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Abstract - Winograd algorithm to multiply two n × n matrices 

reduces the asymptotic operation count from O(n3) of the 
traditional algorithm to O(n2.8l). Thus for distributed memory 
computer, the association of Winograd algorithm and the 
parallel matrix multiplication algorithms always gives 
considerable results. The use of Winograd algorithm at inter-
processor level requires us to solve more difficulty in designing 
but it forms the most effective algorithms. In this paper, we 
present a general model for this algorithm class and the solution 
optimized for this model. 
 

Index Terms - Matrix multiplication, parallel algorithms, 
Winograd algorithm, recursion removal.  
 

I. INTRODUCTION 
atrix multiplication (MM) is one of the most 
fundamental operations in linear algebra and serves 
as the main building block in many different 

algorithms, including the solution of systems of linear 
equations, matrix inversion, evaluation of the matrix 
determinant and the transitive closure of a graph. In several 
cases the asymptotic complexities of these algorithms depend 
directly on the complexity of matrix multiplication - which 
motivates the study of possibilities to speed up matrix 
multiplication. Also, the inclusion of matrix multiplication in 
many benchmarks points at its role as a determining factor for 
the performance of high speed computations. 

That is the reason why many scientists have worked hardly 
to improve the algorithm for matrix multiplication. Strassen 
was the first to introduce a better algorithm [3] for MM 

with
log 72( )O N than the traditional algorithm (hereafter 

referred as T-algo) which need 3( )O N  operations. Then 
Winograd variant [6] of Strassen’s algorithm has the same 
exponent but a slightly lower constant as the number of 
additions/subtractions is reduced from 18 to 15 (hereafter 
referred as W-algo). The record of complexity owed to 

Coppersmith and Winograd is 2.376( )O N , resulted from 
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arithmetic aggregation [2]. However, only Strassen’s 
algorithm and the W-algo offer better performance than the T-
method for matrices of practical sizes, say, less than 1020[10]. 

There have been mainly two approaches to parallelize the 
W-algo. The first approach is to use the T-algo at the top level 
(between processors) and the W-algo at the bottom level 
(within one processor). The most commonly algorithms used 
T-method between processors include 1D-systolic [11], 2D-
systolic [11], Fox (BMR) [13], Cannon [12], PUMMA [9], 
BiMMeR [14], SUMMA [15], DIMMA [16]. Since the W-
algo is most efficient for large matrices (thanks to the great 
difference of complexity between the operation multiplication 
and the operation addition/subtraction of matrix), it is well 
suited to use at the top level, not the bottom level. The second 
approach is to use the W-algo at both the top and the bottom 
level. The first implementation applying this approach [7] on 
Intel Paragon reached performance better than T-algo. 
However, the W-algo in [7] requires that the number of 
processors used in the computation to be a power of seven. 
This is a severe restriction since many MIMD computers use 
hypercube or mesh architecture and powers of seven numbers 
of processors are not a natural grouping. Therefore, the [7]’s 
algorithm is not scalable. Moreover, it requires a large 
working space, with each matrix to be multiplied duplicated 3 
or 4 times. For these reasons, in [17] Luo and Drake explored 
the possibility of other parallel algorithms with more practical 
potential: they introduced an algorithm which uses the W-algo 
at the top level and Fox algorithm at the bottom level. To 
continue, an improvement is introduced by [18]’s authors: 
algorithm SUMMA is used in the place of Fox algorithm at 
the bottom level. 

We will study this algorithm class by using Cannon 
algorithm at bottom level and show that the total running time 
for the Winograd-Cannon algorithm decreases when the 
recursion level r increases. This result is also correct when we 
change Cannon algorithm at the bottom level by the other 
parallel MM algorithms. To use the Winograd algorithm at the 
top level, the most significant point is to determine the sub 
matrices after having recursively executed r time the 
Winograd formula (these sub matrices are corresponding to 
the nodes of level r in the execution tree of Winograd 
algorithm) and then to find the result matrix from these sub 
matrices (corresponding to the process mount the execution 
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tree). It is simple to solve this problem for a sequential 
machine, but for a parallel machine that makes a great 
difficulty. With a definite value of r, we can manually do it 
like [17] and [18] made (r = 1, 2, 3) but in general case, there 
does not exist yet the solution. In this paper, we present our 
method which can determine all the nodes at the unspecified 
level r in the execution tree of Winograd algorithm, and show 
the relation’s expression between the result matrix and the sub 
matrices at the level recursion r, this expression allows us to 
calculate directly the result matrix from the sub matrices 
calculated by parallel matrix multiplication algorithms at the 
bottom level. 

 

II. BACKGROUND 

A. Winograd Algorithm 
We start by considering the formation of the matrix product 

Q=XY, where 

,  and m n m k k nQ X Y× × ×∈ ℜ ∈ ℜ ∈ ℜ . 
We will assume that m, n, and k are all even integers. By 

partitioning 

00 01 00 01 00 01,  ,  and Q
10 11 10 11 10 11

X X Y Y Q Q
X Y

X X Y Y Q Q
= = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

where 

2 2 2 2 2 2,  and 
m n m k k n

Q X Yij ij ij
× × ×

∈ ℜ ∈ ℜ ∈ ℜ , 

it can be shown [6, 11] that the following computations 
compute Q = XY: 

      -       -  0 10 11 1 0 00 2 00 10

 -          -     -  53 01 1 4 01 00 11 4
 -          -  7 56 11 01 10

                   50 1 1 00 00 2 01 10
             53 2 6 4 0 4 3 11

6 11

S X X S S X S X X

S X S S Y Y S Y S

S Y Y S S Y

M S S M X Y M X Y

M S S M S S M S Y

M X

= + = =

= = =

= =

= = =

= = =

=  7
                        0 0 1 1 0 3

                       500 1 2 01 0 4
 -                        10 1 6 11 1 4

S

T M M T T M

Q M M Q T M M

Q T M Q T M

= + = +

= + = + +

= = +

(1) 

The W-algo does the above computation recursively until 
one of the dimensions of the matrices is 1. 

B. Cannon Algorithm 
Cannon algorithm [12] is a commonly used parallel matrix 

multiply algorithm based on the T-algo. It can be used on any 
rectangular processor templates and on matrices of any 
dimensions [9]. For simplicity of discussion, we only consider 
square processor templates and square matrices. Suppose we 
have p2 processors logically organized in a p × p mesh. The 

processor in ith row and jth column has coordinates (i, j), where 
0≤ i, j≤ p-1. Let matrices X, Y, and Q be of size m × m. For 
simplicity of discussion we assume m is divisible by p. Let s = 
m/p. All matrices are partitioned into p × p blocks of s × s sub 
matrices. The block with coordinates (i, j) is stored in the 
corresponding processor with the same coordinates. With the 
addition of a link between processors on opposite sides of the 
mesh (a torus interconnection), the mesh can be thought of as 
composed of rings of processors both in the horizontal and 
vertical directions. The Cannon method requires commu-
nication between the processors of each ring in the mesh. The 
blocks of the matrix X are passed in parallel to the left along 
the horizontal rings. The blocks of the matrix Y are passed to 
the top along the vertical rings. This communication pattern 
results in the shifting leftwards of matrix X and upwards of 
matrix Y. Let Xij, Yij, Qij stand for the blocks of X, Y, Q 
respectively stored in the processor with coordinates (i, j). The 
following pseudo code describes the Cannon algorithm. 

 
thThe complete  row of  is shifted leftward  times

(i.e., ),
th The complete column of  is shifted upward  times

(i.e., Y ),

 for all processors ( ,  )

DO ( 1) times

       

i X i

X Xij i j i

j Y j

Xij i j j

Q X Y i jij ij ij

p

← +

← +

=

−

        Shift  leftwards and  upwards

               (i.e., ;  ), 1 1,

               for all processors 

ENDDO

X Y

X X Y Yij iji j i j

Q Q X Yij ij ij ij

← ←+ +

= +

 

 
The running time of the Cannon algorithm consists of two 

parts: the communication time Tshift and the computation time 
Tcomp. On the distributed memory computer, the 
communication time for a single message is 

,T nα β= +  
Where α is the latency, β is the byte-transfer rate, and n is 

the number of bytes in the message. In the Cannon method, 
both matrices X and Y are shifted p times. There are a total of 
2p shifts. The total latency is 2pα. In each shift a sub matrix of 
order (m/p × m/p) is passed from one processor to another, 
where m is the dimension of the matrices. Therefore the total 
byte transfer time is 2pβB(m/p)2, where B is the number of 
bytes used to store one entry of the matrices. The total 
communication time is  

2 22
B

T p mshif p

β
α= + . 

The computation time is  

(2) 
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2 3
2

tcompT mcomp
p

= , 

where tcomp  is the execution time for one arithmetic op-

eration. Here we assume that floating point addition and 
multiplication has the same speed. The total running time is 

( )
2 23 2 22
t BcompT m m m p

pp

β
α= + + . 

In order to make the Cannon algorithm work, an additional 
working space of size m2 is needed to temporarily store the 
products of the sub matrices of X and Y.  

 

III. GENERAL SCALABLE APARALLELIZING WINOGRAD 
ALGORITHM 

A. Winograd-Cannon Algorithm and Pattern to Store the 
Matrices for this Algorithm Class 
The motivation for the Winograd-Cannon algorithm comes 

from the observation that the W-algo is most efficient for 
large matrices and therefore should be used at the top level 
(between processors) instead of the bottom level (within one 
processor). The 7 sub matrix multiplications of the W-algo at 
each recursion seem at first to lead to a task parallelism. The 
difficulty in implementing a task parallelism of the W-algo on 
a distributed memory computer results from the fact that the 
matrices must be distributed among the processors. Sub 
matrices in the W-algo must be stored in different processors 
and if tasks are spawned these sub matrices must be copied or 
moved to the appropriate processors [7]. 

For a distributed memory parallel algorithm the storage map 
of sub matrices to processors is a primary concern. If the sub 
matrices used in the W-algo are stored among processors in 
the same pattern at each level of recursion, then they can be 
added or multiplied together just as if they are stored within 
one processor. Here we introduce a new pattern to store the 
matrices. Figure 1 and 2 shows the pattern of storing matrix X 
with 6 x 6 blocks when the recursion level is 1. Figure 1 is 
from a matrix point-of-view. Note that the four sub matrices 
with 3 x 3 blocks are stored among the 9 processors in the 
same pattern. Figure 2 is from a processor point-of-view. Each 
processor stores one block of the four sub matrices. Figure 3 
and 4 show the pattern when the recursion level is 2. The four 
sub matrices with 6 x 6 blocks are stored in the same pattern, 
as well as the 16 sub matrices with 3 x 3 blocks. This pattern 
can be easily replicated for higher levels of recursion. 

These patterns of storing matrices make it possible for all 
the processors act like one processor. Each processor has a 
portion of each sub matrix at each recursion level. The 
addition (or subtraction) of sub matrices performed in the W-
algo at all recursion levels can thus be performed in parallel 
without any inter processor communication. From the 
processor point-of-view, each processor does its local sub 
matrix additions and subtractions. Sub matrix multiplications 

are calculated recursively using the W-algo. At the last level 
of recursion the sub matrix multiplications are calculated 
using the BMR method. Therefore, the Winograd-Cannon 
algorithm uses the W-algo at the top level and the T-algo at 
the bottom level. 

 

 
 
Figure 1: Matrix X with 6 × 6 blocks is distributed over a 3 

× 3 processor template from a matrix point-of-view. The 9 
processors are labeled from 0 to 8. This pattern is used in the 
Winograd-Cannon algorithm when the recursion level is 1. 

 

 
 
Figure 2: Same as Figure 1, but from a processor point-of-

view.  
Suppose the recursion level in the W-algo is r. Let n=m/p, 

m0=m/2, and n0=m0/p. Assume n, m0, and n0 are all integers. 
Since there are 15 sub matrix additions and subtractions and 7 
sub matrix multiplications in each recursion, the total running 
time for the Winograd-Cannon algorithm is 

 

( ) 15 7
2 2

m m
T m T Tadd= +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

where ( )
2

m
Tadd is the running time to add or subtract sub 

matrices of order m/2. Note that there are p2 processors 
running in parallel. Therefore 

2

2
22

m
tcompm

Tadd p
=

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠

⎜ ⎟
⎝ ⎠

. 

 

(3) 

(4) 

(5) 

(6) 
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(7) 

(8) 

(9) 

 
 
Figure 3: Matrix X with 12 × 12 blocks is distributed over a 

3 × 3 processor template from a matrix point-of-view. The 9 
processors are numbered from 0 to 8. This pattern is used in 
the Winograd-Cannon algorithm when the recursion level is 2. 

 

 
 
Figure 4: Same as Figure 3, but from a processor point-of-

view. 
 
Substitute the above formula into equation 8 we have 
 

( )
15 2 27 72 2 24

t m mcompT m m T sm T
p

= + = +
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠  

where
15

24

tcomps
p

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

. Use the above formula recursively to 

obtain  

 

2( ) 7
2

2
2        7 7

2 4

72 2        = 1 7 24 2
2

72 2       = 1 7 7
4 4 8

2
7 72 3       1 7 34 4 2

  

m
T m sm T

m m
sm s T

m
sm T

m m
sm s T

m
sm T

= +

= + +

+ +

+ + +

= + + +

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

( )

( )2

     
1

7 72       1 7
4 4 2

7
1

42      7 07
1

4

4 7
      7 03 4

m

r
mrsm T r

r

rsm T m

r
rs T m

−
= + + + +

−

= +
−

≈ +

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
At the bottom level, the Winograd-Cannon algorithm uses 

the Cannon algorithm for sub matrix multiplications. 
Therefore we can use equation 4 to find T(m0). Substituting 
the value of T(m0) and s we have 

 

( )

( )

7
5 2 24 2 3 27 20 02 2

7
527 7 243 2 2        7 22 28 4

r
tcomp t BcomprT m m m m p

pp p
r

tr rcompt Bcomp rm m m p
pp p

β
α

β
α

≈ + + +

= + + +

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠

⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞⎝ ⎠

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
There are four terms in the above equation. The first term is 

a cubic term with respect to m. It is the computational 
dominant part and it decreases as the recursion level r in-
creases. The second term is quadratic and it results from the 
additional sub matrix additions and subtractions in the W-
algo. It increases as r increases. The last two terms represent 
the communication time. They increase as r increases. Since 
the first term is the dominant cubic term, the Winograd-
Cannon algorithm should be faster than the Cannon algorithm 
when m is large enough. 



 5

(10) 

(11) 

(12) 

B. Recursion Removal in Fast Matrix Multiplication 
In formula 9, we showed that the total running time for the 
Winograd-Cannon algorithm decreases when the recursion 
level r increases. This result is also correct when we change 
Cannon algorithm at the bottom level by the other parallel 
MM algorithms. To use the Winograd algorithm at the top 
level, the most significant point is to determine the sub 
matrices after having recursively executed r time the formula 
1 (these sub matrices are corresponding to the nodes of level r 
in the execution tree of Winograd algorithm) and then to find 
the result matrix from these sub matrices (the process to 
mount the execution tree). It is simple to solve this problem 
for a sequential machine, but for a parallel machine that makes 
a great difficulty. With a definite value of r, we can manually 
do it like [17] and [18] made (r = 1, 2, 3) but in general case, 
there does not exist yet the solution. The following part 
presents our method which can determine all the nodes at the 
unspecified level r in the execution tree of Winograd 
algorithm and determine the direct relation between the result 
matrix and the sub matrices at the level recursion r. 

 

 
Figure 5: Behavior of Winograd algorithm   
 
The Winograd matrix multiplication formula can be 

represented by:  
 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

( )

;0 00 00
;1 01 10

;2 10 11 00 01

;3 00 10 11 00 01 11

;4 00 10 01 11

;5 10 11 01 11

;6 11 00 01 10 11
;00 0 1

;501 0 2 3
;10 0 3

;11 0 3 4 6

m x y

m x y

m x x y y

m x x x y y y

m x x y y

m x x y y

m x y y y y

q m m

q m m m m

q m m

q m m m m

= ×

= ×

= + × − +

= − + + × − +

= − × − +

= + × +

= × − + + −

= +

= + + +

= +

= + + +

 

 
We represent the execution of the algorithm like a tree (see 

figure 5) of the recursive calls. Each non terminal node 
corresponds to an execution of the algorithm, which 
comprises a matrix cutting entry by 4, in order to be able to 
create 7 calls representing the formulas 10. Until the leaf 
nodes, where we cannot cut out the matrices, the size of the 
matrices is 1, we make the scalar multiplication. After 
obtaining the scalar products, they are combined 
consecutively to obtain the produced matrices of higher sizes.  

 

 
Figure 6: After recursion removal  
 
By noticing that the operations matrix cutting are executed 

on each node of the tree, while the multiplications are 
executed only on the leafs, we has a natural idea to build an 
algorithm which will simulate calculations at low the level (on 
the leafs) of the tree as in the figure 6. To represent these 
nodes, it is just enough an iteration, because the number of 
these nodes is known. It remains to determine which 
calculation and which parameters it is necessary to realize in 
each iteration. In fact, on each node, calculation must be form:  

 
( , , ) ( , , )

0,1 0,1 0,1 0,1

0...6

m x SX l i j y SY l i jij ijl i j i j

l

= ×∑ ∑
= = = =

=
 

 
The coefficients SX(l,i,j), SY(l,i,j) are obtained while 

following the way which leads root to the node considered. 
Let us consider an unspecified element xij. The coefficient of 
xij in the representation of the node l is obtained like result of 
all the intermediate calculations, executed on each node in the 
way of the root to the node. On each node, the element’s 
coefficient obtained is determined by:  

- to which recursive call it corresponds, 
- in which quarter of matrix the element is considered.  
We represent the Winograd formula:  
 

( , , ) ( , , )
0,1 0,1 0,1 0,1

6
0...6 et ( , , )

0

m x SX l i j y SY l i jij ijl i j i j

l q m SQ l i jij ll

= ×∑ ∑
= = = =

= = ∑
=

 

 
 
In fact, the contents of SX, SY, and SQ are:  
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(13) 

(14) 

(16) 

(15) 

1 0 1 1 1 1 0 1
1 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0
1 0 1 0 0 1 0 1
0 0 1 1 1 1 0 0
1 1 1 1 0 0 0 1
0 0 0 1 1 1 1 1

0 1 1 1
1 1 1 1
1 0 0 0
0 0 1 1
0 1 0 1
0 1 0 0
0 0 1 0

           SX SY

SQ

⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− −
⎜ ⎟ ⎜ ⎟

− −⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎝ ⎠

= =

=

 

 
Each of 7k produces can be represented in the following 

way:  
 

( , , ) ( , , )
0, 1 0, 1 0, 1 0, 1

7 1
0...7 -1 et ( , , )

0

m x SX l i j y SY l i jij ijl k ki n j n i n j n
k

kl q m SQ l i jij l kl

= ×∑ ∑
= − = − = − = −

−
= = ∑

=
 

In fact, SX=SX1, SY=SY1, SQ=SQ1. We suppose l=l1l2…lk 

base on 7, i=i1i2…ik base on 2, j=j1j2…jk base on 2. The way of 
the root towards the node considered is expressed thereafter 
l1l2…lk. We considers coefficient SXk(l,i,j) of element  xij  in  
the lst  product. At the first level, the recursive call number is 
m1, element xij is in the district (i1, j1) of the matrix, therefore 
the coefficient of the matrix containing xij is SX(l1,i1,j1). At the 
second level, when this matrix is divided into 4 matrices, the 
matrix which contains xij will obtain coefficient SX(l2,i2,j2). So 
at the level s, the coefficient utilized is SX(ls,is,js). By applying 
the distributive and the associativeness of the addition and the 
multiplication scalars, the coefficient of xij  is the product from 
1 to k : SX(l1,i1,j1) × SX(l2,i2,j2) × … × SX(ls,is,js). More 
generally, we have:  

( , , ) ( , , )
1

( , , ) ( , , )
1

( , , ) ( , , )
1

k
SX l i j SX l i jr r rk r

k
SY l i j SY l i jr r rk r

k
SQ l i j SQ l i jr r rk r

= ∏
=

= ∏
=

= ∏
=

 

 
Apply (14) in (13) we have nodes leafs ml and all the 

elements of result matrix.  
To parallel Winograd algorithm, we stop at level r. We 

have  

( , , ) ( , , )
0,2 1 0,2 1
0,2 1 0,2 1

7 1
0...7 -1 et ( , , )

0

M X SX l i j Y SY l i jr rij ijl r ri i
r rj j

r
rl Q M SQ l i jrij ll

= ×∑ ∑
= − = −
= − = −

−
= = ∑

=

 

 
with  

...2 , 2 2 , 2 2 1
... ... ...

...2 2 1, 2 2 2 1, 2 2 1

...2 , 2 2 , 2 2 1
... ... ...

...2 2 1, 2 2 2

k r k r k r k r k rx xi j i j

k r k r k r k r k r k r k rx xi j i j

k r k r k r k r k ry yi j i j

k r k r k r k r ky yi j i

Xij

Yij

⎛ ⎞− − − − −∗ ∗ ∗ ∗ + −⎜ ⎟
⎜ ⎟
⎜ ⎟

− − − − − − −⎜ ⎟∗ + − ∗ ∗ + − ∗ + −⎝ ⎠

− − − − −∗ ∗ ∗ ∗ + −

− − − −∗ + − ∗ ∗ +

=

=

1, 2 2 1

...2 , 2 2 , 2 2 1
... ... ...

...2 2 1, 2 2 2 1, 2 2 1

0, 2 1, 0, 2 1

r k r k rj

k r k r k r k r k rq qi j i j

k r k r k r k r k r k r k rq qi j i j

Qij

r ri j

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

− − −⎜ ⎟− ∗ + −⎝ ⎠

⎛ ⎞− − − − −∗ ∗ ∗ ∗ + −⎜ ⎟
⎜ ⎟
⎜ ⎟

− − − − − − −⎜ ⎟∗ + − ∗ ∗ + − ∗ + −⎝ ⎠

=

= − = −
 

The product Ml of sub matrix  ( , , )
0,2 1
0,2 1

X SX l i jrijri
rj

∑
= −
= −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

  

and ( , , )
0,2 1
0,2 1

Y SY l i jrijri
rj

∑
= −
= −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

will be calculated by parallel 

algorithms based on T-algo (Fox, Cannon, SUMMA, 
PUMMA, DIMMA…).  

In continuation, we have directly sub matrix elements of 
result matrix by applying matrix additions  

 
7 1

( , , )
0

0, 2 1, 0, 2 1

r
Q M SQ l i jrij ll

r ri j

−
= ∑

=

= − = −

 

 
Here we have 22r elements → the parallelizing of these 

additions can be well done.  
 

IV. CONCLUSION 
For matrix multiplication on distributed memory computer, 

the use of Winograd algorithm at inter-processor level forms 
the most effective algorithms. A general model for this 
algorithm class has been presented: first of all, the expressions 
(13) and (14) make it possible to determine directly sub 
matrices at the specified level in the execution tree of 
Winograd algorithm then, the parallel matrix multiplication 
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algorithms are applied to calculate products of these sub 
matrices and finally, matrix result is calculated directly from 
these products thanks to the expressions (15) and (16). 

This solution for the general case enables us to find 
algorithm optimal (which correspondent with a definite value 
of the level recursive and a parallel matrix multiplication 
algorithm at bottom level) for all the particular cases, 
moreover it open a complete new direction to parallelize the 
algorithms of Winograd class.  
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