LABORATORY FOR

 HYDRAULICSSAINT-VENANT

A coupling strategy and its software implementation for waves propagation and their impact on coast

Prospects

Introduction

Who I am ? What did I do ?...

Ecole des Ponts ParisTech
 ENS Cachan
 EDF R\&D

TU-Brauncwheig University of Manchester

Introduction

Ph. D.

Ecole des Ponts ParisTech

ENS Cachan

TU-Brauncwheig

Introduction

Now

Ecole des Ponts ParisTech
 ENS Cachan
 EDF R\&D

\square University of Manchester

Coupling waves/SPH

Introduction

Problem description

Waves modeling from open sea to coast:
a Various physical models and associated software
^ Countless applications
A Among important issues: extreme waves or tsunami impacts

Introduction

Problem description

Waves modeling from open sea to coast:
a Various physical models and associated software
ح Countless applications
~ Among important issues: extreme waves or tsunami impacts
Tsunami modeling:
a Generation
~ Propagation
A Run-up
Coupling key issues
A Amplitude of the flood
Source: CMLA-Cachan [Dutykh, 09]

Introduction

Problem description

Waves modeling from open sea to coast:
a Various physical models and associated software
^ Countless applications
~ Among important issues: extreme waves or tsunami impacts

Tsunami modeling:

a Generation
A Propagation

Coupling key issues
A Amplitude of the flood
A Resistance of buildings

[Kassiotis, 07]

Introduction

Problem description

Waves modeling from open sea to coast：
a Various physical models and associated software
～Countless applications
～Among important issues：extreme waves or tsunami impacts

Tsunami modeling：

a Generation
A Propagation
A Run－up
Coupling key issues
A Amplitude of the flood

FBI，American Samoa，Sep． 09

Introduction

Problem description

Waves modeling from open sea to coast：
a Various physical models and associated software
～Countless applications
～Among important issues：extreme waves or tsunami impacts

Tsunami modeling：

a Generation
A Propagation
A Run－up
Coupling key issues
A Amplitude of the flood

FBI，American Samoa，Sep． 09

Introduction

Ph . D. results: fluid structure interaction

ح Partitioned strategy
A Strong coupling
r Coupling FEM and FVM
~ Free-surface flow VOF
Material properties
A Neo-Hookean structure
$E_{s}=1 \times 10^{6} \mathrm{~Pa}, \nu_{s}=0$,
$\rho_{s}=2500 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$.
\approx Two-phase flow $\rho_{f, 1}=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
$\nu_{f, 1}=1 \times 10^{6} \mathrm{~m} / \mathrm{s}, \rho_{f, 2}=1 \mathrm{~kg} / \mathrm{m}^{3}$,
$\nu_{f, 2}=1 \times 10^{5} \mathrm{~m} / \mathrm{s}$.

Introduction

Ph．D．results：three－dimensional dam－break problem

Introduction

Waves model (Boussinesq, Saint-Venant)

A Unable to represent complex free surface (multi-connected domains)
A Can represent sloshing with damping [Benoit 02, Yu 99]
a Studies shows the necessity of more physical models [Duthyk 10]

Sloshing representation (VOF, SPH)
A Waves damping (can be handled by ad-hoc treatment)
A Computational coast (3D computations un-reachable)

Coupling is a natural choice

Outline

(1) Sub-problems

- Waves propagation
- Waves sloshing on coast
(2) Coupling algorithm
(3) Software implementation-Component architecture

Some existing software

	name	licence	language	2d	3d	val
$\boldsymbol{\aleph}$	BSQ_V2P3 (EDF R\&D)		Fortran	\checkmark		\checkmark
D	funwave	GPL	Fortran	\checkmark	\checkmark	\checkmark
\aleph	shallowWaterFoam	GPL	C++	\checkmark	\checkmark	
工	Spartacus		Fortran	\checkmark	\checkmark	\checkmark
$\boldsymbol{\square}$	SPHysics	GPL	Fortran	\checkmark	\checkmark	\checkmark

Wave propagation

Boussinesq model

BSQ_V2P3 implements:
^ Physical description
~ wave height η
\sim horizontal velocity u
\approx reference height z_{α}
\approx Finite difference discretization $\left(\mathcal{O}\left(\Delta x^{4}\right)\right)$
\approx Explicit Predictor $\left(\mathcal{O}\left(\Delta t^{3}\right)\right)$ - Corrector $\left(\mathcal{O}\left(\Delta t^{4}\right)\right)$ time integration scheme
ح Stabilising filters
a Waves damping (sloshing)

Wave propagation
 Boussinesq model - results

Wave sloshing

~ Using SPH

A A lot of open questions... (for me)

Outline

(1) Sub-problems

- Waves propagation
- Waves sloshing on coast
(2) Coupling algorithm
(3) Software implementation - Component architecture

Coupling strategy
 [Narayanaswamy 09]

Proposed coupling algorithm:
r Explicit and staggered in time
A Overlapping regions in space

Figure

Coupling strategy

[Narayanaswamy 09]
1: for $n=1 \ldots n_{\max }$ do
2: $\quad t=n \Delta t_{\mathrm{Bsq}}$
3: impose wave height and velocity ($\eta_{b}, v_{\alpha, b}$)
4: \quad solve wave problem with Δt_{Bsq}
5: get velocity on the SPH boundary: $u\left(x_{i}, z_{i}\right)$
6: solve SPH problem from $t-\frac{\Delta t_{\text {Bsq }}}{2}$ to $t+\frac{\Delta t_{\text {Bsq }}}{2}$
7: for $k=1 \ldots k_{\max }$ do
8: $\quad t=\left(n-\frac{1}{2}\right) \Delta t_{\mathrm{Bsq}}+k \Delta t_{\mathrm{SPH}}$
9: \quad interpolate u_{i}^{k} and impose $x_{i}^{k+1}=x_{i}^{k}+\Delta t_{\text {SPH }} u_{i}^{k}$
10: solve SPH problem with time step $\Delta t_{\text {SPH }}$
11: end for
12: get wave height and velocity at the reference height
13: end for

Coupling strategy
 [Narayanaswamy 09]

1: for $n=1 \ldots n_{\max }$ do
2: $\quad t=n \Delta t_{\mathrm{Bsq}}$
3: impose wave height and velocity ($\eta_{b}, v_{\alpha, b}$)
4: \quad solve wave problem with Δt_{Bsq}
5: get velocity on the SPH boundary: $u\left(x_{i}, z_{i}\right)$
6: solve SPH problem from $t-\frac{\Delta t_{\text {Bsq }}}{2}$ to $t+\frac{\Delta t_{\text {Bsq }}}{2}$
7: \quad for $k=1 \ldots k_{\max }$ do
8: $\quad t=\left(n-\frac{1}{2}\right) \Delta t_{\mathrm{Bsq}}+k \Delta t_{\text {SPH }}$
9: \quad interpolate u_{i}^{k} and impose $x_{i}^{k+1}=x_{i}^{k}+\Delta$ tSPH $_{i}^{k}$
10: solve SPH problem with time step $\Delta t_{\text {SPH }}$
11: end for
12: get wave height and velocity at the reference height

13: end for

C. Kassiotis

saint-venant Coupling waves/SPH

Coupling strategy
 [Narayanaswamy 09]

1: for $n=1 \ldots n_{\max }$ do
2: $\quad t=n \Delta t_{\mathrm{Bsq}}$
3: impose wave height and velocity ($\eta_{b}, v_{\alpha, b}$)
4: \quad solve wave problem with Δt_{Bsq}
5: get velocity on the SPH boundary: $u\left(x_{i}, z_{i}\right)$
6: solve SPH problem from $t-\frac{\Delta t_{\text {Bsq }}}{2}$ to $t+\frac{\Delta t_{\text {Bsq }}}{2}$
7: for $k=1 \ldots k_{\max }$ do
8: $\quad t=\left(n-\frac{1}{2}\right) \Delta t_{\text {Bsq }}+k \Delta t_{\text {SPH }}$
9: \quad interpolate u_{i}^{k} and impose $x_{i}^{k+1}=x_{i}^{k}+\Delta$ tSPH $^{u_{i}^{k}}$
solve SPH problem with time step $\Delta t_{\text {SPH }}$ end for
12: get wave height and velocity at the reference height

13: end for

Coupling strategy [Narayanaswamy 09]

1: for $n=1 \ldots n_{\max }$ do
2: $\quad t=n \Delta t_{\mathrm{Bsq}}$
3: impose wave height and velocity ($\eta_{b}, v_{\alpha, b}$)
4: \quad solve wave problem with Δt_{Bsq}
5: get velocity on the SPH boundary: $u\left(x_{i}, z_{i}\right)$

$$
=u_{\alpha}\left(x_{i}\right)+\partial_{x} z_{\alpha} \partial_{x} h u_{\alpha}+\left(z_{\alpha}-z_{i}\right) \partial_{x}^{2} h u_{\alpha}+[\ldots]
$$

solve SPH problem from $t-\frac{\Delta t_{\text {Bsq }}}{2}$ to $t+\frac{\Delta t_{\text {Bsq }}}{2}$
\square

Coupling strategy [Narayanaswamy 09]

1: for $n=1 \ldots n_{\max }$ do
2: $\quad t=n \Delta t_{\mathrm{Bsq}}$
3: impose wave height and velocity ($\eta_{b}, v_{\alpha, b}$)
4: \quad solve wave problem with Δt_{Bsq}
5: get velocity on the SPH boundary: $u\left(x_{i}, z_{i}\right)$
6: solve SPH problem from $t-\frac{\Delta t_{\text {Bsq }}}{2}$ to $t+\frac{\Delta t_{\text {Bsq }}}{2}$
7: for $k=1 \ldots k_{\max }$ do

interpolate u_{i}^{k} and impose $x_{i}^{k+1}=x_{i}^{k}+\Delta t_{\mathrm{SPH}} u_{i}^{k}$
solve SPH problem with time step Δt_{SPH} end for
12: get wave height and velocity at the reference height
13: end for

Coupling strategy

[Narayanaswamy 09]

1: for $n=1 \ldots n_{\max }$ do
2: $\quad t=n \Delta t_{\mathrm{Bsq}}$
3: impose wave height and velocity ($\eta_{b}, v_{\alpha, b}$)
4: \quad solve wave problem with Δt_{Bsq}
5: get velocity on the SPH boundary: $u\left(x_{i}, z_{i}\right)$
6: solve SPH problem from $t-\frac{\Delta t_{\text {Bsq }}}{2}$ to $t+\frac{\Delta t_{\text {Bsq }}}{2}$
7: \quad for $k=1 \ldots k_{\text {max }}$ do
8: $\quad t=\left(n-\frac{1}{2}\right) \Delta t_{\mathrm{Bsq}}+k \Delta t_{\mathrm{SPH}}$
9: \quad interpolate u_{i}^{k} and impose $x_{i}^{k+1}=x_{i}^{k}+\Delta t_{\text {SPH }} u_{i}^{k}$
10: \quad solve SPH problem with time step $\Delta t_{\text {SPH }}$
11: end for
12: get wave height and velocity at the reference height
13: end for

Coupling strategy

[Narayanaswamy 09]

1: for $n=1 \ldots n_{\max }$ do
2: $\quad t=n \Delta t_{\mathrm{Bsq}}$
3: impose wave height and velocity ($\eta_{b}, v_{\alpha, b}$)
4: \quad solve wave problem with Δt_{Bsq}
5: get velocity on the SPH boundary: $u\left(x_{i}, z_{i}\right)$
6: solve SPH problem from $t-\frac{\Delta t_{\text {Bsq }}}{2}$ to $t+\frac{\Delta t_{\text {Bsq }}}{2}$
7: for $k=1 \ldots k_{\max }$ do
8: $\quad t=\left(n-\frac{1}{2}\right) \Delta t_{\mathrm{Bsq}}+k \Delta t_{\mathrm{SPH}}$
9: \quad interpolate u_{i}^{k} and impose $x_{i}^{k+1}=x_{i}^{k}+\Delta t_{\text {SPH }} u_{i}^{k}$
10: \quad solve SPH problem with time step $\Delta t_{\text {SPH }}$
11: end for
12: get wave height and velocity at the reference height
13: end for

Outline

(1) Sub-problems
 - Waves propagation
 - Waves sloshing on coast

(2) Coupling algorithm
(3) Software implementation - Component architecture

Programming context for partitionned solution

Software implementation
a Data exchange between wave propagation and near coast

Non matching meshes/time handled by the Interpolator (?)
ح Re-using existing waves and SPH codes

Programming context for partitionned solution

Software implementation
a Data exchange between wave propagation and near coast
A Implementation of a master code
A Non matching meshes/time handled by the Interpolator (?)
~ Re-using existing waves and SPH codes

Programming context for partitionned solution

Software implementation
a Data exchange between wave propagation and near coast
A Implementation of a master code
~ Non matching meshes/time handled by the Interpolator (?)
a Re-using existing waves and SPH codes

Programming context for partitionned solution

Software implementation
A Data exchange between wave propagation and near coast
a Implementation of a master code
~ Non matching meshes/time handled by the Interpolator (?)
a Re-using existing waves and SPH codes

Programming context for partitionned solution

Software implementation
A Data exchange between wave propagation and near coast
a Implementation of a master code
~ Non matching meshes/time handled by the Interpolator (?)
~Re-using existing waves and SPH codes
Minimum requirement: a communication protocol

Programming context for partitionned solution

Middleware - Software component technology
a "Between" software and hardware
~ Computer science [Mac Ilroy 68, Szyperski \& Meeserschmitt 98]
a Each software: a component
(Generalization of OOP to software: encapsuled / interface
ح Middleware in charge of communication and data types

Programming context for partitionned solution

Middleware - for scientific computing
a Available middleware: Corba, Java-RMI, MS.net ...
~ Communication Template Library (CTL): C++ [Niekamp, 02]
~ Scientific computing: requires good performances [Niekamp, 05]
~ Salomé platform (EDF R\&D)
~ Software development made by non-programmers

Programming context for partitionned solution

Middleware - for scientific computing
a Available middleware: Corba, Java-RMI, MS.net ...
~ Communication Template Library (CTL): C++ [Niekamp, 02]
~ Scientific computing: requires good performances [Niekamp, 05]
~ Software development made by non-programmers

Programming context for partitionned solution

Middleware - for scientific computing
a Available middleware: Corba, Java-RMI, MS.net ...
~ Communication Template Library (CTL): C++ [Niekamp, 02]
~ Scientific computing: requires good performances [Niekamp, 05]
~ Salomé platform (ÉDF R\&D)
~ Software development made by non-programmers

Programming context for partitionned solution

Middleware - for scientific computing
a Available middleware: Corba, Java-RMI, MS.net ...
~ Communication Template Library (CTL): C++ [Niekamp, 02]
~ Scientific computing: requires good performances [Niekamp, 05]
~ Salomé platform (ÉDF R\&D)
人 Software development made by non-programmers

Components implementation and use

Wave component:
a Interface definition SimuWave.ci

n Methods implementation in Fortran

Components implementation and use

Wave component:
A Interface definition SimuWave.ci (Genericity)
n Methods implementation in Fortran

Components implementation and use

Wave component:
a Interface definition SimuWave.ci (Genericity)
A Methods declaration

```
#define CTL_Method3 void, get, ( const string /*fieldName*/,
array<scalar1> /*nodes*/, array<scalar1> /*field*/ ), 3
```

A Methods implementation in Fortran

Components implementation and use

Wave component:
ح Compilation gives:
~ A library: call like a lib, thread (asynchronous calls)
~ An executable: remote call with tcp, pipe, MPI...
~ Use: Multiscale [Hautefeuille 09], EFEM [Benkemoun 09] Stochastic [Krosche 09], Thermomechanics [Kassiotis 06] , Mass transfer [De Sa 08] , FSI [Kassiotis 09] ...

Components implementation and use

SPH component:

A Interface definition: derivated from existing CFDsimu.ci:
a Implemented ofoam [Krosche 07, Kassiotis 09] in C++
a Methods declaration

```
#define CTL_Method2 void, get,
    (const string /*name*/, array<real8> /*v*/ ) const, 2
```


Components implementation and use

Interpolation component: Interpolator [Jürgens 09]
r C++ component
A Interpolation with radial basis functions [Beckert \& Wendland 01]
~ Full matrices
r Solve: coupled with the Lapack library

Components implementation and use

COupling COmponents by a Partitioned Strategy: cops
a Coupling components as templates
a Explicit coupling: collocated and non-collocated
a Implicit coupling: BGS
a Predictors (order 0-2), fixed and dynamic Aitken's relaxation

Conclusions and Outlooks

Conclusion:

a Generic implementation re-using existing code
a Efficiency using CTL
a Simple implementation and cheap computation outside existing codes

Outlooks:

a Use wave solver as BC in SPH computation
Open questions:
a Which solver for the waves ? Saint-Venant ? Boussinesq ?
A Which size for overlaping area ?
A Which BC : input for SPH ? output in wave solver ?

Conclusions and Outlooks

Thank you for attention

Questions ? Remarks ? Help for SPH ?

