
 1

Abstract - Winograd algorithm to multiply two n × n matrices

reduces the asymptotic operation count from O(n3) of the
traditional algorithm to O(n2.8l). Thus for distributed memory
computer, the association of Winograd algorithm and the
parallel matrix multiplication algorithms always gives
considerable results. The use of Winograd algorithm at inter-
processor level requires us to solve more difficulty in designing
but it forms the most effective algorithms. In this paper, we
present a general model for this algorithm class and the solution
optimized for this model.

Index Terms - Matrix multiplication, parallel algorithms,
Winograd algorithm, recursion removal.

I. INTRODUCTION
atrix multiplication (MM) is one of the most
fundamental operations in linear algebra and serves
as the main building block in many different

algorithms, including the solution of systems of linear
equations, matrix inversion, evaluation of the matrix
determinant and the transitive closure of a graph. In several
cases the asymptotic complexities of these algorithms depend
directly on the complexity of matrix multiplication - which
motivates the study of possibilities to speed up matrix
multiplication. Also, the inclusion of matrix multiplication in
many benchmarks points at its role as a determining factor for
the performance of high speed computations.

That is the reason why many scientists have worked hardly
to improve the algorithm for matrix multiplication. Strassen
was the first to introduce a better algorithm [3] for MM

with
log 72()O N than the traditional algorithm (hereafter

referred as T-algo) which need 3()O N operations. Then
Winograd variant [6] of Strassen’s algorithm has the same
exponent but a slightly lower constant as the number of
additions/subtractions is reduced from 18 to 15 (hereafter
referred as W-algo). The record of complexity owed to

Coppersmith and Winograd is 2.376()O N , resulted from

Duc Kien NGUYEN: LRIA-Université Paris 8, France (e-mail: Kien.Duc-
Nguyen@univ-paris8.fr).

Quoc Trung HA: Faculty Information Technology, Hanoi University of
Technology, Vietnam (e-mail: Trung.Ha-Quoc@univ-paris8.fr).

arithmetic aggregation [2]. However, only Strassen’s
algorithm and the W-algo offer better performance than the T-
method for matrices of practical sizes, say, less than 1020[10].

There have been mainly two approaches to parallelize the
W-algo. The first approach is to use the T-algo at the top level
(between processors) and the W-algo at the bottom level
(within one processor). The most commonly algorithms used
T-method between processors include 1D-systolic [11], 2D-
systolic [11], Fox (BMR) [13], Cannon [12], PUMMA [9],
BiMMeR [14], SUMMA [15], DIMMA [16]. Since the W-
algo is most efficient for large matrices (thanks to the great
difference of complexity between the operation multiplication
and the operation addition/subtraction of matrix), it is well
suited to use at the top level, not the bottom level. The second
approach is to use the W-algo at both the top and the bottom
level. The first implementation applying this approach [7] on
Intel Paragon reached performance better than T-algo.
However, the W-algo in [7] requires that the number of
processors used in the computation to be a power of seven.
This is a severe restriction since many MIMD computers use
hypercube or mesh architecture and powers of seven numbers
of processors are not a natural grouping. Therefore, the [7]’s
algorithm is not scalable. Moreover, it requires a large
working space, with each matrix to be multiplied duplicated 3
or 4 times. For these reasons, in [17] Luo and Drake explored
the possibility of other parallel algorithms with more practical
potential: they introduced an algorithm which uses the W-algo
at the top level and Fox algorithm at the bottom level. To
continue, an improvement is introduced by [18]’s authors:
algorithm SUMMA is used in the place of Fox algorithm at
the bottom level.

We will study this algorithm class by using Cannon
algorithm at bottom level and show that the total running time
for the Winograd-Cannon algorithm decreases when the
recursion level r increases. This result is also correct when we
change Cannon algorithm at the bottom level by the other
parallel MM algorithms. To use the Winograd algorithm at the
top level, the most significant point is to determine the sub
matrices after having recursively executed r time the
Winograd formula (these sub matrices are corresponding to
the nodes of level r in the execution tree of Winograd
algorithm) and then to find the result matrix from these sub
matrices (corresponding to the process mount the execution

A General Scalable Parallelizing of Winograd
Algorithm for Matrix Multiplication on

Distributed Memory Computer
Duc Kien NGUYEN, Quoc Trung HA

M

 2

tree). It is simple to solve this problem for a sequential
machine, but for a parallel machine that makes a great
difficulty. With a definite value of r, we can manually do it
like [17] and [18] made (r = 1, 2, 3) but in general case, there
does not exist yet the solution. In this paper, we present our
method which can determine all the nodes at the unspecified
level r in the execution tree of Winograd algorithm, and show
the relation’s expression between the result matrix and the sub
matrices at the level recursion r, this expression allows us to
calculate directly the result matrix from the sub matrices
calculated by parallel matrix multiplication algorithms at the
bottom level.

II. BACKGROUND

A. Winograd Algorithm
We start by considering the formation of the matrix product

Q=XY, where

, and m n m k k nQ X Y× × ×∈ ℜ ∈ ℜ ∈ ℜ .
We will assume that m, n, and k are all even integers. By

partitioning

00 01 00 01 00 01, , and Q
10 11 10 11 10 11

X X Y Y Q Q
X Y

X X Y Y Q Q
= = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

where

2 2 2 2 2 2, and
m n m k k n

Q X Yij ij ij
× × ×

∈ ℜ ∈ ℜ ∈ ℜ ,

it can be shown [6, 11] that the following computations
compute Q = XY:

 - - 0 10 11 1 0 00 2 00 10

 - - - 53 01 1 4 01 00 11 4
 - - 7 56 11 01 10

 50 1 1 00 00 2 01 10
 53 2 6 4 0 4 3 11

6 11

S X X S S X S X X

S X S S Y Y S Y S

S Y Y S S Y

M S S M X Y M X Y

M S S M S S M S Y

M X

= + = =

= = =

= =

= = =

= = =

= 7
 0 0 1 1 0 3

 500 1 2 01 0 4
 - 10 1 6 11 1 4

S

T M M T T M

Q M M Q T M M

Q T M Q T M

= + = +

= + = + +

= = +

(1)

The W-algo does the above computation recursively until
one of the dimensions of the matrices is 1.

B. Cannon Algorithm
Cannon algorithm [12] is a commonly used parallel matrix

multiply algorithm based on the T-algo. It can be used on any
rectangular processor templates and on matrices of any
dimensions [9]. For simplicity of discussion, we only consider
square processor templates and square matrices. Suppose we
have p2 processors logically organized in a p × p mesh. The

processor in ith row and jth column has coordinates (i, j), where
0≤ i, j≤ p-1. Let matrices X, Y, and Q be of size m × m. For
simplicity of discussion we assume m is divisible by p. Let s =
m/p. All matrices are partitioned into p × p blocks of s × s sub
matrices. The block with coordinates (i, j) is stored in the
corresponding processor with the same coordinates. With the
addition of a link between processors on opposite sides of the
mesh (a torus interconnection), the mesh can be thought of as
composed of rings of processors both in the horizontal and
vertical directions. The Cannon method requires commu-
nication between the processors of each ring in the mesh. The
blocks of the matrix X are passed in parallel to the left along
the horizontal rings. The blocks of the matrix Y are passed to
the top along the vertical rings. This communication pattern
results in the shifting leftwards of matrix X and upwards of
matrix Y. Let Xij, Yij, Qij stand for the blocks of X, Y, Q
respectively stored in the processor with coordinates (i, j). The
following pseudo code describes the Cannon algorithm.

thThe complete row of is shifted leftward times

(i.e.,),
th The complete column of is shifted upward times

(i.e., Y),

 for all processors (,)

DO (1) times

i X i

X Xij i j i

j Y j

Xij i j j

Q X Y i jij ij ij

p

← +

← +

=

−

 Shift leftwards and upwards

 (i.e., ;), 1 1,

 for all processors

ENDDO

X Y

X X Y Yij iji j i j

Q Q X Yij ij ij ij

← ←+ +

= +

The running time of the Cannon algorithm consists of two

parts: the communication time Tshift and the computation time
Tcomp. On the distributed memory computer, the
communication time for a single message is

,T nα β= +
Where α is the latency, β is the byte-transfer rate, and n is

the number of bytes in the message. In the Cannon method,
both matrices X and Y are shifted p times. There are a total of
2p shifts. The total latency is 2pα. In each shift a sub matrix of
order (m/p × m/p) is passed from one processor to another,
where m is the dimension of the matrices. Therefore the total
byte transfer time is 2pβB(m/p)2, where B is the number of
bytes used to store one entry of the matrices. The total
communication time is

2 22
B

T p mshif p

β
α= + .

The computation time is

(2)

 3

2 3
2

tcompT mcomp
p

= ,

where tcomp is the execution time for one arithmetic op-

eration. Here we assume that floating point addition and
multiplication has the same speed. The total running time is

()
2 23 2 22
t BcompT m m m p

pp

β
α= + + .

In order to make the Cannon algorithm work, an additional
working space of size m2 is needed to temporarily store the
products of the sub matrices of X and Y.

III. GENERAL SCALABLE APARALLELIZING WINOGRAD
ALGORITHM

A. Winograd-Cannon Algorithm and Pattern to Store the
Matrices for this Algorithm Class
The motivation for the Winograd-Cannon algorithm comes

from the observation that the W-algo is most efficient for
large matrices and therefore should be used at the top level
(between processors) instead of the bottom level (within one
processor). The 7 sub matrix multiplications of the W-algo at
each recursion seem at first to lead to a task parallelism. The
difficulty in implementing a task parallelism of the W-algo on
a distributed memory computer results from the fact that the
matrices must be distributed among the processors. Sub
matrices in the W-algo must be stored in different processors
and if tasks are spawned these sub matrices must be copied or
moved to the appropriate processors [7].

For a distributed memory parallel algorithm the storage map
of sub matrices to processors is a primary concern. If the sub
matrices used in the W-algo are stored among processors in
the same pattern at each level of recursion, then they can be
added or multiplied together just as if they are stored within
one processor. Here we introduce a new pattern to store the
matrices. Figure 1 and 2 shows the pattern of storing matrix X
with 6 x 6 blocks when the recursion level is 1. Figure 1 is
from a matrix point-of-view. Note that the four sub matrices
with 3 x 3 blocks are stored among the 9 processors in the
same pattern. Figure 2 is from a processor point-of-view. Each
processor stores one block of the four sub matrices. Figure 3
and 4 show the pattern when the recursion level is 2. The four
sub matrices with 6 x 6 blocks are stored in the same pattern,
as well as the 16 sub matrices with 3 x 3 blocks. This pattern
can be easily replicated for higher levels of recursion.

These patterns of storing matrices make it possible for all
the processors act like one processor. Each processor has a
portion of each sub matrix at each recursion level. The
addition (or subtraction) of sub matrices performed in the W-
algo at all recursion levels can thus be performed in parallel
without any inter processor communication. From the
processor point-of-view, each processor does its local sub
matrix additions and subtractions. Sub matrix multiplications

are calculated recursively using the W-algo. At the last level
of recursion the sub matrix multiplications are calculated
using the BMR method. Therefore, the Winograd-Cannon
algorithm uses the W-algo at the top level and the T-algo at
the bottom level.

Figure 1: Matrix X with 6 × 6 blocks is distributed over a 3

× 3 processor template from a matrix point-of-view. The 9
processors are labeled from 0 to 8. This pattern is used in the
Winograd-Cannon algorithm when the recursion level is 1.

Figure 2: Same as Figure 1, but from a processor point-of-

view.
Suppose the recursion level in the W-algo is r. Let n=m/p,

m0=m/2, and n0=m0/p. Assume n, m0, and n0 are all integers.
Since there are 15 sub matrix additions and subtractions and 7
sub matrix multiplications in each recursion, the total running
time for the Winograd-Cannon algorithm is

() 15 7
2 2

m m
T m T Tadd= +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

where ()
2

m
Tadd is the running time to add or subtract sub

matrices of order m/2. Note that there are p2 processors
running in parallel. Therefore

2

2
22

m
tcompm

Tadd p
=

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠

⎜ ⎟
⎝ ⎠

.

(3)

(4)

(5)

(6)

 4

(7)

(8)

(9)

Figure 3: Matrix X with 12 × 12 blocks is distributed over a

3 × 3 processor template from a matrix point-of-view. The 9
processors are numbered from 0 to 8. This pattern is used in
the Winograd-Cannon algorithm when the recursion level is 2.

Figure 4: Same as Figure 3, but from a processor point-of-

view.

Substitute the above formula into equation 8 we have

()
15 2 27 72 2 24

t m mcompT m m T sm T
p

= + = +
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

where
15

24

tcomps
p

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

. Use the above formula recursively to

obtain

2() 7
2

2
2 7 7

2 4

72 2 = 1 7 24 2
2

72 2 = 1 7 7
4 4 8

2
7 72 3 1 7 34 4 2

m
T m sm T

m m
sm s T

m
sm T

m m
sm s T

m
sm T

= +

= + +

+ +

+ + +

= + + +

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

()

()2

1

7 72 1 7
4 4 2

7
1

42 7 07
1

4

4 7
 7 03 4

m

r
mrsm T r

r

rsm T m

r
rs T m

−
= + + + +

−

= +
−

≈ +

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

At the bottom level, the Winograd-Cannon algorithm uses

the Cannon algorithm for sub matrix multiplications.
Therefore we can use equation 4 to find T(m0). Substituting
the value of T(m0) and s we have

()

()

7
5 2 24 2 3 27 20 02 2

7
527 7 243 2 2 7 22 28 4

r
tcomp t BcomprT m m m m p

pp p
r

tr rcompt Bcomp rm m m p
pp p

β
α

β
α

≈ + + +

= + + +

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠

⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞⎝ ⎠

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

There are four terms in the above equation. The first term is

a cubic term with respect to m. It is the computational
dominant part and it decreases as the recursion level r in-
creases. The second term is quadratic and it results from the
additional sub matrix additions and subtractions in the W-
algo. It increases as r increases. The last two terms represent
the communication time. They increase as r increases. Since
the first term is the dominant cubic term, the Winograd-
Cannon algorithm should be faster than the Cannon algorithm
when m is large enough.

 5

(10)

(11)

(12)

B. Recursion Removal in Fast Matrix Multiplication
In formula 9, we showed that the total running time for the
Winograd-Cannon algorithm decreases when the recursion
level r increases. This result is also correct when we change
Cannon algorithm at the bottom level by the other parallel
MM algorithms. To use the Winograd algorithm at the top
level, the most significant point is to determine the sub
matrices after having recursively executed r time the formula
1 (these sub matrices are corresponding to the nodes of level r
in the execution tree of Winograd algorithm) and then to find
the result matrix from these sub matrices (the process to
mount the execution tree). It is simple to solve this problem
for a sequential machine, but for a parallel machine that makes
a great difficulty. With a definite value of r, we can manually
do it like [17] and [18] made (r = 1, 2, 3) but in general case,
there does not exist yet the solution. The following part
presents our method which can determine all the nodes at the
unspecified level r in the execution tree of Winograd
algorithm and determine the direct relation between the result
matrix and the sub matrices at the level recursion r.

Figure 5: Behavior of Winograd algorithm

The Winograd matrix multiplication formula can be

represented by:

() ()
() ()
() ()
() ()

()

;0 00 00
;1 01 10

;2 10 11 00 01

;3 00 10 11 00 01 11

;4 00 10 01 11

;5 10 11 01 11

;6 11 00 01 10 11
;00 0 1

;501 0 2 3
;10 0 3

;11 0 3 4 6

m x y

m x y

m x x y y

m x x x y y y

m x x y y

m x x y y

m x y y y y

q m m

q m m m m

q m m

q m m m m

= ×

= ×

= + × − +

= − + + × − +

= − × − +

= + × +

= × − + + −

= +

= + + +

= +

= + + +

We represent the execution of the algorithm like a tree (see

figure 5) of the recursive calls. Each non terminal node
corresponds to an execution of the algorithm, which
comprises a matrix cutting entry by 4, in order to be able to
create 7 calls representing the formulas 10. Until the leaf
nodes, where we cannot cut out the matrices, the size of the
matrices is 1, we make the scalar multiplication. After
obtaining the scalar products, they are combined
consecutively to obtain the produced matrices of higher sizes.

Figure 6: After recursion removal

By noticing that the operations matrix cutting are executed

on each node of the tree, while the multiplications are
executed only on the leafs, we has a natural idea to build an
algorithm which will simulate calculations at low the level (on
the leafs) of the tree as in the figure 6. To represent these
nodes, it is just enough an iteration, because the number of
these nodes is known. It remains to determine which
calculation and which parameters it is necessary to realize in
each iteration. In fact, on each node, calculation must be form:

(, ,) (, ,)

0,1 0,1 0,1 0,1

0...6

m x SX l i j y SY l i jij ijl i j i j

l

= ×∑ ∑
= = = =

=

The coefficients SX(l,i,j), SY(l,i,j) are obtained while

following the way which leads root to the node considered.
Let us consider an unspecified element xij. The coefficient of
xij in the representation of the node l is obtained like result of
all the intermediate calculations, executed on each node in the
way of the root to the node. On each node, the element’s
coefficient obtained is determined by:

- to which recursive call it corresponds,
- in which quarter of matrix the element is considered.
We represent the Winograd formula:

(, ,) (, ,)
0,1 0,1 0,1 0,1

6
0...6 et (, ,)

0

m x SX l i j y SY l i jij ijl i j i j

l q m SQ l i jij ll

= ×∑ ∑
= = = =

= = ∑
=

In fact, the contents of SX, SY, and SQ are:

 6

(13)

(14)

(16)

(15)

1 0 1 1 1 1 0 1
1 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0
1 0 1 0 0 1 0 1
0 0 1 1 1 1 0 0
1 1 1 1 0 0 0 1
0 0 0 1 1 1 1 1

0 1 1 1
1 1 1 1
1 0 0 0
0 0 1 1
0 1 0 1
0 1 0 0
0 0 1 0

 SX SY

SQ

⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− −
⎜ ⎟ ⎜ ⎟

− −⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎝ ⎠

= =

=

Each of 7k produces can be represented in the following

way:

(, ,) (, ,)
0, 1 0, 1 0, 1 0, 1

7 1
0...7 -1 et (, ,)

0

m x SX l i j y SY l i jij ijl k ki n j n i n j n
k

kl q m SQ l i jij l kl

= ×∑ ∑
= − = − = − = −

−
= = ∑

=

In fact, SX=SX1, SY=SY1, SQ=SQ1. We suppose l=l1l2…lk

base on 7, i=i1i2…ik base on 2, j=j1j2…jk base on 2. The way of
the root towards the node considered is expressed thereafter
l1l2…lk. We considers coefficient SXk(l,i,j) of element xij in
the lst product. At the first level, the recursive call number is
m1, element xij is in the district (i1, j1) of the matrix, therefore
the coefficient of the matrix containing xij is SX(l1,i1,j1). At the
second level, when this matrix is divided into 4 matrices, the
matrix which contains xij will obtain coefficient SX(l2,i2,j2). So
at the level s, the coefficient utilized is SX(ls,is,js). By applying
the distributive and the associativeness of the addition and the
multiplication scalars, the coefficient of xij is the product from
1 to k : SX(l1,i1,j1) × SX(l2,i2,j2) × … × SX(ls,is,js). More
generally, we have:

(, ,) (, ,)
1

(, ,) (, ,)
1

(, ,) (, ,)
1

k
SX l i j SX l i jr r rk r

k
SY l i j SY l i jr r rk r

k
SQ l i j SQ l i jr r rk r

= ∏
=

= ∏
=

= ∏
=

Apply (14) in (13) we have nodes leafs ml and all the

elements of result matrix.
To parallel Winograd algorithm, we stop at level r. We

have

(, ,) (, ,)
0,2 1 0,2 1
0,2 1 0,2 1

7 1
0...7 -1 et (, ,)

0

M X SX l i j Y SY l i jr rij ijl r ri i
r rj j

r
rl Q M SQ l i jrij ll

= ×∑ ∑
= − = −
= − = −

−
= = ∑

=

with

...2 , 2 2 , 2 2 1
...

...2 2 1, 2 2 2 1, 2 2 1

...2 , 2 2 , 2 2 1
...

...2 2 1, 2 2 2

k r k r k r k r k rx xi j i j

k r k r k r k r k r k r k rx xi j i j

k r k r k r k r k ry yi j i j

k r k r k r k r ky yi j i

Xij

Yij

⎛ ⎞− − − − −∗ ∗ ∗ ∗ + −⎜ ⎟
⎜ ⎟
⎜ ⎟

− − − − − − −⎜ ⎟∗ + − ∗ ∗ + − ∗ + −⎝ ⎠

− − − − −∗ ∗ ∗ ∗ + −

− − − −∗ + − ∗ ∗ +

=

=

1, 2 2 1

...2 , 2 2 , 2 2 1
...

...2 2 1, 2 2 2 1, 2 2 1

0, 2 1, 0, 2 1

r k r k rj

k r k r k r k r k rq qi j i j

k r k r k r k r k r k r k rq qi j i j

Qij

r ri j

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

− − −⎜ ⎟− ∗ + −⎝ ⎠

⎛ ⎞− − − − −∗ ∗ ∗ ∗ + −⎜ ⎟
⎜ ⎟
⎜ ⎟

− − − − − − −⎜ ⎟∗ + − ∗ ∗ + − ∗ + −⎝ ⎠

=

= − = −

The product Ml of sub matrix (, ,)
0,2 1
0,2 1

X SX l i jrijri
rj

∑
= −
= −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

and (, ,)
0,2 1
0,2 1

Y SY l i jrijri
rj

∑
= −
= −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

will be calculated by parallel

algorithms based on T-algo (Fox, Cannon, SUMMA,
PUMMA, DIMMA…).

In continuation, we have directly sub matrix elements of
result matrix by applying matrix additions

7 1

(, ,)
0

0, 2 1, 0, 2 1

r
Q M SQ l i jrij ll

r ri j

−
= ∑

=

= − = −

Here we have 22r elements → the parallelizing of these

additions can be well done.

IV. CONCLUSION
For matrix multiplication on distributed memory computer,

the use of Winograd algorithm at inter-processor level forms
the most effective algorithms. A general model for this
algorithm class has been presented: first of all, the expressions
(13) and (14) make it possible to determine directly sub
matrices at the specified level in the execution tree of
Winograd algorithm then, the parallel matrix multiplication

 7

algorithms are applied to calculate products of these sub
matrices and finally, matrix result is calculated directly from
these products thanks to the expressions (15) and (16).

This solution for the general case enables us to find
algorithm optimal (which correspondent with a definite value
of the level recursive and a parallel matrix multiplication
algorithm at bottom level) for all the particular cases,
moreover it open a complete new direction to parallelize the
algorithms of Winograd class.

REFERENCES
[1] Pan, V. (1984). “How can we speed up matrix

multiplication?” SIAM Review 26: 393-416
[2] D. Coppersmith and S. Winograd. Matrix multiplication

via arithmetic progressions The 19th Annual ACM
Conference on theory of computing 1–6,New York, New
York, United States,ACM Press 1987

[3] Strassen, Volker, "Gaussian Elimination is not Optimal",
Numer. Math. 13, p. 354-356, 1969

[4] Winograd S. Some remarks on fast multiplication of
polynomial Traub181-196, 1973

[5] Lavallée, I. (1982). Note sur le problème des tours de
Hanoi. Acta Vietnamica

[6] S. Winograd, On multiplication of 2 x 2 matrices,
Linear Algebra and its Applications, vol. 4, 1971, pp.
381-388.

[7] C.-C. Chou, Y.-F. Deng, G. Li, and Y. Wang,
"Parallelizing Strassen's Method for Matrix Multiplication
on Distributed Memory MIMD architectures," Computers
& Math. with Applications, vol. 30, no. 2, p. 49, 1995

[8] DOUGLAS, C., HEROUX, M., SLISHMAN, G.,
GEMMW: A Portable Level 3 BLAS Winograd Vari-
ant of Strassen's Matrix-Matrix Multiply Algorithm.
Journal of Computational Physics 110 (1994), 1-10

[9] J. Choi, J. J. Dongarra, and D. W. Walker. PUMMA:
Parallel Universal Matrix Multiplication Algorithms on
Distributed Memory Concurrent Computers. Concur-
rency: Practice and Experience, 6(7):543-570, 1994

[10] LADERMAN, J., PAN, V., SHA, X., On Practicad
Algorithms for Accederated Matrix Multiplication.
Linear Adgebra and Its Applications. 1992, 557-588.

[11] Golub, G. H., and C. F. Van Loan, Matrix Computations,
Johns Hopkins University Press, 2nd ed., 1989

[12] L. E. Cannon. A cellular computer to implement the
kalman filter algorithm. 1969. Ph.D. Thesis, Montana
State University

[13] G. C. Fox, S. W. Otto, and A. J. G. Hey. Matrix algo-
rithms on a hypercube I: Matrix multiplication. Parallel
Computing, 4:17-31, 1987

[14] S. Huss-Lederman, E. M. Jacobson, A. Tsao, and G.
Zhang. Matrix Multiplication on the Intel Touchstone
Delta. Concurrency: Practice and Experience, 6(7):571-
594,1994

[15] R. van de Geijn and J. Watts. SUMMA Scalable Univer-
sal Matrix Multiplication Algorithm. LAPACK Working
Note 99, technical report, University of Tennessee, 1995

[16] Jaeyoung Choi, “A Fast Scalable Universal Matrix
Multiplication Algorithm on Distributed-Memory
Concurrent Computers”, 11th International Parallel
Processing Symposium, Geneva, SWITZERLAND,
1997

[17] Qingshan Luo and John B. Drake. A scalable parallel
Strassen’s matrix multiplication algorithm for distributed
memory computers Proceedings of the 1995 ACM
symposium on Applied computing 221–226, Nashville,
Tennessee, United States, ACM Press 1995

[18] Brian Grayson, Ajay Shah and Robert van de Geijn "A
High Performance Parallel Strassen Implementation,"
Department of Computer Sciences, The Unversity of
Texas, TR-95-24, June 1995. Journal version: Parallel
Processing Letters, Vol 6, No. 1 (1996) 3-12

[19] Pan V. How to multiply matrix faster Springer-Verlag,
L.N.C.S, Vol 179, 1984

[20] Lavallée Ivan, Baala Hichem. Version itérative de la
multiplication matricielle de Strassen. C. R. Acad. Sci.
Paris, 333, Série 1, p. 383-388, 2001

