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Summary. Winograd’s algorithm to multiply two n × n matrices reduces the
asymptotic operation count from O(n3) of the traditional algorithm to O(n2.81), thus
on distributed memory computers, the association of Winograd’s algorithm and the
parallel matrix multiplication algorithms always gives remarkable results. Within
this association, the application of Winograd’s algorithm at the inter-processor level
requires us to solve more difficult problems in designing but it forms the most effec-
tive algorithms. In this paper, a general model of these algorithms will be presented
and we also introduce a scalable method to implement this model on distributed
memory computers. This work also opens a new direction to parallelize Winograd’s
algorithm thanks to the generalization of Winograd’s formulas for the case where
the matrices are divided into 2k parts (the case k = 2 gives us original formulas).

1 Introduction

Matrix multiplication (MM) is one of the most fundamental operations in
linear algebra and serves as the main building block in many different algo-
rithms, including the solution of systems of linear equations, matrix inversion,
evaluation of the matrix determinant and the transitive closure of a graph. In
several cases the asymptotic complexities of these algorithms depend directly
on the complexity of matrix multiplication - which motivates the study of
possibilities to speed up matrix multiplication. Also, the inclusion of matrix
multiplication in many benchmarks points at its role as a determining factor
for the performance of high speed computations.

These are the reasons for the birth of the FMM algorithms. Strassen was
the first to introduce a better algorithm (hereafter referred as S-algo) [15]
for MM with O(N log2 7)than the traditional one (hereafter referred as T-algo)
which needs O(N3) operations. Then Winograd variant [17] of Strassen’s al-
gorithm (hereafter referred as W-algo) has the same exponent but a slightly
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lower constant as the number of additions/subtractions is reduced from 18
down to 15. The record of complexity owed to Coppersmith and Winograd
is O(N2.376), resulted from arithmetic aggregation [5]. However, only W-algo
and S-algo offer better performance than T-algo for matrices of practical sizes,
say, less than 1020[11], hence in this paper, we concentralize only on the im-
plementation of W-algo and S-algo on distributed memory computers. In fact,
our method is applicable with all the FMM algorithms, which are always with
the recursive form [14].

W-algo is a variant of S-algo, hence in this paper we will use S-algo in all
the expressions and W-algo is only mentioned when the differences between
theses two algorithms appear.

There have been mainly three approaches to parallelize S-algo. The first
approach is to use T-algo at the top level (between processors) and S-algo
at the bottom level (within one processor). The most commonly algorithms
used T-method between processors include 1D-systolic [7], 2D-systolic [7], Fox
(BMR) [6], Cannon [1], PUMMA [3], BiMMeR [9], SUMMA [16], DIMMA [2].
Since S-algo is most efficient for large matrices (thanks to the great difference
of complexity between the operation multiplication and the operation addi-
tion/subtraction of matrix), it is well suited to use at the top level, not at
the bottom level. The second approach is to use S-algo at both the top and
the bottom level. The first implementation applying this approach [4] on In-
tel Paragon reached better performance than T-algo. However, S-algo in [4]
requires that the number of processors used in the computation to be a power
of seven. This is a severe restriction since many MIMD computers use hyper-
cube or mesh architecture and powers of seven numbers of processors are not
a natural grouping. Therefore, the algorithm presented in [4] is not scalable.
Moreover, it requires a large working space, with each matrix to be multi-
plied being duplicated 3 or 4 times. For these reasons, in [12] Luo and Drake
explored the possibility of other parallel algorithms with more practical po-
tential: they introduced an algorithm which uses S-algo at the top level and
Fox algorithm at the bottom level. This is the first work that represents the
third approach: use FMM algorithms at the top level (between processors)
and T-algo at the bottom level (also between processors). To continue, an im-
provement is introduced in [8]: algorithm SUMMA is used in the place of Fox
algorithm at the bottom level. The third approach is more complicated than
the others, but it gives the scalable and effective algorithms in multiplying
large matrices [12].

In this article, we will generalize these algorithms by using Cannon al-
gorithm at the bottom level and show that the total running time for the
Strassen-Cannon algorithm decreases when the recursion level r increases.
This result is also correct when we replace Cannon algorithm at the bottom
level with the other parallel MM algorithms. To use S-algo at the top level, the
most significant point is to determine the sub matrices after having recursively
executed r time the Strassen formula (these sub matrices are corresponding
to the nodes of level r in the execution tree of S-algo) and then to find the
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result matrix from these sub matrices (corresponding to the process of back-
tracking the execution tree). It is simple to solve this problem for a sequential
machine, but it’s much harder for a parallel machine. With a definite value
of r, we can manually do it like [4], [12], and [8] made (r = 1, 2, 3) but the
solution for the general case has not been found. In this paper, we present our
method to determine all the nodes at the unspecified level r in the execution
tree of Strassen algorithm, and to show the expression representing the rela-
tion between the result matrix and the sub matrices at the level recursion r;
this expression allows us to calculate directly the result matrix from the sub
matrices calculated by parallel matrix multiplication algorithms at the bot-
tom level. By combining this result with a good storage map of sub matrices
to processor, and with the parallel matrix multiplication algorithms based on
T-algo (1D-systolic, 2D-systolic, Fox (BMR), Cannon, PUMMA, BiMMeR,
SUMMA, DIMMA . . . ) we have a general scalable implementation of FMM
algorithms on distributed memory computers.

2 Background

2.1 Strassen Algorithm

We start by considering the formation of the matrix product Q = XY , where

Q ∈ <m×n, X ∈ <m×k, and Y ∈ <k×n.

We will assume that m, n, and k are all even integers. By partitioning

X =
(

X00 X01

X10 X11

)
, Y =

(
Y00 Y01

Y10 Y11

)
,

Q =
(

Q00 Q01

Q10 Q11

)

where
Qij ∈ <m

2 ×n
2 , Xij ∈ <m

2 × k
2 , and Yij ∈ < k

2×n
2 ,

and it can be shown [17, 7] that the following computations compute Q = XY :

M0 = (X00 + M11)(Y00 + Y 11);
M1 = (X10 + X11)Y00;M2 = X00(Y01 − Y11);
M3 = X11(−Y00 + Y10); M4 = (X00 + X01)Y11;
M5 = (X10 −X00)(Y00 + Y01);
M6 = (X01 −X11)(Y10 + Y11);
Q00 = M0 + M3 −M4 + M6;
Q01 = M1 + M3;
Q10 = M2 + M4;
Q11 = M0 + M2 −M1 + M5;

(1)
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S-algo does the above computation recursively until one of the dimensions of
the matrices is 1. With Winograd’s formula, the number of additions/subtractions
is reduced from 18 down to 15:

S0 = X10 + X11 S1 = S0 −X00 S2 = X00 −X10

S3 = X01 − S1 S4 = Y01 − Y00 S5 = Y11 − S4

S6 = Y11 − Y01 S7 = S5 − Y10

M0 = S1S5 M1 + X00Y00 M2 = X01Y10

M3 = S2S6 M4 = S0S4 M5 = S3Y11

M6 = X11S7

T0 = M0 + M1 T1 = T0 + M3

Q00 = M1 + M2 Q01 = T0 + M4 + M5

Q10 = T1 −M6 Q11 = T1 + M4

2.2 Cannon Algorithm

Cannon algorithm [1] is a commonly used parallel matrix multiply algorithm
based on the T-algo. It can be used on any rectangular processor templates
and on matrices of any dimensions [3]. For simplicity of discussion, we only
consider square processor templates and square matrices. Suppose we have p2

processors logically organized in a p × p mesh. The processor in ith row and
jth column has coordinates (i, j), where 0≤ i, j ≤ p-1. Let matrices X, Y ,
and Q be of size m×m. For simplicity of discussion we assume m is divisible
by p. Let s = m/p. All matrices are partitioned into p × p blocks of s × s
sub matrices. The block with coordinates (i, j) is stored in the corresponding
processor with the same coordinates. With the addition of a link between
processors on opposite sides of the mesh (a torus interconnection), the mesh
can be thought of as composed of rings of processors both in the horizontal
and vertical directions. The Cannon method requires communication between
the processors of each ring in the mesh. The blocks of the matrix X are passed
in parallel to the left along the horizontal rings. The blocks of the matrix Y are
passed to the top along the vertical rings. This communication pattern results
in the shifting leftwards of matrix X and upwards of matrix Y . Let Xij , Yij ,
Qij stand for the blocks of X, Y , Q respectively stored in the processor with
coordinates (i, j). The following pseudo code describes the Cannon algorithm.

The complete ith row of X is shifted leftward i times
(i.e., Xij ← Xi,j+i)
The complete jth column of Y is shifted upward j times
(i.e., Yij ← Yi+j,j)
Qij = XijYij for all processors (i, j)
DO (p− 1) times
Shift X leftwards and Y upwards
(i.e., Xij ← Xi,j+1; Yij ← Yi+1,j)
Qij = Qij + XijYij for all processors

ENDDO



A New Direction to Parallelize Winograd’s Algorithm 5

The running time of the Cannon algorithm consists of two parts: the com-
munication time Tshift and the computation time Tcomp. On the distributed
memory computer, the communication time for a single message is

T = α + βn,

where α is the latency, β is the byte-transfer rate, and n is the number of
bytes in the message. In the Cannon method, both matrices X and Y are
shifted p times. There are a total of 2p shifts. The total latency is 2pα. In
each shift a sub matrix of order (m/p × m/p) is passed from one processor to
another, where m is the dimension of the matrices. Therefore the total byte
transfer time is 2pβB(m/p)2, where B is the number of bytes used to store
one entry of the matrices. The total communication time is

Tshift = 2pα +
2Bβ

p
m2. (2)

The computation time is

Tcomp =
2tcomp

p2
m3, (3)

where tcomp is the execution time for one arithmetic operation. Here we assume
that floating point addition and multiplication has the same speed. The total
running time is

T (m) =
2tcomp

p2
m3 +

2Bβ

p
m2 + 2pα. (4)

In order to make the Cannon algorithm work, an additional working space of
size m2 is needed to temporarily store the products of the sub matrices of X
and Y .

3 General Scalable Implementation of Fast Matrix
Multiplication Algorithms

3.1 Strassen-Canon algorithm and storage pattern of matrices

The motivation for the Strassen-Cannon algorithm comes from the observation
that S-algo is most efficient for large matrices and therefore should be used
at the top level (between processors) instead of the bottom level (within one
processor). The 7 sub matrix multiplications of S-algo at each recursion seem
at first to lead to a task parallelism. The difficulty in implementing a task
parallelism of S-algo on a distributed memory computer results from the fact
that the matrices must be distributed among the processors. Sub matrices in
S-algo must be stored in different processors and if tasks are spawned these
sub matrices must be copied or moved to the appropriate processors [4].
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For a distributed memory parallel algorithm the storage map of sub matri-
ces to processors is a primary concern. If the sub matrices used in the S-algo
are stored among processors in the same pattern at each level of recursion,
then they can be added or multiplied together just as if they are stored within
one processor. Here we have a pattern to store the matrices which is based
on the result of Luo and Drake in [12]. Figures 1 and 2 show the pattern of
storing matrix X with 6 x 6 blocks when the recursion level is 1. Figure 1
is from a matrix point-of-view. Note that the four sub matrices with 3 x 3
blocks are stored among the 9 processors in the same pattern. Figure 2 is
from a processor point-of-view. Each processor stores one block of the four
sub matrices. Figures 3 and 4 show the pattern when the recursion level is
2. The four sub matrices with 6 x 6 blocks are stored in the same pattern,
as well as the 16 sub matrices with 3 x 3 blocks. This pattern can be easily
replicated for higher recursion levels.

Fig. 1. Matrix X with 6 × 6 blocks is distributed over a 3 × 3 processor template
from a matrix point-of-view. The 9 processors are labeled from 0 to 8. This pattern
is used in the Strassen-Cannon algorithm when the recursion level is 1.

Fig. 2. Same as Figure 1, but from a processor point-of-view.

These patterns of storing matrices make it possible for all the processors to
act as one processor. Each processor has a portion of each sub matrix at each
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recursion level. The addition (or subtraction) of sub matrices performed in S-
algo at all recursion levels can thus be performed in parallel without any inter
processor communication. From the processor point-of-view, each processor
does its local sub matrix additions and subtractions. Sub matrix multipli-
cations are calculated recursively using S-algo. At the last level of recursion
the sub matrix multiplications are calculated using the Cannon algorithm.
Therefore, the Strassen-Cannon algorithm uses S-algo at the top level and
the T-algo at the bottom level.

Fig. 3. Matrix X with 12× 12 blocks is distributed over a 3× 3 processor template
from a matrix point-of-view. The 9 processors are numbered from 0 to 8. This pattern
is used in the Strassen-Cannon algorithm when the recursion level is 2.

Suppose the recursion level in S-algo is r. Let n = m/p,m0 = m/2, and
n0 = m0/p. Assume n,m0, n0 ∈ N. Since there are 18 sub matrix additions
and subtractions and 7 sub matrix multiplications in each recursion, the total
running time for the Strassen-Cannon algorithm is:

T (m) = 18Tadd
m

2
+ 7T

m

2
(5)

where Tadd
m
2 is the running time to add or subtract sub matrices of order

m/2. Note that there are p2 processors running in parallel. Therefore:

Tadd
m

2
=

(m
2 )2tcomp

p2
(6)
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Fig. 4. Same as Figure 3, but from a processor point-of-view.

Substitute the above formula into equation (5) we have

T (m) = 18
(

18tcomp

4p2

)
m2 + 7T (

m

2
) = sm2 + 7T (

m

2
) (7)

where s = 18tcomp

4p2 . With W-algo s = 15tcomp

4p2 . Use the above formula recur-
sively to obtain

T (m) = sm2 + 7T m
2

= sm2 + 7T
(
s
(

m
2

)2 + 7T
(

m
4

))

= sm2
(
1 + 7

4

)
+ 72T m

22

= sm2
(
1 + 7

4

)
+ 72

(
s
(

m
4

)2 + 7T m
8

)

= sm2
(
1 + 7

4 +
(

7
4

)2
)

+ 73T m
23

· · · · · ·
= sm2

(
1 + 7

4 + · · ·+ (
7
4

)r−1
)

+ 7rT m
2r

= sm2 1−( 7
4 )

r

1− 7
4

+ 7rT (m0)

≈ 4
3s

(
7
4

)r + 7rT (m0)

(8)

At the bottom level, the Strassen-Cannon algorithm uses the Cannon al-
gorithm for sub matrix multiplications. Therefore we can use equation (4) to
find T (m0). Substituting the value of T (m0) and s we have

Tm ≈ 5( 7
4 )

r
tcomp

p2 m2 + 7r
(

2tcomp

p2 m3
0 + 2Bβ

p m2
0 + 2pα

)

=
(

7
8

)r 2tcomp

p2 m3 +
5( 7

4 )
r
tcomp

p2 +
(

7
4

)r 2pα
(9)

There are four terms in the above equation. The first term is a cubic term
with respect to m. It is the computational dominant part and it decreases as
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the recursion level r increases. The second term is quadratic and it results from
the additional sub matrix additions and subtractions in S-algo. It increases
as r increases. The last two terms represent the communication time. They
increase as r increases. Since the first term is the dominant cubic term, the
Strassen-Cannon algorithm should be faster than the Cannon algorithm when
m is large enough.

3.2 Recursion Removal in Fast Matrix Multiplication

In formula (9), we showed that the total running time for the Strassen-Cannon
algorithm decreases when the recursion level r increases. This result is also
correct when we change Cannon algorithm at the bottom level by the other
parallel MM algorithms. To use the Strassen algorithm at the top level, the
most significant point is to determine the sub matrices after having recursively
executed r time the formula (1) (these sub matrices are corresponding to the
nodes of level r in the execution tree of Strassen algorithm) and then to
find the result matrix from these sub matrices (corresponding to the process
of backtracking the execution tree). It is simple to solve this problem for
a sequential machine, but it’s much harder for a parallel machine. With a
definite value of r, we can manually do it like [4], [12], and [8] made (r = 1, 2, 3)
but the solution for the general case has not been found. The following part
presents our method to determine all the nodes at the unspecified level r in
the execution tree of Strassen algorithm and to determine the direct relation
between the result matrix and the sub matrices at the level recursion r.

Fig. 5. Behavior of Strassen algorithm.

Our idea is to create an algorithm that executes the same atomic com-
putations as the recursive one but directly at the leaf of the tree, without
the intermediate computing. It is possible because the number of the scalar
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multiplications is determinable (7k), so we know exactly how many multipli-
cations we must do. We only have to determine exactly which to do and with
which parameters in each step. In each step, the algorithm must execute a
multiplication between 2 factors, which are linear combinations of elements
of X and Y , respectively. We can consider that each factor is the sum of
all elements from each matrix, with coefficient 0, -1, or 1. The execution of
the recursive algorithm can be described by an execution tree [13]. In such a
representation each scalar multiplication is associated with a leaf of the ex-
ecution tree (see figure 5). The path from the root to the leaf indicates the
recursive calls leading to the corresponding multiplication. Thus, by the fact
that all computations in each call are linear, we can composite them at only
one computation at a leaf. At the leaf, the coefficient of each element is ob-
tained by the combination of all computation in the path from the root. In
each recursive call, the coefficient obtained for each element depends on:

• The index of the call.
• The fact that in which quarter one finds the element in the division of the

matrix by 4 sub matrices.

Fig. 6. After recursion removal.

In another way, the recursive algorithm’s execution takes a path which
covers twice the tree. Our idea is to replace the whole tree’s covering path
with the leaf’s covering path. Because the tree is balanced with determined
depth and degree, the leaf covering path can be determined. All computations
are linear, so they can be combined in the leaf (see figure 6). Each of the 7k

multiplications is a product of 2 linear combinations of X’s and Y ’s elements.
Q is a linear combination of these 7k multiplications.

We represent the Strassen’s formula:
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ml =
∑

i,j=0,1

xijSX(l, i, j)× ∑
i,j=0,1

yijSY (l, i, j)

l = 0 · · · 6
and qij =

6∑
l=0

mlSQ(l, i, j)

(10)

with

And for the Winograd’s formula, we have:

Each of 7k product can be represented as in the following:

ml =
∑

i,j=0,n−1

xijSXk(l, i, j)× ∑
i,j=0,n−1

yijSYk(l, i, j)

l = 0...7k − 1

and qij =
7k−1∑
l=0

mlSQk(l, i, j)

(11)

In fact, SX = SX1, SY = SY1, SQ = SQ1. Now we have to determine values
of matrices SXk, SYk, and SQk from SX1, SY1, and SQ1. In order to obtain
this, we extend the definition of tensor product in [10] for arrays of arbitrary
dimensions as followed:
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Definition 1. Let A and B are arrays of same dimension l and of size m1 ×
m2 × . . . ×ml, n1 × n2 × . . . × nl respectively. Then the tensor product (TP)
is an array of same dimension and of size m1n1 ×m2n2 × . . .×mlnl defined
by replacing each element of A with the product of the element and B.
P = A⊗B where P [i1, i2, ..., il] = A [k1, k2, ..., kl] B [h1, h2, ..., hl] , ij = kjnj +
hj with ∀1 ≤ j ≤ l;

Let P =
n⊗

i=1
Ai = (...(A1 ⊗ A2) ⊗ A3)... ⊗ An) with Ai is array of dimension

l and of size mi1 ×mi2 × . . .×mil. The following theorem allows computing
directly elements of P

Theorem 1.

P [j1, j2, ..., jl] =
n∏

i=1

Ai [hi1, hi2, ..., hil] where jk =
n∑

s=1

(
hsk

n∏
r=s+1

mrk

)
.

(12)

In particular, if all Ai have the same size m1 × m2 × . . . × ml, we have

P [j1, j2, ..., jl] =
n∏

i=1

Ai [hi1, hi2, ..., hil] where jk =
n∑

s=1

(
hskmn−s

k

)
.

Remark 1. jk =
n∑

s=1

(
hskmn−s

k

)
is a jk’s factorization in base mk. We note

a = a1a2...al(b) the a’s factorization in base b hence P [j1, j2, ..., jl] =
n∏

i=1

Ai [hi1, hi2, ..., hil] then jk = hi1hi2...hin(mk).

Now we return to our algorithm. We have following theorem:

Theorem 2.
SXk =

k⊗
i=1

SX

SYk =
k⊗

i=1
SY

SQk =
k⊗

i=1
SQ

(13)

Thanks to Theorem 2 and Remark 1 we have

SXk (l, i, j) =
k∏

r=1
SX (lr, ir, jr)

SYk (l, i, j) =
k∏

r=1
SY (lr, ir, jr)

SQk (l, i, j) =
k∏

r=1
SQ (lr, ir, jr)

(14)

Apply (17) in (11) we have nodes leafs ml and all the elements of result matrix.
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To implement a fast matrix multiplication algorithm on distributed mem-
ory computers, we stop at the recursion level r and thanks to (17) and (11),
we have the entire corresponding sub matrices:

Ml =
∑

i, j = 0, 2r − 1
Xij

(
r∏

t=1
SX (lt, it, jt)

)

×
∑

i, j = 0, 2r − 1
Yij

(
r∏

t=1
SY (lt, it, jt)

)

l = 0...7r − 1

(15)

with

Xij =




xi∗2k−r,j∗2k−r ... xi∗2k−r,j∗2k−r+2k−r−1

... ... ...
xi∗2k−r+2k−r−1,j∗2k−r ... xi∗2k−r+2k−r−1,j∗2k−r+2k−r−1




Yij =




yi∗2k−r,j∗2k−r ... yi∗2k−r,j∗2k−r+2k−r−1

... ... ...
yi∗2k−r+2k−r−1,j∗2k−r ... yi∗2k−r+2k−r−1,j∗2k−r+2k−r−1




Qij =




qi∗2k−r,j∗2k−r ... qi∗2k−r,j∗2k−r+2k−r−1

... ... ...
qi∗2k−r+2k−r−1,j∗2k−r ... qi∗2k−r+2k−r−1,j∗2k−r+2k−r−1




i = 0, 2r − 1, j = 0, 2r − 1

Thanks to the storage map of sub matrices to processors that we have just

presented, the sub matrices




∑
i = 0, 2r − 1
j = 0, 2r − 1

Xij

(
r∏

t=1
SX (lt, it, jt)

)



and




∑
i = 0, 2r − 1
j = 0, 2r − 1

Yij

(
r∏

t=1
SY (lt, it, jt)

)



are locally determined within each

processor. Their product Ml will be calculated by parallel algorithms based on
T-algo like Fox algorithm, Cannon algorithm, SUMMA, PUMMA, DIMMA. . .

Finally, thanks to (17) & (11) we have directly sub matrix elements of
result matrix by applying matrix additions instead of backtracking manually
the recursive tree to calculate the root in [12] and [8]:

Qij =
7r−1∑
l=0

MlSQr(l, i, j)

=
7r−1∑
l=0

Ml

(
r∏

t=1
SQ (lt, it, jt)

) (16)
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4 Conclusion

We have just presented a general scalable implementation for all the matrix
multiplication algorithms on distributed memory computers that use FMM
algorithms at inter-processor level. The running time for these algorithms
decreases when the recursion level increases hence this general solution enables
us to find the optimal algorithms (which correspond with a definite value of
the recursive level and a definite parallel matrix multiplication algorithm at
the bottom level) for all the particular cases.

From a different view, we generalized the formulas of Strassen and Wino-
grad for the case where the matrices are divided into 2k parts (the case k = 2
gives us original formulas) thus we have a whole new direction to parallelize
the FMM algorithms.

In addition, we are applying the ideas presented in this paper to generalize
the algorithm in [4].
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APPENDIX

A Proofs

A.1 Proof of Theorem 1

Theorem 1.

P [j1, j2, ..., jl] =
n∏

i=1

Ai [hi1, hi2, ..., hil] where jk =
n∑

s=1

(
hsk

n∏
r=s+1

mrk

)
.

(17)

Proof. We prove the theorem by induction. With n = 1, the proof is trivial.
With n = 2, it is true by the definition. Suppose it is true with n − 1. We
show that it is true with n.

We have Pn−1 [t1, t2, ..., tl] =
n−1∏
i=1

Ai [hi1, hi2, ..., hil] where tk =
n−1∑
s=1

(
hsk

n−1∏
r=s+1

mrk

)

with ∀1 ≤ k ≤ l; and then Pn = Pn−1 ⊗An.
By definition

Pn [j1, j2, ..., jl] = Pn−1 [p1, p2, ..., pl]An [hn1, hn2, ..., hnl] =
n∏

i=1

Ai [hi1, hi2, ..., hil]

where jk = pkmnk + hnk = mnk ×
n−1∑
s=1

(
hsk

n−1∏
r=s+1

mrk

)
+ hnk

=
n−1∑
s=1

(
hsk

n∏
r=s+1

mrk

)
+ hnk =

n∑
s=1

(
hsk

n∏
r=s+1

mrk

)

The theorem is proved.

A.2 Proof of Theorem 2

Theorem 2.
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SXk =
k⊗

i=1
SX

SYk =
k⊗

i=1
SY

SQk =
k⊗

i=1
SQ

(18)

Proof. We prove the theorem by induction. Clearly it is true with k = 1.
Suppose it is true with k− 1. The algorithm’s execution tree is balanced with
depth k and degree 7. Thanks to (11), we have at the level k − 1 of the tree:

Ml =(
∑

0≤i,j≤2k−1−1

Xk−1,ijSXk−1 (l, i, j)

)
×

(
∑

0≤i,j≤2k−1−1

Yk−1,ijSYk−1 (l, i, j)

)

0 ≤ l ≤ 7k−1 − 1

Then thanks to (10) at the level k we have

Ml[l′] =
∑

0≤i′,j′≤1

((
∑

0≤i,j≤2k−1−1

Xk−1,ij [i′, j′]SXk−1 (l, i, j)

)
SX(l′, i′, j′)

)
×

∑
0≤i′,j′≤1

((
∑

0≤i,j≤2k−1−1

Yk−1,ij [i′, j′]SYk−1 (l, i, j)

)
SY (l′, i′, j′)

)

0 ≤ l ≤ 7k−1 − 1
0 ≤ l′ ≤ 6
=

∑
0≤i′,j′≤1

(
∑

0≤i,j≤2k−1−1

Xk−1,ij [i′, j′]SXk−1 (l, i, j)SX(l′, i′, j′)

)
×

∑
0≤i′,j′≤1

(
∑

0≤i,j≤2k−1−1

Yk−1,ij [i′, j′]SYk−1 (l, i, j)SY (l′, i′, j′)

)

0 ≤ l ≤ 7k−1 − 1
0 ≤ l′ ≤ 6

(19)

where Xk−1,ij [i′, j′], Yk−1,ij [i′, j′] are 2k × 2k matrices obtained by division
Xk−1,ij , Yk−1,ij in 4 sub matrices (i′, j′ indicate the sub matrix’s quarter).

We present l, l′ in the base 7, and i, j, i′, j′ in the base 2 and remark that
Xk−1,ij [i′, j′] = Xk

[
ii′2, jj

′
2

]
. Then (14) becomes
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M [ll′(7)] =
 ∑

0≤ii′(2),jj′(2)≤2k−1−1

Xk[ii′(2), jj′(2)]SXk−1 (l, i, j)SX(l′, i′, j′)


×


 ∑

0≤ii′(2),jj′(2)≤2k−1−1

Yk[ii′(2), jj′(2)]SYk−1 (l, i, j)SY (l′, i′, j′)




0 ≤ ll′(7) ≤ 7k−1 − 1

(20)

In addition, we have directly from (11):

M [ll′(7)] =
 ∑

0≤ii′(2),jj′(2)≤2k−1−1

Xk[ii′(2), jj′(2)]SXk

(
ll′(7), ii′(2), jj′(2)

)

×


 ∑

0≤ii′(2),jj′(2)≤2k−1−1

Yk[ii′(2), jj′(2)]SYk

(
ll′(7), ii′(2), jj′(2)

)



0 ≤ ll′(7) ≤ 7k−1 − 1

(21)

Compare (15) and (16) we have

SXk

(
ll′7, ii

′
2, jj

′
2

)
= SXk−1 (l, i, j)SX (l′, i′, j′)

SYk

(
ll′7, ii

′
2, jj

′
2

)
= SYk−1 (l, i, j)SY (l′, i′, j′)

By definition, we have

SXk = SXk−1 ⊗ SX =
k⊗

i=1
SX

SYk = SYk−1 ⊗ SY =
k⊗

i=1
SY

Similarly

SQk = SQk−1 ⊗ SQ =
k⊗

i=1
SQ

The theorem is proved.


