G be a graph and let B = (B, ..., B)
be a t-biclique covering. Since each edge is covered by at most ¢ bipartite graphs, each half edge
(e, z) of the graph can be represented by a bag with at most ¢ tags, containing all the (B;, +)
such that (e,x) is a positive half edge in B;, and all the (Bj, —) such that (e, x) is a negative
half edge in B;. Note that there are 2k possible tags, thus the total number of different bags is
at most (2k)’.

Partition the set of half edges into {P, ..., P, } with m = (2k)!, in such a way that two half
edges are in the same P; if and only if they have exactly the same bag. The vertices associated
to P; are the vertices associated to the half edges which appear in P;. In a first time we will
only consider the edges which are covered exactly ¢ times. Let P; and Py be two parts such
that their induced bags X and X are opposite and of size ¢, and let U and U’ be their set of
associated vertices, respectively. Observe that the bipartite graphs appearing in X and in X are
the same, and that the vertices of U and U’ appear in all these bipartite graphs. Note first that
U and U’ are disjoint: indeed, if « € U N U’, then there exists (e,z) € P; and (€¢/,x) € Pjs. For
all tag (B;, £) in X, (B;, F) is in X, thus = has to be on both side of B;, which is impossible.
Moreover, there is a complete bipartite graph between U and U’ in G. Indeed, for all z € U,
z' € U’ and for all bipartite graph B; in X, z is on one side on B; and z’ on the other so the
edge z2’ is in B;.

Select one bipartite graph (it can be any of those appearing in X) and call it B}. It covers
all the edges between U and U’. We do the same for all pair (X, X) of opposite bags of size t
and get a family B’ of complete bipartite graphs. All the edges of the graph G of multiplicity
t are covered by this set of bipartite graphs. Indeed, consider an edge xy of multiplicity ¢, the
two half edges (zy,x) and (zy,y) have two opposite bags of size t. Then by construction, they
are covered by one of the B}. Let us prove that each edge is covered at most once. Indeed, if

xy is covered by Bé», then the two half-edges are appearing in two opposite bags (X, X) of size
t, thus there are already t bipartite graphs B; which cover xy. If it is also covered by another
bipartite graph B;, selected from a different pair of opposite bags (Y,Y), it means that, there is
a bipartite graph B; which is not in the bag X but in the bag Y (since all the bags have size t)
which covers the edge xy. Thus, the edge xy is covered by at least £ 4+ 1 bipartite graphs which
contradicts the hypothesis on ¢. Thus this set of bipartite graphs cover the edges of multiplicity
t with a multiplicity one.

As we assumed that the generalized Alon-Saks-Seymour conjecture of order 1 holds, it means
that the graph restricted to this set of bipartite graphs B} has chromatic number at most P((2k)?)
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(with P a polynomial) since B’ ensures bp;(G) < (2k). Thus the vertex set can be partitioned
into P((2k)") stable sets Si,. .., Sp(akyt)- Since all the edges of multiplicity ¢ in B are covered, it
means that the multiplicity of the edges of GG in each part S; is at most ¢ —1. Hence by induction
hypothesis, it means that the chromatic number of each S; is bounded by a polynomial @ in
bp;_;(S;). As S; contains no edge of multiplicity ¢, B restricted to the vertices of \S; ensures
that bp,_;(S;) < (2k)!. Thus the chromatic number of G seen as a product graph is at most
(P-Q)(2k"), which is a polynomial in k. Thus the generalized Alon-Saks-Seymour conjecture of
order t holds if and only if it holds for order one. O

6 Conclusion

Corollary 27. The following are equivalent:

e Oriented Alon-Saks-Seymour Conjecture.
There exists a polynomial P such that for every graph G, x(G) < P(bp,,.(Q)).

o Generalized Alon-Saks-Seymour conjecture of order t, t € N*.
There exists a polynomial P such that for every graph G, x(G) < P(bp,(G))

o Clique-Stable set Separation Conjecture.
For every graph G, there is a polynomial CS-separator.

e Polynomial 2-list covering for the stubborn problem.
For every graph G and every list assignment L : V. — P({A, Ag, A3, Ay}), there is a
polynomial 2-list covering for the stubborn problem on (G, L).

e Polynomial 2-list covering for 3-CCP.
For every n and every edge-coloring f : E(K,) — {A, B,C}, there is a polynomial 2-list
covering for 8-CCP on (K, f).

Proof. Combining Observation 25 and Theorems 13, 23, 26. O

These results are interesting due to the link they make between some distant areas of theoret-
ical computer science such as communication complexity, graph theory, constraint satisfaction
problem, and even polytope geometrics, via an equivalence between long-standing open prob-
lems in each area. It has been somehow fascinating to explore such a wide range of domains and
to see links appearing between them. The main question is now of course to prove or disprove
one of these equivalent problems. Our results are a step forward, enabling anyone to choose his
favourite domain between the three involved ones.

I would like to gratefully thank my supervisor Stéphan THOMASSE and his PhD student
Nicolas BOUSQUET for their close collaboration during my internship. They were fully avail-
able for answering my questions and they have been willingly sharing some interesting research
problems with me. Moreover, I thank the whole team for their warm welcome and for having
had me take part into special events such as the workshop on x-bounded classes with Paul Sey-
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Appendix

A Detailed proof on random graphs

We give here detailed computations using Taylor series for a result used in the proof of Th. 3.

Proposition 28. If w and « are respectively the clique number and the independent number of
G(n,p), then p*(1 —p)* > 1/nS.

Proof. In the following, log; denotes the logarithm to base b, log denotes the logarithm to base 2,
and In denotes the logarithm to base e. Without loss of generality, we assume p = 1—2~2legn/a(n)
where a(n) is a function of n. Let p’ =1 —p, b=1/p and ¥/ = 1/p’. The independence number
and clique number of G(n, p) are given by the following formulas, depending on p (see [2]):

w = 2logy(n) — 2logy(log, n) + 2log,(e/2) + 1 + o(1)
a = 2logy (n) — 2logy, (logy n) + 2logy (e/2) + 1 + o(1)

We need to distinguish two cases.

Case 1 a(n) =o(logn) and a(n) > 2.
In the following, a(n) will be denoted by a.

Using the previous formula and we get:

_a
logt/  2logn’

a = 2logy(n) — 2logy logy n + 2logy (e/2) + 1+ o(1)

a a
—a——1log(5) +1+0(1
a lognog 5 +1+o0(1)
1
:a—aOga—i—l—}—o(l)
logn

Moreover, thanks to Taylor series we get:

L -1
logb o ]Og(l _ 2—210gn/a)
—In2 _ )

T _2-2logn/a | O(2-4logn/a) using In(1 + z) = x + O(2?)

In9 . 92logn/a

=1 O T/ by factorization

by definition of b

=In2-22len/a. (1 4 O(2-2lgn/a))) yging % =14 O(x)
— X
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Thus, let us look at the different terms in the approximation of w:
o 2logyn =2In2-22len/a. (1 4 O(2-2len/a)) Jogn

=2In2 - 22187/¢ Jog n + O(log n)

o —2logylogyn = —2In2-22l8n/a. (1 4 O(2-2len/a)). (loglogn — loglogb)
by substitution of logb
— _2In2.92Men/a. (] 4 O(2-2lan/a))
- (loglog n + logIn2 — log(2-2logn/a(1 4 O(2-2logn/a))))
by previous computation

= —2In2.22lgn/a. (1 4 O(22logn/a))

2logn

- (loglogn +logln2 + + O(22lgn/ay)

using In(1+ z) =z + O(z?)
2logn

= —2In2-22len/a . (Joglogn + logIn 2 + )+ O(logn)

by developping.

o 2log,(e/2) +1+o0(1) =2log(e/2)In2-22lem/a L O(1)

Hence:

21
w =2In2-22108n/a . (Jogp — =08
a

—loglogn — logIn2 4+ log(e/2)) + O(logn)

2logn

=2In2-22len/a . (Jogn — —loglogn) + O(221°e/@) L O(log n)

On one hand,

(1-p)*>n"06+) o alog(l —p) > —(3+¢)logn

1 —21
sa-28Y 11 0a)) 2B S (34 ) logn
logn a
21
< 2logn + Ogn+o(logn)§(3+s)logn

which is true if n is large enough.

On the other hand, using the previous approximations:
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p? >0 o wlogp > —(2+¢)logn
2logn

& (2In2.-2%2en/a. (logn — — loglogn) + O(22lgn/a) 1 O(logn))

_27210gn/a
: T—i—(’)@*“‘)g”/a) > —(2+¢)logn

2logn

< 2(logn — —loglogn) + O(1) + O(272en/a]og n) < (2 +¢)logn

which is true if n is large enough.

As a conclusion, for all g, p*(1 — p)¥ > 1/n>*¢.

Case 2: a(n) = 2d’'logn for some constant d’ > 0. Define d = —1/log(1 — 2-/¢). Then

log b/ =d and logb = d, which implies:
o o

a = 2d'log(n) + o(logn)
w = 2dlog(n) + o(logn)

Thus
(1-p)*>n"C*) o alog(l —p) > —(24¢)logn
-1
< (2d'log(n) + o(logn)) - 7 > —(24¢)logn
< 2log(n) +o(logn) < (2+¢)logn
which is true if n is large enough.
Similarly

P >n" ) o alogp > —(2+¢)logn
—1
& (2dlog(n) + o(logn)) - - > —(2+4+¢)logn

< 2log(n) +o(logn) < (2+¢)logn
which is true if n is large enough.

As a conclusion, for all €, p*(1 — p)® > 1/n**e.
O

Observation 29. In the previous proof, if a(n) < 2, then the independent number o is upper
bounded by 3. Thus, the family of every cut (U,V \ U) with |U| < 3 has size O(n®) and is a
complete (w, a, m)-separator for G(n,p).
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