
A coupling strategy and its software

implementation for waves propagation and their

impact on coast

C. Kassiotis1,2, B. Rogers2 and P. Stansby2

February 5, 2010

1 Introduction

The complexity of flows, and especially flows at large scales such as the ones
of wave propagation through ocean make the introduction of simplified model
natural [20, 29, 30]. Since the XIXth century, and through the XXth, models
such as Saint-Venant [8], Boussinesq [4, 27] and fully Non-Linear Shallow Water
equations (NLSW) [12, 10] propose satisfying results in their range of application
(from deep to shallow water).

They are however, by definition, unable to represent accurately the com-
plexity of the flow near the coast, when waves are sloshing. The sloshing of
the wave is often handle by energy dissipation models in the near coast area
(sponge layer), with often heuristic and barely physical, whose coefficient are
tuned on simple case. In [11], a study compares for instance the results from
analytical, NLSWE software and two-phase slightly compressible flows solved
by VOF strategy for the classical dam break problem, and show the necessity
of advanced models for this kind of application.

Concerning these advanced models, the difficulty encountered is to represent
complex free-surface, evolving in time, with possible multi-connected domain.
Among all the strategy proposed to over-come this difficulty, one can cite the
Volume-Of-Fluid (VOF) approach that propose to introduce a characteristic
function describing high and low density fluid domains (here water and air) and
rely on a Finite Volume discretization [14, 28, 9]. Another discretisation widely
used is the Smooth Particle Hydrodynamics method (SPH) that inherently han-
dle the complexity of some free surface flows hence gridless by definition. If
the wave propagation is possible with these models, the high computation cost
made same possible only on 2D domains. Furthermore, they often suffer of over
damping, and the waves are dissipated before reaching the coast if no proper
treatment is apply.

For these reasons the coupling between any of the wave propagation models
and complex free-surface flow strategies seems the right way to takle this prob-
lem [17, 21]. One of the idea behind our work will be to re-use existing codes

1



in order to avoid the long development and validation phase. We propose to
couple a Boussinesq code with a SPH software.

The outline of this paper is the following. In the first part we present the
algorithms employed in the code re-used for the coupling. In the second part,
the coupling algorithm as well as the software implementation is given.

2 Coupled subproblems

name licence language 2d 3d val

w
av

es BSQ_V2P3 (EDF R&D) Fortran X X
funwave GPL Fortran X X X
shallowWaterFoam GPL C++ X X

SP
H Spartacus Fortran X X X

SPHysics GPL Fortran X X X

Table 1: Software suitable for waves propagation and SPH

Remarks:

• shallowWaterFoam is part of OpenFoam 1.6

• GPU-SPHysics is programmed in C++

• Spartacus will be realed as GPL for Linux in a near future (already avail-
able for Windows)

• BSQ_V2P3 is a prototype code

2.1 BSQ_V2P3: equations, discretization and solving algo-
rithm

In this section we present the main algorithm of the code and some results of a
benchmark given by M. Benoit.

The results given in Fig. 1 are obtained using the plot method of the com-
ponent.

2.2 SPHysics: equations, discretization and solving algo-
rithm

3 Coupling strategy and its software realisation

3.1 Coupling algorithm

In [21], an explicit staggered coupling algorithm between Boussinesq wave and
a SPH model is proposed. It requires a coupling domain. The Boussinesq solver
advance in time with a given time step ∆tBsq. From the Boussinesq solver you
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Algorithm 1 BSQ_V2P3

1: Given:
2: for n = 1 . . . Nmax do
3: initialize iteration counter (k) = 0
4: predictor (explicit, order 3):

η
(0)
i,n+1 = ηi,n +

∆t
12

(23Ei,n − 16Ei,n−1 + 5Ei,n−2)

U
(0)
i,n+1 = Ui,n +

∆t
12

(23Fi,n − 16Fi,n−1 + 5Fi,n−2)

5: compute velocity u(0)
i,n+1 from Û

(0)
i,n+1

6: compute E(0)
n+1 = E(η(0)

i,n+1, u
(0)
i,n+1) and F

(0)
n+1 = F (η(0)

i,n+1, u
(0)
i,n+1)

7: while ∆η > 0.0001 or ∆u > 0.0001 do
8: corrector (explicit, order 4):

η
(k+1)
i,n+1 = ηi,n +

∆t
24

(9E(k)
i,n+1 + 19Ei,n − 5Ei,n−1 + Ei,n−2)

U
(k+1)
i,n+1 = Ui,n +

∆t
24

(9E(k)
i,n+1 + 19Fi,n − 5Fi,n−1 + Fi,n−2)

9: compute velocity u(k)
i,n+1 from Û

(k)
i,n+1

10: compute E(k)
n+1 = E(η(k)

i,n+1, u
(k)
i,n+1) and F

(k)
n+1 = F (η(k)

i,n+1, u
(k)
i,n+1)

11: compute error indicator:

∆η =

∑
i |η

(k)
i,n+1 − η

(0)
i,n+1|∑

i |η
(k)
i,n+1|

and ∆u =

∑
i |u

(k)
i,n+1 − u

(0)
i,n+1|∑

i |u
(k)
i,n+1|

12: (k)←− (k + 1)
13: end while
14: end for

can get the velocity profile, that is imposed at one of the boundary of the SPH
solver. For stability reasons, the SPH solver advances in time with smaller time
step, denoted ∆tSPH. From the SPH solver you can obtain the velocity at the
reference depth and the wave height.

This algorithm is described in Alg. ??

3.2 Communication between software – Component Ori-
ented Programming paradigm

The need to re-use existing software products and tools in a more general context
is a major trend of software engineering. In the famous Garmish (Germany)
NATO conference that took place in 1968, the first stones of modern software

3



Figure 1: Free surface flows modeled BSQ_V2P3: bathymetrie and wave height
are scaled by 10. Snapshot at time steps 100, 125 and 150.

engineering where laid, and some answers to the problems described previously,
and more generally, to the so-called Software Crisis were given [25]. In [19]
for instance, the notion of components and their role in software re-use was
introduced for the first time, but a proper definition is yet to be accepted by
everybody. For instance, a loose definition of components as entities which can
be used, possibly with modifications, in a new software development can be
found in [7, 3]. With a more specific meaning, in [31] ones defines a component
as a piece of software capable of performing certain tasks prescribed within its
interface and which to that it is able to communicate with other components.
In the present case, latter definition is considered as the more stringent.

This paradigm somehow extends the concept of object in object-oriented
programming with the notion of communication between components. The
generalization of the definition of class methods – for the oriented-object pro-
gramming – equals here an interface listing the tasks it can execute on input
data or on its attribute. This interface can be seen as the contract that links the
two parties: components and clients. Another important feature of components
is that they are deployed on a system. Or as statted in [31]:

Software components are binary units of independent production,
acquisition, and deployment that interact to form a functioning sys-
tem

Thus, in order to be considered as a component, binaries should obey the
five following criteria as specified in [22]:
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Algorithm 2 Explicit coupling between Boussinesq and SPH solvers (2D)
1: Given:
2: for n = 1 . . . nmax do
3: t = n∆tBsq

4: impose wave height and velocity at reference height on the Boussinesq
boundary (ηb, vα,b)

5: solve fluid problem with time step ∆tBsq

6: get velocity from Boussinesq solver at points (xi, zi) on the SPH boundary:

u(xi, zi) = uα(xi) + ∂xzα∂xhuα + (zα − zi)∂2
xhuα+

zα∂xzα∂xuα + 1
2

(
z2
α − z2

i

)
∂2
xuα

7: solve SPH problem from time t− ∆tBsq
2 to t+ ∆tBsq

2
8: for k = 1 . . . kmax do
9: t = (n− 1

2 )∆tBsq + k∆tSPH

10: interpolate velocity uki (linear) and imposed SPH boundary particule
displacement as: xk+1

i = xki + ∆tSPHu
k
i

11: solve SPH problem with time step ∆tSPH

12: end for
13: get wave height (particle with largest z value on the boundary) and ve-

locity at the reference height (smoothed particle velocity at zα) of the
Boussinesq boundary.

14: end for

Multi-usability: several components should be instantiated on the same CPU
or on different machines; this feature allows parallel processing.

Non-context specific implementation: two components that fit the same
interface can be used by a service without any modification.

Composability: it is possible to make components out of components.

Encapsulation: it is not possible to access the inner structure or details of a
component via an interface. Hence, the implementation of the algorithm
defined by the interface and the implementation of the communication
method are strictly separated.

Development and version independent: a component defined through its
interface should be independent from its version, programming language
and even of the compiler used. It means that once deployed on a ma-
chine, it can be called by any service knowing only its interface and the
middleware until it is erased.

More details can be found in the following conversation [5].
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3.2.1 Component-based implementation and its specificities

From a scientific computing point of view, the implementation based on com-
ponent technology relies on the definitions of API (Application Program Inter-
face). Indeed, both clients – those that call a method – and services – those
that execute the task – side have to share the knowledge of classes, functions
and methods available. The API allows the Remote Procedure Call (RPC), or
yet called Remote Method Invocation (RMI), to access libraries, procedures or
stored object throughout a network or on the same machine.

In a component-based implementation, a strict separation is made between
the algorithm and the method implementation on one side, and the communi-
cation handled by the middleware on the other side. Ideally, the client side is
totally independent from the way the clients are called, and it does not matter
whether they are available locally or remotely called.

In scientific computing, RPC are rivaled by explicit Message Passing API.
The main drawback of Explicit Message based programs is that they melt what
concerns the algorithm with what concerns the communication between pieces
of software. However, from a historical point of view, they were the first to
be used in this domain. Thus, MPI [15] or PVM [13] initially only allowed
Explicit Message Passing. Nevertheless, the advantages of RPC is now generally
admitted, as confirmed by the growing number of types of middleware products
available for scientific computing.

3.2.2 The middleware CTL

A simple way to make software communicate can be to make one writes file with
data and to provide to another the adapted function to read these data. This
method suffer of poor time efficiency, and is therefore not easily generalisable.
Component based development requires a middleware layer between clients and
services. More precisely, in [26], a middleware is defined as:

Middleware works by providing a standardized, API-like interface
that can allow applications on different platforms or written in dif-
ferent languages to interoperate.

Many free and non-free middleware are currently available on the market;
The most well known are, CORBA (Common Object Request Broker Architec-
ture), JavaTMRMI or Microsoft R© .NET. However, the field of scientific com-
puting requires very high performance in communication, which implies that
only a few of the available middleware are of interest for extensive computation.
In fact, according to information on performance computing between different
types of middleware in [22], only CORBA – among the quoted environments –
fulfills the cost requirement, but is known for its complicated syntax.

In the last ten years, new components like CCA [16], Charm++ [18] or CTL
where specifically developed for the need of scientific computing and with the
aim of simplifying the syntax. In this work following in the steps of earlier
development [23], we will use the CTL as middleware.
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Initially a part of ParaFEP [24], the Component Template Library (CTL) was
developed by Dr. R. Niekamp at the Institute für Wissenschaftliches Rechnen
(TU-Braunschweig). It is a C++ template library, like the STL, that builds a
wrapper or a communication layer around a software, and thus allows so to build
components from existing piece of code. This layer ensures a serialization of the
data to be exchanged over a network, and implements, via code generation,
an interface defined in a particular header file. Unlike complicated CORBA
syntax, the API is here written in C-preprocessor language, often in a *.ci (for
Component Interface) file.

The two main advantages of CTL are [6]:

• providing a lightweight that can be used on top of several local (library and
thread) or remote communication methods (TCP/IP, MPI and others).

• making the process of writing an application or a service which uses the
CTL protocol as transparent as possible. Developers of a service can
write its implementation like they would write a normal local class, with
the exception that they need to give the CTL a method to serialize the
contained data. Developers of a client only needs then to choose a service
within the CTL API and how it starts. They can use the objects provided
by CTL services as if they were standard local objects.

3.3 Components

3.3.1 Wave component

First a Component Interface (.ci file) has to be declared. It is done in a
SimuWave.ci file that contains method declaration in a C pre-processor for-
mat:

/* ******************************************************************************

Component Interfaces (CI) for wave simulators

Author: Christophe KASSIOTIS
Laboratoire d’Hydraulique Saint -Venant
Universit~A c© Paris -Est (EDF R&D, Ecole des Ponts ParisTech , CETMEF)

Email: christophe.kassiotis@enpc.fr

Copyright (c) 2010 Christophe KASSIOTIS.
All rights reserved. No warranty. No liability.

****************************************************************************** */
#ifndef __SIMUWAVE__CI
#define __SIMUWAVE__CI

#include <ctl.h>

#define CTL_ClassTmpl SimuWaveCI , ( scalar1 ), 1
#include CTL_ClassBegin

#define CTL_Constructor1 ( const string /*init control file*/ ), 1
#define CTL_Method1 void , getnodes ,

( int4 /* dimension */, array <scalar1 > /*nodes*/ ) const , 2
#define CTL_Method2 void , set ,

( const string /* fieldName */, const array <scalar1 > /*field*/ ), 2
#define CTL_Method3 void , get , ( const string /* fieldName */,
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array <scalar1 > /*nodes*/, array <scalar1 > /*field*/ ), 3
#define CTL_Method4 int4 , solve , ( const scalar1 /* timeStep */ ), 1
#define CTL_Method5 int4 , goback , (), 0
#define CTL_Method6 int4 , plot , (), 0

#include CTL_ClassEnd

#endif

The name of the method is quite explicit. For BSQ_V2P3 based component,
the method marked with Xhave been implemented, whereas the one with × are
either not implemented or checked.

X Constructor1 instantiate the component with a given input file specifying
options.

X getnodes get the nodes and the dimension of problem.

X solve solve the problem for a time step of size ∆t.

X plot plot the results with a given format

• get get a field described by its name at given points: e.g. gives velocity
field at a certain number of points

• set set the velocity and wave height at given nodes.

• goback required for implicit coupling schemes with different time steps for
subproblems

3.3.2 SPH Component
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[4] J. Boussinesq. Théorie des ondes et des remous qui se propagent le long d’un
canal rectangulaire horizontal, en communiquant au liquide contenu dans
ce canal des vitesses sensiblement pareilles de la surface au fond. Journal
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