
A General Scalable Implementation of Fast Matrix Multiplication Algorithms on
Distributed Memory Computers

Duc Kien NGUYEN, Ivan LAVALLÉE, Marc BUI
Laboratoire de Recherche en Informatique Avancée

University of Paris 8
No. 41, Gay Lussac street, 75005 Paris , France

{Kien.Duc-Nguyen, Ivan.Lavallee, Marc.Bui}@univ-paris8.fr

Quoc Trung HA
Faculty Information Technology
Hanoi University of Technology

No. 1, Dai Co Viet road, Hanoi, Vietnam
Trung.Ha-Quoc@it-hut.edu.vn

Abstract

Fast matrix multiplication (FMM) algorithms to multi-
ply two n × n matrices reduce the asymptotic operation
count fromO(n3) of the traditional algorithm toO(n2.38),
thus on distributed memory computers, the association of
FMM algorithms and the parallel matrix multiplication al-
gorithms always gives remarkable results. Within this as-
sociation, the application of FMM algorithms at inter-
processor level requires us to solve more difficult problems
in designing but it forms the most effective algorithms. In
this paper, a general model of these algorithms will be pre-
sented and we also introduce a scalable method to imple-
ment this model on distributed memory computers.

1. Introduction

Matrix multiplication (MM) is one of the most funda-
mental operations in linear algebra and serves as the main
building block in many different algorithms, including the
solution of systems of linear equations, matrix inversion,
evaluation of the matrix determinant and the transitive clo-
sure of a graph. In several cases the asymptotic complexi-
ties of these algorithms depend directly on the complexity
of matrix multiplication - which motivates the study of pos-
sibilities to speed up matrix multiplication. Also, the inclu-
sion of matrix multiplication in many benchmarks points at
its role as a determining factor for the performance of high
speed computations.

These are the reasons for the birth of the FMM al-
gorithms. Strassen was the first to introduce a better al-
gorithm (hereafter referred as S-algo) [15] for MM with
O(N log2 7)than the traditional one (hereafter referred as T-
algo) which needsO(N3) operations. Then Winograd vari-
ant [17] of Strassen’s algorithm (hereafter referred as W-
algo) has the same exponent but a slightly lower constant
as the number of additions/subtractions is reduced from 18
down to 15. The record of complexity owed to Coppersmith
and Winograd isO(N2.376), resulted from arithmetic ag-
gregation [5]. However, only W-algo and S-algo offer bet-
ter performance than T-algo for matrices of practical sizes,
say, less than 1020[11], hence in this paper, we concentral-
ize only on the implementation of W-algo and S-algo on dis-
tributed memory computers. In fact, our method is applica-
ble with all the FMM algorithms, which are always with the
recursive form [14].

W-algo is a variant of S-algo, hence in this paper we will
use S-algo in all the expressions and W-algo is only men-
tioned when the differences between theses two algorithms
appear.

There have been mainly three approaches to parallelize
S-algo. The first approach is to use T-algo at the top level
(between processors) and S-algo at the bottom level (within
one processor). The most commonly algorithms used T-
method between processors include 1D-systolic [7], 2D-
systolic [7], Fox (BMR) [6], Cannon [1], PUMMA [3],
BiMMeR [9], SUMMA [16], DIMMA [2]. Since S-algo is
most efficient for large matrices (thanks to the great dif-
ference of complexity between the operation multiplication
and the operation addition/subtraction of matrix), it is well

suited to use at the top level, not at the bottom level. The
second approach is to use S-algo at both the top and the bot-
tom level. The first implementation applying this approach
[4] on Intel Paragon reached better performance than T-
algo. However, S-algo in [4] requires that the number of
processors used in the computation to be a power of seven.
This is a severe restriction since many MIMD computers
use hypercube or mesh architecture and powers of seven
numbers of processors are not a natural grouping. There-
fore, the algorithm presented in [4] is not scalable. More-
over, it requires a large working space, with each matrix to
be multiplied being duplicated 3 or 4 times. For these rea-
sons, in [12] Luo and Drake explored the possibility of other
parallel algorithms with more practical potential: they in-
troduced an algorithm which uses S-algo at the top level
and Fox algorithm at the bottom level. This is the first work
that represents the third approach: use FMM algorithms at
the top level (between processors) and T-algo at the bot-
tom level (also between processors). To continue, an im-
provement is introduced in [8]: algorithm SUMMA is used
in the place of Fox algorithm at the bottom level. The third
approach is more complicated than the others, but it gives
the scalable and effective algorithms in multiplying large
matrices [12].

In this article, we will generalize these algorithms by us-
ing Cannon algorithm at the bottom level and show that the
total running time for the Strassen-Cannon algorithm de-
creases when the recursion levelr increases. This result is
also correct when we replace Cannon algorithm at the bot-
tom level with the other parallel MM algorithms. To use
S-algo at the top level, the most significant point is to de-
termine the sub matrices after having recursively executed
r time the Strassen formula (these sub matrices are corre-
sponding to the nodes of levelr in the execution tree of
S-algo) and then to find the result matrix from these sub
matrices (corresponding to the process of backtracking the
execution tree). It is simple to solve this problem for a se-
quential machine, but it’s much harder for a parallel ma-
chine. With a definite value ofr, we can manually do it
like [4], [12], and [8] made (r = 1, 2, 3) but the solution
for the general case has not been found. In this paper, we
present our method to determine all the nodes at the un-
specified levelr in the execution tree of Strassen algorithm,
and to show the expression representing the relation be-
tween the result matrix and the sub matrices at the level
recursionr; this expression allows us to calculate directly
the result matrix from the sub matrices calculated by paral-
lel matrix multiplication algorithms at the bottom level. By
combining this result with a good storage map of sub matri-
ces to processor, and with the parallel matrix multiplication
algorithms based on T-algo (1D-systolic, 2D-systolic, Fox
(BMR), Cannon, PUMMA, BiMMeR, SUMMA, DIMMA
. . .) we have a general scalable implementation of FMM al-

gorithms on distributed memory computers.

2. Background

2.1. Strassen Algorithm

We start by considering the formation of the matrix prod-
uctQ = XY , where

Q ∈ <m×n, X ∈ <m×k, andY ∈ <k×n.

We will assume thatm, n, andk are all even integers. By
partitioning

X =
(

X00 X01

X10 X11

)
, Y =

(
Y00 Y01

Y10 Y11

)
,

Q =
(

Q00 Q01

Q10 Q11

)

where

Qij ∈ <m
2 ×n

2 , Xij ∈ <m
2 × k

2 , andYij ∈ < k
2×n

2 ,

and it can be shown [17, 7] that the following computations
computeQ = XY :

M0 = (X00 + M11)(Y00 + Y 11);
M1 = (X10 + X11)Y00; M2 = X00(Y01 − Y11);
M3 = X11(−Y00 + Y10); M4 = (X00 + X01)Y11;
M5 = (X10 −X00)(Y00 + Y01);
M6 = (X01 −X11)(Y10 + Y11);
Q00 = M0 + M3 −M4 + M6;
Q01 = M1 + M3;
Q10 = M2 + M4;
Q11 = M0 + M2 −M1 + M5;

(1)

S-algo does the above computation recursively until one of
the dimensions of the matrices is 1. With Winograd’s for-
mula, the number of additions/subtractions is reduced from
18 down to 15:

S0 = X10 + X11 S1 = S0 −X00 S2 = X00 −X10

S3 = X01 − S1 S4 = Y01 − Y00 S5 = Y11 − S4

S6 = Y11 − Y01 S7 = S5 − Y10

M0 = S1S5 M1 + X00Y00 M2 = X01Y10

M3 = S2S6 M4 = S0S4 M5 = S3Y11

M6 = X11S7

T0 = M0 + M1 T1 = T0 + M3

Q00 = M1 + M2 Q01 = T0 + M4 + M5

Q10 = T1 −M6 Q11 = T1 + M4

2.2. Cannon Algorithm

Cannon algorithm [1] is a commonly used parallel ma-
trix multiply algorithm based on the T-algo. It can be used

2

on any rectangular processor templates and on matrices of
any dimensions [3]. For simplicity of discussion, we only
consider square processor templates and square matrices.
Suppose we havep2 processors logically organized in a
p×p mesh. The processor inith row andjth column has co-
ordinates (i, j), where 0≤ i, j ≤ p-1. Let matricesX, Y ,
andQ be of sizem×m. For simplicity of discussion we as-
sumem is divisible byp. Lets = m/p. All matrices are par-
titioned intop × p blocks ofs × s sub matrices. The block
with coordinates (i, j) is stored in the corresponding proces-
sor with the same coordinates. With the addition of a link
between processors on opposite sides of the mesh (a torus
interconnection), the mesh can be thought of as composed
of rings of processors both in the horizontal and vertical di-
rections. The Cannon method requires communication be-
tween the processors of each ring in the mesh. The blocks
of the matrixX are passed in parallel to the left along the
horizontal rings. The blocks of the matrixY are passed to
the top along the vertical rings. This communication pat-
tern results in the shifting leftwards of matrixX and up-
wards of matrixY . Let Xij , Yij , Qij stand for the blocks
of X, Y , Q respectively stored in the processor with co-
ordinates (i, j). The following pseudo code describes the
Cannon algorithm. The running time of the Cannon algo-

The completeith row of X is shifted leftwardi times
(i.e.,Xij ← Xi,j+i)

The completejth column ofY is shifted upwardj times
(i.e.,Yij ← Yi+j,j)
Qij = XijYij for all processors (i, j)
DO (p− 1) times
Shift X leftwards andY upwards
(i.e.,Xij ← Xi,j+1; Yij ← Yi+1,j)
Qij = Qij + XijYij for all processors
ENDDO

rithm consists of two parts: the communication timeTshift

and the computation timeTcomp. On the distributed mem-
ory computer, the communication time for a single message
is

T = α + βn,

whereα is the latency,β is the byte-transfer rate, andn is
the number of bytes in the message. In the Cannon method,
both matricesX andY are shiftedp times. There are a total
of 2p shifts. The total latency is 2pα. In each shift a sub ma-
trix of order (m/p × m/p) is passed from one processor to
another, wherem is the dimension of the matrices. There-
fore the total byte transfer time is 2pβB(m/p)2, whereB is
the number of bytes used to store one entry of the matri-

ces. The total communication time is

Tshif = 2pα +
2Bβ

p
m2. (2)

The computation time is

Tcomp =
2tcomp

p2
m3, (3)

wheretcomp is the execution time for one arithmetic opera-
tion. Here we assume that floating point addition and mul-
tiplication has the same speed. The total running time is

T (m) =
2tcomp

p2
m3 +

2Bβ

p
m2 + 2pα. (4)

In order to make the Cannon algorithm work, an additional
working space of sizem2 is needed to temporarily store the
products of the sub matrices ofX andY .

3. General Scalable Implementation of Fast
Matrix Multiplication Algorithms

3.1. Strassen-Canon algorithm and storage pat-
tern of matrices

The motivation for the Strassen-Cannon algorithm
comes from the observation that S-algo is most effi-
cient for large matrices and therefore should be used at
the top level (between processors) instead of the bot-
tom level (within one processor). The 7 sub matrix mul-
tiplications of S-algo at each recursion seem at first to
lead to a task parallelism. The difficulty in implement-
ing a task parallelism of S-algo on a distributed memory
computer results from the fact that the matrices must be dis-
tributed among the processors. Sub matrices in S-algo must
be stored in different processors and if tasks are spawned
these sub matrices must be copied or moved to the appro-
priate processors [4].

For a distributed memory parallel algorithm the storage
map of sub matrices to processors is a primary concern. If
the sub matrices used in the S-algo are stored among proces-
sors in the same pattern at each level of recursion, then they
can be added or multiplied together just as if they are stored
within one processor. Here we have a pattern to store the
matrices which is based on the result of Luo and Drake in
[12]. Figures 1 and 2 show the pattern of storing matrix X
with 6 x 6 blocks when the recursion level is 1. Figure 1
is from a matrix point-of-view. Note that the four sub ma-
trices with 3 x 3 blocks are stored among the 9 processors
in the same pattern. Figure 2 is from a processor point-of-
view. Each processor stores one block of the four sub ma-
trices. Figures 3 and 4 show the pattern when the recursion
level is 2. The four sub matrices with 6 x 6 blocks are stored
in the same pattern, as well as the 16 sub matrices with 3 x

3

Figure 1. Matrix X with 6× 6 blocks is distrib-
uted over a 3 × 3 processor template from a
matrix point-of-view. The 9 processors are la-
beled from 0 to 8. This pattern is used in the
Strassen-Cannon algorithm when the recur-
sion level is 1.

Figure 2. Same as Figure 1, but from a
processor point-of-view.

3 blocks. This pattern can be easily replicated for higher re-
cursion levels.

These patterns of storing matrices make it possible for all
the processors to act as one processor. Each processor has a
portion of each sub matrix at each recursion level. The addi-
tion (or subtraction) of sub matrices performed in S-algo at
all recursion levels can thus be performed in parallel with-
out any inter processor communication. From the proces-
sor point-of-view, each processor does its local sub matrix
additions and subtractions. Sub matrix multiplications are
calculated recursively using S-algo. At the last level of re-
cursion the sub matrix multiplications are calculated using
the Cannon algorithm. Therefore, the Strassen-Cannon al-
gorithm uses S-algo at the top level and the T-algo at the
bottom level.

Suppose the recursion level in S-algo isr. Let
n = m/p,m0 = m/2, and n0 = m0/p. Assume
n, m0, n0 ∈ N. Since there are18 sub matrix additions and
subtractions and7 sub matrix multiplications in each re-
cursion, the total running time for the Strassen-Cannon
algorithm is:

T (m) = 18Tadd
m

2
+ 7T

m

2
(5)

Figure 3. Matrix X with 12 × 12 blocks is dis-
tributed over a 3× 3 processor template from
a matrix point-of-view. The 9 processors are
numbered from 0 to 8. This pattern is used in
the Strassen-Cannon algorithm when the re-
cursion level is 2.

Figure 4. Same as Figure 3, but from a
processor point-of-view.

whereTadd
m
2 is the running time to add or subtract sub ma-

trices of orderm/2. Note that there arep2 processors run-
ning in parallel. Therefore:

Tadd
m

2
=

(m
2)2tcomp

p2
(6)

Substitute the above formula into equation (5) we have

T (m) = 18
(

18tcomp

4p2

)
m2 + 7T (

m

2
) = sm2 + 7T (

m

2
)

(7)

4

wheres = 18tcomp

4p2 . With W-algo s = 15tcomp

4p2 . Use the
above formula recursively to obtain

T (m) = sm2 + 7T m
2

= sm2 + 7T
(
s
(

m
2

)2 + 7T
(

m
4

))

= sm2
(
1 + 7

4

)
+ 72T m

22

= sm2
(
1 + 7

4

)
+ 72

(
s
(

m
4

)2 + 7T m
8

)

= sm2
(
1 + 7

4 +
(

7
4

)2
)

+ 73T m
23

· · · · · ·
= sm2

(
1 + 7

4 + · · ·+ (
7
4

)r−1
)

+ 7rT m
2r

= sm2 1−(7
4)

r

1− 7
4

+ 7rT (m0)

≈ 4
3s

(
7
4

)r + 7rT (m0)

(8)

At the bottom level, the Strassen-Cannon algorithm uses
the Cannon algorithm for sub matrix multiplications. There-
fore we can use equation (4) to findT (m0). Substituting the
value ofT (m0) ands we have

Tm ≈ 5(7
4)

r
tcomp

p2 m2 + 7r
(

2tcomp

p2 m3
0 + 2Bβ

p m2
0 + 2pα

)

=
(

7
8

)r 2tcomp

p2 m3 +
5(7

4)
r
tcomp

p2 +
(

7
4

)r 2pα

(9)
There are four terms in the above equation. The first term

is a cubic term with respect tom. It is the computational
dominant part and it decreases as the recursion levelr in-
creases. The second term is quadratic and it results from
the additional sub matrix additions and subtractions in S-
algo. It increases asr increases. The last two terms repre-
sent the communication time. They increase asr increases.
Since the first term is the dominant cubic term, the Strassen-
Cannon algorithm should be faster than the Cannon algo-
rithm whenm is large enough.

3.2. Recursion Removal in Fast Matrix Multipli-
cation

In formula (9), we showed that the total running time for
the Strassen-Cannon algorithm decreases when the recur-
sion levelr increases. This result is also correct when we
change Cannon algorithm at the bottom level by the other
parallel MM algorithms. To use the Strassen algorithm at
the top level, the most significant point is to determine the
sub matrices after having recursively executedr time the
formula (1) (these sub matrices are corresponding to the
nodes of levelr in the execution tree of Strassen algorithm)
and then to find the result matrix from these sub matrices
(corresponding to the process of backtracking the execution
tree). It is simple to solve this problem for a sequential ma-
chine, but it’s much harder for a parallel machine. With a
definite value ofr, we can manually do it like [4], [12], and
[8] made (r = 1, 2, 3) but the solution for the general case
has not been found. The following part presents our method

Figure 5. Behavior of Strassen algorithm.

to determine all the nodes at the unspecified levelr in the
execution tree of Strassen algorithm and to determine the
direct relation between the result matrix and the sub matri-
ces at the level recursionr.

Our idea is to create an algorithm that executes the same
atomic computations as the recursive one but directly at the
leaf of the tree, without the intermediate computing. It is
possible because the number of the scalar multiplications
is determinable (7k), so we know exactly how many multi-
plications we must do. We only have to determine exactly
which to do and with which parameters in each step. In
each step, the algorithm must execute a multiplication be-
tween 2 factors, which are linear combinations of elements
of X andY , respectively. We can consider that each fac-
tor is the sum of all elements from each matrix, with coef-
ficient 0, -1, or 1. The execution of the recursive algorithm
can be described by an execution tree [13]. In such a repre-
sentation each scalar multiplication is associated with a leaf
of the execution tree (see figure 5). The path from the root
to the leaf indicates the recursive calls leading to the cor-
responding multiplication. Thus, by the fact that all com-
putations in each call are linear, we can composite them at
only one computation at a leaf. At the leaf, the coefficient
of each element is obtained by the combination of all com-
putation in the path from the root. In each recursive call, the
coefficient obtained for each element depends on:

• The index of the call.

• The fact that in which quarter one finds the element in
the division of the matrix by 4 sub matrices.

In another way, the recursive algorithm’s execution takes
a path which covers twice the tree. Our idea is to replace
the whole tree’s covering path with the leaf’s covering path.
Because the tree is balanced with determined depth and de-
gree, the leaf covering path can be determined. All compu-
tations are linear, so they can be combined in the leaf (see

5

Figure 6. After recursion removal.

figure 6). Each of the 7k multiplications is a product of 2
linear combinations ofX ’s andY ’s elements.Q is a lin-
ear combination of these 7k multiplications.

We represent the Strassen’s formula:

ml =
∑

i,j=0,1

xijSX(l, i, j)× ∑
i,j=0,1

yijSY (l, i, j)

l = 0 · · · 6
andqij =

6∑
l=0

mlSQ(l, i, j)

(10)
with

And for the Winograd’s formula, we have:

Each of7k product can be represented as in the following:

ml =
∑

i,j=0,n−1

xijSXk(l, i, j)× ∑
i,j=0,n−1

yijSYk(l, i, j)

l = 0...7k − 1

andqij =
7k−1∑
l=0

mlSQk(l, i, j)

(11)
In fact, SX = SX1, SY = SY1, SQ = SQ1. Now we
have to determine values of matricesSXk, SYk, andSQk

from SX1, SY1, andSQ1. In order to obtain this, we ex-
tend the definition of tensor product in [10] for arrays of ar-
bitrary dimensions. Here we show directly our result. The
mathematical demonstration of this result, which is a little
long and complicated, will be soon presented to you in de-
tail in another paper.

SXk (l, i, j) =
k∏

r=1
SX (lr, ir, jr)

SYk (l, i, j) =
k∏

r=1
SY (lr, ir, jr)

SQk (l, i, j) =
k∏

r=1
SQ (lr, ir, jr)

(12)

Apply (12) in (11) we have nodes leafsml and all the ele-
ments of result matrix.

To implement a fast matrix multiplication algorithm on
distributed memory computers, we stop at the recursion
level r and thanks to (12) and (11), we have the entire cor-
responding sub matrices:

Ml =
∑

i, j = 0, 2r − 1
Xij

(
r∏

t=1
SX (lt, it, jt)

)

×
∑

i, j = 0, 2r − 1
Yij

(
r∏

t=1
SY (lt, it, jt)

)

l = 0...7r − 1
(13)

with

Thanks to the storage map of sub matrices to proces-
sors that we have just presented, the sub matrices

6




∑
i = 0, 2r − 1
j = 0, 2r − 1

Xij

(
r∏

t=1
SX (lt, it, jt)

)



and




∑
i = 0, 2r − 1
j = 0, 2r − 1

Yij

(
r∏

t=1
SY (lt, it, jt)

)



are lo-

cally determined within each processor. Their prod-
uct Ml will be calculated by parallel algorithms based on
T-algo like Fox algorithm, Cannon algorithm, SUMMA,
PUMMA, DIMMA. . .

Finally, thanks to (12) & (11) we have directly sub ma-
trix elements of result matrix by applying matrix additions
instead of backtracking manually the recursive tree to cal-
culate the root in [12] and [8]:

Qij =
7r−1∑
l=0

MlSQr(l, i, j)

=
7r−1∑
l=0

Ml

(
r∏

t=1
SQ (lt, it, jt)

) (14)

4. Conclusion

We have just presented a general scalable implemen-
tation for all the matrix multiplication algorithms on dis-
tributed memory computers that use FMM algorithms at
inter-processor level. The running time for these algorithms
decreases when the recursion level increases hence this
general solution enables us to find the optimal algorithms
(which correspond with a definite value of the recursive
level and a definite parallel matrix multiplication algorithm
at the bottom level) for all the particular cases.

From a different view, we generalized the formulas of
Strassen and Winograd for the case where the matrices are
divided into 2k parts (the casek = 2 gives us original for-
mulas) thus we have a whole new direction to parallelize the
FMM algorithms.

In addition, we are applying the ideas presented in this
paper to generalize the algorithm in [4].

References

[1] L. E. Cannon.A cellular computer to implement the kalman
filter algorithm. Ph.d. thesis, Montana State University,
1969.

[2] J. Choi. A fast scalable universal matrix multiplication algo-
rithm on distributed-memory concurrent computers. In11th
International Parallel Processing Symposium, pages 310–
317, Geneva, SWITZERLAND, April 1997. IEEE CS.

[3] J. Choi, J. J. Dongarra, and D. W. Walker. Pumma: Paral-
lel universal matrix multiplication algorithms on distributed

memory concurrent computers.Concurrency: Practice and
Experience, 6(7):543–570, 1994.

[4] C.-C. Chou, Y. Deng, G. Li, and Y. Wang. Parallelizing
strassen’s method for matrix multiplication on distributed
memory mimd architectures.Computers and Math. with Ap-
plications, 30(2):4–9, 1995.

[5] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions.Journal of Symbolic Computation,
9(3):251–280, 1990.

[6] G. Fox, S. Otto, and A. Hey. Matrix algorithms on a hyper-
cube i: Matrix multiplication.Parallel Computing, 4:17–31,
1987.

[7] G. H. Golub and C. F. V. Loan.Matrix Computations. Johns
Hopkins University Press, 2nd edition, 1989.

[8] B. Grayson, A. Shah, and R. van de Geijn. A high perfor-
mance parallel strassen implementation.Parallel Processing
Letters, 6(1):3–12, 1996.

[9] S. Huss-Lederman, E. M. Jacobson, A. Tsao, and G. Zhang.
Matrix multiplication on the intel touchstone delta.Concur-
rency: Practice and Experience, 6(7):571–594, 1994.

[10] B. Kumar, C.-H. Huang, R. W. Johnson, and P. Sadayappan.
A tensor product formulation of strassen’s matrix multipli-
cation algorithm.Applied Mathematics Letters, 3(3):67–71,
1990.

[11] J. Laderman, V. Y. Pan, and H. X. Sha. On practical algo-
rithms for accelerated matrix multiplication.Linear Adge-
bra and Its Applications, 162:557–588, 1992.

[12] Q. Luo and J. B. Drake. A scalable parallel strassen’s ma-
trix multiplication algorithm for distributed memory comput-
ers. InProceedings of the 1995 ACM symposium on Applied
computing, pages 221 – 226, Nashville, Tennessee, United
States, 1995. ACM Press.

[13] W. Niklaus. Algorithms + Data Structures = Programs.
Prentice Hall, 1976.

[14] V. Y. Pan. How can we speed up matrix multiplication ?
SIAM Review, 26(3):393–416, 1984.

[15] V. Strassen. Gaussian elimination is not optimal.Numer.
Math., 13:354–356, 1969.

[16] R. van de Geijn and J. Watts. Summa: Scalable universal ma-
trix multiplication algorithm.Concurrency: Practice and Ex-
perience, 9(4):255–274, April 1997.

[17] S. Winograd. On multiplication of 2 x 2 matrices.Linear
Algebra and its Applications, 4:381–388, 1971.

7

