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RÉSUMÉ iii

Résumé

Ce mémoire de thèse a pour but de présenter un modèle de prédiction du transport des algues en
mer le long des côtes. La méthode choisie a été d’utiliser un code industriel eulérien pour prédire
l’écoulement moyen sur une grande surface, et d’ensuite ajouter un modèle lagrangien pour prédire le
mouvement des particules individuelles. Ce modèle lagrangien comporte trois étapes. Premièrement,
les caractéristiques moyennes du fluide trouvées avec le modèle eulérien sont utilisées pour alimenter
un modèle stochastique pour trouver les vitesses turbulentes du fluide à l’emplacement des partic-
ules modélisant les algues. Ensuite ces vitesses turbulentes sont utilisées à travers les composantes
de la force de traînée, de l’inertie, de la force de Basset et de la poussée d’Archimède pour trouver
les vitesses des corps. La dernière étape consiste à utiliser ces vitesses des corps pour calculer leurs
trajectoires. Une méthode avec un intégrateur exact a été développée pour résoudre ces équations.
Ce modèle a ensuite été validé grâce à deux expériences. Dans la première expérience, des sphères
de tailles différentes ont été lâchées dans deux fluides avec des densités différentes, où une turbu-
lence stationnaire quasi-homogène a été générée en utilisant une paire de grilles oscillantes. Dans la
deuxième expérience des particules sphériques ont été lâchées dans un écoulement non-homogène.
Cette écoulement a été obtenu en obstruant partiellement un canal, afin qu’une zone de recircula-
tion soit générée. Le modèle de transport des particules a ensuite été testé sur des simulations d’un
écoulement réel le long des côtes normandes, dans lequel des particules numériques représentant des
algues ont été lâchées.

Mots clés :
Transport stochastique de particules, Couplage eulérien-lagrangien, Intégrateur exact, Turbulence de
grilles, Canal partiellement obstrué, Transport côtier des algues
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ABSTRACT vii

Abstract

The aim of this PhD thesis was to develop a model to predict the motion of algae in sea waters along
a coastline. The method chosen was to use a large Eulerian industrial code to model the mean flow,
and add Lagrangian model to predict the motion of individual particles. This Lagrangian model
is a three-step model. In the first modelling step, the mean flow characteristics at the location of
the particles (solid bodies modelling the algae) are extracted from the Eulerian model and imputed
into a stochastic model to find the turbulent fluid velocities. These fluid velocities are used in the
second step to solve for the solid body velocities, by solving for the drag, momentum, buoyant and
Basset history forces. The final modelling step is to use these solid body velocities to calculate the
trajectories of particles. An exact integrator method was then developed to solve for these equations.
The model was then validated using two experiments. Firstly sphere of different size were released in
fluids of different densities, where a stationary quasi-homogeneous turbulence. This turbulence was
generated by oscillating a pair of grids. In the second experiment spherical particles were released in a
non-homogeneous turbulent flow. This flow was achieved by partially obstructing a channel, so that
a recirculation zone was generated. The particle transport model was then tested numerically using
the simulations of a real flow along the coasts of Normandy where numerical particles representing
algae were released.

Keywords:
Stochastic particle transport, Eulerian-Lagrangian coupling, Exact integrator method, Grid generated
turbulence, Partially obstructed channel flow, Coastal algae transport
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Nr Number of particles present in the flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (pcs)

P Fluid pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (kg·m−1·s−2)

Q̌i A constant used in the exact integrator model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (-)

Re Reynolds number of the flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (–)

Rea Particle Reynolds number of an alga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (–)

Rep Particle Reynolds number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (–)

Res Particle Reynolds number of a sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (–)

Reset Particle Reynolds number once the terminal settling velocity has been reached . . . . . . . . . . . . (-)

S Cross-sectional area of a solid body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m2)

Sa Surface area of a disk representing an alga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m2)

Sij Mean rate-of-strain tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (s−1)

sij Fluctuating rate of strain tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (s−1)

S Scalar mean rate of strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (s−1)

Ss Cross-sectional area of a sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m2)

Stset Stokes number used to characterise the influence of the turbulence . . . . . . . . . . . . . . . . . . . . . . . (-)

T Integral of the autocorrelation of fluid velocities in stationary homogeneous isotropic turbu-
lence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (s)

ta Thickness of a disk representing an alga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m)

T (s)
i The integral time scale of the fluid velocities seen by a solid body . . . . . . . . . . . . . . . . . . . . . . . . . (s)

Tt Turbulent characteristic time (linked to large eddies) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (s)

twin Time of the numerical window used to solve for the Basset history force . . . . . . . . . . . . . . . . . . (s)

U Vectorial fluid velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m·s−1)

Ui Fluid velocity along the ith direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m·s−1)

Ui Turbulence-averaged fluid density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m·s−1)

U ′
i Turbulent fluctuations of the fluid density around the mean . . . . . . . . . . . . . . . . . . . . . . . . . (m·s−1)

U ′
iU

′
j Reynolds stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m2·s−2)

Urms,i Turbulent intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m·s−1)

U (s)
i Fluid velocities seen by a solid body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m·s−1)

ul Characteristic velocity of the large turbulent eddies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m·s−1)



xviii NOMENCLATURE

us Characteristic velocity of the small turbulent eddies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m·s−1)
V Vectorial particle velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m·s−1)
Vi Particle velocity along the ith direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m·s−1)
Vol Total volume occupied by the particles and the fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m3)
Vset Settling velocity for solid particles falling in stationary fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . (m·s)
Wi Wiener process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (-)
Xi Position of a particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m)
Greek Symbols
αi Constants used in the exact integrator model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (-)
αx, αy Constants used used to correct the parallax of a camera . . . . . . . . . . . . . . . . . . . . . . . . . . . (pixels−1)
β A constant used in the exact integrator model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (-)
βx, βy Constants used used to correct the parallax of a camera . . . . . . . . . . . . . . . . . . . . . . . (mm·pixels−1)
∆ Stroke of the grid oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m)
∆t The time of one subinterval used to solve the Basset history force . . . . . . . . . . . . . . . . . . . . . . . . . (s)
ε Dissipation rate of the turbulent kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m2·s−3)
η Free-surface elevation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m)
Γi The stochastic integral of the solid particle velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m·s−1)
γi The stochastic integral of the fluid velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m·s−1)
λl Characteristic size of the large turbulent eddies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m)
λs Characteristic size of the small turbulent eddies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m)
ν Kinematic viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m2·s−1)
νT Turbulent viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m2·s−1)
Ω Volume of a solid body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m3)
Ωa Volume of a disk representing an alga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m3)
Ωf Volume fraction of particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (–)
Ωs Volume of a sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m3)
Φi The stochastic integral of the solid particle position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m)
ψi The derivative in the integral of the Basset history force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m·s−2)
ψn The derivative ψi at time τn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (m·s−2)
ρf Fluid density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (kg·m−3)
ρs Solid body density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (kg·m−3)
ρs/f Ratio of the density between the solid particle and the surrounding fluid . . . . . . . . . . . . . . . . . (-)
τl Characteristic time of the large turbulent eddies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (s)



NOMENCLATURE xix

τn The time t minus n time steps ∆t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (s)

τpart The particle relaxation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (s)

τs Characteristic time of the small turbulent eddies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (s)
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Chapter	1

Introduction

Le mouvement de corps dans un écoulement est un problème classique de mécanique
des fluides. Son analyse est nécessaire, par exemple, pour le transport de sédiments le long
du littoral, de bulles d’air dans un tuyau ou des aérosols relâchés par un combustible. Ces
particules peuvent poser des problèmes de fonctionnement pour beaucoup d’industriels,
et des questions environmentales capitales.

Ce mémoire se concentre sur le transport d’algues le long des côtes. Les modèles ex-
istants pour ce type de problèmes reposent sur une approche biologique, où l’évolution
d’une population d’algues est modélisée à long terme par l’apport de nutriments. Cepen-
dant, pour la gestion d’une structure en bord de mer, il est important de connaître les
réponses à court terme de ces algues à l’évolution d’un écoulement naturel déterminé par
la marée.

Pour prendre en compte les spécificités d’un écoulement côtier il faut pouvoir mod-
éliser les courants de marée, l’effet des vagues ainsi qu’une bathymétrie complexe. Ainsi
il est proposé ici de coupler deux modèles ; un modèle eulérien de relativement grande
échelle pour l’écoulement moyen et un modèle stochastique lagrangien de petite échelle
pour le transport des algues.

Ce mémoire est divisé en sept chapitres. Premièrement le contexte motivant le be-
soin de la thèse est expliqué (chapitre 2). Ensuite les bases de la mécanique des flu-
ides nécessaires pour comprendre le modèle développé sont rappelées dans le chapitre 3.
Vient ensuite une description des forces qui régissent le mouvement d’un corps dans un
écoulement (chapitre 4). Pour modéliser ces forces il est nécessaire de connaître la vitesse
du fluide à la position d’un corps. Le modèle utilisé est donc décrit dans le chapitre 5.
Puis la résolution numérique est ensuite expliquée dans le chapitre 6. Les validations de
ce modèle numérique sont ensuite réalisées à partir de deux expériences (chapitres 7 et
8). La première concerne le cas de particules relâchées dans une turbulence stationnaire,
quasi-isotrope, générée par des grilles oscillantes, et la deuxième envisage des particules
dans un canal partiellement obstrué. Fort de ces validations, le modèle est ensuite testé
pour l’écoulement réel autour d’une centrale électrique en Normandie, dont les résultats
préliminaires sont donnés dans le chapitre 9.



3 INTRODUCTION

The presence of bodies in a flow and the transport patterns of these bodies is a classic problem in fluid
mechanics. It’s analysis is required, whether it is for the transport of sediments along a coastline, the
apparition of air bubbles in pipe flow or aerosols released by fossil fuels. It is important to develop
tools predicting the motion of those particles, as they can hinder the operation of many industrial
structures and affect severely the environment.
The focus of this thesis is on the transport of algae particles along a coastline, as it is a problem that
has only been studied from a biological point of view. Typical algae transport model focus on the long
term evolution of a population (or bloom) of algae by modelling the inflow of nutriments. However
there is an industrial need to predict the short term response of such a population to flow variations
due to tidal effects.
The aim of this thesis is therefore to present a model that will predict the transport of algae particles
along the coastline. The environmental flow along a coastline has several specificities, including tidal
currents, wave-breaking and a complex bathymetry, that need to be accounted for. These affect the
flow on a large scale, however the motion of algae particles is also subject to smaller scale effects,
such as the inertial properties of the algae, or the turbulence of the flow. In order to combine the large
scale effects and the small scale effects efficiently, the transport of algae particles along the coastline
is modelled through the coupling of two models. A relatively large scale Eulerian model is used to
solve for the mean flow and a small scale Lagrangian stochastic particle model is used to predict the
turbulent fluctuations of the flow and the transport of individual algae particles.
This thesis is divided into seven chapters. Firstly the context that led to a need for this research will be
explained (chapter 2). Then the theoretical background of fluid mechanics necessary to understand
to development of the model will be explained in chapter 3. Thirdly the forces acting on the motion
of a particle transported by a flowing fluid will be described (chapter 4). A necessary requirement to
predict the transport the motion of solid particles is to know the fluid velocity at the location of the
particle, and therefore the model predicting the turbulent velocity at the location of a fluid particle
will be explained in chapter 5. The combination of a fluid velocity and particle velocity model creates
a complex model to solve numerically, and therefore the development and properties of such a model
will be presented in chapter 6. This model will then be validated using two experiments (chapters 7
and 8). The first is for the case of particles released in quasi-isotropic grid generated stationary tur-
bulence, and the second is for particles released in a partially obstructed channel. The model will
then be applied and briefly analysed for the real flow around a nuclear power plant in Normandy
(chapter 9).
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Chapter	2

Context

Où le contexte de la problématique du transport d’algues en bord de mer est expliqué.
Les côtes de Bretagne et Normandie sont sujettes à une augmentation du volume d’algues
échouées. Ces algues, principalement de type Ulves, ne sont pas toxiques pour l’homme
individuellement, mais les quantités échouées créent des problèmes lors du processus de
décomposition. Ce phénomène, connu sous le nom de marées vertes, pose ainsi des prob-
lèmes de gestion de ces côtes, en terme de propreté et sureté. Pour les industriels, les
problèmes viennent du fait que ces algues bloquent partiellement l’accès à l’eau.

Il existe peu de modèles permettant de modéliser le transport d’algues en bord de
mer, et ceux-ci se concentrent principalement sur l’évolution d’une population d’algues.
Cependant, pour la problématique industrielle, il faudrait pouvoir prédire la réponse d’un
groupe d’algues aux variations de l’écoulement. Ainsi, pour servir de référence, d’autres
modèles de transport de particules dans un écoulement sont décrits, par exemple le trans-
port d’aérosols dans l’atmosphère ou de bulles dans les canalisations.

Enfin, pour justifier l’approche de modélisation retenue, des nombres adimensionnels
classiques sont utilisés. La fraction volumique des particules permet de prédire qu’un
couplage fluide–eau sera suffisant pour les applications envisagées ici, et le nombre de
Stokes des particules permet de justifier que les corps solides ne peuvent pas être considérés
comme de simples particules de fluide.
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2.1 The algae problematic

The coast of Normandy and Brittany in France have seen mass deposition of algal blooms, see for
example figure 2.1.

Figure 2.1: Surface covered in Ulva in Brittany during the year 2009 1. The green circles represent
surfaces covered with alga.

The reason why the regions of Brittany and Normandy are affected so severely are of two origins.
Firstly there are geographical reasons. In large beaches, with a small slope, the effect of the waves
(usually in combination with a small tidal current) might trap the algae close to the beach, where
with a small water depth the algae will be in relatively warm water and have easy access to sunlight.
Secondly there is the access to nutriments. The type of sediments and the proximity of these (i.e. in
shallow water) can also increase the nutriments present in the water. Secondly during the summer
the rivers have a smaller discharge, and therefore they reach the sea with a higher concentration of
nutriments. Finally, with the human occupation along the coastline, rain water enters the ocean faster,
and through human activity (such as agriculture) a higher dose of nutriments enters the water cycle.
Further details on the reasons behind the increase of Ulva populations can be found in Inf’ODE (1999).
Nonetheless these algae are not toxic in their natural form, but the amount that is deposited causes
many problems. When deposited on the beach these algae will decompose, and because of the amount
present, the fumes emitted from this decomposition prove to be hazardous. Furthermore the presence
of these algal blooms in the water will partially block the access to sea water. This proves to be
particularly cumbersome for harbours or industrial structures that requires readily available sea water
in their manufacturing process.
The only modifications to the growth process of the algal blooms that can be undertaken are to the
human factors. However a modification of the human activities will be very long, expensive and
complex, and might only shift the problem to another type of algae. For this purpose, the objective

1source: http://ecologie.blog.lemonde.fr/2011/07/05/pourquoi-les-algues-vertes-sont-elles-toujours-la/

http://ecologie.blog.lemonde.fr/2011/07/05/pourquoi-les-algues-vertes-sont-elles-toujours-la/
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of this thesis is to develop a model to predict the transport of algal particles in a coastal environment
surrounding an industrial complex so that civil engineering solutions can be found to deviate these
blooms from the point of interest until curative solutions can be developed to reduce the presence of
algal blooms along the coast in the long run.

2.2 Existing particle transport models

Models describing the motion of particles in a fluid have been studied for many years. For example
Einstein in 1905 presented a model describing Brownian motion, where summary and translation of
this article can be found in Gardiner (2004) and a short description of Brownian motion can be found
in section 5.1. For the problem at hand, the trajectories of a group of algae need to be modelled so
that the effectiveness of civil engineering works to protect industrial structures or harbours from the
accumulation of algae can be tested.
In literature there are not many models to predict the evolution of algae blooms. There exists only
a few models that approach the problem from a biological point of view. Example of these models
can be found in Salomonsen et al. (1999) or Donaghay and Osborn (1997). These models typically run
simulations that cover several days or months and will consider a large area of simulation, typically
10 - 100 km2. These large scale models focus on the growth and evolution of an algae population,
and do not need to consider the physical response of algae to the flow. This implies that these models
will not be able to predict accurately the response of a group of algae particles to environmental flow
variations.
Therefore it is important to look at models that predict the transport of other particles. Models such
as the ones presented in Monti and Leuzzi (2010), Issa et al. (2009), Heemink (1990) or Stijnen et al.
(2006) predict the motion of particles in environmental flows by adding an estimation of the diffusion
due to turbulence. These models focus on a smaller scale of motion, typically 10 m - 1 km and 1 - 24 h,
but still large enough to model the specificities of environmental flows such as tides, waves, turbulent
diffusion and the effect of bathymetry. However the turbulence is predicted simply, through the use
of a diffusion constant (which represents the turbulence), and none of the physical characteristics of
the bodies are taken into account.
To find models that consider the physical properties of bodies one needs to look at models used to
predict the transport of aerosols or bubbles. Example of aerosol models, which are models that con-
sider solid particles interacting with a gas can be found in Csanady (1963), Minier and Peirano (2001)
or Sawford and Guest (1991). Yeo et al. (2010) is a good example of a bubble model, which is a model
with distinct gas particles transported in a fluid. These models are developed for small particles with
a large density difference with the surrounding fluid. The algae particles are large in comparison to
these models, and have a very small difference in density with the surrounding fluid. Furthermore
these models typically require more information on the flow than is generally available in environ-
mental flow modelling (see chapter 3) and therefore tend to be applicable for a smaller scale of fluid
models (because of computing power).
It is also possible to consider larger particles in the flow with Direct Numerical Simulations, in Uhl-
mann (2008) for example, but these models can only be used for a very small scale of simulation.

2.3 Categorising the problem

For the problem at hand we saw that looking purely at the scales of physical processes involved,
the problematic needs to consider a wide range of motions. Large scales are necessary to predict
accurately the environmental flow of the algae problem and small scales to consider the inertial effects
of individual algae particles. Poelma et al. (2007) gives an overview of parameters that can be used to
categorise a particle laden flows. Considering this approach the non-dimensional number Ωf , which
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represents the volume fraction of particles as introduced by Elghobashi (2006), will be considered:

Ωf =
NrΩ

Vol
(2.1)

Nr is the number of particles present in the flow, Ω is the volume occupied by a single particle and
Vol is the total volume occupied by the particles and the fluid. Elghobashi (2006) showed that for
volume fraction of particles smaller than 10−6 a one way fluid–particle coupling can be done. A one
way fluid–particle coupling means that the information from the fluid is given to the particle motion,
but there is no transfer of information from the particles to the fluid flow. A quick calculation shows
that a volume fraction of 10−6 can correspond to the case of algae that can potentially cover a surface
100× 1 m2 and a millimetre thick transported in a volume of fluid 500× 100× 2 m3, which is typical
for the transport of algae.
Another useful non-dimensional quantity is the particle stokes number St introduced by Eaton and
Fessler (1994):

St =τp
τs

(2.2a)

τp =
(2ρs + ρf )D

2

36νρf
(2.2b)

τs =
(ν
ε

) 1
2 (2.2c)

Where ρs is the particle density (the “s” stands here for “solid”), ρf is the fluid density, D is a char-
acteristic length of the body, ν is the kinematic viscosity and ε is the dissipation rate of the turbulent
kinetic energy. This Stokes number can be considered as the relationship between two characteristic
times. τp which is the relaxation time for a particle experiencing only Stokes drag, and τs which is the
characteristic time for the small turbulent eddies. Eaton and Fessler (1994) show that particle with a
Stokes number between 0.01 and 25 can be considered to be partially affected by the motion of the
fluid. For alga particles such as those described in section 9.1 transported in a typical environmental
with a dissipation rate of the order 10−5 m2·s−3 this gives Stokes number ranging from 1-30. We will
analyse these characteristic time scales and dimensionless numbers, amongst others, in chapter 7.
Therefore by considering all of the above the model developed needs to be able to model accurately a
large area of flow for several hours. However to balance this constraint the particles will not affect the
flow, but it cannot be assumed that they follow exactly the flow. The method therefore chosen is to
combine a stochastic Lagrangian particle transport model with a large Eulerian model of the coastal
flow. The Eulerian model will be able to take into account all of the large scale effects, such as tidal
currents, wave and the effect of the bathymetry, whereas the Lagrangian will be able to model the
smaller scale effects such as the turbulent diffusion and inertial properties of the bodies.
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Chapter	3

Environmental	Flow	Modelling

Où les bases de la mécanique des fluides sont rappelées. Dans la première partie de ce
chapitre, la différentiation entre les modèles de type Eulérien et Lagrangien est expliquée.
Ensuite les équations de Navier-Stokes sont introduites, ainsi que l’équation de continu-
ité. Enfin il est ensuite expliqué comment obtenir les équations de Saint-Venant, qui sont
souvent utilisées pour modéliser les écoulements côtiers. La seconde partie introduit la
modélisation de la turbulence. Cela commence par l’introduction du nombre de Reynolds,
ainsi que la décomposition de la vitesse du fluide qui permet d’obtenir les contraintes de
Reynolds. Il est ensuite expliqué comment modéliser ces contraintes à travers deux types
de modèles. Les modèles de type viscosité turbulente, avec la mise en avant du modèle
k-ε, et les modèles suivant l’évolution dans le temps de ces contraintes. Finalement, les
hypothèses de Kolmogorov sont introduites ainsi que les grandeurs caractéristiques qui
en découlent.
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3.1 General principles of fluid mechanics

Before going more in depth into the model describing the transport of algae particles in coastal water
there are a few general principles of fluid mechanics which need to be understood. Firstly there
are two different general methods used to describe a flow of fluid. One focuses on individual fluid
particles (or individual bundles of fluid particles) and follows them in time. This type of methods are
called Lagrangian methods. The second method focus on the behaviour of the fluid within an area.
These methods are called Eulerian.
Lagrangian methods can become very time consuming and complex when a large volume of fluid is
observed and therefore when modelling the flows Eulerian method are usually preferred. When it
comes to environmental flows there are two different flow models which are commonly used. These
environmental flows, which are the water flows of interest for the problem considered in this thesis,
are considered to be Newtonian, which means that their viscosity (represented with the symbol µ, or
if divided by the fluid density ν ) which is a measure of their resistance to deformations caused by
shear or tensile stresses, is constant. They are also considered incompressible, which means that they
have a constant density (represented with the symbol ρf ).
The first model described, which is the basis for all fluid models which are considered Newtonians,
is the Navier-Stokes equation of motion. This equation is found by applying newton’s second law of
motion (conservation of momentum) to an area of the fluid. In its incompressible form it is given by
the following equation (Viollet et al., 2002):

∂U
∂t

+ U · ∇U =− 1

ρf
∇P + g + ν∇2U (3.1)

In this equation the symbol U represents the fluid velocity, P is the fluid pressure, ∇ is the gradient
operator, g is the vectorial representation of the acceleration due to gravity and ∇2 is the Laplacian op-
erator. Equation 3.1 is written in its vectorial form, where the symbols in bold show vectors. However
there are two other form of notations which can be used, and will be introduced here as they will be
used later on in the thesis. The Cartesian (x,y,z) projection of the vectorial form of the Navier-Stokes
equation is given by:

∂Ux

∂t
+ Ux

∂Ux

∂x
+ Uy

∂Ux

∂y
+ Uz

∂Ux

∂z
=− 1

ρf

∂P

∂x
+ ν

(
∂2Ux

∂x2
+
∂2Ux

∂y2
+
∂2Ux

∂z2

)
(3.2a)

∂Uy

∂t
+ Ux

∂Uy

∂x
+ Uy

∂Uy

∂y
+ Uz

∂Uy

∂z
=− 1

ρf

∂P

∂y
+ ν

(
∂2Uy

∂x2
+
∂2Uy

∂y2
+
∂2Uy

∂z2

)
(3.2b)

∂Uz

∂t
+ Ux

∂Uz

∂x
+ Uy

∂Uz

∂y
+ Uz

∂Uz

∂z
=− 1

ρf

∂P

∂z
− g + ν

(
∂2Uz

∂x2
+
∂2Uz

∂y2
+
∂2Uz

∂z2

)
(3.2c)

Note that in this case the vertical axis is assumed to be orientated in the upward direction. Finally
equation 3.1 can be written following the Einstein notations

∂Ui

∂t
+ Uj

∂Ui

∂xj
=− 1

ρf

∂P

∂xi
+ gi + ν

∂2Ui

∂x2j
(3.3)

Where the subscript i represents the direction of the flow considered, all the subsequent subscripts
that are used j or later on k represent a summation over the components of direction.
Furthermore the Navier-Stokes equations need to include the continuity equation, which in incom-
pressible flows is given by (Viollet et al., 2002):



GENERAL PRINCIPLES OF TURBULENCE MODELLING - FIRST-ORDER MODELS 14

∂Ux

∂x
+
∂Uy

∂y
+
∂Uz

∂z
=0 (3.4)

The continuity equation ensures that in within the volume of measurement, in the absence of a source
or a sink of fluid, no fluid will be lost or created.
The second flow model commonly used in environmental problems are the non-linear Shallow Water
equations. These are often used in free-surface flows and they can be obtained by integrating the
Navier-Stokes equations over the depth of the flow under the hypothesis that horizontal length scale
is much greater than the vertical length scale, and that the vertical velocity components are negligible.
In its conservative form the Shallow Water equations are given by (Viollet et al., 2002):

∂Ui

∂t
+ Uj

∂Ui

∂xj
= −g ∂η

∂xi
+
ν

h

∂

∂xj

[
h

(
∂Ui

∂xj
+
∂Uj

∂xi

)]
(3.5)

With η representing the free-surface elevation from the mean elevation and h the depth of the fluid
and all the velocity values given here are depth-averaged. For the non-linear Shallow Water equations
the continuity equation is given by (Viollet et al., 2002):

∂h

∂t
+
∂hUx

∂x
+
∂hUy

∂y
=0 (3.6)

Again the velocity values are depth-averaged.
These models are applied over a domain of interest, and therefore it is necessary to know the be-
haviour of the flow along the boundaries. This is known as the boundary conditions. For the bound-
ary conditions on the Navier-Stokes equations see Viollet et al. (2002), and for the boundary conditions
on the non-linear Shallow Water equations see Hervouet (2007). A more sophisticated set of shallow
water equations will be presented later on in chapter 9.

3.2 General principles of turbulence modelling - first-order models

During the observation of most real flows it is possible to observe eddies of different size, shape
and direction. These eddies create a fluctuation around the mean flow velocities in a process called
turbulence. The intensity of the turbulence is usually characterised through a dimensionless number
called the Reynolds number (Viollet et al., 2002):

Re =
Ud

ν
(3.7)

The Reynolds number is the ratio between a characteristic fluid velocityU , a characteristic flow length
d and the kinematic viscocity ν. The flow is generally considered to be laminar (which means that
there are virtually no turbulent fluctuations) for low values of the Reynolds number (typically under
2300). Above this value small perturbations will be amplified to reach a finite value. From this defini-
tion of turbulence, Reynolds introduced a decomposition of the fluid velocity given by the following
equation (Viollet et al., 2002):

Ui = Ui + U ′
i (3.8)
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Where Ui represents the mean fluid velocity (in the turbulent sense, it should not be confused with
the depth-averaged velocities found through the Shallow Water equations) and U ′

i represents the
fluctuations around this mean value. This decomposition can be applied to other fluid quantities,
such as the pressure. Figure 3.1 shows a schematic description of this concept.
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Figure 3.1: An example of a recording of a turbulent fluid velocity in time taken from velocity mea-
surements of the experiment in section 8.2.

The Reynolds decomposition introduced in equation 3.8 can be used to rewrite the Navier-Stokes and
the continuity equations (equations 3.3 and 3.4). Averaging these new equations we get the Reynolds
equations (Pope, 2000):

∂Ui

∂xi
=0 (3.9a)

∂Ui

∂t
+ Uj

∂Ui

∂xj
=− 1

ρf

∂P

∂xi
+ gi + ν

∂2Ui

∂x2j
− ∂

∂xj

(
U ′
iU

′
j

)
(3.9b)

The terms U ′
iU

′
j are known as the Reynolds stresses, and they represent the momentum transfer by

the turbulent fluctuations. Due to these stresses the Reynolds equations are unclosed, and from this
closure problem comes all the modelling of the turbulence. This tensor is symmetrical (U ′

iU
′
j = U ′

jU
′
i )

and the diagonal components (U ′
iU

′
i ) are normal stresses whereas the off diagonal components are

shear stresses. The simplest method to model the Reynolds stresses is to consider that they act as vis-
cous stresses, since turbulent eddies are responsible for mixing and energy dissipation. Therefore an
artificial viscosity called the turbulent (or eddy) viscosity νT will be introduced. Using Boussinesq’s
assumption that the Reynolds stresses are proportional to the mean rates of strain (Pope, 2000) gives:

−U ′
iU

′
j =2νTSij −

2

3
kδij (3.10)

Where Sij is the mean rate of strain tensor is:

Sij = Sji =
1

2

(
∂Ui

∂xj
+
∂Uj

∂xi

)
(3.11)

We may observe from equation 3.9a that Sii = ∂Ui/∂xi = 0.
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The symbol k is the turbulent kinetic energy (TKE), which is the kinetic energy of the fluctuating part
of the flow per unit mass. It is defined by:

k =
1

2
U ′
iU

′
i (3.12)

Using this, the Reynolds averaged Navier-Stokes equation (3.9b) can be rewritten as:

∂Ui

∂t
+ Uj

∂Ui

∂xj
=− 1

ρf

∂

∂xi

(
P +

2

3
ρfk

)
+ gi +

∂

∂xj

[
(ν + νT )

∂Ui

∂xj

]
(3.13)

The term 2ρfk/3 is often considered negligible compared to P .
The simplest way to consider the turbulent viscosity is to assume a constant value throughout the
domain, and in many real applications this can be sufficient to obtain an estimation of the mean fluid
velocities, however if one is interested in the diffusive abilities of the flow, a more detailed model of
the for this viscosity is required. A commonly used model is the k-ε model developed by Jones and
Launder (1972). To obtain a model for the turbulent kinetic energy this model starts by subtracting
the Reynolds equations from the Navier-Stokes equations. This gives the evolution of the fluctuating
velocities:

∂U ′
i

∂t
+ Uj

∂U ′
i

∂xj
=− U ′

j

∂Ui

∂xj
+

∂

∂xj

(
U ′
iU

′
j

)
+ ν

∂2U ′
i

∂x2j
− 1

ρf

∂P ′

∂xi
(3.14)

Therefore, from equations 3.14 and 3.12 it is possible to obtain the evolution of the turbulent kinetic
energy:

∂k

∂t
+ Uj

∂k

∂xj
= −U ′

iU
′
j

∂Ui

∂xj
− ∂

∂xk

(
1

2
U ′
iU

′
jU

′
j +

U ′
iP

′

ρf
− 2νU ′

jsij

)
− 2νsijsij (3.15)

Where sij is the fluctuating rate of strain tensor given by:

sij =
1

2

(
∂U ′

i

∂xj
+
∂U ′

j

∂xi

)
(3.16)

Equation 3.15 can be rewritten to make visible certain characteristics.

∂k

∂t
+ Uj

∂k

∂xj
= P −

∂T ′
j

∂xj
− ε (3.17)

The symbol P corresponds to the production of turbulent energy and it is given by:

P =− U ′
iU

′
j

∂Ui

∂xj

=− U ′
iU

′
jSij (3.18)
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The notation Sij can be used in place of the velocity gradient because of the symmetrical nature of
the Reynolds stresses and of Sij . The symbol T ′

i corresponds to the flux of turbulent energy and it is
given by:

T ′
i =

1

2
U ′
iU

′
jU

′
j +

U ′
iP

′

ρf
− 2νU ′

jsij (3.19)

And ε is the dissipation of turbulent energy defined by:

ε = 2νsijsij (3.20)

The terms to be closed in of equation 3.17 are the flux of the turbulent kinetic energy T ′
i and the

dissipation rate of the turbulent kinetic energy ε. Using Boussinesq’s assumption on Reynolds stresses
(equation 3.10) the production P is given as:

P =−
(
2

3
kδij − 2νTSij

)
Sij

=2νTS2 (3.21)

In this calculation, we used the property Sijδij = Sii = 0 and the scalar mean rate of strain S is defined
as:

S =
√

2SijSij (3.22)

And therefore the production term is known. In the k-ε model the flux of turbulent kinetic energy is
modelled as a diffusion gradient:

T ′
i = −νT

σk

∂k

∂xi
(3.23)

Note that the turbulent damping coefficient σk is a scalar (where the subscript k is a standard notation,
and not a vectorial component) generally taken equal to 1. The turbulent viscosity is specified by the
following dimensional equation:

νT = Cµ
k2

ε
(3.24)

With Cµ being a constant, experimentally found to be 0.09. The evolution of turbulent kinetic energy
(equation 3.17) can therefore be simplified to:

∂k

∂t
+ Uj

∂k

∂xj
= P +

∂

∂xj

(
νT
σk

∂k

∂xj

)
− ε (3.25)

The k-εmodel chooses to model the dissipation rate instead of using the definition 3.20. ε can be con-
sidered as the turbulent energy flow rate in the energy cascade (see later in this section), determined
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by the large scales of turbulence and assumed to be independent of the viscosity (which is true at high
Reynolds numbers). It can therefore be modelled by the heuristic equation:

∂ε

∂t
+ Uj

∂ε

∂xj
= Cε1

Pε
k

+
∂

∂xj

(
νT
σε

∂ε

∂xj

)
− Cε2

ε2

k
(3.26)

The constant of the k-ε model are set as Cε1 = 1.44, Cε2 = 1.92, σk = 1.0 and σε = 1.3 (Launder and
Sharma, 1974).
Naturally the turbulence models can also be applied to the Shallow Water equations. Integrating
equation 3.13 over the vertical gives:

∂Ui

∂t
+ Uj

∂Ui

∂xj
= −g ∂η

∂xi
+
ν

h

∂

∂xj

[
h

(
∂Ui

∂xj
+
∂Uj

∂xi

)]
− 1

h

∂

∂xj

(
hU ′

iU
′
j

)
(3.27)

The turbulent fluctuations of free-surface and of the water depth are assumed to be negligible due to
the action of gravity. The shallow water equations can also be written using the turbulent viscosity
hypothesis:

∂Ui

∂t
+ Uj

∂Ui

∂xj
= −g ∂η

∂xi
+

1

h

∂

∂xj

[
h (ν + νT )

(
∂Ui

∂xj
+
∂Uj

∂xi

)]
(3.28)

Where all the fluid velocity values are still depth-averaged. The k-ε equations can also be written in
a depth-averaged version. These equations are similar to equations 3.25 and 3.26, but with added
terms resulting from the depth-averaging (Rodi, 2000):

∂k

∂t
+ Uj

∂k

∂xj
=P +

∂

∂xi

(
νT
σk

∂k

∂xi

)
− ε+ Pk (3.29a)

∂ε

∂t
+ Uj

∂ε

∂xj
=Cε1

Pε
k

+
∂

∂xi

(
νT
σε

∂ε

∂xi

)
− Cε2

ε2

k
+ Pε (3.29b)

The two additional terms Pk and Pε are given by:

Pk =
u2∗ |U|
h

(3.30a)

Pε =CεCε2

√
Cµu5∗ |U|3

h2
(3.30b)

The constants in equations 3.29 and 3.30 are set to: Cε1 = 1.44, Cε2 = 1.92, Cε = 3.6, Cµ = 0.09,
σk = 1.0 and σε = 1.3 in Launder and Sharma (1974) and Rodi (2000). Equations 3.29 are then used
in equations 3.28 through the usual relation:

νT = Cµ
k2

ε
(3.31)
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3.3 General principles of turbulence modelling - second-order models

A more complete class of turbulence models exist, focusing on the transport of the Reynolds stresses,
which can be obtained from equation 3.14:

∂

∂t

(
U ′
iU

′
j

)
+ Uj

∂

∂xj

(
U ′
iU

′
j

)
=Pij +Rij −

∂

∂xk
Tkij − εij (3.32)

Where Pij is the production tensor and it is defined as:

Pij ≡ −U ′
jU

′
k

∂Ui

∂xk
− U ′

iU
′
k

∂Uj

∂xk
(3.33)

Rij is the pressure rate of strain tensor and it is defined as:

Rij ≡
P ′

ρf

(
∂U ′

i

∂xk
+
∂U ′

j

∂xk

)
(3.34)

And εij is the dissipation tensor, defined by:

εij ≡ 2ν
∂U ′

i

∂xk

∂U ′
j

∂xk
(3.35)

Tkij are the Reynolds stress flux which are defined by:

Tkij =T
(u)
kij + T

(P )
kij + T

(ν)
kij (3.36a)

T
(u)
kij ≡U ′

iU
′
jU

′
k (3.36b)

T
(P )
kij ≡ 1

ρf
U ′
iP

′δjk +
1

ρf
U ′
jP

′δik (3.36c)

T
(ν)
kij ≡− ν

∂U ′
iU

′
j

∂xk
(3.36d)

Now that the evolution of the Reynolds stresses are known models are required to provide closure
to the Reynolds stress flux, the dissipation and the pressure rate of strain tensor. Pope (2000) gives a
thorough overview of such models. We will now consider the simplest one.
For high Reynolds numbers because of local isotropy (see the Kolmogorov hypotheses described later
on) the dissipation can be rewritten as:

εij =
2

3
εδij (3.37)

Rotta’s model is often used to close the pressure rate of strain tensor (equation 3.34). To describe
this model it is necessary to be aware that the fluctuating pressure field can be decomposed into
three contributions, taken from the observation of the Poisson equation for fluctuating pressure (Pope,
2000):
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P ′ = P (r) + P (s) + P (h) (3.38)

The first contribution P (r) is known as the rapid pressure as it responds immediately to a change of
the mean velocity gradients. It is defined through the following relation:

1

ρf
∇2P (r) =− 2

∂Ui

∂xj

∂Uj

∂xi
(3.39)

The second contribution is known as the slow pressure, because it takes longer than P (r) to respond
to mean velocity gradients, and it is defined by:

1

ρf
∇2P (s) =− ∂2

∂xi∂xj

(
U ′
iU

′
j − U ′

iU
′
j

)
(3.40)

The final contribution is the harmonic pressure, which is used to impose the boundary conditions. It
is given by the following equation:

1

ρf
∇2P (h) =0 (3.41)

These definitions can be used to decompose the pressure rate of strain tensor (equation 3.34):

Rij =R(r)
ij +R(s)

ij +R(h)
ij (3.42a)

R(r)
ij =

P (r)

ρf

(
∂U ′

i

∂xk
+
∂U ′

j

∂xk

)
(3.42b)

R(s)
ij =

P (s)

ρf

(
∂U ′

i

∂xk
+
∂U ′

j

∂xk

)
(3.42c)

R(h)
ij =

P (h)

ρf

(
∂U ′

i

∂xk
+
∂U ′

j

∂xk

)
(3.42d)

Rotta’s model was developed in a scenario where only the slow pressure rate of strain tensor con-
tributes to the Reynolds stresses. In decaying homogeneous anisotropic turbulence there are no pro-
duction or transport of those stresses so that the exact Reynolds stress equation (3.32) becomes:

d

dt

(
U ′
iU

′
j

)
=R(s)

ij − εij (3.43)

The anisotropy of the flow can be quantified using the following anisotropy tensor:

bij =
U ′
iU

′
j

2k
− 1

3
δij (3.44)

In this case the evolution of the anisotropy tensor can be found using equations 3.43, 3.15 (with neg-
ligible production or fluxes) and the isotropic turbulent dissipation rate (3.37):



21 ENVIRONMENTAL FLOW MODELLING

dbij
dt

=
ε

k

(
bij +

R(s)
ij

2ε

)
(3.45)

Rotta then supposed that the turbulence will return to an isotropic state as it decays linearly, which
gives the following model equation for the evolution of the anisotropy tensor:

dbij
dt

=− (CR − 1)
ε

k
bij (3.46)

Which is only true if:

R(s)
ij =− 2CRεbij

=− CR
ε

k

(
U ′
iU

′
j −

2

3
kδij

)
(3.47)

Where CR is the Rotta constant, which is typically set to 1.5 or 1.8. Equation 3.43 then becomes:

d

dt

(
U ′
iU

′
j

)
=− CR

ε

k
U ′
iU

′
j +

(
2

3
CR − 2

3

)
εδij (3.48)

Furthermore observations of the turbulence have lead to the general idea that advection of the large
turbulent eddies cause smaller eddies to be created around it. This introduces a notion called the
energy cascade, where the energy of a large turbulent eddy is lost in creating smaller eddies, which
in turn create smaller eddies, and so forth until the viscosity of the fluid stops the motion of the
smallest eddies. It was this observation which caused Kolmogorov to introduce characteristic values
to describe the small turbulent eddies. Using the dissipation rate of the turbulent kinetic energy
ε , introduced earlier in equation 3.20, which has units m2/s3, then dimensional analysis give the
characteristic estimations of the small turbulent eddies through the following equations:

λs ∼
(
ν3

ε

) 1
4

(3.49a)

us ∼ (νε)
1
4 (3.49b)

τs ∼
(ν
ε

) 1
2 (3.49c)

Where λs is the characteristic size, us the characteristic velocity and τs the characteristic time of the
small turbulent eddies.
These estimations are based on the Kolmogorov hypotheses (Pope, 2000). These state that for a suffi-
ciently large turbulent regime (large Reynolds number) the turbulence can be assumed to be locally
isotropic if the observed domain is small (much smaller than the length scale of the large turbulent
eddies). Furthermore it can be hypothesised that distribution of the fluid velocities correlations are
determined by the viscosity ν and the dissipation rate ε. Secondly, for the correlation of two quantities
taken sufficiently apart in time or space (a difference large compared to the small scale of turbulence)
then it is only dependent on the dissipation rate.
Similar observations can be done for the large turbulent eddies. These eddies are limited by the
production of turbulent kinetic energy, symbolised as k , defined earlier in equation 3.12, for which
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units were m2/s2, and the rate at which it is dissipated. Therefore through dimensional analysis the
following equations are defined:

λl ∼C
3
4
µ
k

3
2

ε
(3.50a)

ul ∼k
1
2 (3.50b)

τl ∼
k

ε
(3.50c)

Where λl is the characteristic size, ul the characteristic velocity and τl the characteristic time of the
large turbulent eddies. The constantCµ was added to provide a characteristic length closer to the real
size.
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Chapter	4

Dynamic	Properties	of	Solid	Particle	Motion

Où les composantes des forces du transport de corps solides dans un fluide sont ex-
posées. Dans l’ordre de présentation, ces composantes sont la poussée d’Archimède, la
traînée, l’inertie, la force de Basset et la portance. La résolution de la force de Basset est
décrite en détails, car sa résolution est complexe. Il y est aussi expliqué pourquoi la force
de portance peut être ignorée. Ensuite il est expliqué que pour des raisons pratiques, le
corps des algues va être identifié à une sphère. Ainsi, pour une sphère transportée dans
un écoulement, différents modèles de transport, qui prennent en compte différentes forces
(traînée, Basset, etc.) sont comparés. Enfin un test est effectué pour des sphères de dif-
férentes caractéristiques physiques dans des tourbillons de Taylor, afin de comprendre
l’impact de ces caractéristiques sur le transport des corps.
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4.1 Forces acting on the motion of a solid particle in fluid

A solid body (or particle) placed into a moving fluid will experience forcing from this fluid. The forces
acting on the body can be categorised into different force components. In chapter 2 the volume frac-
tion of the particles Ωf was introduced (equation 2.1). It was also established that the particles of in-
terest, the algae, had a low concentration in the flow (a volume fraction smaller than 10−6). Therefore
for the calculations later on it is assumed that the particles will not affect the general flow surrounding
it. In addition even though the bodies are large enough that their physical characteristics need to be
taken into account, they are small enough that the flow variations are negligible along a length scale
of the same order as the size of the particle. In turbulent flows this means that the turbulent structure
do not rotate the bodies, and therefore they will keep the same orientation in time and are assumed
irrotational.

4.1.1 The buoyancy force

The first force component to be considered is the buoyancy force. This force is a result of the difference
in density between the solid body and the fluid. For a body of density ρs, volumeΩ and massm = Ωρs,
and in the absence of other forces (such as friction) the impact of this force as given by Graebel (2001)
on the motion of a solid particle can be modelled through the following equation, valid for each space
component i:

m
dVi
dt

= (m−ρfΩ) gi (4.1)

Where the symbolVi represents the components velocity of the solid body V. This force is particularly
important for three dimensional particle transport, when considering horizontal two-dimensional
particle transport the buoyancy effects will be ignored.

4.1.2 The drag force

The second force component to be considered is the drag force. This force represents the resistance
of a particle to the flow through friction or pressure differences along the body. Considering only
the added effect of this force on the motion of a solid body, as given by Falkovich (2011), gives the
following equation:

m
dVi
dt

=
1

2
ρfSCD (Rep) |U − V| (Ui − Vi)

+ (m−ρfΩ) gi (4.2)

The velocity of a solid body is therefore dependent on the relative fluid velocity U − V, the cross-
sectional area S, the fluid density ρf and the drag coefficient CD. This drag coefficient is dependent
on the shape and orientation of the solid body as well as the relative velocity of the fluid. It is usu-
ally given as a function of the non-dimensional number Rep, which is the non dimensional particle
Reynolds number, and it is given by the following definition:

Rep =
|U − V|D

ν
(4.3)

This number is a relation between the relative fluid velocity, a characteristic length of the solid body
D and the kinematic molecular viscosity of the fluid ν.
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4.1.3 The momentum of the body

Another force component that is added is to take into account the momentum of the body. To calculate
these forces it is assumed that fluctuations of the fluid along the length scale of a body are negligible
(which is coherent with the description of the bodies of interest, see chapter 2) and that the fluid is at
rest infinitely away from the body (Landau and Lifchitz, 1987). The motion of a solid body is therefore
given with the following equation:

m
dVi
dt

=ρfΩ
dUi

dt
−Mij

d

dt
(Vi − Ui)

+
1

2
ρfSCD (Re) |U − V| (Ui − Vi)

+ (m−ρfΩ) gi (4.4)

Where the first term represents the force necessary to overcome the inertia of the body, but the second
term represents the force required to overcome the inertia of the fluid surrounding the body through
a tensor of components Mij which is known as the added mass tensor.

4.1.4 The Basset history force

We will now consider the Basset history force. This force is often neglected due to its complexity.
It implies that the velocity of a solid particle is dependent on the previous motion of this particle
through the history of viscous forces. A formulation of this force can be found in Corrsin and Lumley
(1956). The Basset history force is added using the formulation for small spherical particle to the
general equation of motion:

m
dVi
dt

=ρfΩ
dUi

dt
−Mij

d

dt
(Vi − Ui)

+
1

2
ρfSCD (Re) |U − V| (Ui − Vi)

+ 6D2ρf
√
πν

t∫
−∞

1√
t− s

d

dt
(Ui − Vi) ds

+ (m−ρfΩ) gi (4.5)

The formulation of the Basset history force (the second last term in equation 4.5) is given for small
spherical particles as it assumes that the disturbance flow behind the particle is at a low Reynolds
number. Physically this can be untrue for the problem at hand, and extensions of this formulation to
bigger particles can be found in Maxey and Riley (1994), but these require a finer degree of information
of the flow than is usually available in large environmental flows. This is why it is assumed that the
current formulation of the Basset history force will give a reasonable estimate to the problem of algae
motion.
To account for the Basset history force FBasset, van Hinsberg et al. (2011) proposed to assume to solve
for the Basset history within a numerical window defined by time twin, and then to assume that it is
exponentially decreasing. Therefore the Basset history force his divided into its real form Fwin when
s ≤ twin and the tail of the Basset history force Ftail when s > twin:
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Fi,Basset(t) =CB

t∫
t−twin

1√
t− s

d

dt
(Ui − Vi) ds

+ CB

q∑
p=1

t−twin∫
−∞

ap

√
e

t̃ptwin

exp
(
− t− s

t̃ptwin

)
d

dt
(Ui − Vi) ds

=Fi,win(t) + Fi,tail(t) (4.6)

CB is the Basset history force constant it is defined as:

CB = 6D2ρf
√
πν (4.7)

It is assumed that in the tail of the Basset history force the Basset kernel 1/(t− s)0.5 can be reduced to
a sum of exponents where ap and t̃p are constants that have been set by van Hinsberg et al. (2011) to
reduce the error. These values are given in table 4.1 for the summation of 10 exponents (i.e. q = 10)
and it should also be specified that e is the number (2.718...).

Table 4.1: The constants used to calculate the tail of the Basset history force as described in van Hins-
berg et al. (2011).

p t̃p ap

1 0.1 0.23477481312586
2 0.3 0.28549576238194
3 1 0.28479416718255
4 3 0.26149775537574
5 10 0.32056200511938
6 40 0.35354490689146
7 190 0.39635904496921
8 1 000 0.42253908596514
9 6 500 0.48317384225265

10 50 000 0.63661146557001

To obtain a reasonable numerical result an approximation is done to the derivative in the integral of
the Basset history force, it defined as:

ψi(s) =
d

dt
(Ui(s)− Vi(s)) (4.8)

In the following, for conviniency, the space labels i will be dropped. The derivative ψ is divided into
N subintervals, and is assumed that this derivative is linear in each subinterval (van Hinsberg et al.,
2011). This leads to the following definitions:

τn = t− n∆t (4.9a)
ψn = ψ(τn) (4.9b)

n = 1, 2, 3, ..., N (4.9c)
∆t =

twin

N
(4.9d)
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From these definitions it is possible to rewrite the first term of the Basset history force:

Fwin (t) ≈CB

N∑
n=1

t∫
t−twin

1√
t− s

[
ψn +

ψn−1 − ψn

∆t
(s− τn)

]
ds (4.10)

Since the values ψn in this integral are constant it has the following solution:

Fwin (t) ≈CB

N∑
n=1

{
2ψn

√
∆t

[√
n+

2

3
(n− 1)

√
(n− 1)− 2

3
n
√
n

]
−2

3
ψn−1

√
∆t
[√

(n− 1) (2n+ 1)− 2n
√
n
]}

(4.11)

The derivative ψ0 is particularly important as it is a function of Vi(t), and therefore equation 4.11 can
be rewritten as:

Fwin (t) ≈
4

3
CBψ0

√
∆t+

2

3
CBψN

√
∆t
(
3
√
N + 2 (N − 1)

3
2 − 2N

3
2

)
+

4

3
CB

√
∆t

N−1∑
n=1

ψn

[
(n− 1)

3
2 − 2n

3
2 + (n+ 1)

3
2

]
(4.12)

The tail of the Basset history force (see equation 4.6) is represented by a sum of the force components:

Ftail(t) =CB

q∑
p=1

t−twin∫
−∞

ap

√
e

t̃ptwin

exp
(
− t− s

t̃ptwin

)
ψi(s)ds

=CB

q∑
p=1

apFp(t) (4.13)

Fp can be divided into two parts, one which as to be computed directly and another which can com-
puted recursively:

Fp(t) =

t−twin∫
t−twin−∆t

√
e

t̃ptwin

exp
(
− t− s

t̃ptwin

)
ψi(s)ds+

t−twin−∆t∫
−∞

√
e

t̃ptwin

exp
(
− t− s

t̃ptwin

)
ψi(s)ds

=Fp,di(t) + Fp,re(t) (4.14)

The direct part of the tail of the Basset history force can be solved using the same approximation as
equation 4.10 to give the following equation:

Fp,di (t) =2

√
et̃ptwin exp

(
− 1

2t̃p

){
ψN

[
1− φ

(
− ∆t

2t̃ptwin

)]

+ψN+1 exp
(
− ∆t

2t̃ptwin

)[
φ

(
∆t

2t̃ptwin

)
− 1

]}
(4.15a)

φ (z) =
ez − 1

z
(4.15b)



29 DYNAMIC PROPERTIES OF SOLID PARTICLE MOTION

The recursive part of the tail Fp,re can rearranged so that:

Fp,re(t) =

t−twin−∆t∫
−∞

√
e

t̃ptwin

exp
(
− t− s

t̃ptwin

)
ψi(s)ds

= exp
(
− ∆t

2t̃ptwin

) t−twin−∆t∫
−∞

√
e

t̃ptwin

exp
(
− t−∆t− s

t̃ptwin

)
ψi(s)ds

= exp
(
− ∆t

2t̃ptwin

)
Fp (t−∆t) (4.16)

It is recommended to use a time step to solve for the Basset history force equal to the time step used
to model the motion of solid particles, i.e. ∆t = dt. Finally using the equations 4.6, 4.12, 4.13, 4.15
and 4.16 the Basset history force can then be modelled as:

Fi,Basset =
4

3
CB

√
dt
d

dt
(Ui(t)− Vi(t)) + Ci,Bas (4.17a)

Ci,Bas =
2

3
CBψi,N

√
dt
(
3
√
N + 2 (N − 1)

3
2 − 2N

3
2

)
+

4

3
CB

√
dt

N−1∑
n=1

ψi,n

[
(n− 1)

3
2 − 2n

3
2 + (n+ 1)

3
2

]
+

q∑
p=1

apFi,p(t) + ap exp
(
− dt

2t̃ptwin

)
Fi,p(t− dt) (4.17b)

Fi,p(t) =2CB

√
et̃ptwin exp

(
− 1

2t̃p

){
ψi,N

[
1− ϕ

(
− dt

2t̃ptwin

)]

+ψi,N+1 exp
(
− dt

2t̃ptwin

)[
ϕ

(
dt

2t̃ptwin

)
− 1

]}
(4.17c)

Where Ci,Bas regroups all the components of the Basset history force which are independent of the
current time t. We recall that the coefficient CB is given by equation 4.7, the constant ap and t̃p are
given in table 4.1. The notation ψi,n refers to equations 4.8 and 4.9.
The accuracy of this method to solve for the Basset history force has been analysed in van Hinsberg
et al. (2011), and it proves to be very accurate, even with a small twin or a large dt (as long as this dt
can account for flow variations).

4.1.5 The lift force

The final force component that can affect the motion of a solid body in fluid is the lift force, which is
a force that occurs as the flow passes along the surface of a body. It is normal to the surface this flow.
An estimation of the componants of this force Fi,L given in Auton et al. (1988), is given below:

Fi,L =CLρfΩ(U − V)∇× U (4.18)

∇ × U is the vorticity of the flow, and for environmental flows, since they are assumed irrotational,
and since the particle is also assumed to be irrotational, the lift force will be neglected in this thesis.
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4.2 Simplification to an isotropic body

To simplify the problem of the transport of solid bodies, these bodies will now be simplified to an
isotropic body sphere. This is done under the assumption that an alga transported by the flow can fold
upon itself. Furthermore an algal bloom will have virtually all possible orientations, and averaging all
the possible orientations will be equivalent to considering an isotropic body. Under this assumption
the added mass tensor for an isotropic body is equal to a constantM multiplied by the identity matrix:

Mij =Mδij (4.19)

The algae can also be further simplified to a sphere (the simplest isotropic body). However this re-
mains a starting point, and the extension of the model from a sphere to an alga is described in chap-
ter 9, but unless mentioned otherwise the solid bodies considered are spheres. Firstly the characteris-
tic length of the bodyD will be chosen to be the diameter of the sphereDs. This leads to the following
definitions for the physical properties of the body:

Res =
|U − V|Ds

ν
(4.20a)

Ss =
πD2

s

4
(4.20b)

Ωs =
πD3

s

6
(4.20c)

In place of Rep, S and Ω. The drag coefficient will then be given by the following equation (Almedeij,
2008).

CD,sphere =

[
1

(φ1 + φ2)−1 + (φ3)−1
+ φ4

]1/10
(4.21a)

φ1 =(24Re−1
s )10 + (21Re−0,67

s )10 + (4Re−0,33
s )10 + (0, 4)10 (4.21b)

φ2 =
1

(0, 148Re0,11s )−10 + (0, 5)−10
(4.21c)

φ3 =(1, 57× 108Re−1,625
s )10 (4.21d)

φ4 =
1

(6× 10−17Re2,63s )−10 + (0, 2)−10
(4.21e)

With the added mass constant Ms for a sphere given as (Viollet et al., 2002):

Ms =
1

2
ρfΩs (4.22)

4.3 Testing the impact of different force components

There are three force models which will be analysed. Using the isotropic body simplification (but not
necessarily a sphere) the three force scenarios are defined from equations 4.2, 4.4 and 4.5 using the
resolution of the Basset history force given in equations 4.17 as:
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m
dVi
dt

=
1

2
ρfSCD (Rep) |U − V| (Ui − Vi) + (m−ρfΩ) gi (4.23a)

m
dVi
dt

=ρfΩ
dUi

dt
−M

d

dt
(Vi − Ui) +

1

2
ρfSCD (Re) |U − V| (Ui − Vi)

+ (m−ρfΩ) gi (4.23b)

m
dVi
dt

=ρfΩ
dUi

dt
−M

d

dt
(Vi − Ui) +

1

2
ρfSCD (Re) |U − V| (Ui − Vi)

+
4

3
CB

√
dt
d

dt
(Ui(t)− Vi(t)) + Ci,Bas + (m−ρfΩ) gi (4.23c)

For ease of understanding these are summarised table 4.2.

Table 4.2: The different force scenarios which will be solved.

Buoyancy Drag Momentum Basset history source
Model I yes yes no no eqn 4.23a
Model II yes yes yes no eqn 4.23b
Model III yes yes yes yes eqn 4.23c

Furthermore equations 4.23 can be rearranged to give the evolution of the solid particle velocity in
terms of three components:

dVi =FadUi + Fb (Ui − Vi) dt+ Fi,cdt (4.24)

The first coefficient is linked to the evolution of the fluid, and according to the different force compo-
nent is given by the following equation:

Fa =



0 drag only
ρfΩ+M

m+M
drag and momentum

ρfΩ+M + 4
3CB

√
dt

m+M + 4
3CB

√
dt

drag, momentum and Basset
(4.25)

The second coefficient is linked to the velocity differences between the fluid and the solid body:

Fb =



ρfSCD |U − V|
2m

drag only
ρfSCD |U − V|
2 (m+M)

drag and momentum
ρfSCD |U − V|

2
(
m+M + 4

3CB

√
dt
) drag, momentum and Basset

(4.26)

The final coefficient depends on constant values (during time t):
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Fi,c =



(m−ρfΩ) gi
m

drag only
(m−ρfΩ) gi
m+M

drag and momentum
(m−ρfΩ) gi + Ci,Bas

m+M + 4
3CB

√
dt

drag, momentum and Basset

(4.27)

Out of those coefficient the most important one is Fb as it can be used to define the particle relaxation
time τpart. This characteristic time is a measure of how fast a particle will react to flow variations, and
it is given by the following definition:

τpart =
1

Fb
(4.28)

It is thus changing with time.
To test the impact of each force component, let us consider isotropic particles falling unhindered in
a stationary fluid (Ui = 0 and dUi = 0). The settling velocity Vset can be defined as the maximum
vertical velocity that the particles will reach (dVi = 0). Using equations 4.24 and 4.28, it is given by
the following equation (where it is assumed that this settling velocity is positive when particles sink,
and positive when they float):

Vset =
Fz,c

Fb
= Fz,cτpart (4.29a)

=sign (ρs/f − 1
)√ 2

∣∣ρs/f − 1
∣∣

SCD(Reset)
|g| (4.29b)

With the value Reset defined by:

Reset =
|Vset|D

ν
(4.30)

And:

ρs/f =
ρs
ρf

(4.31)

This equation shows that since the numerators of Fb and Fi,c will cancel and Ci,Bas is equal to 0 when
dUi = 0 and dVi = 0, the settling velocity will be the same for all force scenarios. Solid particles
were allowed to accelerate from rest to their settling velocity in a stationary fluid using the different
force scenarios presented in equations 4.2, 4.4 and 4.5. A portion of the evolution of their vertical
velocities are given in figure 4.1. Furthermore dimensionally speaking it is possible to rewrite the
particle velocity and the particle relaxation time as functions of non-dimensional quantities:

Vz
Vset

=f

(
ρs/f ,

t |Vset|
D

,Reset
)

(4.32a)

τpart |Vset|
D

=f
(
ρs/f ,Reset

) (4.32b)
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These values can be used to non-dimensionalise figure 4.1.
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Figure 4.1: The evolution of the settling velocity and particle relaxation time (in dimensionless form)
for spherical particles falling for one meter in a stationary fluid with ρs/f = 1.13. “. ”
is the maximal settling velocity, “. ” is the velocity for model I, “. ” is the velocity for
model II, “. ” is the velocity for model III, see table 4.2.

Figure 4.1a shows that considering more components of the force reduces the acceleration of the solid
particle (in this caseDs = 0.02 m, ρs = 1129 kg·m−3 and ρf = 1000 kg·m−3). It takes 3.7 s for a particle
to settle 1 m if the only force, other than buoyancy, considered is the drag, but 3.78 s if the momentum
is added and 4.23 s if the Basset history force is also added. Figure 4.1b shows the particle relaxation
time for different Reset. These calculations also allowed to calculate the relaxation time when the
particle is at rest and when it has reached its settling velocity, these are shown in table 4.3. From the
figure and the table it is visible that including all the components of the force increases the particle
relaxation time, and therefore it means that particles will take long to respond to flow variations.

Table 4.3: The particle dimensionless particle relaxation time τpart |Vset| /Ds calculated for settling
velocities solved using the models presented in table 4.2. Here ρs/f = 1.13.

Model I Model II Model III
Vz = 0 356 513 556
t = τpart 4.30 6.18 8.07
Vz = Vset 3.59 5.18 5.61

4.4 Testing the physical characteristics of solid bodies

To test the physical characteristics of the solid bodies the Basset history force and the buoyancy will
be ignored. This is done to simplify calculations in order to make certain characteristics visible. This
will be done by considering particles released in permanent Taylor eddies. These eddies solve the
Navier-Stokes equations and their velocities are defined by:
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Ux =− U0 sin
(
π

λT
x

)
cos
(
π

λT
y

)
(4.33a)

Uy =U0 cos
(
π

λT
x

)
sin
(
π

λT
y

)
(4.33b)

Where U0 is characteristic velocity of the flow and λT is the diameter of a Taylor eddies. The acceler-
ation of the flow is defined by:

dUx

dt
=
πU2

0

2λT
sin
(
2π

λT
x

)
(4.34a)

dUy

dt
=
πU2

0

2λT
sin
(
2π

λT
y

)
(4.34b)

The shape of the Taylor eddies is shown in figure 4.2.
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Figure 4.2: Typical shape of Taylor eddies.

Considering spherical particles transported by these eddies using only the drag force and the momen-
tum (equation 4.4) it is possible to define 3 non-dimensional quantities using the Vaschy-Buckingham
theorem:

A =
2ρs/f + 1

3
(4.35a)

ReT =
U0Ds

ν
(4.35b)

StT =
πDs

λT
(4.35c)
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Furthermore non-dimensional quantities can be defined through the following equations:

V∗ =
V
U0

(4.36a)

X∗ =
2πX
λT

(4.36b)

t∗ =
U0t

2ADs
(4.36c)

This therefore allows the following non-dimensional transport equation for spherical equation to be
derived from equation 4.23b:

dV∗

dt∗
=StT

( sin(2x∗)
sin(2y∗)

)
+ CD,sphere

∣∣∣∣ − sin(x∗) cos(y∗)− V ∗
x

cos(x∗) sin(y∗)− V ∗
y

∣∣∣∣ ( − sin(x∗) cos(y∗)− V ∗
x

cos(x∗) sin(y∗)− V ∗
y

)
(4.37)

As a reminder, the drag coefficient CD is a function of the particle Reynolds number of a sphere
Res, which can be written in terms of ReT . Using the two non-dimensional numbers that appear
in equation 4.37, ReT and StT , simulations were done for different values. The particle trajectories
within the turbulent eddies for a particle starting at point (0.5, 0.75), which is well inside an eddy, are
plotted in figure 4.3.
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Figure 4.3: The transport of solid particles with different physical characteristics in Taylor eddies, see
equation 4.37. Particles were released at point “. ”.

The two non-dimensional numbers ReT and StT represent two physical characteristics. ReT is aratio
between the inertial and viscous forces. StT is a ratio between the size of the solid particles and the
Taylor eddies. Figure 4.3 shows that if the particles are large in comparison the diameter of the Taylor
eddies (typically StT ≳ π), then these eddies will not affect the transport of the particle. For example
in figure 4.3a if StT = π then the particle is transported to the center of the eddy, but as it is the
same size as the particle this displacement is minimal. However for smaller StT particles are ejected
outside of the initial eddy, resulting in a large transport. The rapidity at which the particles are ejected
is determined by the intensity of these eddies, through ReT , as it is shown in figure 4.3b. From these
simulations it is possible to conclude that the size of the solid bodies particles result in a filtering of
certain turbulent structures in environmental flows.
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Chapter	5

Fluid	Velocities	Model

Où le modèle pour décrire les vitesses du fluide à l’emplacement d’une particule La-
grangienne est défini. Cela commence par un bref aperçu des mathématiques stochas-
tiques dans le domaine de la mécanique des fluides, avec en particulier la résolution du
mouvement Brownien par Einstein. Le concept de marche aléatoire est ensuite intro-
duit ainsi que le processus de Wiener. Finalement la notion d’intégrale stochastique est
introduite, ainsi que le lemme d’Ito qui sert à résoudre ces intégrales. La deuxième sec-
tion de ce chapitre démontre les étapes nécessaires pour développer un modèle Lagrang-
ien stochastique permettant de prédire l’évolution dans le temps d’une particule de flu-
ide dans un régime turbulent stationnaire, homogène et isotrope. En partant de cette
base, le modèle Simplifié de Langevin est décrit, applicable à des régimes non homogènes,
non stationnaires et non isotropes. Dans la troisième section, ce modèle est testé pour
l’écoulement théorique d’une turbulence stationnaire, homogène et isotrope, ainsi que
pour l’écoulement expérimental de la section 7.2.
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5.1 A brief overview of stochastic modelling in fluid mechanics

The beginning of stochastic methods in fluid mechanics started with the resolution of Brownian mo-
tion (Gardiner, 2004). The botanist Robert Brown observed that pollen particles suspended in water
were subject to irregular motion. As described by Einstein, these motions are the a result of very
small fluid particles impacting the comparatively large pollen particles. Einstein then followed the
reasoning that the motion of the fluid particles is so complex that the impact of the fluid can only
be explained from a probabilistic point of view. He then introduced the hypotheses that the motion
of each pollen particle is independent of the motion of the other particles and furthermore that the
motion of a single particle recorded at two different times will also be independent, so long as those
two times are sufficiently separated. This then allowed Einstein to realise that Brownian motion was
equivalent to the problem of diffusion from a single point source, for which the solution was known.
Therefore the number of particles per unit volume f at location X and time t, or the probability den-
sity function, is given by:

f (X, t) =
Np√
4πDt

exp
(
− x2

4Dt

)
(5.1)

Where Np is number of particles released at the source and D is known as the diffusion constant.
This reasoning then lead to stochastic modelling of fluid mechanics. From this equation Einstein then
calculated an expression for the root mean square value of the displacement to be

√
2Dt. This idea

can be used to introduce the concept of random walk. From the initial hypotheses introduced by
Einstein, it can derived that the motion of a particle over a time interval dt is independent of the
history of the motion during the previous time steps. Processes for which this is true are known as
Markov processes. Therefore, the displacement of a particle undergoing Brownian motion during the
time interval dt can be modelled by the following equation:

dXi = ξ
√
2Ddt (5.2)

This formulation is known as random walk, where Xi represents the position of a particle at a time
t, and therefore dXi represents the displacement during a time interval dt. ξ is a random number,
which is generated so that the mean of its distribution is equal to 0 and its standard deviation is equal
to 1 (standard distribution). Therefore from a statistical point of view the displacement of particles
during one time interval follows a distribution with zero mean and a standard a deviation equal to
the root mean square of all possible displacements.
To understand the development of the stochastic model described in the following section, some
further concepts of stochastic mathematics need to be described. The first is the Wiener process. This
can be considered as a random walk process equivalent to a standard distribution. This process is not
differentiable, but it is possible to observe incrementations of this process, W . The statistical mean of
incrementations of the Wiener process is given by the following equation:

⟨W ⟩ = 0 (5.3)

The symbol ⟨...⟩ represents the zero-th statistical moment:

⟨f(x)⟩ = 1

b− a

∫ b

a
f(x)dx (5.4)
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The standard deviation of the Wiener process can be considered as the autocorrelation of the this
process:

⟨WW ⟩ = 1 (5.5)

Therefore using the concept of the Wiener process the Random Walk process described by equation 5.2
can be rewritten as:

dXi =
√
2DdWi (5.6)

This then introduces the concept of stochastic integrals. If we have an arbitrary function G(t) we
define a stochastic integral as ∫ t

t0
G(s)dW (s). To solve for this equation it is useful to divide this

equation into n subintervals, t0 ≤ t1 ≤ ... ≤ tn−1 ≤ t. In each of these interval the function G is
assumed to be constant and equal to G(τ) where τ is a point chosen in between this interval, ti−1 ≤
τi ≤ ti. The integral can therefore be written as the limit of partial sums (Gardiner, 2004):

∫ t

t0

G(s)dW (s) ≡ lim
n→+∞

n∑
i=1

G (τi) [W (ti)−W (ti−1)] (5.7)

However, the solution of the sum is dependent on the choice of the intermediate point τi. A com-
mon choice is to choose the intermediate point as τi = ti−1. From this formulation the Ito Stochastic
integrals can be defined such that:

lim
n→∞

⟨[
n∑

i=1

G (ti−1) [W (ti)−W (ti−1)]−
∫ t

t0

G(s)dW (s)

]2⟩
= 0 (5.8)

Ito stochastic integrals are useful as they allow the following definitions:

⟨dW ⟩ = 0 (5.9a)
⟨dWdW ⟩ = dt (5.9b)

Or more generally:

⟨∫ b1

a1

G(s)dW (s)

∫ b2

a2

H(s)dW (s)

⟩
=

∫ b1

a2

G(s)H(s)ds (5.10)

For a1 ≤ a2 ≤ b1 ≤ b2.

5.2 The Simplified Langevin Model of turbulence

According to the terminology presented in chapter 2, the model for the fluid velocity chosen for the
problem of the diffusion of algae particles in a coastal environment is a Lagrangian model. Therefore
in the following development of the model, the fluid velocities will be written using a notation that
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will differentiate the Eulerian velocities at a location in space and time U(x, t) and the Lagrangian
velocities for a fluid particle at a position in time UL(t).
In Einstein model (equation 5.6) the particle velocities were not considered and did not exist (Wiener
processes are not differentiable). However another approach to this problem would be to consider
that the particles velocities can be modelled through a stochastic process (instead of particle positions).
This was the approach considered by Langevin where the transport of the particles can be given by
the following equations (Minier and Peirano, 2001):

dXi(t) =Ui(t)
Ldt (5.11a)

dUL
i (t) =− UL

i (t)

T
dt+

√
KdWi(t) (5.11b)

Where T is the Lagrangian integral time scale (the integral of the autocorrelation) of the fluid velocity
andK is a diffusion constant. It should be noted that Langevin’s equation can be made to correspond
to Einstein’s equation. The first part of equation 5.11b is known as the drift, and it represents the fact
that fluid particles will follow largely the direction of the flow. The second part is the diffusive term,
and in the flow it represents the fluctuations of each individual fluid particles from the overall flow
due to turbulence. Therefore if we consider the turbulent intensities:

Urms,i =

√
U ′
iU

′
i (5.12)

The diffusion constant of the Langevin equation can be set as:

K =
2U2

rms,i(X, t)
T

(5.13)

As starting point let us consider the case of stationary homogeneous isotropic turbulence, with zero
mean and a turbulent intensity defined byUrms,i. Taking into account the turbulent fluctuations at the
position of the fluid particle using Reynolds decomposition (see equation 3.8) it is possible to rewrite
the evolution of the fluid velocities (Pope, 2004):

dUL
i (t) =− UL

i (t)

T
dt+

√
2U2

rms,i(X, t)
T

dWi(t) (5.14)

This equation is the Langevin equation. If it is considered that at a time t0 the fluid particle velocity
UL
i (t0) is a random variable with zero mean and variance Urms,i then for t > t0, UL

i (t) is a Markov
process which can be described by a random variable for which it is known that ⟨UL

i (t)
⟩
= 0 and⟨

UL
i (t)U

L
j (t)

⟩
= U2

rms,iδij . The symbol δij is a dirac, which is equal to 1 if i = j and 0 otherwise. The
autocovariance function is therefore defined by (Pope, 2004):

RL(s) =

⟨
UL
i (t+ s)UL

i (t)
⟩

U2
rms,i(X, t)

(5.15a)

= exp
(
−|s|
T

)
(5.15b)

This then allows the Lagrangian integral time scale to be defined by:
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T =

∞∫
0

RL(s)ds (5.16)

If s ≪ T and because dWi(t) represents a Wiener process the fluid particle velocity at time t + s is
given by the following equation:

UL
i (t+ s) =UL

i (t)−
UL
i (t)

T
s+ ξ

√
2U2

rms,i(X, t)s
T

(5.17)

Where ξ is still a randomly generated number with mean equal to 0 and standard deviation equal to
1. The correlation of a fluid particle velocity component between two points in time can be defined
by:

DL
i (s) =

⟨[
UL
i (t+ s)− UL

i (t)
]2⟩ (5.18)

Using equation 5.17, and because s/T ≪ 1 this correlation can be found to equal:

DL
i L(s) =

2U2
rms,i(X, t)s

T
(5.19)

From the Kolmogorov hypothesis, see section 3.2, it can be calculated that the correlation of the fluid
velocity can be uniquely determined by the dissipation rate ε (if s≫ τs). Therefore from dimensional
analysis the correlation of a fluid velocity component between two points in time is:

Di(s) =C0εs (5.20)

Where C0 is a constant, which is typically set to equal 2.1, see Pope (2000). Comparing the correlation
of the fluid velocity components as defined by Kolmogorov (equation 5.20) and the correlation of the
fluid particle velocity components (equation 5.19) gives the following relation.

T =
2U2

rms,i(X, t)
C0ε

(5.21)

Or using the definition for the turbulent kinetic energy (equation 3.12).

T =
4

3

k

C0ε
(5.22)

Therefore the Langevin equation, defined by equation 5.14 can be rewritten as:

dUL
i (t) =− 3

4

C0ε

k
UL
i (t)dt+

√
C0εdWi(t) (5.23)
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To extend this equation to inhomogeneous flows, modifications need to be applied to the Langevin
equation above. Firstly, the velocity increment due to the mean pressure gradient (first terms in the
right hand side of equation 3.3) need to be taken into account. Secondly, the fluid particle velocity
needs to relax to the local Eulerian mean velocity. Finally, the drift coefficient needs to be modified
to properly take into account for the rate of dissipation of the kinetic energy (in homogeneous turbu-
lence this coefficient correspond to the value in equation 5.23 due to the forcing required to maintain
homogeneous turbulence). Therefore, as defined in Pope (2004), the Simplified Langevin Model for
turbulence in inhomogeneous turbulent flow is:

dUL
i (t) =− 1

ρf

∂P

∂xi
dt−

(
1

2
+

3

4
C0

)
ε

k

[
UL
i (t)− Ui

]
dt+

√
C0εdWi(t) (5.24)

In this equation all the mean flow componentsP ,Ui, k and ε are evaluated at the fluid particle position
Xi(t). These values require the use of another model. For the problem of algae transport in a coastal
environment these will be defined with the use of a large Eulerian model that can take into account
all the mean flow variation resulting from a complex bathymetry, tidal currents or wave breaking,
using some of the models presented in chapter 3 for example. Furthermore the notation to show the
fluid velocity in the Lagrangian sense, UL

i (t), will be dropped in the rest of the thesis as only the
mean fluid velocities (Ui) are found from Eulerian models. In addition, it should be restated that the
development of equation 5.24 requires the time step to be τs ≪ dt≪ Tt, where Tt is the integral time
scale. From estimation (5.22) and considering the modifications done above, this integral time scale
is:

Tt =
1

1
2 + 3

4C0

k

ε
(5.25)

This time scale is close to the characteristic time for the large turbulent eddies (τl in equation3.50c),
and therefore will be referred to latter on as the turbulent characteristic time. Furthermore another
notation for the Simplified Langevin Model is often used:

dUL
i (t) =− 1

Tt
UL
i (t)dt+ Ci(t)dt+Bi(t)dWi(t) (5.26)

Where the coefficient Ci regroups the mean flow components:

Ci =− 1

ρf

∂P

∂xi
+

1

Tt
Ui (5.27)

And the coefficient Bi is standard deviation of the stochastic term:

Bi =
√
C0ε (5.28)

The main interest in equation 5.24 is that averaging this equation will relax to the Reynolds equation
(3.9b), as shown in Pope (2000). Another interesting point is through the definition:

U ′
i ≡UL

i (t)− UL
i

=UL
i (t)− Ui (5.29)
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The evolution of the Reynolds stresses can then be modelled. Let us assume that at the instant t+ dt
the fluid velocity fluctuations have increased by dU ′

i . Therefore the evolution of the Reynolds stresses
are given, at the first order, by:

dU ′
iU

′
j

dt
=
(U ′

i + dU ′
i)
(
U ′
j + dU ′

j

)
− U ′

iU
′
j

dt

=
U ′
idU

′
j

dt
+
U ′
jdU

′
i

dt
+
dU ′

idU
′
j

dt
(5.30)

The first two terms of the equations are symmetrical. The mean evolution of the fluid velocity is:

dUi

dt
=
dUi

dt

=
∂Ui

dt
+ Uj

∂Ui

∂xj

=
∂Ui

∂t
+
∂UiUj

∂xj
(5.31)

This is found using the continuity equation (3.4). Furthermore Reynolds decomposition can be used
on equation 5.31:

dUi

dt
=
∂Ui

∂t
+

∂

∂xj

[(
Ui + U ′

i

) (
Uj + U ′

j

)]
=
∂Ui

∂t
+

∂

∂xj

(
UiUj + U ′

iU
′
j

)
=
∂Ui

∂t
+ Uj

∂Ui

∂xj
+
∂U ′

iU
′
j

∂xj
(5.32)

Using this definition the evolution of the fluctuating fluid velocities can be rewritten as:

dU ′
i

dt
=
d

dt

(
Ui − Ui

)
=
dUi

dt
− ∂Ui

∂t
− Uj

∂Ui

∂xj
− U ′

j

∂Ui

∂xj

=
dUi

dt
− dUi

dt
+
∂U ′

iU
′
j

∂xj
− U ′

j

∂Ui

∂xj
(5.33)

Therefore the symmetric terms of equation 5.30 can be rewritten as:

U ′
idU

′
j

dt
=
U ′
idU

′
j

dt

=U ′
i

(
dUj

dt
− dUj

dt

)
+ U ′

i

∂U ′
iU

′
j

∂xj
− U ′

iU
′
j

∂Ui

∂xj

=U ′
i

(dUj)
′

dt
+ U ′

i

∂U ′
iU

′
j

∂xj
− U ′

iU
′
j

∂Ui

∂xj

=U ′
i

(dUj)
′

dt
+ P (5.34)
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Where P is the production of turbulent kinetic energy (equation 3.18). In the case of stationary decay-
ing homogeneous anisotropic turbulence it is equal to zero. Furthermore in this scenario there is no
mean flow meaning that dUi = 0 and (dUi)

′ = dUi. Therefore using the Simplified Langevin Model
for stationary decaying homogeneous anisotropic turbulence (equation 5.24 where P = 0) to write
dUi, and the relations given in equations 5.30 and 5.34, one finds:

dU ′
iU

′
j

dt
=−

U ′
iU

′
j

Tt
+
√
C0ε

U ′
idWj

dt
−
U ′
jU

′
i

Tt
+
√
C0ε

U ′
jdWi

dt

+
U ′
iU

′
j

T 2
t

dt−
√
C0ε

Tt
U ′
idWj −

√
C0ε

Tt
U ′
jdWi + C0ε

dWidWj

dt
(5.35)

If we recall that dt≪ Tt and since U ′
idWj = 0 because U ′

i and dWi are independent then this equation
simplifies to:

dU ′
iU

′
j

dt
= −

(
1 +

3

2
C0

)
ε

k
U ′
iU

′
j + C0εδij (5.36)

This is equivalent to Rotta’s model (equation 3.48 in the absence of diffusion) provided we define:

CR =1 +
3

2
C0 (5.37)

Which for a value of C0 = 2.1 will give CR = 4.15.
The turbulence model presented here is called the Simplified Langevin Model because it is the sim-
plest form of a larger group of stochastic turbulence model called Generalised Langevin Models. In
the same fashion that the SLM is analogous to Rotta’s model each GLM model can correspond to other
Reynolds averaged models (Pope, 1994). However these models usually require more information of
the Eulerian flow than is typically available in environmental flow and therefore prove inefficient for
the problem of algae transport.

5.3 Testing the Simplified Langevin Model

This model has been around for several years and it has been fairly well analysed, see for example
Pope (2004). Nonetheless a few simple tests will be shown for fluid particles released in stationary
homogeneous isotropic turbulence, thus the pressure gradient is zero. Remember however that the
drift coefficient needs to be modified giving the following equation of motion for the fluid particles:

dXi(t) =Ui(t)dt (5.38a)

dUi(t) =− Ui(t)

T
dt+

√
C0εdWi(t) (5.38b)

T = Tt =
1

3
4C0

k

ε
(5.38c)

The second moments for the velocity and the position of fluid particles are shown in figure 5.1. As
areminder the second moments are the correlation of two fluid components, for example ⟨UxUx⟩ or
⟨UxUy⟩. In figure 5.1 only the moments along the first two components of direction are shown as
turbulence is isotropic and stationary.
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Figure 5.1: Second moments found for fluid particles released in stationary homogeneous isotropic
turbulence: predictions of the Langevin model (5.38).

Figure 5.1 shows that the moment ⟨UxUx⟩ tends to a limit which is two thirds of the kinetic energy, as
is expected from the definition of the turbulent kinetic energy (equation 3.12). Furthermore ⟨UxUy⟩
is close to zero (it would be zero with an infinite ammount of fluid particles released). This is also
expected as it is a measure of the anisotropy, and the turbulence is isotropic. When looking at the
moments for the position of the particle a quick calculation can be done by assuming that the evolu-
tion of the fluid velocities are almost zero (as there is no mean flow). The transport equation for the
transport of fluid particles can be approximated as:

Ui(t)dt ≃Tt
√
C0εdWi(t) (5.39a)

dXi = Uidt (5.39b)

Therefore the position of the particle is given by the following stochastic integral:

Xi =

∫
Tt
√
C0εdWi(t) (5.40)
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And therefore using Ito stochastic integrals (equation 5.8) this gives the following equation for the
moments (through the definition in equation 5.10):

⟨XiXj⟩ =
⟨∫

Tt
√
C0εdWi

∫
Tt
√
C0εdWj

⟩
=T 2

t C0ε

∫
dt ⟨ξiξj⟩

∝T 2
t C0εtδij (5.41)

This explains why the second moment ⟨XxXx⟩ tends to a linear increase in time and ⟨XxXy⟩ is almost
zero.
Furthermore, experimental measurements for a quasi-isotropic stationary turbulent flow are available
through the experiment described in section 7.2. Fluid particles have been released in this regime, and
the turbulent fluctuations were found to be approximately described by equations 7.4. We will now
compare the results to the Simplified Langevin Model by observing the root mean square (rms) values
of the velocities.
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Figure 5.2: Second moments of fluid particle velocities in stationary quasi-isotropic grid turbulence
(experiment in section 7.2). “. ” shows the second moments found using the empirical
formula 7.4 and “. ” shows the moments found for fluid particles transported using the
Langevin model (5.38).

It is visible from figure 5.2 that the Simplified Langevin Model has some limitations in predicting the
velocity rms of the fluid particles in the vertical direction. This is because it has problems taking into
account the production of the turbulence, which occurs in this particular case since the flow is not
exactly homogeneous. Coefficients could be adjusted, more specifically in the development of the
characteristic turbulent time, but the model is still reasonably close and therefore this model will be
unchanged, to stay applicable to the widest range of possible scenarios.
Another interesting characteristic is the autocorrelation of the fluid particle velocities. As a reminder
the autocorrelation is defined as (equation 5.15a):

RUi (s) =
⟨Ui(t+ s)Ui(t)⟩

U2
rms,i

(5.42)
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In figure 5.3, the autocorrelation of a fluid particle transported in this turbulent regime is plotted
against the autocorrelation of a point fixed in space found from the experimental results of section 7.2.
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Figure 5.3: The autocorrelation of the fluid velocities in stationary quasi-isotropic grid turbulence (ex-
periment in section 7.2). “. ” shows the normalised autocorrelations of fluid particles
transported using the Simplified Langevin Model and “. ” shows the normalised auto-
correlations of a point fixed in space found from the experimental results.

Figure 5.3 shows that the autocorrelation of a fluid particle is very similar to that of a recording fixed in
space. There are some differences in the values of RUi , and especially RUz , but those, again, probably
occur from the limitations of the Langevin model for this non-homogeneous flow. Not surprisingly,
the autocorrelation after one characteristic turbulent time has greatly decreased in the Lagrangian
models. This is also true for the experimental results in the horizontal direction, but less in the vertical
direction. However, if one was interested in recalibrating the coefficients of the Simplified Langevin
Model (in particular constant C0) to correspond to this particular case this figure would give a rea-
sonable estimate of the Lagrangian integral timescale in the vertical direction.
As a reminder, from equation 5.16 the definition of the Lagrangian integral time scale is equal to the
integral of the autocorrelation functions of the fluid velocities (as is plotted in figure 5.3). The stochas-
tic model used supposes that this integral time scale is equal to Tt, however using the experimental
result of figure 5.3 these Lagrangian time scales are given as 0.633Tt in the horizontal direction and
0.895Tt in the vertical direction. This indicates that the value of C0 chosen might not be appropriate
for the problem at hand, as the Lagrangian integral timescale is anisotropic and lower than the model
value.
Furthermore, as the numerical model has difficulties taking into account the anisotropic nature of
this experiment, see figure 5.2, the Lagrangian integral time scale for the numerical particles is given
as 0.303Tt in the horizontal direction and 0.237Tt in the vertical direction. This poor correspondence
to the expected Lagrangian value Tt can be explained through two reasons. Firstly Tt does not cor-
respond to the experimental integral time scales, and since the empirical model is imputed into the
stochastic model, the Lagrangian integral time scales cannot correspond either to Tt. In addition, since
the anisotropic nature is underestimated in the numerical simulations, the Lagrangian fluid velocities
decorrelate faster, which affects the integral of autocorrelation functions for these velocities.
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Chapter	6

Numerical	Resolution

Où la méthode numérique utilisée pour résoudre le transport des algues en milieu
côtier est développée. Cela commence par un descriptif des contraintes liées à la problé-
matique diphasique, c’est-à-dire à l’interaction entre un corps solide et un fluide. Ensuite
les contraintes numériques du modèle sont expliquées et une méthode numérique est pro-
posée pour résoudre les équations régissant le transport des algues en milieu côtier. Pour
finir les comportements asymptotiques de ce modèle sont expliqués.
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6.1 Two-phase modelling

As shown in equation 4.24 from chapter 4 to model the particle transport one needs to know the tur-
bulent fluid velocities at the position of the body. This is done through the use of a Lagrangian model
on the fluid velocities, so that the large scale and the small scale of the flow can be modelled effi-
ciently. The fluid velocity at the location of a particle will therefore be modelled using the Simplified
Langevin Model (equation 5.24). However since the solid particle does not travel at the same velocity
as the fluid a decorrelation occurs between the fluid particle and the solid particle. This was described
in Csanady (1963) as the Crossing Trajectories Effect (CTE). The decorrelation between the fluid and
the solid particles has two origins; it can be a result of external forces acting on the particle (for exam-
ple gravity), but also the inertial properties of the solid particle. The decorrelation resulting from the
inertial properties have not been well studied, and as such will be ignored in this thesis (it is assumed
that modelling accurately the evolution of solid particles is more important) but this is clearly a place
for future work on the subject. Nonetheless a method has been proposed in Peirano et al. (2006) to
take into account the decorrelation due to gravity, which is the only external force affecting the algae
problematic. It is therefore assumed that the CTE result in a mean drift between the solid and fluid
particles. This drift therefore changes the coefficients of the Simplified Langevin Model so that the
modelled fluid velocity is the velocity seen by the particle U (s)

i , as opposed to the actual fluid velocity
Ui:

dU (s)
i =− 1

T (s)
i

U (s)
i dt+ C (s)

i dt+B(s)
i dWi (6.1)

Where the coefficients can have two forms, depending on whether the Crossing Trajectories Effects
resulting from gravity is considered. The coefficient T (s)

i is the integral time scale defined by:

T (s)
i =


Tt CTE ignored
Tt
bi

CTE from gravity (6.2)

Where the coefficient bi is a coefficient relating the seen integral time scale to the real integral time
scale. The subscript i in this case represents directions parallel (∥) and perpendicular (⊥) to the mean
drift between the fluid and solid particles:

b∥ =

√
1 + 3T 2

L/E

∣∣V − U
∣∣2

2k
(6.3a)

b⊥ =

√
1 + 6T 2

L/E

∣∣V − U
∣∣2

k
(6.3b)

TL/E is the ratio between the Lagrangian integral time scale, and the Eulerian integral time scale,
which is assumed to be 1. This equation then shows that difference between the integral time scale
seen by a solid particle an the real integral time scale of the fluid is function of the relative dimension-
less mean drift between solid particles and fluid particles

∣∣V − U
∣∣ /√k.

The coefficient C (s)
i in equation 6.1 regroups all of the relative mean flow components. Again for both

cases it is given by:
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C (s)
i =


− 1

ρf

∂P

∂xi
+

1

Tt
Ui CTE ignored

− 1

ρf

∂P

∂xi
+
(
Vj − Uj

) ∂Ui

∂xj
+

1

T (s)
i

Ui CTE from gravity
(6.4)

Note the in equations 6.1 and 6.4 there is no summation over the repeated indices.
Finally the coefficient B(s)

i is the standard deviation of the stochastic term in equation 6.1, modelled
for the different hypothesis of the Crossing Trajectories Effects:

B(s)
i =

√
C̃0ε (6.5a)

C̃0 =


C0 CTE ignored

C0bi
k̃

k
+

2

3

(
bi
k̃

k
− 1

)
CTE from gravity (6.5b)

Where the value k̃ represents a modified turbulent kinetic energy:

k̃ =
3

2

∑3
i=1 biU ′

iU
′
i∑3

i=1 bi
(6.6)

In the scenario where the Crossing Trajectories Effects are ignored equation 6.1 is equal to equa-
tion 5.24. This scenario is important because the CTE so far is only applied through the gravitational
force. However this force is not applicable to two-dimensional horizontal problems, such as is often
done in environmental flow, and furthermore it might require more information on the flow than is
readily available.
The hypothesis that the Crossing Trajectories Effects is negligible implies that there is no decorrelation
between the mean fluid velocity U i and the mean solid body velocity V i. In the scope of a small time
step this might be possible and therefore if the mean flow quantities (U, k and ε) are updated at every
new position of the solid particle (and not of the fluid particle) these effect might be negligible. Fur-
thermore if the spatial autocorrelation (following a travelling fluid particle) of the flow is the same as
the temporal autocorrelation (at a fixed point in space) the crossing trajectories can also be neglected.
Therefore in most cases during this thesis the Crossing Trajectories Effects will be ignored, and as
such it is assumed that the decorrelation between the fluid velocities and the solid body velocities are
negligible during one time step. Nonetheless in the cases where the CTE should not be ignored the
mean solid body velocity V i will be calculated using the unhindered settling velocity, as defined by
equation 4.29b.

6.2 Preliminary numerical considerations

Following the considerations given in the previous section the transport of solid particles in a turbu-
lent flow can be modelled using a three step model:

dU (s)
i =− 1

T (s)
i

U (s)
i dt+ C (s)

i dt+B(s)
i dWi (6.7a)

dVi =FadU
(s)
i +

1

τpart
(Ui−Vi) dt+ Fi,cdt (6.7b)

dXi =Vidt (6.7c)
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As is visible from this equation there are two characteristic times, the particle relaxation time τpart and
the integral time scale T (s)

i and dt is now considered as a numerical time step. These two characteristic
times can be very limiting, as to solve the solid particle velocities explicitly one must satisfy dt ∼ τpart,
but to solve for the fluid particle velocities one must satisfy dt ∼ T (s)

i . However there is no reason why
these two characteristic times would be of the same order, or even constant in space and time. It fact
in any simulation the two times will have a range covering several orders and are almost always very
different.

6.3 The exact integrator method

To circumvent this problem Peirano et al. (2006) have proposed a method for particles experiencing
drag force only, and a similar approach will be to solve for this particle transport model in equa-
tions 6.7. As for an explicit resolution of these equations it is assumed that all the coefficients can be
considered constant over the time interval dt = t− t0. Therefore if Fa, τpart, Fi,c, T (s)

i , C (s)
i and B(s)

i are
constant then there exists an analytical solution for the fluid velocity of the form (Peirano et al., 2006):

U (s)
i (t) = Hi(t) exp

(
− t

T (s)
i

)
(6.8)

Where Hi(t) is a function of time, and the derivative of the fluid velocity with respect to time is given
by equation 6.7a:

dU (s)
i (t) = − 1

T (s)
i

U (s)
i dt+ dHi(t) exp

(
− t

T (s)
i

)
(6.9)

Thus, using equation 6.9 for the present problem, Hi(t) is a stochastic process defined by:

dHi(t) = exp
(

t

T (s)
i

)[
C (s)
i dt+B(s)

i dWi(t)
] (6.10)

The solution for Hi over the interval dt is :

Hi(t)−Hi(t0) = C (s)
i T

(s)
i

[
exp

(
t

T (s)
i

)
− exp

(
t0

T (s)
i

)]
+

∫ t

t0

B(s)
i exp

(
s

T (s)
i

)
dWi(s) (6.11)

This then gives the following equation for the fluid velocity at the location of the particle:

U (s)
i (t) =αiU

(s)
i (t0) + (1− αi)C

(s)
i T

(s)
i + γi(t) (6.12)

With:

αi = exp
(
− dt

T (s)
i

)
(6.13)

Where γi is a stochastic integral equal to:
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γi(t) = B(s)
i exp

(
− t

T (s)
i

)∫ t

t0

exp
(
s

Ti

)
dWi(s) (6.14)

The same method can be applied to find the particle velocity from equation 6.7b, and the details of
the calculations are shown in appendix A:

Vi(t) =βVi(t0) + (1− β)
(
C (s)
i T

(s)
i + Fi,cτpart

)
+ (αi − β) Či

(
U (s)
i (t0)− C (s)

i T
(s)
i

)
+ Γi(t) (6.15)

With:

β = exp
(
− dt

τpart

)
(6.16)

Či =
T (s)
i − Faτpart

T (s)
i − τpart

(6.17)

Where Γi is a stochastic integral equal to:

Γi(t) =Čiγi(t) +B(s)
i

(
Fa − Či

) exp
(
− t

τpart

)∫ t

t0

exp
(

s

τpart

)
dWi(s) (6.18)

Finally to obtain the position of the solid particle at time t, a simple integration of the fluid velocity
over the interval dt is performed:

Xi(t) =Xi(t0) + (1− β) τpartVi(t0) + [dt− (1− β) τpart]
(
C (s)
i T

(s)
i + Fi,cτpart

)
+ Či

(
U (s)
i (t0)− C (s)

i T
(s)
i

) [
(1− αi)T

(s)
i − (1− β) τpart

]
+Φi(t) (6.19)

In this final equation the stochastic integral Φi is given by the following equation (see appendix A):

Φi(t) =− ČiT
(s)
i γi(t)− τpart

[
Γi(t)− Čiγi(t)

]
+B(s)

i

[(
T (s)
i − τpart

)
Či + Faτpart

] ∫ t

t0

dWi(s) (6.20)

The three stochastic integrals, γi, Γi and Φi, developed here are dependent of each other. However
since they are stochastic integrals of deterministic functions, they can each be modeled by a centered
Gaussian random variable, a variable with zero mean (Peirano et al., 2006). Furthermore it can be
shown that a centered Gaussian vector can be expressed as the product of two matrices, the covariance
matrix and a vector of independent standard random variables (zero mean and unitary standard
deviation). Using the Cholesky decomposition and an appropriate random number generator these
stochastic integrals can be modeled using the following equations:

γi =L11ξγi (6.21a)
Γi =L21ξγi + L22ξΓi (6.21b)
Φi =L31ξγi + L32ξΓi + L33ξΦi (6.21c)
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Where the ξ’s are standard random variables and the coefficients Ljk are defined by:

L11 =
√⟨

γ2i
⟩ (6.22a)

L21 =
⟨γiΓi⟩
L11

(6.22b)

L22 =
√⟨

Γ2
i

⟩
− L2

21 (6.22c)

L31 =
⟨γiΦi⟩
L11

(6.22d)

L32 =
⟨ΓiΦi⟩ − L21L31

L22
(6.22e)

L33 =
√⟨

Φ2
i

⟩
− L2

31 − L2
32 (6.22f)

The covariances, ⟨γ2i ⟩, ⟨Γiγi⟩, etc., are solved using the properties for stochastic integrals in Ito calculus
(equation 5.10), where all the details of the calculations are given in appendix A:

⟨
γ2i
⟩
=
(
1− α2

i

)
B(s)

i
2T

(s)
i

2
(6.23a)⟨

Γ2
i

⟩
=
(
B(s)

i Či

)2 [(
1− α2

i

) T (s)
i

2
+
(
1− β2

) Ǩ2
i τpart
2

+ 2 (1− αiβ) Q̌i

]
(6.23b)

⟨
Φ2
i

⟩
=
(
B(s)

i Či

)2{
Ǧ2

i dt+
(
1− α2

i

) T (s)
i

3

2
+
(
1− β2

) Ǩ2
i τ

3
part

2

− 2Ǧi

[
(1− αi)T

(s)
i

2 +(1− β) Ǩiτ
2
part

]
+ 2 (1− αiβ) Q̌iT

(s)
i τpart

} (6.23c)

⟨γiΓi⟩ =B(s)
i

2Či

[(
1− α2

i

) T (s)
i

2
+ (1− αiβ) Q̌i

]
(6.23d)

⟨γiΦi⟩ =B(s)
i

2Či

[
(1− αi) ǦiT

(s)
i −

(
1− α2

i

) T (s)
i

2

2
− (1− αiβ) Q̌iτpart

]
(6.23e)

⟨ΓiΦi⟩ =
(
B(s)

i Či

)2{[
(1− αi)T

(s)
i + (1− β) Ǩiτpart

]
Ǧi −

(
1− α2

i

) T (s)
i

2

2

−
(
1− β2

) Ǩ2
i τ

2
part

2
− (1− αiβ) ǨiT

(s)
i τpart

}
(6.23f)

With the following coefficients:

Ǩi =
Fa

Či

− 1 (6.24a)

Q̌i =
ǨiT

(s)
i τpart

T (s)
i + τpart

(6.24b)

Ǧi =T
(s)
i + Ǩiτpart (6.24c)

It should be noted that ǦiČi = T (s)
i and that this model reduces to the model presented by Peirano

et al. (2006) if the momentum and the Basset history force are ignored (i.e. CB = 0, Cbas = 0, Fa = 0
and M = 0).
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6.4 Asymptotic behaviour of the model

The main advantage of using this exact integrator method is that velocity components now become
dependent on the exponential of the ratio between the numerical time step and a characteristic time
(αi and β, given by equations 6.13 and 6.16 respectively). The model therefore becomes more stable
for extreme cases, such as when dt≫ T (s)

i . Furthermore the following limit definitions are known for
exponentials:

lim
x→∞

exp (−x) =0 (6.25a)
exp(−x) ∼

x→0
1− x (6.25b)

Using these limit definitions it is possible to define the behaviour of the model during extreme cases.
Significant results will be shown, detailed calculations are presented in appendix B.

6.4.1 If dt ≫ T (s)
i

If the numerical time step dt is much larger than the integral time scales T (s)
i (i.e. αi → 0), then

according to equations 6.12, 6.21a, 6.22a and 6.23a the fluid velocity can be simplified to:

U (s)
i (t) →C (s)

i T
(s)
i +B(s)

i

√
T (s)
i

2
ξγi (6.26)

This implies that the fluid velocities can be modelled with a term proportional to the mean flow and
another proportional to the turbulent fluctuations. Simply put when the numerical time step dt is
much larger than the integral time scale T (s)

i then all the turbulent fluctuations can be modelled as a
white noise. According to equation 6.12, it can also be seen that the fluid particle forgets its initial
velocity U (s)

i (t0).
This is made more visible by looking at the simple case of of stationary homogeneous isotropic tur-
bulence used in section 5.2 then for fluid particles (Vi = U (s)

i = Ui) the coefficients become:

C (s)
i =

Ui

T
(6.27a)

T (s)
i =T (6.27b)

B(s)
i =

√
C0ε (6.27c)

These are found from the relation given in equation 5.21, which means that the fluid velocity can be
written as

Ui →
Ui

T
T +

√
C0εT

2
ξγi

=Ui + Urms,iξγi

=Ui + U ′
i (6.28)

Proving that the fluid velocities are modelled by a mean flow term and turbulent fluctuations simu-
lated as a white noise.
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6.4.2 If dt ≪ T (s)
i

If the numerical time step dt is much larger than the integral time scale T (s)
i , then αi → 1, and therefore

from equations 6.12, 6.21a, 6.22a and 6.23a the fluid velocity can be simplified to:

U (s)
i (t) →U (s)

i (t0) + C (s)
i dt+B(s)

i

√
dt (6.29)

Therefore the fluid velocities can be modelled using model similar Langevin’s model for Brownian
motion (equation 5.11b), which is expected as in this scenario the model is placed in a temporal frame
of reference equal to the small turbulent eddies. However this means that the numerical time step is
not much greater than the small scale of turbulence, which means that the turbulence model is not
valid anymore (see chapter 5 for the development of the turbulence model). To be rigorous, when
this is the case the turbulence model should be modelled through the following equation1:

Ui(t) =− 1

Ti
Ui(t)dt+ Ci(t)dt+Ψi(t)dt (6.30)

This equation implies that the small turbulent eddies are not modelled as a white noise, but through
the following equation:

Ψi(t) =− 1

TΨi

Ψi(t)dt+BΨi(t)dWi(t) (6.31)

What this model does is to move the stochastic process up one level. This is the same reasoning as
what was done to move from Einstein’s stochastic model, which applied a random process to the
position of a particle, to Langevin’s stochastic model, which applied a random process to the veloc-
ity of a particle, and therefore was able to capture more information. What the model presented in
equation 6.31 does, is to apply a random process to the acceleration of a fluid particle. This would
require all the model constants (TΨi andBΨi) to be calibrated, and all the modelling consideration de-
veloped earlier (two-phase modelling and the exact integrator method) to be recalculated. Therefore
for simplicity it is assumed that the numerical time step is always much larger than the character-
istic time of the small turbulent eddies, i.e. dt ≫ τs, where τs is the characteristic time of the small
turbulent eddies, as defined from the Kolmogorov hypothesis explained in chapter 3 and given by
equation 3.49c.

6.4.3 If dt ≫ τpart

In addition to the hypothesis that the numerical time step dt is much larger than the particle relaxation
time τpart (meaning that β → 0) it can also assumed that the integral time scale T (s)

i is of the same order
as the numerical time step. Under this hypothesis, using equations 6.15, 6.21b, 6.22b, 6.22c, 6.23b and
6.23d, the solid particle velocity tends to the following equation, where the assumption that dt ∼ T (s)

i

is used to make the equation more understandable:

Vi(t) →U (s)
i (t) + Fi,cτpart +

B(s)
i (Fa − 1)

2

√
τpartξΓi (6.32)

Therefore for this scenario the solid particle velocity will follow almost exactly the fluid velocity,
the only differences are due to the external gravitational force and the momentum of the solid body

1J.-P. Minier, personal communication
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(this is also true if T (s)
i is not of the same order as dt, see appendix B). This is to be expected as the

particle relaxation time gives an information about the speed at which a solid particle responds to
flow variations, and therefore when it is very small it responds almost instantly.

6.4.4 If dt ≪ τpart

Again in this scenario, to ease the understanding of the solid particle velocity, it is assumed the nu-
merical time step dt is of the same order as T (s)

i . Therefore, using equations 6.15, 6.21b, 6.22b, 6.22c,
6.23b and 6.23d, the asymptotic solid particle velocity under the condition that the numerical time
step dt is much smaller than the particle relaxation time τpart (and therefore β → 1) is:

Vi(t) →Vi(t0) + Fi,cdt+ FadU
(s)
i (t0) (6.33)

Therefore in this limiting condition the solid particle velocity stays almost constant, with small varia-
tions resulting from the external buoyant forces and the momentum of the fluid. This is an expected
solution, as a large particle relaxation time would imply that the particle would take very long to
respond to flow variations, and therefore these would appear almost invisible to the particle.
Furthermore, for all limiting scenarios on T (s)

i and τpart as well as the exact integrator model in general,
it should be noted that there are a few cases when the model might be undetermined (see appendices A
and B). However these cases are very specific and they are very unlikely to occur, but nonetheless
these equations should be used with care.
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Chapter	7

Particles	Falling	in	Quasi-Homogeneous
Turbulence

Où la première expérience servant à valider le modèle développé au chapitre 6 est
décrite et analysée. Dans cette expérience, deux grilles oscillent en phase dans un flu-
ide initialement stationnaire afin de créer une turbulence quasi-homogène. Cette tur-
bulence a été quantifiée à l’aide de mesures PIV et LDV et un modèle empirique a été
développé pour pouvoir étendre ces données au delà de la fenêtre de mesure. Ensuite des
sphères de diamètres différents ont été lâchées dans deux fluides de densités différentes.
Les trajectoires de ces sphères ont été enregistrées par deux caméras perpendiculaires. Un
traitement d’image a ensuite été appliqué pour obtenir les vitesses de ces sphères. Les
statistiques de ces vitesses ont été analysées, ce qui a permis de conclure qu’il est impor-
tant de prendre en compte la traînée et la force de Basset, mais moins celle d’inertie. De
plus la méthode pour prendre en compte les «Crossing Trajectories Effects» est appropriée
pour ce cas où la gravité joue un rôle important, mais ces effets n’ont qu’un impact limité
et ils peuvent ainsi être négligés pour les simulations en deux dimensions horizontales.

Plusieurs parties de ce chapitre sont issues du papier “Diffusion in grid turbulence of
isotropic macro-particles using a Lagrangian stochastic method: theory and validation”
par A. Joly, F. Moulin, D. Violeau, et D. Astruc soumis à “Physics of Fluids”, (Joly et
al., Physics of Fluids).
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7.1 Experimental setup

The model presented in this thesis is subject to strong hypotheses, especially on the solid body dy-
namics. Therefore to test the accuracy of the model in predicting the behaviour of isotropic solid
particles in turbulence, two experiments were conducted. For the first experiment particles of differ-
ent sizes and relative densities where released in a quasi-homogeneous stationary turbulent regime.
This regime was achieved by oscillating a pair of 1 × 1 m grids built with 2 cm thick square bars of
mesh size H = 10 cm. The two grids were placed at a distance Dist = 60 cm apart in a water tank,
and were oscillated in phase at a frequency f = 1.67 Hz and a stroke ∆ = 10 cm.
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Figure 7.1: Scheme of the double-grid setup (the origin of the axis is located on the bottom right cor-
ner in the middle of the cross-section of the lower grid, and the x-axis is inversed). PIV
measurement are recorded with camera 1, and particle trajectories using both cameras 1
and 2.

7.2 The turbulent regime

The turbulence generated by those grids was then quantified using Particle Image Velocimetry (PIV)
and Two-Dimensional Laser Doppler Velocimetry (2D-LDV) measurements. These two techniques
were chosen for the information on the turbulence they can provide. The PIV measurements were
done for two 20 × 20 cm windows of measurement. One window in the center of the tank, with
its center at (50, 50,−30) cm, which is where the particles will be recorded, and the other window
has its center placed at (68, 50,−30) cm, which is closer to the edge of the tank, but this allows a
comparison with the 2D-LDV results and check for the effect of the edge of the tank. A thousand
images were recorded within a time interval of 1 s and an interburst of 10 ms with a spatial resolution
of approximately 105 pixels/cm. The 2D-LDV measurements were recorded at (65, 50,−30) cm at a
frequency of 200 Hz for one hour with a laser beam diameter of 2.2 mm.
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Figure 7.2: An instantaneous velocity field recorded using PIV in two grids generated turbulence
oscillating in phase at f = 1.67 Hz and ∆ = 10 cm.

The PIV measurements give instantaneous velocity fields, such as the one presented in figure 7.2.
From these velocity fields, the mean flow and the turbulent fluctuations can be calculated (Ui and U ′

i ).
Yan et al. (2007) and Doron et al. (2001) give methods to calculate the kinetic turbulent energy, k, and
its dissipation rate, ε, from a time series of those instantaneous planar velocity fields:

k =
2U ′2

x + U ′2
z

2
(7.1)

ε =3ν

[ (
∂Ux

∂x

)2

+

(
∂Uz

∂x

)2

+

(
∂Ux

∂z

)2

+

(
∂Uz

∂z

)2

+2

(
∂Ux

∂z

∂Uz

∂x

)
+

2

3

(
∂Ux

∂x

∂Uz

∂z

)]
(7.2)

These can be found using the assumption that the turbulence is quasi-isotropic. This allows the tur-
bulent properties required for particle transport generation to be known inside the window of mea-
surement. Figure 7.3 shows the values calculated from the PIV measurements.
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(b) Turbulent energy dissipation rate (ε)

Figure 7.3: The mean kinetic energy and its mean dissipation rate for two oscillating grid generated
turbulence with f = 1.67 Hz and ∆ = 10 cm obtained from PIV measurements.

From the results of k and ε the mean Reynolds number of the turbulence inside the window of mea-
surement can be calculated. As reminder it is in proportion to the ratio of the size large over the small
turbulent eddies, and it can be calculated using the following equation:

Rt =
k2

εν
(7.3)

Which for the current experiement is equal to about 6000. The effect of the edge of the tank was also
tested, to verify the presence of mean flow. Table 7.1 summarizes the flow properties likely to be
affected by the tank. From this table we see that some boundary effects can be observed. The mean
velocities would suggest that there are some recirculation close to the edge of the tank, however as
the particles are released in the center of the volume of measurement the mean flow velocity can be
assumed to be equal to zero as they are an order under the velocity fluctuations. Furthermore in this
table it also shows that the turbulence is slightly more isotropic in the center of the tank than at the
edge, in accordance to intuition.

Table 7.1: Summary of flow characteristics for a grid oscillation amplitude of 10 cm and a frequency
of 1.67 Hz.

position (cm) Ux (m/s) Uz (m/s) Urms,x (m/s) Urms,z (m/s) Urms,x/Urms,z

(65, 50,−30) −0.00220 −0.0125 0.0220 0.0302 0.729
(50, 50,−30) −0.00158 −0.00423 0.0156 0.0196 0.795

Further measurements were done using 2D-LDV, although for a different grid oscillation frequency.
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The comparison with a punctual PIV value in table 7.2 validates the values of the spatial PIV re-
sults. The same process was done in Al-Homoud and Hondzo (2007), and the difference ratios
(Urms,i,PIV/Urms,i,2D-LDV) are also shown in table 7.2. Furthermore Al-Homoud and Hondzo (2007)
calculated the anisotropy ratio (Urms,x/Urms,y) to be 1.05, whereas in this experiment it is 0.75.

Table 7.2: Comparison between Particle Image Velocimetry and Two Dimensional Laser Doppler Ve-
locimetry measurements for a grid oscillation amplitude of 6 cm and a frequency of 2.63
Hz at position (65, 50,−30) (the PIV data for an amplitude of 10 cm and a frequency of 1.67
Hz at the position of the LDV data were corrupted).

Urms,x (m/s) Urms,z (m/s) k (m2/s2)
PIV 0.0113 0.0148 2.38× 10−4

2D-LDV 0.0103 0.0145 2.1× 10−4

Urms,i,PIV
Urms,i,2D-LDV

1.10 1.02 1.13

Urms,i,PIV
Urms,i,2D-LDV

in Al-Homoud and Hondzo (2007) 1.20 1.40 1.58

The fields in figure 7.3 are coarse, and for modelling purpose smooth empirical formulae have been
developed as they can be extended outside of the window of measurement, to the point of release
of the particles. In literature most studies of oscillating grids generated turbulence have been done
for a single grid. These papers give empirical formulae for the spatial distribution of the root mean
square of turbulent velocity fluctuations, as well as the kinetic turbulent energy and its dissipation rate
(Al-Homoud and Hondzo, 2007; Cheng and Law, 2001; De Silva and Fernando, 1994; Holzner et al.,
2006). Using the crude assumption that the turbulent kinetic energy of the two grids can be added, an
empirical formula can be developed for two grid generated turbulence, where a free parameter will
to be adjusted to fit to the problem at hand:

Urms,x =

√
U ′2
x = Urms,y = θ1H

1
2∆

3
2 f
[
z−2 + (Dist − z)−2

] 1
2 (7.4a)

Urms,z =θ2H
1
2∆

3
2 f
[
z−2 + (Dist − z)−2

] 1
2 (7.4b)

k =
1

2

(
2θ21 + θ22

)
H∆3f2

[
z−2 + (Dist − z)−2

]
(7.4c)

ε =
θ3U

3
rms,x

Dist
(7.4d)

Where the rms subscript represents the root mean squared values of velocity, i.e. Urms,i =

√
U2
i .

These equations have been developed by assuming that the turbulent eddies are dependent on the
mesh size of the grid, the frequency and the amplitude of the oscillations and that they decrease away
from the grid.
From the measurements of the case where the grids are oscillating in phase at a frequency f = 1.67 Hz
and stroke ∆ = 10 cm the constants have been estimated to be θ1 = 0.202, θ2 = 0.261 and θ3 = 5.60.
This therefore gives the profiles in figure 7.4 for k and ε.
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Figure 7.4: Non-dimensional vertical profiles for the kinetic turbulent energy k, its dissipation rate
ε, the turbulence characteristic time Tt and the characteristic length of the large turbulent
eddies λl. “. ” is horizontally averaged experimental results and “. ” is the empirical
profile found using equations 7.4.

The two characteristic parameters of the turbulence are also given in figure 7.4 as they can be used to
provide relationships between the turbulent flow and the particles released. These parameters are the
turbulent characteristic time Tt from equation 5.25a and the characteristic size of the large turbulent
eddies given equation 3.50a.
Equations 7.4, with the appropriate constants, allows therefore the mean turbulent flow properties
to be reasonably estimated, which can then be inputed into the equations described in chapter 6 to
predict particle transport. Furthermore using the empirical values for k and ε from equation 7.4 the
ratio λl/Dist is equal to a constant and interestingly for highly turbulent flows D/λl ∼ τpart/Tt.

7.3 Particle tracking

Different spheres of Nylon Polyamide PA 6,6 (see table 7.3) were released 20 cm above the oscillating
grids (see figure 7.1a). Two different fluids, of densities ρf = 1000 and 1084 kg/m3, were used. For
each run 25 particles were released in the experimental setup.
An updated Stokes number will also be introduced. Unlike the number of equation 2.2a which only
compared the characteristic time of particles experiencing Stokes drag to the small turbulent eddies,
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this number will show the impact of the turbulent eddies for settling particles using the characteristic
time introduced in equations 4.28 and 5.25.

Stset =
τpart(V = −Vsetez)

TL
(7.5)

This Stokes number uses the settling velocity Vset to calculate the particle relaxation time. As a re-
minder this velocity is the maximum velocity a body falling unhindered through the fluid can reach.
It has been defined in chapter 4 by the following implicit formula:

Vset =sign (ρs/f − 1
)√ 2

∣∣ρs/f − 1
∣∣

SCD(Reset)
|g| (7.6)

With:

Reset = |Vset|D/ν (7.7)

In table 7.3 the Stokes number is calculated using the settling velocities for each particle in a water of
density 1000 kg/m3 and the mean turbulence characteristic time of figure 7.4.

Table 7.3: The diameters and densities of the Nylon Polyamide PA 6,6 particles.

Diameter
D (mm)

Standard Mean density
ρs (kg/m3)

Standard Stokes Volume fraction
of particles Ωf

deviation deviation number
of D (%) of ρs(%) Stset

20 0.254 1129 0.0740 2.37 1.05× 10−4

10 0.508 1128 0.301 0.868 1.31× 10−5

5 1.02 1115 0.125 0.677 1.63× 10−6

2 2.54 1062 2.42 0.616 1.05× 10−7

Since for all the particles in table 7.3 the values for the Stokes number Stset is of the same order as
one the turbulence effects and the particle properties need to be considered for all particle sizes. In
addition since the Stokes number is greater for the larger particles, the properties of the bodies will
have a greater effect. The settling velocities for all these particles released in waters of densities ρf =
1000 and 1085 kg/m3 are plotted in figure 7.5. Furthermore the values for the volume fraction number
presented in this table indicate that the larger particles might affect the turbulence slightly, and that
the one way fluid–particle coupling might be an over simplification.
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Figure 7.5: Dimensionless settling velocities for the particles described in table 7.3 and for fluid den-
sities ρf = 1000 and 1084 kg/m3. “. ” is the analytical solution (equation 7.6) and “. ”
are the experimental measurements. “. ” are the 95% confidence interval error bars for
the experimental density ratios and “ .” are the 95% confidence interval error bars for the
analytical velocities using these ratios.

The trajectories for the particles released into the flow described in section 7.1 were measured using
two cameras placed perpendicularly to each other. The volume of measurement, located in the center
of the two grids, had a shape close to a cube 20×20×20 cm, but of a shape similar to the one presented
in figure 7.6.

... ..

camera 1

.

camera 2

Figure 7.6: Volume of measurements for the two perpendicular cameras recording falling bodies.
“. ” is the volume recorded by camera 1, “. ” is the volume recorded by camera 2
and “. ” is the volume of measurement common in the two cameras.

The shape of the volume of measurement described in figure 7.6 shows that a linear relationship needs
to be assumed to convert particle position from pixel to millimetre (Cordeiro Fernandes, 2005), this
relation is given by the following equation:



MODEL VALIDATION 68

Camera 1: Xx(mm)

Xx(pixels)
= αyXy(mm) + βx ; Xz1(mm)

Xz1(pixels)
= αyXy(mm) + βx (7.8a)

Camera 2: Xy(mm)

Xy(pixels)
= αxXx(mm) + βy ; Xz2(mm)

Xz2(pixels)
= αxXx(mm) + βy (7.8b)

Obviously in equations 7.8, the particle position Xz should be equal in camera 1 and camera 2 (Xz1 =
Xz2). The coefficients αi and βi need to be calibrated by recording known positions of an object inside
the volume of measurement, see appendix C.
Furthermore the shape and size of the volume recorded by a camera implies that particles seen by one
camera might not be seen by the other, see figure 7.7 which shows an example of associated particles.
The image processing necessary to obtain the position of the particles in pixels is given in appendix C.
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Figure 7.7: Example of particles recorded for the two cameras. The number in black is a recognized
particle in an image and the number in white, next to a white star, is a particle present in
both cameras.

7.4 Model Validation

From these records of particle trajectories it is possible to obtain an estimate of the particle veloci-
ties looking at the displacement in between two recorded images. These particle velocities can be
compared to the results obtained using the stochastic numerical model developed in chapter 6 (Equa-
tions 6.12, 6.15 and 6.19) where the mean flow characteristics are imputed from the empirical model
presented in equations 7.4. The particle velocities will be compared through the probability density
functions (pdf) of the horizontal and vertical velocities of particles present anywhere within the whole
volume of measurement. The particles velocities are analysed, and not the positions of the particles,
as the element of interest for this experiment is to observe the response of the model to a turbulent
fluid velocity.
Furthermore the numerical model will be tested using different amount of information. The forces
on the body will be tested for the three possible cases described in table 4.2 and in equations 4.25, 4.26
and 4.27, which are for the case where in addition to the buoyant forces only the drag force is taken
into account, the drag and the momentum forces and the drag, momentum and Basset history forces.
In addition there are two scenarios which will be tested to model the fluid velocities, which are given
in equations 6.2, 6.4 and 6.5, and these involve the Crossing Trajectories Effect (CTE). The CTE will be
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modelled in this turbulent flow regime by assuming that the mean velocity differences
∣∣V − U

∣∣ can
be modelled using the settling velocity Vset as defined by equation 7.6, which means that the main
drift is in the z direction, and using the Urms,i values given in equations 7.4a and 7.4b to solve for
U ′
iU

′
i . The impact of the CTE will be tested by comparing it to a case where it is ignored, meaning that

the fluid velocity seen by a particle U (s)
i is equal to the fluid velocity Ui. The numerical model will

be also compared to a model that is often used to predict the transport of particles in environmental
flows, for example Issa et al. (2009) or Monti and Leuzzi (2010), which is a declination of the Brownian
motion given in equation 5.2, which considers the flow velocity:

dXi =

[
Ui +

Cµ

σc

∂

∂xi

(
k2

ε

)]
dt+

√
2
Cµ

σc

k2

ε
dWi (7.9)

Where Cµ = 0.09 and σc = 0.72, as was defined in Issa et al. (2009). It should be noted in this model
that the physical properties of the solid particles are not taken into account, it is assumed that these
bodies follow exactly the fluid, and that all of the turbulent fluctuations of the fluid velocity can be
modelled as a white noise. All of the different modelled used are summarised in table 7.4.

Table 7.4: Summary of the different models compared and different forcing considered in the oscil-
lating grid experiment.

Model I Model II Model III Model IV Brownian motion
Crossing Trajectories yes no no no no

Basset yes yes no no no
Momentum yes yes yes no no

Drag yes yes yes yes no
Source eqns 4.5 & 6.1 eqn 4.5 eqn 4.4 eqn 4.2 eqn 7.9

Figure 7.8 shows representative probability density functions (pdf) of the horizontal and vertical ve-
locities. Each plot of this figure is associated to five characteristic numbers: D/λl which shows the
ratio of the particle diameter D to the characteristic length of the large turbulent eddies λl, given by
equation 3.50a, ρs/f = ρs/ρf which gives the density ratio between the solid boy and the fluid, the
Stokes number Stset given by equation 7.5, Nr which is the number of experimental velocity records
and Reset which is the particle Reynolds number for particles at settling velocity (equation 7.7). The
pdf of the velocities are calculated using the velocity at every time step that a particles is present in the
volume of measurement. Nr is then found using every recorded velocity along every trajectories of
the particles. Only half of the horizontal velocity statistics are shown, as they are symmetrical around
the mean velocity (here 0 m/s as there is no flow).
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Figure 7.8: Probability density functions for particle velocities present inside the volume of measure-
ment. “. ” is the pdf for the experimental results, “. ” is the pdf for model I, “. ” is the
pdf for model II, “. ” is the pdf for model III, ‘. ” is the pdf for model IV and “. ” is
the pdf for Brownian motion. See table 7.4 for details on the models.
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From figure 7.8 it is possible to conclude that for the force models I to IV the vertical displacement is
driven by the buoyancy effects, as the vertical velocities are of the same order as the settling velocity.
Conversely the horizontal velocities are smaller than the settling velocities, and therefore are driven
by the turbulence. Secondly this figure shows that the simplification of the transport of isotropic
particles in turbulence to Brownian motion (Issa et al., 2009), as is done commonly for contaminant
transport (Heemink, 1990; Monti and Leuzzi, 2010; Stijnen et al., 2006), cannot model accurately the
turbulent diffusion of these particles, and it overestimates greatly the diffusion (the dash-dot-dot lines
in figure 7.8 are very flat curves).
Furthermore the two particle transport models which ignore the Basset History force (the models III
and IV in table 7.4), give very similar results, which would indicate that momentum and added mass
of the body can be neglected, especially for small bodies. For both of these models the horizontal
displacement statistics are fairly well modelled, but the vertical (settling) statistics are not modelled
as accurately. However when the Basset History force (model II in table 7.4) is included the model
shows very good correlation to the experimental results for small particles, but as particles become
bigger the model looses accuracy. This is expected as the formulation of the Basset History force
chosen is designed for small particles, and the bigger particles were modelled to test the limitations
of the model. Furthermore for these large particles the hypothesis that the particles do not affect the
flow might not be appropriate any more. Nonetheless, considering the Basset History force gives
better probability density functions in the vertical direction, which is the main direction of motion of
this problem.
In addition the Crossing Trajectories Effects mentioned by Csanady (1963) and accounted for in model
I using the method proposed through equation 6.1 in Peirano et al. (2006) (see table 7.4) reduces the
spread of velocity probability density functions shown in figure 7.8. This is expected because the
crossing trajectories effects increases the decorrelation between the fluid and the solid particles, and
this way a solid body does not follow completely the turbulent eddies and therefore are less diffused.
Nevertheless the CTE has only affect slightly the standard deviation of the velocity pdf shown in
figure 7.8. From this result, in two-dimensional horizontal simulations, the decorrelation between a
solid body and a fluid particle due to gravity effects can be ignored. Nonetheless since the CTE from
gravitational forces still have a visible impact on the pdfs shown in figure 7.8, the decorrelation occur-
ring from inertial effects might not always be negligible and more research will need to be conducted
in the future on those Crossing Trajectories Effects. However focusing on an accurate modelling of
the solid body dynamics gives a reasonable estimates of the motion of solid particles as there are no
great differences between the pdf of model I and II (only the height of the peak in the vertical velocity
pdf, but not the location) and for the level of accuracy needed in the prediction of algae transport in
a coastal environment CTE can be ignored, especially in two dimensional horizontal models.
An other source of differences between experimental and numerical values could also originate from
the relaxation time of the bodies at rest. This relaxation time represents the time a particle will forget
the initial conditions. Solving equation 4.24 to calculate the settling motion of particles falling in a
stationary fluid (without any turbulence), will give an estimate of the time a particle would take to
settle from the point of release to the center of the volume of measurement see figure 7.1. This time will
be named tset, and it can be used to verify if a particle has forgotten the initial boundary conditions
(i.e. the velocity at which it was released and the possible contacts with the oscillating grids). For
the relaxation time of model II and the parameters of figure 7.8a τpart(V = 0)/tset = 0.571. With the
parameters of figure 7.8b τpart(V = 0)/tset = 3.27 and for the parameters of figure 7.8c τpart(V =
0)/tset = 9.32. These values should be analysed with care, as the relaxation decreases as the particle
velocity increases, but nonetheless these values show that the smallest particles (D/λl = 0.106) are
more likely to have forgotten the initial conditions at the point of release.
To verify this hypothesis numerical tests were done with the using model II. Particles were released
at a known height, 10 cm below the center of the top oscillating grid. Large (D/λl = 0.424) and small
(D/λl = 0.106) particles were released with different initial particle velocities V0: particles starting at
rest, particles with an imposed initial vertical velocity equal to half the settling velocity and particles
where the initial velocities are generated through a random distribution with a mean equal to zero
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and a standard deviation equal to half the stroke ∆ times the frequency f of grid oscillations, which
could simulate the impact of the grids on the particles. Statistics are then plotted in figure 7.9.
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Figure 7.9: Probability density functions for numerical particle velocities present inside the volume
of measurement transported with different initial particle velocities V0. “. ” is the pdf
for particles with V0 = 0, “. ” is the pdf for particles with V0,z = 1

2Vset and “. ” is the
pdf for particles with ⟨V0⟩ = 0 and ⟨V02

⟩
= ∆f .

Figure 7.9 shows that imposing an initial velocity distribution or an initial vertical settling velocity
will modify the distribution of the velocities for both particles. This more visible for the large particles,
which is expected, but it is still visible for small particles. This is probably because in the numerical
simulations presented in figure 7.9 particles were released very close to the volume of measurement,
as the empirical model for the mean flow characteristics (equations 7.4) cannot be applied much fur-
ther above the volume of measurement.
Finally the finite size of the body has a filtering effect on the turbulence, as the turbulent eddies of size
smaller then the particle will not affect the dispersion. This filtering effect is further emphasised by
the inertial properties of the body as the particle relaxation time will limit the impact of the turbulent
eddies. This is in accordance to what Yeo et al. (2010) has observed. This filtering process can be also
observed in the numerical simulations. Figure 7.10 shows the difference in particle velocity statistics
between solid particles modelled through model I (in table 7.4) and fluid particles transported using
the empirical model presented in equations 7.4.
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Figure 7.10: Particle  statistics  used  to  illustrate  the  filtering  of  turbulent  eddies  by  solid  parti-
cles.“. ” are statistics found for fluid particles and “. ” are statistics found for solid
particles defined by D/λl = 0.106, ρs/f = 1.12, Stset = 1.52, Reset = 620 and modelled
using model I.

In figure 7.10 it can be seen that the fluid particles do not have the same velocity probability density
functions as the solid particles. Apart from the buoyant effects, which create a shift in vertical velocity
pdf, the fluid velocities have a smaller width of diffusion. This can be explained through the filtering
effect of the size of the particles. Because of their size the particles will only be transported with the
larger turbulent eddies, which have more energy, and therefore diffuse more.
The correlation between the particle velocities and the fluid velocities can be calculated. These corre-
lations can be calculated in a similar fashion to equation 5.15a:

Rij (Ui, Uj , s) =
⟨Ui(t)Uj(t+ s)⟩

⟨UiUj⟩
(7.10a)

Rij (Vi, Vj , s) =
⟨Vi(t)Vj(t+ s)⟩

⟨ViVj⟩
(7.10b)

Rij (Ui, Vj , s) =
⟨Ui(t)Vj(t+ s)⟩

⟨UiVj⟩
(7.10c)

The Rxx and Rzz correlation profiles found using these equations and following numerical particles
released in the turbulent regime described by equations 7.4 are plotted in figure 7.11. Therefore Ui is
given by equation 6.12 and Vi is given by equation 6.15.
Figure 7.11 shows that the correlation between the fluid and the solid particle velocities decorrelates
faster for larger particles. Furthermore, including the “Crossing Trajectories Effects” increases the rate
at which the fluid velocities become decorrelated, while at the same time leaving the decorrelation rate
of the solid particle velocities unchanged. This leads to a faster reduction of the correlation between
the fluid and the solid particle velocities, which is the aim of including the “Crossing Trajectories
Effect”.
The autocorrelations plotted in figure 7.11 can be compared to those presented in figure 5.3 which fol-
lowed fluid particles. The first thing noticeable is that the numerical values for the fluid velocities at
the position of the solid particle decorrelate faster than for the fluid particles of figure 5.3, after 0.6Tt
as opposed to 1.5Tt. This difference is slightly bigger if “Crossing Trajectories Effects” are consid-
ered. Furthermore integrating the autocorrelation function of the fluid velocities gives an Lagrangian
integral time scale equal to approximately 0.28Tt in both directions for the plots in figure 7.11a, and
approximately 0.22Tt for those in figure 7.11b. This implies therefore that Lagrangian time scale for
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the fluid velocities following solid or fluid particles (figure 7.11 or 5.3) gives approximately the same
values, that is unless CTE is taken into account. Integrating the autocorrelation functions for the fluid
velocities of figure 7.11c gives characteristic time scales approximately equal to 0.075Tt in both direc-
tions. This is to be expected, as the CTE were taken into account by artificially reducing the modelled
Lagrangian time scale Tt, through the use of T (s)
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Figure 7.11: The correlation profiles of velocities for particles released in quasi-homogeneous tur-
bulence. “. ” plots Rij (Ui, Uj , s) from equation 7.10a, “. ” plots Rij (Vi, Vj , s) from
equation 7.10b and “. ” plots Rij (Ui, Vj , s) from equation 7.10b.

Finally this oscillating grid experiment allows the following conclusions to be done. A good mod-
elling of the solid body dynamics is primordial. Out of these solid body dynamics the most important
forces to consider (aside from the buoyant forces which are necessary to allow particles to settle) are
the drag force and the Basset history force. The momentum of the body will however still be taken
into account as it is one of the physical properties which can be adapted to correspond to that of
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an algae. Furthermore the method proposed by Minier and Peirano (2001) to take into account the
“Crossing Trajectories Effects” is appropriate for cases where the gravitational forces are important,
as it increases the rate at which the correlation between fluid and solid particle velocities decreases.
However even in this experiment the added accuracy due to the “Crossing Trajectories Effects” in the
velocity statistics are only minimal (except on the vertical), and therefore it will be assumed that these
effects can be neglected in two-dimensional horizontal simulations.
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Chapter	8

Particles	Released	in	a	Partially	Obstructed
Channel

Où la deuxième expérience servant à valider le modèle développé dans le chapitre 6
est décrite et analysée. Dans cette expérience, des particules sont relâchées dans un canal
partiellement obstrué par une digue perpendiculaire à ses parois. La vitesse du courant a
été mesurée avec une tête ADV afin de caractériser la zone de recirculation à l’aval de la
digue. Deux codes de calculs, Telemac-2D et OpenFoam, ont été utilisés pour obtenir les
champs Eulériens des vitesses, de l’énergie cinétique turbulente et du taux de dissipation
du fluide qui ont été comparés avec les mesures expérimentales. Ensuite des particules
solides sphériques on été relâchées dans l’écoulement, et leur trajectoires ont été enreg-
istrées à l’aide d’un caméra. Les deux simulations Eulériennes effectué avec Telemac-
2D et OpenFoam ont été utilisées pour transporter des corps avec le modèle numérique
du chapitre 6. La proportion et le temps de résidence moyen des corps entrant dans un
quartier de la fenêtre de mesure de la caméra on été comparés. Il c’est avéré que Telemac-
2D prédisait légèrement mieux le transport des corps. Ces simulations de courant ont
donc été utilisées pour comparer la pertinence des différents modèles des du transport des
corps. Bien que tous ces modèles produisent quasiment le même comportement du trans-
port des corps, il est suggéré de prendre en compte toutes les composantes des forces dans
une simulation d’un écoulement réel, car de faibles différences initiales peuvent avoir un
grand impact sur une longue distance.

Plusieurs parties de ce chapitre sont issues du papier “Transport of isotropic particles
in a partially obstructed channel flow : experiments and numerical modelling” par A.
Joly, D. Violeau, F. Moulin, D. Astruc et C. Kassiotis soumis au “Journal of Hydraulic
Research”, (Joly et al., Journal of Hydraulic Research).
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8.1 Experimental setup

This second experiment served to validate the behaviour of the model presented in chapter 6 in the
case of a space-varying flow, and the validity of the coupling between a large-scale Eulerian flow
model and a smaller scale stochastic Lagrangian particle transport model.
The flow configuration chosen is that of a partially obstructed open flat bed channel flow, which is a
well documented configuration, see Ettema and Muste (2002), Tang et al. (2006) or Uijttewaal (2005).
This flow has the advantage of having non homogeneous turbulence. In this experiment a fluid with
a density of 1000 kg/m3 and a flow rate of 0.5 m/s was imposed in a 2 m wide channel which was
obstructed by a groyne 0.5 m long and 0.1 m thick. The water depth was imposed to be 0.3 m before
the flow arrived at the groyne. The groyne was constructed high enough to stop overtopping. The
experimental setup is described in figures 8.1 and 8.6. The Reynolds number was thus 106.
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Figure 8.1: Experimental setup for a partially obstructed flat bed open channel flow (top view).

Ettema and Muste (2002) have conducted several partially obstructed flat bed open channel flow
experiments and they have observed that generally the recirculation zone occurring after the groyne
is of the order of 10-12 times the length of the groyne. This zone is of particular interest as it should
trap particles released in the flow.
The water velocities were then recorded using a three-dimensional Acoustic Doppler Velocimetry
head. A particle injector was designed to release a constant flow of spheres 6mm in diameter and 2200
kg/m3. Particles were released so that when entering the window of measurement they did not settle
fully. The trajectories were recorded with a camera recording 14 images per second. It should be noted
that a flat Plexiglas surface had to be placed just on the surface of the flow to provide undisturbed
images. The obtained results are therefore only two dimensional. Parallax was also tested, and it
was found to be negligible within the setup for the camera. Due to the difficulty of obtaining in situ
measurements for real application, the experimental results will focus on the ability of the model
to predict particles caught in the recirculation zone, so that the code can be used as a decision code
for further real applications involving similar phenomenons. Since the particle transport model was
already tested more thoroughly in chapter 7 in the case of zero-mean flow, the present test aims at
investigating the ability of the model to deal with mean velocity gradients..

8.2 The flow regime

The velocities of the flow thus produced by the experimental set up shown in figure 8.1 were then
recorded by placing an Acoustic Doppler Velocimetry head in the flow at different location and height.
Using these velocity results the recirculation zone for the problem can be determined. Figure 8.2
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shows the streamlines of this flow.
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Figure 8.2: The streamlines for the flow defined by the experimental set up shown in figure 8.1.

Figure 8.2 can be used to find an estimate of the recirculation zone behind the groyne. From this
figure it can be estimated to be just above 5 metres (the experimental measurements did not provide
information at a distance greater than 5 metres after the groyne). This is in accordance to Ettema and
Muste (2002), which estimated such flow patterns to be 10-12 times the length of the groyne, which
in this case means it should be between 5 and 6 meters.
This flow was also simulated using two different Eulerian numerical flow models. A simulation was
done using Telemac-2D, which solves the shallow-water equations with a depth-averaged k-ε closure
using a finite elements method (Hervouet, 2007). This code is useful for large coastal flows as it can
deal with tidal flats and it was designed for industrial needs. Another simulation was done using
OpenFoam, which solves the two-dimensional Navier-Stokes equations with a k-ε closure using a
finite volumes method (Open CFD, 2011). This code is more academic and should give better velocity
profiles.
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Figure 8.3: Profiles of the horizontal velocity plotted at different locations along the canal. The small
axis mark on top of the x-axis represent the values of velocity magnitude. “. ” are exper-
imental results, “. ” are results found using Telemac-2D and “. ” are results found
using OpenFoam.

Figure 8.3 shows selected horizontal velocity profiles. These profiles are plotted on their location
along the x-axis. The scale of the velocities are set so that its zero value is situated on the x coordinate
of the profile (the axes for the velocities Ux are drawn above the x-axis for each profile). It can be
seen in this figure that both numerical models give reasonable velocity profiles, although they seem
to be too diffusive, and they underestimate the size of the recirculation region. OpenFoam seems
to model more accurately the velocities along the edge of the canal, and as such it gives a better
estimate of the size of the recirculation zone. In addition it should be noted that the flow rate between
the experimental and the numerical results do not seem to agree down stream of the groyne, which
would indicate some imprecision in the experimental measurement.
These two codes will also be compared for the turbulent kinetic energy k and its dissipation rate ε,
as these two flow characteristics are responsible for the diffusive behaviour of solid particles. How-
ever care should be done to observe the turbulent velocities with and ADV head as the recording rate
needs to be small enough to observe all the turbulent structures, and the number of samples need to
be large enough to reduce the error (Chanson, 2008). In this experiment velocity data were recorded
at a rate of 50 Hz for 2 minutes, which means that 6000 samples were recorded, which should be
sufficient as the characteristic time for the small turbulent eddies can be estimated τs = 0.02 s and for
the large turbulent eddies τl = 7 s, see chapter 3. Therefore the turbulent kinetic energy can be cal-
culated from experimental measurements, but the spatial resolution was not fine enough to calculate
its dissipation rate. The selected profiles in the canal for k and ε using both numerical models as well
as the experimental data for the turbulent kinetic energy are given in figures 8.4 and 8.5 respectively.
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Figure 8.4: Profiles of the turbulent kinetic energy (TKE) plotted at different locations along the canal.
The small axis mark on top of the x-axis represent the values of TKE. “. ” are experimen-
tal results, “. ” are results found using Telemac-2D and “. ” are results found using
OpenFoam.
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Figure 8.5: Profiles of the turbulent kinetic energy dissipation rate plotted at different locations along
the canal. The small axis mark on top of the x-axis represent the values of the energy
dissipation. “. ” are experimental results, “. ” are results found using Telemac-2D and
“. ” are results found using OpenFoam.

Figure 8.4 shows that both numerical models have more difficulties calculating the kinetic energy at
the edge of the recirculation zone. Telemac-2D seems to estimate the turbulent kinetic energy directly
after the groyne more accurately (looking at the experimental data placed just above the groyne), but
further downstream OpenFoam gives better values. The numerical values for the dissipation rate are
plotted in figure 8.5. Telemac-2D seems to find much more dissipation directly after the groyne.
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The Eulerian mean velocity, turbulent kinetic energy and dissipation rate fields will be inputed into
equations 6.12, 6.15 and 6.19 to transport numerical particles. The trajectories of these particles will
be compared to experimental data of particles released into this flow.

8.3 Particle tracking

Spheres 6 mm in diameter (Ds) and of density ρs = 2200 kg·m−3 were released in the flow one at
a time at fixed intervals (about 1 Hz). This was done to ensure that particles would not affect each
other’s motion. Several particles were released at different positions in the flow. These positions
are drawn on figures 8.10 to 8.13. To record the trajectories of these particles a camera was placed
above the flow to record particles entering a window of measurement, see figure 8.6. The horizontal
coordinate system was chosen as in figure 8.10. The recorded images were then processed using the
method described in appendix C.
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Figure 8.6: Experimental setup to record the particle trajectories.

In the numerical simulations, the solid boundaries were treated in such a way that particles whose
path in one time step crossed a solid boundary was stopped just before the boundary, but still within
the domain. This was done to stop particles exiting the domain through a solid boundary and to
simulate the fact that the fluid velocities decrease towards a solid boundary. The method used for a
triangular mesh (which was used in both Telemac-2D and OpenFoam) is described in appendix D.
The real particles released in the flow are then recorded using the camera when they enter a window of
measurement. From each recorded image it is possible to obtain the position of a particle, and a time
series of such images gives the trajectories of each particle. Two typical particle trajectories recorded
by the camera placed at the position of the window of measurement 3 are plotted in figure 8.7.
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(b) Particle released at position (0.175,0.4) and recorded in win-
dow 3

Figure 8.7: Typical particle trajectories. The axes are the same as those presented in figure 8.6.

It should be noted, however, that it was difficult to obtain full trajectories of particles entering and
leaving the window of measurement downstream of the groyne, as its presence lead to a generation of
vortices, and entrainment of air bubbles, which would disturb the images recorded by the camera, see
figure 8.8. These meant that particles were often hidden by air bubbles or vortices, and in some cases
uncertain particles were ignored to stop bogus particles impacting the results. This is why the plotted
trajectories in figure 8.7 do not start and finish at the edges of the window of measurement. Nonethe-
less, this process meant that experimental particles had their trajectories divided into segments, and
these particles were counted several times.

Figure 8.8: A disturbed image recorded by the camera due to the air entrainment. The number in
white shows the number of objects recognised as particles and the number in light grey
shows actual solid bodies.
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To analyse the trajectories of the particles, the window of measurements are then divided into four
quadrants. From the recorded particle trajectories we can observe the proportion of particles released
into the flow entering each quadrant of the window of measurement, and the mean time of residence
inside this quadrant. The same thing was done for the artificial particles in the simulations. These
results are plotted in figures 8.10 to 8.13, where for each quadrant the value of interest is plotted along
a line going from the inner most corner to the outter most corner. The length scales for these values
are chosen in such a way that the maximum value is placed on the outer most corner. The points
plotted for each quadrant are then linked together to form an area. An annotated example is found
in figure 8.9.
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Figure 8.9: An annotated example to explain how the proportion of particles entering each quadrant
of a window of measurement are presented. “ . ” shows the experimental measurements,
“ . ” shows the measurements using Telemac-2D and “ . ” shows the measurements
using OpenFoam.

Figures 8.10 and 8.11 plot the presence in different windows of particles transported in the experi-
ment, and in the numerical simulations considering the drag, momentum and Basset History forces
(but ignoring the “Crossing Trajectories Effects”). This is the definition of model II given in table 8.2
1, but using two different Eulerian mean flow models (Telemac-2D and OpenFoam). In figure 8.10
the proportion of particles entering a quadrant are plotted. This is done by dividing the number of
different particles entering a quadrant by the total number of articles released into the flow. In fig-
ure 8.11 the mean particle residence time inside a quadrant is plotted. This residence time is found
by adding the time each particle spends in a quadrant and dividing it by the total number of particles
that entered this quadrant.
Figures 8.10 and 8.11 show that the two Eulerian models prove fairly effective in their ability to pre-
dict the entrapment of particles, as in general there is an acceptable correlation between numerical
and experimental results in the number of particles entering each quadrant. For the windows of mea-
surement placed downstream of the groyne, the number of particles recorded in the experiment are
much lower. This is because the images were severely affected by the generation of vortices after the
dike, and the position of a particle would be lost for a few images, see figure 8.8. This means that one
particle can be accounted for multiple times. Furthermore particles leaving the window of measure-
ment, and entering again will also be accounted for more than once. In addition, figure 8.10 indicates
that particle trajectories calculated using OpenFoam, seem to experience greater dispersion.
The generation of vortices also has an effect on the experimental estimation of the residence times
inside a quadrant, because the number of particles inside a quadrant is overestimated and part of the
trajectories were hidden. Nonetheless the shape of the area composing the time of residence inside

1The same nomenclature as chapter 7 is used.
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the quadrants seem to agree for both numerical models. The only drawback would be that Telemac-
2D seems to slow down particles near solid boundaries, and therefore increase the time of residence
in the quadrants close to a solid boundary.
This can be seen also by looking at the ratios between the values of Nprop and tres in the two top
quadrants and the two bottom quadrants. These ratios, shown in table 8.1, show that the shape of
the overall shaded areas of figures 8.10 and 8.11 are generally similar in the experimental and the
numerical results.

Table 8.1: Ratios of the proportion (Nprop) and the mean time of residence (tres) of particles present
in the top and bottom half of the window of measurement.

top right over top left bottom right over bottom left
Nprop tres (s) Nprop tres (s)

window 1;
release = (−1.3,0.19)

experiment 0.000 0.000 1.06 0.758
Telemac-2D 0.008 0.405 1.01 0.890
OpenFoam 0.000 0.000 1.00 1.49

window 2;
release = (0.175,0.45)

experiment 1.26 1.77 1.37 0.934
Telemac-2D 1.12 1.65 1.61 1.85
OpenFoam 1.00 1.46 0.852 1.57

window 3;
release = (0.175,0.45)

experiment 0.988 0.748 1.18 1.04
Telemac-2D 1.13 1.18 1.31 0.982
OpenFoam 1.12 1.24 1.08 1.18

window 2;
release = (0.98,0.55)

experiment 0.821 1.07 1.39 0.444
Telemac-2D 1.05 1.16 1.07 1.73
OpenFoam 1.00 1.05 0.954 1.65

Finally, because in figures 8.10 and 8.11 Telemac-2D seems to be in better accordance to experimental
results, when focusing on the shape of the shaded areas plotted in the windows of measurement, the
effects of the force components of the solid body dynamics will be tested using Telemac-2D, even if
OpenFoam predicted the fluid velocities more accurately. Figures 8.12 and 8.13 plots the influence of
each particle transport model, summarised in table 8.2.

Table 8.2: Summary of the different models compared and different forcing considered in the partially
obstructed channel experiment2.

Model II Model III Model IV
Basset yes no no

Momentum yes yes no
Drag yes yes yes

Source eqns 4.5 & 5.24 eqns 4.4 & 5.24 eqns 4.2 & 5.24

2Model I presented in table 7.4 is not used as the model taking into account the “Crossing Trajectories Effects” has hardly
any effect in 2D horizontal particle transport models.
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(b) Particles released at point (0.175,0.45) m
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(c) Particles released at point (0.98,0.55) m

Figure 8.10: Partially obstructed channel experiment: proportion of released particles entering a
quadrant of the window of measurement for various locations of release. “ . ” shows
the experimental measurements, “ . ” shows the computational results (CR) using
Telemac-2D and “ . ” shows the CR using OpenFoam. Simulations are done using
model II of table 8.2.
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Figure 8.11: Partially obstructed channel experiment: mean particles residence time inside a quad-
rant of the window of measurement for various locations of release. The time is given
in seconds. “ . ” shows the experimental measurements, “ . ” shows the CR using
Telemac-2D and “ . ” shows the CR using OpenFoam. Simulations are done using
model II of table 8.2.
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Figure 8.12: Partially obstructed channel: proportion of released particles entering a quadrant of the
window of measurement for various locations of release. “ . ” shows the experimental
measurements, “ . ” shows the CR using model IV, “ . ” shows the CR using model
III and “ . ” shows the CR using model II. The flow is simulated using Telemac-2D and
a description of the particle transport models can be found in table 8.2.
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Figure 8.13: Partially obstructed channel: mean particles residence time inside a quadrant of the win-
dow of measurement for various locations of release. Time is given in seconds. “ . ”
shows the experimental measurements, “ . ” shows the CR using model IV, “ . ”
shows the CR using model III and “ . ” shows the CR using model II. The flow is simu-
lated using Telemac-2D and a description of the particle transport models can be found
in table 8.2.
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Figures 8.12 and 8.13 show that the results found using the different models are very similar. This is
because the particles chosen in these simulations are small, and the amount of information extracted
from those simulations is very coarse. The plots of the model using all the force components (equa-
tion 4.5) shows slightly better results, but it is hardly visible. However, in chapter 7 it was proven
that the particle velocities are better predicted with a more complete particle transport model. This
means that in real, more complex flows, a complete force model should still be considered, as the par-
ticles will be transported over a large area, where minute early differences can become more apparent
later on in the simulations. Furthermore having more information present in the model can make it
adaptable to real inertial particle, as we will show in chapter 9.
Finally this partially obstructed channel experiment allows the following conclusions. The coupling
between an Eulerian mean flow model and the Lagrangian particle transport model works, and it is
effective in predicting particles trapped by a recirculation zone. It also shows that a good prediction of
the turbulent kinetic energy k and its dissipation rate ε is just as critical as the mean flow velocities U
when considering solid particle transport. In addition for a very coarse demand in results, for example
in this experiment the aim was to find if particles could be trapped in a recirculation zone, then going
into great details when modelling the solid body dynamics might be unnecessary. Nonetheless for
real problems it is still recommended to take into account all force components.
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Chapter	9

Real	Life	Applications

Où sont données les étapes nécessaires pour appliquer le modèle de transport de par-
ticules développé dans les chapitres précédents (voir les chapitres 4 à 6) à la problématique
du transport d’algues aux alentours de la centrale nucléaire de Paluel. La première étape
est de modifier les coefficients des caractéristiques mécaniques des corps pour correspon-
dre à une algue. Ceci est fait en modifiant les coefficients de masse ajoutée et de traînée
selon les valeurs données dans Gaylord et al. (1994). Ces valeurs sont ensuite comparées
aux valeurs d’un corps sphérique ayant le même volume que les algues prises en compte.

Ensuite le cas d’une problématique réelle est décrit, à savoir le chenal d’amenée de
la centrale de Paluel. La simulation de l’écoulement est expliquée, et différents modèles
de transport des particules sont appliqués. Les modèles de transport de particules ar-
rivent assez bien reproduire les observations concernant le mode de remplissage du chenal
d’amenée de la centrale, mais n’arrivent pas à reproduire le bon taux de remplissage de
chaque pompe. Plusieurs voies sont suggérées pour améliorer ce résultat.
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9.1 Information on the type of algae considered

Figure 2.1 in the introduction presented the fact that the main algae causing a problem are known as
Ulva. These algae have a very weak grip on the sea bed and are therefore easily carried by a current.
They are only slightly denser than water, around 1050 kg/m3. These alga are very thin, two cells thick
(therefore about 50 µm), but characteristic length in the order of 5 cm, see figure 9.1.

(a) Ulva scandinavica1 (b) Iridaea Flaccida2

Figure 9.1: Example of algae.

Because of their size the inertial properties of such particles can be very significant. However since
these algal particles are transported over a large distance and because they can fold over it can be
assumed that their orientation will only play a minor part in their transport, and it is assumed that
they can be modelled similarly as spheres. However there are a few modifications that can be done
to correspond better to their specificities. Firstly the algae will be considered as disks that are 5 cm in
diameter (Da) and 50 µm in thickness (ta) . For modelling purpose it will be assumed that they can
be folded and will resemble a sphere when transported by the flow. Therefore the inertial properties
of an alga will be normalised using the maximum projected area (Gaylord et al., 1994). This means
that the the Reynolds number , the surface area and the volume used to find the drag coefficient and
added mass tensor are defined by:

Rea =
|U − V|Da

ν
(9.1a)

Sa =
πD2

a

4
(9.1b)

Ωa =Sata (9.1c)

Gaylord et al. (1994) provide experimental values for the drag coefficient and added mass tensor of
three algae of different shape. Out of these algae Iridaea Flaccida is the closest in shape to the Ulvas.
These experimental values will be linked to the values for a sphere, such as given by Almedeij (2008),
in figure 9.2.

1source: http://www.marevita.org
2source: Gaylord et al. (1994)

http://www.marevita.org
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Figure 9.2: The drag coefficient for an Iridaea flaccida. “. ” represents the experimental values given in
Gaylord et al. (1994), “. ” represents the best fit line of those values and “. ” represents
the empirical formula for a sphere given by Almedeij (2008).

Figure 9.2 shows that the drag coefficient of an algae particle is lower than that of a sphere for high
particle Reynolds number. However it should be noted that the lowest value of the Reynolds number
from the experimental data is still rather high (around 2 × 105). This is why the best fit line of the
experimental drag coefficient increases rapidly after the known values. In order to stop the model
from overestimating the drag coefficient it is assumed that for the particle Reynolds number at the
intersection of the best fit line and the spherical drag coefficient (Re = 14073 in figure 9.2) and under,
the value for the drag coefficient should be that of a sphere, but calculated with the properties of an
alga. The drag coefficient for an algae is therefore given in the following equation:

CD,a =

{
exp (6.822121− 0.800627 ln (Re)) if Re > 14073

CD,sphere (Rea) if Re < 14073
(9.2)

WhereCD,sphere is given by equation 9.6, described later on. In the same paper by Gaylord et al. (1994)
an estimate of the added mass constant is given for the same alga (it is simplified to an isotropic body,
see equation 4.19):

M =Ma =3.57ρfΩa (9.3)

As a reminder the added mass constant of a sphere is ρfΩ/2, therefore algae particles are more de-
pendant on momentum effects than spheres, but are less influenced by drag forces.

9.2 Applying the model to represent algae particles

The response of an algae particle will be analysed in comparison to that of a sphere of equivalent
volume. A sphere of equivalent volume is given by defining the diameter through the following
equation:

Ds =

(
3πD2

ata
2

) 1
3

(9.4)



97 REAL LIFE APPLICATIONS

The other physical properties are defined in the same way as in section 4.2:

Res =
|U − V|Ds

ν
(9.5a)

Ss =
πD2

s

4
(9.5b)

Ωs =
πD3

s

6
(9.5c)

With the drag coefficient given by the equation given in Almedeij (2008), which was also given pre-
viously in chapter 4:

CD,sphere =

[
1

(φ1 + φ2)−1 + (φ3)−1
+ φ4

]1/10
(9.6a)

φ1 =(24Re−1
s )10 + (21Re−0,67

s )10 + (4Re−0,33
s )10 + (0, 4)10 (9.6b)

φ2 =
1

(0, 148Re0,11s )−10 + (0, 5)−10
(9.6c)

φ3 =(1, 57× 108Re−1,625
s )10 (9.6d)

φ4 =
1

(6× 10−17Re2,63s )−10 + (0, 2)−10
(9.6e)

The first test done is for free falling particles. Both particles were allowed to accelerate from rest for 1
second. The evolution of the of their falling velocities are given in figure 9.3. In this figure the falling
velocities are non-dimensionalised using the settling velocity Vset defined in equation 4.29b.
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Figure 9.3: Comparison between a free falling alga and a sphere of equivalent volume. “. ” repre-
sents the alga and “. ” represents the sphere.

From figure 9.3 it is visible that an alga particle takes much more time than a sphere to attain its
maximal settling velocity. Furthermore from equation 4.29b these settling velocities can be calculated
to be 0.0436 m/s for a sphere and 0.00232 m/s for an alga. From those values it is possible to conclude
that an alga will take much longer to adapt to flow variations from an initial state than a sphere.
The second test done by releasing particles in permanent Taylor eddies. These eddies are defined
in section 4.4 and solve for the Navier-Stokes equations. A fluid particle, an algae and a sphere of
equivalent volume were released in these eddies at the same position and with an initial velocity
equal to the fluid velocity. Their trajectories are plotted in figure 9.4.
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Figure 9.4: Trajectories of different bodies released in Taylor eddies. “. ” is a fluid particle, “. ” is
an alga particle, “. ” is a sphere of equivalent volume as the alga and “. ” is a sphere
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Figure 9.4 shows that alga particles will stay stuck in a turbulent eddy longer than a sphere of equiv-
alent volume, but less than a sphere with the same diameter. Therefore even though an alga might
take longer to accelerate than a sphere it will also follow more closely the turbulent fluctuations of a
fluid, and therefore it can be expected to diffuse more.

9.3 Application around a real bathymetry

Using all the coefficients and consideration presented in section 9.1 algae particles will be released in a
real bathymetry. A real bathymetry therefore implies that the simulations of the transport of particles
will be much longer then for the experiments of chapters 7 and 8. There are also several other flow
characteristics that need to be considered. For example the bathymetry can produce rapid changes
in flow patterns, and the time step needs to be chosen so that the displacement of one particle during
that time step can respond to the mean flow variations. Furthermore, the scale of the problem requires
effects such as the tides to be taken into account. These tides will create a variation in mean flows,
and therefore the Basset history force can become very important. The effect of the tides can result
in the deposition of particles on tidal flats, and these particle need to be taken into account properly.
Deposited particles need to forget all the previous forcing applied onto it and stay in their position
until the tide rises again to reintroduce them into the flow. The flow around a real bathymetry can
also experience additional forcing due to the action of the waves. Furthermore the waves can increase
the diffusion of particles on the free-surface, but since algae particles are slightly denser than water
these effects will be ignored, even when the water depth is very small, such as around tidal flats.
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9.4 Description of the problematic around Paluel

The real problematic that was chosen to test the model is that of the flow around the Paluel nuclear
power station, which situated along the Normandy coast of northern France. Due to the increase and
mass depositions of algal bloom along the french coast of Brittany and Normandy in the last decades,
for reasons explained in chapter 2, EDF has been interested in causes that can lead these algal blooms
to clog the filter before the pumps providing access to cool water, with aims maximise production.
Observations have lead to the conclusion that the presence of algae in the coastal water is most critical
when the wind blows from the north west, as the resulting waves, in combination to a rising tide can
create a zone of recirculation. Algae particles will be trapped and will accumulate in this recirculation
zone, but as the tide reverses these particles will be released as a block into the channel leading to the
pumps of the nuclear power station. Figure 9.5 shows the bathymetry around the Paluel power plant,
with the position of the pumps represented.
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Figure 9.5: The bathymetry around the Paluel power station.

The flow in this bathymetry was then modelled using the industrial code Telemac-2D. This code is a
finite element solver of the shallow water equations. The shallow water equations used are similar to
equations 3.28 presented in chapter 3, but the external forcing are taken into account:



DESCRIPTION OF THE PROBLEMATIC AROUND PALUEL 100

∂h

∂t
+
∂hUi

∂xi
=0 (9.7a)

∂Ui

∂t
+ Uj

∂Ui

∂xj
=− g

∂η

∂xi
+

1

h

∂

∂xj

[
h (ν + νT )

(
∂Ui

∂xj
+
∂Uj

∂xi

)]
+

1

h

∂Rij

∂xj
+ Cor,i + Fbo,i + Fwi,i (9.7b)

Where:

• Rij is the radiation stress tensor, which will be used later to include the effect of the waves.
• Cor,i represents the effect of Coriolis, and it is given by equation:

Cor =h2fe sin (Lat)

(
−Uy

Ux

)
(9.8)

Where fe is the earth’s self rotation frequency and Lat is the latitude.
• Fbo,i is the bottom friction forces given by equation:

Fbo,i =
Sbou

2
∗

|U|
Ui (9.9)

Where Sbo is the local slope of the bottom and u∗ is the bottom shear velocity.
• Fwi,i is the wind friction forces given by equation:

Fwi,i =aw |Uw|Uw,i (9.10)

Where aw is a dimensionless wind friction coefficient and Uw is the wind velocity vector ten
meters above the sea surface.

Equations 9.7 are then closed using a depth-averaged k-ε turbulence model described in equations
3.29. The values thus found for k and ε are then used in equations 9.7 through the usual relation for
the eddy viscosity:

νT = Cµ
k2

ε
(9.11)

The tides are taken into account by imposing height and velocity constraints along the water bound-
aries. The waves on the other hand are taken into account through the radiation stresses. These
radiations stresses are calculated using the computational code called Tomawac (Benoit et al., 1996).
Tomawac is a third generation model solving the equations governing the spectral wave action den-
sity ϑ(x,kw). The wave action density is a function of a two-dimensional position vector x and a two
dimensional wave number vector kw (with length 2π/λw, where λw is the wavelength). This spectral
density is given by the following equation (for example see: Komen et al., 1994):

∂ϑ

∂t
+

∂

∂xi
(ϑVw,i) +

∂

∂kw,i
(ϑVw,i) =

6∑
i=1

Qi (9.12)
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Where Vw is a four dimensional vector given by:

Vw =

(
dx
dt
,
dkw
dt

)
(9.13)

The components of the vector are given by the following equations:

dxi
dt

=
Cg

|kw|
kw,i + Ui (9.14a)

dkw,i

dt
=
∂σw
∂h

∂h

∂xi
− kw,j

∂Ui

∂xj
(9.14b)

Where Cg is the wave group velocity, h is the water depth and U is the depth averaged fluid velocity.
The last two variables can be unsteady in Tomawac, when waves are propagated in areas where tidal
effects are considered. σw is the relative angular wave frequency, meaning that it is observed in a
frame moving with the current at a speed U. It is given by the following equation:

σw =ω − kw,iUi (9.15)

ω is the absolute angular wave frequency, (ω = 2π/Tw, with Tw being the wave period). Linear wave
theory gives the following expressions:

Cg =
nwσw
|kw|

(9.16a)

σ2w =g |kw| tanh (|kw|h) (9.16b)

nw =
1

2

[
1 +

2 |kw|h
sinh (2 |kw|h)

]
(9.16c)

Furthermore the six terms of equation 9.12 labelled Qi represent the effect of the following physical
phenomena:

• Q1: input of energy from the wind

• Q2: dissipation due to white capping

• Q3: non-linear four-wave interactions (also known as “quadruplet” interactions)

• Q4: dissipation due to bottom friction

• Q5: dissipation due to depth-induced breaking in shallow water areas

• Q6: non-linear three-wave interactions in shallow water (also known as “triplet’ or “triad” in-
teractions

The term Q1 is a source term, the terms Q2, Q4 and Q5 are sink terms (that depend on the local wind
velocity, bathymetry and wave spectrum). The termsQ3 andQ6 are responsible for the redistribution
of energy within the wave spectrum. The models for the terms Qi’s are complex, and readers is ad-
vised to look up Benoit et al. (1996) for more information. Tomawac produces, amongst other results,
the radiation stresses through the following relation:
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Rij =− g

2πh

∫ ∫ [
1

|kw|2
kw,ikw,j +

(
1− 1

2nw

)
δij

]
C2
gϑdkw,idkw,j (9.17)

The integrals of Rij runs over the whole spectrum of energy. These radiation stresses can then be in-
serted in equation 9.7. The waves therefore affect the currents, whereas the mean currents and water
depth affect the wave propagation through equations 9.14. Therefore the fluid velocity along a coast-
line is calculated in three stages. Firstly the mean currents of the flow are found without considering
the effect of the waves. This current are then used to modify the wave propagation and the radia-
tion stresses are calculated. Finally the radiation stresses are used to recalculate the current along the
coastline. The wave-current is stopped at this stage the radiation stresses induced current will not
modify greatly the wave propagation3.
More details on the methods used by the Telemac-2D and Tomawac industrial code can be found
in Hervouet (2007) and Benoit et al. (1996) respectively 4, while a more complete description of how
this code was used to solve the flows around the Paluel power station and an brief overview of the
validations are given in Issa et al. (2009).
Figure 9.6 shows the importance of including radiation stresses in the numerical simulations. In this
figure the velocity vectors show that when the effect of the waves is taken into account through the
radiation stresses a recirculation zone west of the power station channel appears during flood tide.
This was also observed in situ, and especially during high risk events (Issa, 2008). What was therefore
concluded was that algae particles can be trapped in this zone and accumulate. Then, when the tide
reverses (during ebb tide), a high concentration of algae is released towards the pumps. It is this high
concentration of algae entering the channel towards the pumps that can result in clogging.

9.5 Transport patterns

There the flow around the Paluel power station was then solved using Telemac-2D in combination
with Tomawac, where the domain considered was meshed 7 kilometres west of the power station,
15 kilometres east and 7 kilometres into the sea. The elements of the mesh are 5 metres wide around
the pumps, 10 metres wide in the channel leading to the pumps, 15 metres wide around the power
station and 500 meters wide along the maritime boundaries. The simulations were then done using
a 2 second time step for the duration of three tides, where the first tide is used to let the flow be
established (Issa and Rougé, 2007). A time step of 2 second was chosen to verify the CFL conditions5.
To test the effects of algae in the flow around the Paluel power station, numerical simulations of par-
ticles released into the flow calculated using Telemac-2D were done using different particle transport
models, see chapter 6. The flow was simulated for a mean tide (with a tide coefficient of 75, with 1 m
waves propagating at a frequency of 0.11 and direction 125° and 2500 particles were released.
The numerical particles were released one hour before low tide in the center of the recirculation zone,
uniformly in a 50×50m area centred around (476823m,241652m), using the same axis as on figure 9.5.
This was done to ensure that particles fill up the whole recirculation area before the tide reverses
and the are transported towards the pumps. The released particles were then transported in the
triangular finite element mesh used by the Telemac-2D simulations in the same way as the simulations
of chapter 8 and using the method described in appendix D.
The different particle models used are summarised in tables 9.1, where the same nomenclature as
chapters 7 and 8 is used.

3A real coupling of both Telemac-2D and Tomawac is possible, but for the simulations around the Paluel power station
this method is sufficient.

4Both codes can be distributed to private and public user: www.opentelemac.org
5The CFL number is a ratio between the fluid velocity multiplied by the time and the length scale (for example the size

of an element of the mesh). CFL conditions states that this number should be smaller than one.

www.opentelemac.org
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(b) Simulation with radiation stresses calculated from north west (125°) waves with a wave
height of 1 m and a frequency 0.11 Hz

Figure 9.6: Two vector plots of the velocities around the Paluel power station to show the importance
of including the radiation stresses. The velocities are shown one hour before the high tide
(at time HT-1h). The white regions represent tidal flats, as calculated in Telemac-2D.

The simulations were first tested for spheres with the same diameter as the algae described in sec-
tion 9.1, but using the different solid body dynamics models described in chapter 4 (Models II to IV).
This was done to verify the impact of the different force components on the motion of solid bodies
in a real flow. These bodies were then compared to Model V, which is a simulation similar to model
II, but with a sphere chosen so that its volume is the same as an algae particle, see section 9.2. Model
VI is a simulation done with algae particles, as they are defined in section 9.1. Finally Model VII is
a simulation where the particles follow exactly the mean flow velocities, and Brownian motion used
in model VIII is a simple dispersive model (see equation 7.9 in chapter 7). These last two models are
used as references as they are the simplest two models used in environmental flows. For example
Brownian motion used in Issa et al. (2009) or Monti and Leuzzi (2010).
Figures 9.7 to 9.13 shows the evolution of particles transported using the models described in table 9.1.
The first thing that should be noted is the particles in all models undergo the transport pattern ex-
pected. The particles are trapped in the recirculation zone that occurs as a result of the waves, and
as the tide reverses the particles are released towards the channel preceding the pumps. Looking at
the evolution from figure 9.7, where particles follow exactly the mean flow properties, to figure 9.8
where the dispersion is modelled using a simple turbulence model, it can be seen that considering the
turbulence of the fluid is necessary to have particles enter the channel. Figure 9.9 is the first model
which considers solid body dynamics, and it shows that including solid body dynamics increases the
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Table 9.1: Summary of the different models compared and different forcing considered for particles
released around the Paluel power station6. SLM means the Simplified Langevin Model,
see chapter 5.

Basset Momentum Drag Turbulence Body &
model7 size

Model II yes yes yes SLM sphere;
Ds = 5 cm

Model III no yes yes SLM sphere;
Ds = 5 cm

Model IV no no yes SLM sphere;
Ds = 5 cm

Model V yes yes yes SLM sphere;
Ds =eqn 9.4

Model VI yes yes yes SLM Algae;
Da = 5 cm

Model VII no no no none fluid
particle

Model VIII no no no Brownian fluid
motion particle

effect of the mean flow pattern on the motion of the particles, as the particles fill up the recirculation
zone more completely. However the particles enter the channel in a single line. Figure 9.10 shows
that adding the momentum of the bodies to the solid body dynamics increases the dispersion of the
bodies so that particles fill up the recirculation zone more uniformly and they enter the channel in
a less organised manner. Figure 9.11 shows that the final addition of the Basset History force to the
particle transport model tightens the area covered by the particles.
Looking at figures 9.11 to 9.13 shows that modifying the characteristics of the solid bodies to apply
to algae, by considering a sphere with an equivalent volume or changing the physical characteristics,
tends to increase the overall diffusive effects, as the area covered by the particles is more uniform.
However the area covered by the particles is slightly smaller than for spherical that have the same
diameter as the algae particles. Besides these considerations adapting the model to correspond to
algae particles does not change greatly the transport pattern of the particles.
Therefore figures 9.7 to 9.13 allows to conclude that considering only the mean velocities of the flow
is sufficient to verify if particles can be trapped into the recirculation zone that appears west of the
power station. However it is important to consider diffusive effects to have particles enter the chan-
nel. Furthermore every information that can be applied to the solid body dynamics model modifies
the transport pattern and therefore it is important to include as much information as possible when
modelling the particle transport.

6Model I presented in table 7.4 is not used as the model taking into account the “Crossing Trajectories Effects” has hardly
any effect in 2D horizontal particle transport models.

7See chapter 5.
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Figure 9.7: Particles transported in the flow around Paluel using fluid trajectories (Model VII). LT is
the time of the Low Tide and HT is the time of the High Tide. The white regions show the
tidal flats.
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Figure 9.8: Particles transported in the flow around Paluel using model VIII. LT is the time of the Low
Tide and HT is the time of the High Tide. The white regions show the tidal flats.
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Figure 9.9: Particles transported in the flow around Paluel using Langevin equation, model IV. LT is
the time of the Low Tide and HT is the time of the High Tide. The white regions show the
tidal flats.
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Figure 9.10: Particles transported in the flow around Paluel using Langevin equation, model III. LT
is the time of the Low Tide and HT is the time of the High Tide. The white regions show
the tidal flats.
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Figure 9.11: Particles transported in the flow around Paluel using Langevin equation, model II. LT is
the time of the Low Tide and HT is the time of the High Tide. The white regions show
the tidal flats.
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Figure 9.12: Particles transported in the flow around Paluel using Langevin equation, model V. LT is
the time of the Low Tide and HT is the time of the High Tide. The white regions show
the tidal flats.
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Figure 9.13: Particles transported in the flow around Paluel using Langevin equation, model VI. LT
is the time of the Low Tide and HT is the time of the High Tide. The white regions show
the tidal flats.
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9.6 Particles exiting the domain

The transport patterns of the previous sections have shown that modifying the physical characteristics
of the transported particles change visibly the transport pattern of the particles (figures 9.7 to 9.12),
but it is difficult to analyse the significances of these different transport pattern. The main interest
in this problem was to have a method that could be used to predict the clogging of the pumps of
the Paluel power station. Therefore to differentiate the relevance of the different particle transport
models an analysis of the particles exiting the domain will be done. The pumps of the Paluel power
station a number, ranging from one to four, and will be numbered west to east, see figure 9.14.
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Figure 9.14: Description of the pumps8used by the Paluel power station.

In situ observations by EDF have lead to the conclusion that the pumps 3 and 4 are the most at risk
(Travade and Guerin, 2004). Figures 9.15 and 9.16 show the number of particles exiting the domain of
calculations through each pump. Figure 9.15 shows the evolution of how particles exit the simulation
model when additional information on the behaviour of particles is added to the model. Figure 9.15a
shows the values for particles following the mean flow (model VII), figure 9.15b shows how adding
a simple turbulence model (model VIII) increases the amount of particles entering the pumps, which
is in accordance to what is said in section 9.5. Figure 9.15c shows that adding the drag coefficient
to the particle transport model (model IV) increases even more the amount of particles entering the
pumps, but these particles enter mostly pump 1. Adding even more information to the solid body
dynamics, figures 9.15d and 9.15e (model III and II), reduces the amount of particles entering the
model to a value closer to the value of the brownian motion model, but it also increases the mixing
of the particles within the channel, as particles enter the first to pumps more uniformly.

8Technically, each pump is doubled.
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Figure 9.15: Bar plots of the number of particles entering each pumps, for different solid body dy-
namics models. npart are the number of particles entering a pump and Ntotal is the total
number of particles released.

Figure 9.16 shows the evolution of how particles exit the domain when the body is modified to corre-
spond to algae particles. Figure 9.16a is the same as figure 9.15e, and it shows how spherical particles
with the same diameter as the algae (model II) exit the domain. In figure 9.16b spherical particles are
still carried, but these particles have the same volume as the algae (model V). Modifying the diameter
of the transported particle so that the volume corresponds to that of an algae reduces the amount of
particles entering through pump 1. In figure 9.16c, particles are made to correspond to algae particles
(model VI) by modifying the solid body dynamics through the considerations presented in section 9.1,
also increases the difference between the particles entering pump 1 and 2, but it does so less than the
bodies transported in figure 9.16b.
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Figure 9.16: Bar plots of the number of particles entering each pumps, for different solid body shape
or size. npart are the number of particles entering a pump and Ntotal is the total number
of particles released.

No solid particle transport model in figures 9.15 or 9.16 is able to predict that the two most affected
pumps are pumps 3 and 4, as was observed in situ by Travade and Guerin (2004). There are four
possible reasons why this might be the case.
Firstly the position at which the particles exit the domain is very dependent on the point of release,
however there are no in situ data, only observations, on how the particles are distributed into the
recirculation zone. A better method would have been to release the algae particles further west of
the power station so that the tidal currents transport the particles towards the recirculation zone in a
more natural fashion. This method was not done, so that the transport pattern of the particles in the
current could be more visible.
The second reason, and most important, why the simulation do not find that pump 3 and 4 are those
subject to the highest risk of clogging might result from three-dimensional effects. The flow simula-
tions were done in two dimensions, but the algae particles are not distributed uniformly along the
water column, and are more likely to travel along the bed. In addition the pumps of the power station
do not pump the water along the whole water column, but around the surface of the flow. This dif-
ference in level might explain why in the observations pumps 3 and 4 are the most at risk, as particles
might arrive towards pumps 1 and 2 along the sea bed, and then get lifted off the bed, towards the
free-surface and the enter pumps 3 and 4.
The third reason why none of the models presented in figures 9.15 and 9.16 cannot predict accurately
the risk to pumps 3 and 4 could be because the mixing regime inside the channel is not accurately pre-
dicted. Inside the channel the flow model was only calibrated by observing the mean flow velocities,
however no calibration or measurement were done on the turbulent kinetic energy or its dissipa-
tion rate (Rougé and Luck, 2006). Furthermore no velocity measurements were done just around the
pumps, and therefore the velocity around the pumps might be off. Figure 9.17 for example shows
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that some of velocity vectors would go through the walls separating the pumps, and suggests that
some measurements of the flow velocities around the entrance of the pumps might be necessary to
calibrate the velocity profiles in this area. Nonetheless the test case of chapter 8 tends to indicate that
Telemac-2D gives reasonable approximations to the flow velocities.
The final reason why the pumps 3 and 4 were not found to be the most at risk is because the clogging
was only tested for one scenario of tides and waves. This scenario is suspected to be the one most
favourable to algae clogging, but it might not be the one that affects the two eastern pumps the most.
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Figure 9.17: Fluid velocity vectors around the pumps of the Paluel power station.

Nonetheless figures 9.15 and 9.16 show that considering the diffusion due to turbulence and the solid
body dynamics to the transport of particles increases the amount of particles that enter the channel
and exit the domain through the pumps. Figure 9.15 shows that refining the forces acting on the
solid bodies tends to shift the mean location at which the particles exit the domain towards the east-
ern pumps. This effect is then further emphasized when the particles considered are spheres with a
volume equivalent to an alga or an alga modelled using the considerations presented in section 9.1.
The mean location at which the particles exit the domain can be calculated by weighting each pump
number with the number of particles exiting through it and the total number of particles exiting the
domain. This gives the following equation:

Exit =

4∑
ip=1

ipnpart,ip

4∑
ip=1

npart,ip

(9.18)

WhereExit is mean location at which the particles exit the domain, ip is the pump number and npart,ip
is the number of particles exiting the domain through pump ip. The mean location at which the
particles exit the domain for the different particle transport models model is given in figure 9.18.
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Figure 9.18: Mean location at which the particles exit the domain for different particle transport
model, see equation 9.18. Models VII and VIII are not shown, because not enough parti-
cles exit the domain.

Figure 9.18 therefore shows that including the more information on the solid body dynamics, shifts
the mean location at which the particles exit the domain towards the east, and therefore closer to the
observations. What this implies is that including all of the relevant information on the solid body
dynamics is necessary to have the particles mix properly within the channel, although this is still
limited by the degree of accuracy of the channel flow. Furthermore the small difference between
model V and model VI suggest that more research might be necessary on mechanical characteristics
of an alga, particularly on the drag coefficient at low particle Reynolds number (see figure 9.2).
The final interesting criteria is to look a how fast the particles fill up the pumps. Figure 9.19 shows
the cumulative number of particles entering the channel in time, for the two models that are made to
resemble alga particles, as they are those that correspond the most to the observations.
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Figure 9.19: Cumulative number of particles entering each pumps for models considering different
particles. “. ” shows the number of particles entering pump 1, “. ” shows the num-
ber of particles entering pump 2, “. ” shows the number of particles entering pump
3 (for both cases it is equal to zero) and “. ” shows the number of particles entering
pump 4.

The information figure 9.19 shows is that when an effort is made to have the transported particles
resemble an algae the difference between the rate at which the pump 1 and pump 2 fill up is greater.
This then leads to the hypothesis that if the point of release of the particles, the fluid velocities in the
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channel were modified and the three-dimensional effects were taken into account so that the particles
exited the domain in a way resembling the observations, algae particles would enter the channel in
a tighter group than spheres with the same volumes, and therefore would be more likely to cause
problems.
In conclusion the simulations around the Paluel power station show that the particle transport model
developed in this thesis can be applied to environmental flows fairly easily. It also underlines the
importance of an understanding of how much information is required from a simulation to adapt
the particle transport model to the problematic. For example if for the problem of the Paluel power
station the only information that was required was to understand under what conditions particles
can get trapped west of the power station then using only the mean flows will be necessary. However
if one is interested in seeing if particles can enter the pumps then some body dynamics would need
to be applied, as well as a turbulence model. It might be necessary also to test different conditions of
release o the particles. If the information required was to understand exactly how the particles enter
the pumps, then a complete description of the solid dynamics, as well as modifications so that the
body corresponds to an algae, will be necessary. However this will also require several other steps,
such as a more complete calibration of the flow regime in the channel as well as research on how
particles enter the recirculation zone. Furthermore three dimensional effects of the flow will need to
be taken into account, and this will require other considerations on the particle transport model, such
as how algae particles will be transported along the bed.

Table 9.2: The computational times of the different particle transport models on a HP Workstation
Z600. The simulations are done for three tides, where the first tide is used to let the flow
become established. Particles are then released after this first tide.

Model Computational time Percentage increase in
time per particle (%)

No particles 17 h 50 m -
Model VII 18 h 30 m 0.0015
Model VIII 18 h 30 m 0.0015
Model IV 18 h 30 m 0.0015
Model III 18 h 30 m 0.0015
Model II 18 h 30 m 0.0015
Model V 18 h 30 m 0.0015
Model VI 18 h 30 m 0.0015

Finally the different computational times for different particle transport models are shown in table 9.2.
One can see in this table that the increase in computational time caused by releasing 2500 particles
into the flow is rather small, around 4%, regardless of the particle transport model used.
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Chapter	10

Conclusion

Le modèle développé dans ce mémoire a été testé sur trois cas tests. Premièrement
un test simple a été fait dans lequel des corps sphériques ont été relâchés dans une turbu-
lence stationnaire quasi-homogène. De ces expériences il peut être conclu qu’il est néces-
saire d’avoir une bonne description des propriétés dynamiques des corps pour prédire les
vitesses de ces corps dans ce régime turbulent. Dans un deuxième temps, des particules
sphériques ont été relâchées dans un écoulement en canal partiellement obstrué. Il a ainsi
été prouvé que le modèle arrive à prédire de façon satisfaisante la proportion de corps se
trouvant capturée par la zone de recirculation située derrière une digue. Cependant pour
ce type d’information il n’est pas nécessaire de modéliser la dynamique des corps solides
avec une grande précision. Dans le dernier cas test des particules, ressemblant à des
algues, ont été relâchées dans un écoulement réel aux alentours de la centrale de Paluel.
Il a ainsi été trouvé qu’il n’est pas nécessaire de prendre en compte toutes les forces agis-
sant sur le transport des corps pour obtenir un mode de transport qui semble proche de la
réalité. Cependant, pour vérifier si des particules peuvent rentrer dans le canal d’amenée
de la centrale il est nécessaire de prendre en compte une description complète des forces
agissant sur les propriétés dynamiques des corps. Finalement la combinaison du mod-
èle Eulérien de courant et du modèle Lagrangien de transport des corps n’arrive pas à
prédire précisément quelles pompes de la centrale sont le plus touchées, et une étude plus
approfondie serait nécessaire.

Le modèle développé permet ainsi de modéliser des particules proches des algues dans
un écoulement côtier complexe. Il se différencie ainsi des modèles de transport de partic-
ules disponible dans la littérature par la possibilité de prendre en compte de larges écoule-
ments naturels, le degré d’information sur la dynamique des corps et la taille et la forme
des particules modélisées.

Cependant il reste encore quelques perspectives d’améliorations. Il semble surtout
nécessaire d’approfondir le comportement des corps en trois dimensions, ainsi que le sur-
croit de décorrélation entre la vitesse moyenne des corps et du fluide liée aux effets inertiels
des corps.

Néanmoins ce modèle de transport de particules peut-être utilisé pour prédire le
transport d’algues en suivant les quelques conseils suivants. Premièrement il est impor-
tant d’avoir une bonne prédiction des valeurs caractéristiques moyennes de l’écoulement.
Ensuite il est important de savoir quel degré d’information l’utilisateur veut obtenir de
la simulation, car il peut être possible d’ignorer certaines composantes des propriétés dy-
namique des corps. Il est aussi important d’utiliser un pas de temps suffisamment petit
pour qu’une particule subisse toutes les variations moyennes de l’écoulement. Finale-
ment l’utilisateur devrait comprendre quel type de corps doit être relâchés et comment
prendre en compte chaque composante des forces caractérisant la dynamique des corps.
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10.1 Conclusion on the validity of the model

This thesis aimed to develop a particle transport model that could be used in combination with a
environmental flow model to predict the motion of algae particles along the coast line. In order to do
so a three step stochastic model was developed, see equations 6.7. In the first step the turbulent fluid
velocities at the location of the body are modelled using a Lagrangian model described in chapter 5,
and extended in chapter 6. This model requires the mean fluid velocities, the turbulent kinetic energy
and its dissipation rate at the location of the particle to be known, and therefore this requires a large
Eulerian mean flow model to be applied. Because of the hypothesis on the size and concentration
of bodies developed in chapter 2, the coupling between this large Eulerian mean flow model and the
stochastic Lagrangian model needs only to be done from the Eulerian model to the Lagrangian model.
Using these turbulent fluid velocities the transport of the solid particle can be calculated. Details on
the forces required to predict the motion of a solid particle can be found in chapter 4, and a description
of how to extend this model to algae particles can be found in section 9.1.
The resolution of the particles transport model, as defined by equations 6.7, can be difficult to solve
explicitly as the equations governing the fluid and the solid body velocities are subjected to strong
constraints on the numerical time step. A method is therefore proposed in chapter 6 to limit those
constraints on the numerical time step.
This model was then applied to three test cases. Firstly it was applied to spherical particles released
in quasi-isotropic turbulence generated by a pair of oscillating grids (see chapter 7). In this model the
effects of different force components were tested, as well as the “Crossing Trajectories Effect”. This
effect represents the increased decorrelation between a solid particle’s mean velocity and that of the
mean surrounding fluid’s velocity, due to the velocity differences (a solid particle will not remain
inside a turbulent eddy during the whole duration of the eddy). Most of the decorrelation occurs
from external forces, and a method was used to take into account those effects resulting from the
gravitational forces. This experiment brought to light that a good description of the forces acting on
the solid particles is necessary to predict the solid particle velocities. Furthermore it also showed that
the “Crossing Trajectories Effect” resulting from the gravitational forces only have a little effect on the
horizontal solid particle velocities.
The second test case, described in chapter 8, released particles in a non-homogeneous mean flow.
This was done by releasing particles in a partially obstructed channel. The groyne, which was used
to obstruct partially the flow, created a recirculation zone behind. The objective of this test case was
therefore to test the coupling between the large Eulerian flow model and the stochastic Lagrangian
solid particle transport model. The result show that this model is able to predict that particles will be
trapped into the recirculation zone. The correspondence between the experimental and the numerical
results on the proportion of particles entering a zone of interest, as well as the mean time of residence
inside that zone are adequate, but not great. However it was difficult to obtain great experimental
results as the groyne obstructing generated a lot vortices, distorting the recordings of particle trajec-
tories. Furthermore it can be concluded from this experimental test case that considering all of the
force components in the particle transport model might not be necessary to predict if particles will be
trapped in a recirculation zone.
The final test case was for a real environmental flow (see chapter 9). The aim was to simulate the
motion of algae around a nuclear power station. In order to do so a large Eulerian flow model was
developed. This model included the effect of the bathymetry, the tide and waves. The simulations
of particle transport in this problematic show that the particle transport model is fairly effective in
predicting the entrapment of particles inside a recirculation zone. Furthermore the different particle
transport models, considering different force components, particle shape and size have different visi-
ble effects on how particles enter the channel leading to the nuclear power station. From these results
it can be concluded that in real flow simulations, it is important to include a good description of the
body of interest. However these simulations then proved limited when trying to predict precisely
which of the pumps used by the Paluel power station were most at risk, and it suggested to model
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the flow in three dimensions, and recalibrate the flow regime inside the channel to improve those
results.

10.2 Strong points of the model

The model was developed for a specific type of problem. Its aim was to provide tools to predict the
transport of algae particles along the coastline. To do so the simulation of the transport of particles
was separated into two different modelling steps. In the first stage of the simulations, the mean
flow around the coastline of interest is found using a large Eulerian model. The model suggested
is to use Telemac-2D, as it is an industrial code specifically designed for this purpose. It uses finite
elements to solve the shallow water equations, and it can take into account the effect of the tides, and
through the use of Tomawac the radiation stresses occurring from the wave breaking. Tomawac is
a third generation model solving the equations governing the spectral wave action density, and it is
distributed as part of the Telemac system. A large Eleurian model is used so that a solution to the
general governing flow can be found fast, but while at the same time remaining descriptive enough
to take into account all of the large scale effects that can impact the transport of algae particles. To
link the large scale variations to the small scale variations that affect the transport of algae particle this
Eulerian flow model is coupled to stochastic Lagrangian particle model. This is the second step of the
simulations. Once the mean flow characteristics have been calculated using the large Eulerian flow
model, the pertinent information is extracted and used to calculate the turbulent fluid velocities at
the position of a solid body. These turbulent fluid velocities are then used to calculate the transport of
particles by considering a wide range of physical characteristics on the shape and size of the particle
and applying the relevant force components of the solid body dynamics.
This coupling between a large Eulerian flow model and a stochastic Lagrangian particle transport
model is one of the strong points of this model. Through this coupling it can take into account large
complex flows while at the same time considering enough information on the solid body dynamics,
shape and size to have a realistic transport of such particles, and differentiate different type of solid
particles. This differentiates the model to DNS particle transport models (for example: Uhlmann,
2008), which provide a complete description of the forces acting on a solid body in the flow, but
cannot be applied to large scale particle transport model.
Furthermore the use of a large scale Eulerian flow model allows the deposition and reinsertion of
solid particles on tidal flats to be taken into account, allowing a process specific to algae transport to
be considered.
The detailed description of the solid body dynamics is a second strong point of this particle transport
model as it can provides short term responses to flow variations. This could not be done in models
designed specifically for the transport of algae particles in large coastal flows, such as the models de-
scribed in Salomonsen et al. (1999) and Donaghay and Osborn (1997) which focused on the evolution
of populations of algae particle over the course of several days or weeks.
Furthermore in this model an efficient method has been developed to take into account complex forces
such as the Basset history force and the turbulence using a fixed time step. This allows a detailed de-
scription of the solid body dynamics to apply to a wide range of physical problems. This is particularly
important as several particle transport model in environmental flows limit themselves to modelling
particles as fluid particles experiencing turbulent diffusion through a simple turbulence model, for
example Monti and Leuzzi (2010), Issa et al. (2009), Heemink (1990) or Stijnen et al. (2006).
In addition this model can be applied to large, non spherical (but still isotropic) particles. This is
a strong point as the size of the particle filters the smaller scales of turbulence. Furthermore the
constants used to model the solid body dynamics can be modified to apply to large spheres or algae
(although the bodies still need to be considered isotropic), making the model easily adaptable to
different bodies. Therefore through the hypothesis applied on the solid body dynamics to correspond
to the specificities of the algae, this transport model differentiates itself from other models that include
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a detailed description of the surrounding flow and the solid body dynamics. Example of such models
can be found for aerosols models, such as those presented in Csanady (1963), Minier and Peirano
(2001) or Sawford and Guest (1991), or for air bubbles transport model, for example see Yeo et al.
(2010).
Finally the model developed in chapter 6 has been constructed in such a way that the degree of in-
formation on the solid body dynamics, size and shape is modulable. This means that simplifications
can easily be made to the particle transport model, allowing simulations to be as efficient as possible
for the problem considered.

10.3 Limitations and perspectives

Nonetheless the particle transport model developed in this thesis has a few limitations. The first lim-
itation is linked to the two dimensional modelling. As the numerical test case of chapter 9 brought to
light, some of the problems considered in environmental flows will require three dimensional effects
to be considered. To adapt the problem to three dimensional effects is slightly more complex to solv-
ing for the flow using a three dimensional Eulerian model, and taking into account the gravitational
effects in the particle transport problem, as described in chapter 9. Besides, some additional particle
transport modelling characteristics will need to be analysed. For example no attempt has been made
in this thesis to consider the bed load transport or the additional surface diffusion resulting from wave
breaking.
The second limitation of the particle transport model developed in this thesis is its consideration of
“Crossing Trajectories Effects”. In this thesis the only method used to take into account the “Cross-
ing Trajectories Effects” was using the method developed in Minier and Peirano (2001). This method
only considered the increased decorrelation between the solid particle velocities and the fluid veloci-
ties that resulted from the mean velocity differences between the solid particles and the surrounding
fluid created by external forces, such as the acceleration due to gravity. However mean velocity
differences between a solid particle and the surrounding fluid can result also from the inertial prop-
erties of this solid body. Therefore some additional research is recommended on the impact of the
inertial properties of solid bodies on the “Crossing Trajectories Effects”. An improved modelling of
the “Crossing Trajectories Effects” with the inertial properties of the solid bodies will probably only
impact particles transported in regions were the mean fluid flow changes rapidly, as normally in en-
vironmental flows particles are transported over long distance, and it can be readily assumed that
there will not be a large difference between the mean particle velocities and the mean fluid velocities.
The final limitation of particle transport model is linked to the precision of the fluid modelling around
each specific particles. This model was developed to be used easily in combination with environmen-
tal flow Eulerian models. These models typically do not require a more refined turbulence model than
the k-εmodel, and the differences in turbulent velocities are not known over length scale equal to the
size of the solid body. Because of this limitation particles have to be assumed to be irrotational and
the Basset History force are calculated under the assumption that the solid bodies are small. This is
reinforced by the fact that the turbulent fluid velocities at the position of a solid body are also limited
by the stochastic fluid velocity model applied, refer to Pope (2000) for more information. Nonetheless
this limitation will not affect greatly simulations in environmental flows, but it can explain some of
the differences between the experimental and numerical results presented in chapter 7.
To summarize, the perspective for improvement of this solid particle transport model should focus
on the three dimensional particle transport and on the inertial “Crossing trajectories Effect”.
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10.4 Advices to use the model

Before using the particle transport model developed in this thesis to particles transported in an en-
vironmental flow one should ensure that the Eulerian flow model provides the correct mean flow
characteristics. For example in the simulations around the Paluel power station, had the radiation
stresses not been taken into account, the recirculation zone west of the power station would not have
been modelled, and the diffusion of solid particles would not have been modelled accurately. Fur-
thermore these simulations point out the limitations of the flow model in the channel before pumps
and it suggest that this model should be modified to consider three dimensional effects and possibly
a recalibration of the fluid velocities.
Secondly the user of the code should know how much information they want from the simulations.
It is not always necessary to go as deep as the Basset History force, when considering solid body
dynamics. For example in the partially obstructed channel experiment, described in chapter 8, the
only information that was required was if particles could get trapped in the recirculation zone, and it
has been shown that a particle transport model that only went as far as the drag forces gave similar
results to a model that considered all the force components up to the Basset History force.
Thirdly the time step should be chosen with care. Even though the exact integrator method developed
in chapter 6 to solve for the particle transport model is subject to weak constraints on the numerical
time step, the displacement of a solid particle during one time step should be small enough that a
particle can see all of the fluid variations. This is why it is recommended to set the time step of the
numerical solid particle transport model using CFL conditions.
Finally the solid body dynamics, size and shape considered should be understood. The trickiest force
component of the solid body dynamics model is the Basset history force. This force is found in the
model developed in this thesis by summing an integrand over a certain time interval. This time
interval is divided into a number of sub steps. It is recommended that those sub steps are set to the
same value as the numerical stochastic time step, and that the time interval over which the integrand
is summed is about a hundred stochastic time steps long. Furthermore this model gives very different
values according to the physical characteristics of the body, such as the size and density. In addition
the modifications that can be done to apply the model to algae has been set to correspond to a certain
type of algae (see chapter 9), and should not be used by default.
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Appendix	A

Calculations	relative	to	the	exact	integrator
model

Où les étapes de calculs nécessaires pour développer l’intégrateur exact du modèle
stochastique (chapitre 6) sont présentées.
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A.1 The three steps solid particle transport model

From all the considerations presented in chapters 4, 5 and 6 a three step particle transport model was
developed:

dU (s)
i =− 1

T (s)
i

U (s)
i dt+ C (s)

i dt+B(s)
i dWi (A.1a)

dVi =FadU
(s)
i +

1

τpart
(Ui−Vi) dt+ Fi,cdt (A.1b)

dXi =Vidt (A.1c)

This model is subject to strong constraints on the time step dt because of T (s)
i and τpart. Therefore

a method is needed to solve these equations. As for an explicit resolution of these equations it is
assumed that all the coefficients can be considered constant over the time interval dt = t−t0. Therefore
if Fa, τpart, Fi,c, T (s)

i , C (s)
i and B(s)

i are constant then there exists an analytical solution for the motion
of solid isotropic bodies

A.2 Analytical solution for the fluid velocities

Since all the coefficient of the governing equation A.1a are fixed then there should exist a solution for
the fluid velocity seen by the solid body U (s)

i with the form:

U (s)
i (t) =Hi(t) exp

(
− t

T (s)
i

)
(A.2)

This then gives:
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T (s)
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)
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T (s)
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)
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U (s)
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(
− t

T (s)
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)
(A.3)

And therefore:

dHi(t) = exp
(

t

T (s)
i

)[
C (s)
i dt+B(s)

i dWi(t)
] (A.4)

A solution for Hi can then be calculated by integrating over the interval dt = t− t0.
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Using equation A.2, a solution for Hi(t0) can be calculated:

Hi(t0) = U (s)
i (t0) exp

(
t0

T (s)
i

)
(A.6)

Therefore equations A.5 and A.6 can be used to solve equation A.2:
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Or, if we define:

αi = exp
(
− dt

T (s)
i

)
(A.8)

Then:

U (s)
i (t) = αiU

(s)
i (t0) + (1− αi)C

(s)
i T

(s)
i + γi(t) (A.9)

Where the stochastic integral γi is:

γi(t) = B(s)
i exp
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T (s)
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dWi(s) (A.10)

A.3 Analytical solution for the solid particle velocities

If equation A.1a is used in place of dU (s)
i (t) in equation A.1b then:

dVi(t) =Fa

[
− 1

T (s)
i

U (s)
i dt+ C (s)

i dt+B(s)
i dWi(t)

]
+

1

τpart

(
U (s)
i (t)− Vi(t)

)
dt+ Fi,cdt (A.11)

Then, as in for fluid velocities, a solution should exist under the following form:

Vi(t) =Hi(t) exp
(
− t

τpart

)
(A.12)

Therefore, the differential of Vi is given by:
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dVi(t) =− 1
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(A.13)

Which gives the following expression for dHi(t):
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The following notations can be used:
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dHi can therefore be written as (recall that dt = t− t0):
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A solution can therefore be calculated by integrating on the interval dt = t− t0:
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Therefore:
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Using the definition of Vi(t) given previously (equation A.12) it is possible to conclude that Hi(t0) =
Vi(t0) exp (t0/τpart), and therefore:
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If this definition of Hi(t) is used in equation A.12, and after rearrangements:
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If we define:

β = exp
(
− dt

τpart

)
(A.22)

Then the exact integrator for the solid particle velocities, with αi defined in equation A.8, is:
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With:
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Či =
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However it should be noted that Či (and therefore Vi(t)) is undefined if T (s)
i = τpart, but these values

have no reason to be equal. Nonetheless in computer programming a limiter should be applied (eg:
min(T (s)

i − τpart, 10
−6)) just in case.

The stochastic integral Γi defined by:
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Inserting the definition for γi in Γi, the stochastic integral of Vi becomes:
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Using integration by parts Γi can be rewritten as:
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i Či exp

(
− t

T (s)
i

)∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)

+B(s)
i

(
Fa − Či
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A.4 Analytical solution for the position of the body

Using the definition for the displacement of the bodies given by equation A.1c, a solution can be found
by integrating dXi(t) over the interval dt = t− t0:
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Using the following integral:
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The solution to Xi(t) can be found by:
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Or using the αi and β notation:
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Where Φi is a stochastic integral defined by:
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Integration by parts can again be used to rearrange this integral:
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Γi − Čiγi (t)

]
+B(s)

i

[(
T (s)
i − τpart

)
Či + Faτpart

] ∫ t

t0

dWi(s) (A.33)
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A.5 Solving the stochastic integrals

The are therefore three stochastic integrals:

γi(t) =B
(s)
i exp

(
− t

T (s)
i

)∫ t

t0

exp
(

s

T (s)
i

)
dWi(s) (A.34a)

Γi(t) =B
(s)
i Či exp

(
− t

T (s)
i

)∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)

+B(s)
i

(
Fa − Či

) exp
(
− t

τpart

)∫ t

t0

exp
(

s

τpart

)
dWi(s) (A.34b)

Φi(t) =B
(s)
i

[(
T (s)
i − τpart

)
Či + Faτpart

] ∫ t

t0

dWi(s)

−B(s)
i ČiT

(s)
i exp

(
− t

T (s)
i

)∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)

−B(s)
i

(
Fa − Či

)
τpart exp

(
− t

τpart

)∫ t

t0

exp
(

s

τpart

)
dWi(s) (A.34c)

Each integral can be modelled as a dependent centred Gaussian integral (Peirano et al., 2006). This
property allows the implies the following definition:

γiΓi

Φi

 = L
ξγiξΓi

ξΦi

 (A.35)

Where each ξi corresponds to an independent random variable with 0 mean and a standard deviation
equal to 1. The matrix L is defined by:

LLT =Σ (A.36)

Where Σ is the covariance matrix defined as:

Σij =cov (κi,κj) (A.37)

Therefore LLT is equal to:

L11 0 0
L21 L22 0
L31 L32 L33

L11 L21 L31

0 L22 L32

0 0 L33

 =

cov (γi, γi) cov (γi,Γi) cov (γi,Φi)
cov (Γi, γi) cov (Γi,Γi) cov (Γi,Φi)
cov (Φi, γi) cov (Φi,Γi) cov (Φi,Φi)


≡

 ⟨γiγi⟩ − ⟨γi⟩ ⟨γi⟩ ⟨γiΓi⟩ − ⟨γi⟩ ⟨Γi⟩ ⟨γiΦi⟩ − ⟨γi⟩ ⟨Φi⟩
⟨Γiγi⟩ − ⟨Γi⟩ ⟨γi⟩ ⟨ΓiΓi⟩ − ⟨Γi⟩ ⟨Γi⟩ ⟨ΓiΦi⟩ − ⟨Γi⟩ ⟨Φi⟩
⟨Φiγi⟩ − ⟨Φi⟩ ⟨γi⟩ ⟨ΦiΓi⟩ − ⟨Φi⟩ ⟨Γi⟩ ⟨ΦiΦi⟩ − ⟨Φi⟩ ⟨Φi⟩


=

 ⟨
γ2i
⟩

⟨γiΓi⟩ ⟨γiΦi⟩
⟨γiΓi⟩

⟨
Γ2
i

⟩
⟨ΓiΦi⟩

⟨γiΦi⟩ ⟨ΓiΦi⟩
⟨
Φ2
i

⟩
 (A.38)
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And so each coefficient of the matrix L is defined as:

L2
11 =

⟨
γ2i
⟩

⇒ L11 =
√⟨

γ2i
⟩ (A.39a)

L11L21 = ⟨Γiγi⟩ ⇒ L21 =
⟨γiΓi⟩
L11

(A.39b)

L11L31 = ⟨γiΦi⟩ ⇒ L31 =
⟨γiΦi⟩
L11

(A.39c)

L2
21 + L2

22 =
⟨
Γ2
i

⟩
⇒ L22 =

√⟨
Γ2
i

⟩
− L2

21 (A.39d)

L21L31 + L22L32 = ⟨ΓiΦi⟩ ⇒ L32 =
⟨ΓiΦi⟩ − L21L31

L22
(A.39e)

L2
31 + L2

32 + L2
33 =

⟨
Φ2
i

⟩
⇒ L33 =

√⟨
Φ2
i

⟩
− L2

31 − L2
32 (A.39f)

The covariance are the defined by the following equations (using Ito integrals):

⟨
γ2i
⟩
=

⟨
B(s)

i exp
(
− t

T (s)
i

)∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)B

(s)
i exp

(
− t

T (s)
i

)∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)

⟩
=B(s)

i
2 exp

(
− 2t

T (s)
i

)∫ t

t0

exp
(

2s

T (s)
i

)
ds

=B(s)
i

2 exp
(
− 2t

T (s)
i

)
T (s)
i

2

[
exp

(
2s

T (s)
i

)]t
t0

=
B(s)

i
2T (s)

i

2

[
exp

(
2t

T (s)
i

− 2t

T (s)
i

)
− exp

(
2t0

T (s)
i

− 2t

T (s)
i

)]
=
B(s)

i
2T (s)

i

2

[
1− exp

(
− 2dt

T (s)
i

)]
=
(
1− α2

i

)
B(s)

i
2T

(s)
i

2
(A.40)

From this the following rule can be defined for Ito stochastic integrals:

exp
(
− 2t

Const.

)⟨∫ t

t0

exp
( s

Const.

)
dWi(s)

∫ t

t0

exp
( s

Const.

)
dWi(s)

⟩
= exp

(
− 2t

Const.

)∫ t

t0

exp
(

2s

Const.

)
ds

= exp
(
− 2t

Const.

)
Const.

2

[
exp

(
2s

Const.

)]t
t0

= exp
(
− 2t

Const.

)
Const.

2

[
exp

(
2t

Const.

)
− exp

(
2t0

Const.

)]
=
Const.

2

[
exp

(
2t

Const.
− 2t

Const.

)
− exp

(
2t0

Const.
− 2t

Const.

)]
=
Const.

2

[
1− exp

(
− 2dt

Const.

)]
(A.41)

For the following quantities the intermediates calculations relating to equation A.41 will not be given:
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⟨
Γ2
i

⟩
=

⟨[
B(s)

i Či exp
(
− t

T (s)
i

)∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)

+B(s)
i

(
Fa − Či

) exp
(
− t

τpart

)∫ t

t0

exp
(

s

τpart

)
dWi(s)

]
[
B(s)

i Či exp
(
− t

T (s)
i

)∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)

+B(s)
i

(
Fa − Či

) exp
(
− t

τpart

)∫ t

t0

exp
(

s

τpart

)
dWi(s)

]⟩
=
(
B(s)

i Či

)2 exp
(
− 2t

T (s)
i

)⟨∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)

∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)

⟩
+ 2B(s)

i
2Či

(
Fa − Či

) exp
(
− t

T (s)
i

− t

τpart

)⟨∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)

∫ t

t0

exp
(

s

τpart

)
dWi(s)

⟩
+B(s)

i
2
(
Fa − Či

)2 exp
(
− 2t

τpart

)⟨∫ t

t0

exp
(

s

τpart

)
dWi(s)

∫ t

t0

exp
(

s

τpart

)
dWi(s)

⟩
(A.42)

Thus:

⟨
Γ2
i

⟩
=
(
B(s)

i Či

)2 T (s)
i

2

[
1− exp

(
− 2dt

T (s)
i

)]
+ 2B(s)

i
2Či

(
Fa − Či

) T (s)
i τpart

T (s)
i + τpart

[
1− exp

(
dt

τpart

)
exp

(
dt

T (s)
i

)]
+B(s)

i
2
(
Fa − Či

)2 τpart
2

[
1− exp

(
− 2dt

τpart

)]
(A.43)

If in addition to αi and β the two following constants are defined:

Ǩi =
Fa

Či

− 1 (A.44)

Q̌i =Ǩi
T (s)
i τpart

T (s)
i + τpart

(A.45)

The covariance ⟨Γ2
i

⟩ can then be further simplified:

⟨
Γ2
i

⟩
=
(
B(s)

i Či

)2 [(
1− α2

i

) T (s)
i

2
+
(
1− β2

) Ǩ2
i τpart
2

+ 2 (1− αiβ) Q̌i

]
(A.46)

The following calculations follow the same logic:
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⟨
Φ2
i

⟩
=

⟨{
B(s)

i

[(
T (s)
i − τpart

)
Či + Faτpart

] ∫ t

t0

dWi(s)

−B(s)
i ČiT

(s)
i exp

(
− t

T (s)
i

)∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)

−B(s)
i

(
Fa − Či

)
τpart exp

(
− t

τpart

)∫ t

t0

exp
(

s

τpart

)
dWi(s)

}
{
B(s)

i

[(
T (s)
i − τpart

)
Či + Faτpart

] ∫ t

t0

dWi(s)

−B(s)
i ČiT

(s)
i exp

(
− t

T (s)
i

)∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)

−B(s)
i

(
Fa − Či

)
τpart exp

(
− t

τpart

)∫ t

t0

exp
(

s

τpart

)
dWi(s)

}⟩
(A.47)

Hence:

⟨
Φ2
i

⟩
=B(s)

i
2
[(
T (s)
i − τpart

)
Či + Faτpart

]2⟨∫ t

t0

dWi(s)

∫ t

t0

dWi(s)

⟩
− 2B(s)

i
2
[(
T (s)
i − τpart

)
Či + Faτpart

]
ČiT

(s)
i exp

(
− t

T (s)
i

)⟨∫ t

t0

dWi(s)

∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)

⟩
− 2B(s)

i
2
[(
T (s)
i − τpart

)
Či + Faτpart

] (
Fa − Či

)
τpart exp

(
− t

τpart

)
×
⟨∫ t

t0

dWi(s)

∫ t

t0

exp
(

s

τpart

)
dWi(s)

⟩
+B(s)

i
2Č2

i T
(s)
i

2 exp
(
− 2t

T (s)
i

)⟨∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)

∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)

⟩
+ 2B(s)

i
2ČiT

(s)
i

(
Fa − Či

)
τpart exp

(
− t

T (s)
i

)
exp

(
− t

τpart

)
×
⟨∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)

∫ t

t0

exp
(

s

τpart

)
dWi(s)

⟩
+B(s)

i
2
(
Fa − Či

)2
τ2part exp

(
− 2t

τpart

)
×
⟨∫ t

t0

exp
(

s

τpart

)
dWi(s)

∫ t

t0

exp
(

s

τpart

)
dWi(s)

⟩
(A.48)

Thus:

⟨
Φ2
i

⟩
=B(s)

i
2
[(
T (s)
i − τpart

)
Či + Faτpart

]2
dt

− 2B(s)
i

2
[(
T (s)
i − τpart

)
Či + Faτpart

]
ČiT

(s)
i

2

[
1− exp

(
− dt

T (s)
i

)]
− 2B(s)

i
2
[(
T (s)
i − τpart

)
Či + Faτpart

] (
Fa − Či

)
τ2part

[
1− exp

(
− dt

τpart

)]
+B(s)

i
2Č2

i

T (s)
i

3

2

[
1− exp

(
− 2dt

T (s)
i

)]
+ 2B(s)

i
2Či

(
Fa − Či

) T (s)
i

2τ2part

T (s)
i + τpart

[
1− exp

(
dt

τpart

)
exp

(
dt

T (s)
i

)]
+B(s)

i
2
(
Fa − Či

)2 τ3part
2

[
1− exp

(
− 2dt

τpart

)]
(A.49)
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If the next constant is defined:

Ǧi =

(
T (s)
i − τpart

)
Či + Faτpart

Či

=T (s)
i + Ǩiτpart (A.50)

This then gives the following equation for ⟨Φ2
i

⟩:
⟨
Φ2
i

⟩
=B(s)

i
2Č2

i

{
Ǧ2

i dt+
(
1− α2

i

) T (s)
i

3

2
+
(
1− β2

) Ǩ2
i τ

3
part

2

−2Ǧi

[
(1− αi)T

(s)
i

2 + (1− β) Ǩiτ
2
part

]
+ 2 (1− αiβ) Q̌iT

(s)
i τpart

}
(A.51)

All the constant useful for simplification purposes have now been defined, therefore the following
calculations are given without further explanations.

⟨γiΓi⟩ =
⟨
B(s)

i exp
(
− t

T (s)
i

)∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)

[
B(s)

i Či exp
(
− t

T (s)
i

)∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)

+B(s)
i

(
Fa − Či

) exp
(
− t

τpart

)∫ t

t0

exp
(

s

τpart

)
dWi(s)

]⟩
(A.52)

Hence:

⟨γiΓi⟩ =B(s)
i

2Či exp
(
− 2t

T (s)
i

)⟨∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)

∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)

⟩
+B(s)

i
2
(
Fa − Či

) exp
(
− t

T (s)
i

)
exp

(
− t

τpart

)
×
⟨∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)

∫ t

t0

exp
(
− t

τpart

)
dWi(s)

⟩
(A.53)

Thus:

⟨γiΓi⟩ =B(s)
i

2Či
T (s)
i

2

[
1− exp

(
− 2dt

T (s)
i

)]
+B(s)

i
2
(
Fa − Či

) T (s)
i τpart

T (s)
i + τpart

[
1− exp

(
− dt

τpart

)
exp

(
−dt
T (s)
i

)]
(A.54)

Therefore:

⟨γiΓi⟩ =B(s)
i

2Či

[(
1− α2

i

) T (s)
i

2
+ (1− αiβ) Q̌i

]
(A.55)

And:
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⟨γiΦi⟩ =
⟨
B(s)

i exp
(
− t

T (s)
i

)∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)[

B(s)
i

[(
T (s)
i − τpart

)
Či + Faτpart

] ∫ t

t0

dWi(s)

−B(s)
i ČiT

(s)
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(
− t

T (s)
i

)∫ t

t0
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(

s

T (s)
i

)
dWi(s)

−B(s)
i

(
Fa − Či
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τpart exp
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− t

τpart
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t0

exp
(

s

τpart

)
dWi(s)

]⟩
(A.56)

Which gives:

⟨γiΦi⟩ =B(s)
i

2
[(
T (s)
i − τpart
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Či + Faτpart

] exp
(
− t

T (s)
i

)⟨∫ t
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T (s)
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i
2ČiT
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T (s)
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T (s)
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τpart exp
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τpart
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exp
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exp
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⟩
(A.57)

Hence:

⟨γiΦi⟩ =B(s)
i

2
[(
T (s)
i − τpart

)
Či + Faτpart

]
T (s)
i

[
1− exp

(
− dt

T (s)
i

)]
(A.58)

−B(s)
i

2Či
T (s)
i

2

2

[
1− exp

(
− 2dt

T (s)
i

)]
−B(s)

i
2
(
Fa − Či
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T (s)
i τpart

T (s)
i + τpart

[
1− exp

(
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τpart

)
exp

(
− dt

T (s)
i
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(A.59)

Therefore:

⟨γiΦi⟩ =B(s)
i

2Či

[
(1− αi) ǦiT

(s)
i −

(
1− α2

i

) T (s)
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2

2
− (1− αiβ) Q̌iτpart

]
(A.60)

Finally:

⟨ΓiΦi⟩ =
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Či + Faτpart

] ∫ t

t0

dWi(s)

−B(s)
i ČiT
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]⟩
(A.61)
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Thus:

⟨ΓiΦi⟩ =B(s)
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⟩
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2Či

(
Fa − Či
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t0

exp
(

s

τpart

)
dWi(s)

∫ t

t0

dWi(s)

⟩
−B(s)

i
2Či

(
Fa − Či

)
T (s)
i exp

(
− t

T (s)
i

)
exp

(
− t

τpart

)
×
⟨∫ t

t0

exp
(

s

T (s)
i

)
dWi(s)

∫ t

t0

exp
(

s

τpart

)
dWi(s)

⟩
−B(s)

i
2
(
Fa − Či

)2
τpart exp

(
− 2t

τpart

)
×
⟨∫ t

t0

exp
(

s

τpart

)
dWi(s)

∫ t

t0

exp
(

s

τpart

)
dWi(s)

⟩
(A.62)

Which gives:

⟨ΓiΦi⟩ =B(s)
i

2Či

[(
T (s)
i − τpart

)
Či + Faτpart

]
T (s)
i

[
1− exp

(
− dt

T (s)
i

)]
−B(s)

i
2Č2

i

T (s)
i

2

2

[
1− exp

(
− 2dt

T (s)
i

)]
−B(s)

i
2Či

(
Fa − Či

)
τpart

T (s)
i τpart

T (s)
i + τpart

[
1− exp

(
− dt

τpart

)
exp

(
− dt

T (s)
i

)]
+B(s)

i
2
(
Fa − Či

) [(
T (s)
i − τpart

)
Či + Faτpart

]
τpart

[
1− exp

(
− dt

τpart

)]
−B(s)

i
2Či

(
Fa − Či

)
T (s)
i

T (s)
i τpart

T (s)
i + τpart

[
1− exp

(
− dt

τpart

)
exp

(
− dt

T (s)
i

)]
−B(s)

i
2
(
Fa − Či

)2 τ2part
2

[
1− exp

(
− 2dt

τpart

)]
(A.63)

Therefore:

⟨ΓiΦi⟩ =B(s)
i

2Č2
i

{[
(1− αi)T

(s)
i + (1− β) Ǩiτpart

]
Ǧi −

(
1− α2

i

) T (s)
i

2

2

−
(
1− β2

) Ǩ2
i τ

2
part

2
− (1− αiβ) ǨiT

(s)
i τpart

}
(A.64)

Because of the definitions for Ǩi, Q̌i and Ǧi (given in equations A.44, A.45 and A.50 respectively) all
of the covariances are undefined if T (s)

i = Faτpart. Furthermore to use this model the time interval dt
is set to equal the numerical time step dt.
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Appendix	B

Asymptotic	behaviour	of	the	exact
integrator	model

Où les calculs nécessaires pour décrire le comportement assymptotique du modèle de
transport de corps solides résolu avec un integrateur exact sont présentés.
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The aim of the exact integrator model, developed in appendix A and presented in chapter 6 is given
by the following equations:

U (s)
i (t) =αiU

(s)
i (t0) + (1− αi)C

(s)
i T

(s)
i + γi(t) (B.1a)

Vi(t) =βVi(t0) + (1− β)
(
C (s)
i T

(s)
i + Fi,cτpart

)
+ (αi − β) Či

(
U (s)
i (t0)− C (s)

i T
(s)
i

)
+ Γi(t) (B.1b)

Xi(t) =Xi(t0) + (1− β) τpartVi(t0) + [dt− (1− β) τpart]
(
C (s)
i T

(s)
i + Fi,cτpart

)
+ Či

(
U (s)
i (t0)− C (s)

i T
(s)
i

) [
(1− αi)T

(s)
i − (1− β) τpart

]
+Φi(t) (B.1c)

With the following coefficients:

αi = exp
(
− dt

T (s)
i

)
(B.2a)

β = exp
(
− dt

τpart

)
(B.2b)

Či =
T (s)
i − Faτpart

T (s)
i − τpart

(B.2c)

An the stochastic integrals γi(t), Γi(t) and Φi(t) are modelled using the following equations:

γi =L11ξγi (B.3a)
Γi =L21ξγi + L22ξΓi (B.3b)
Φi =L31ξγi + L32ξΓi + L33ξΦi (B.3c)

With the components of the matrix L given by:

L11 =
√⟨

γ2i
⟩ (B.4a)

L21 =
⟨γiΓi⟩
L11

(B.4b)

L22 =
√⟨

Γ2
i

⟩
− L2

21 (B.4c)

L31 =
⟨γiΦi⟩
L11

(B.4d)

L32 =
⟨ΓiΦi⟩ − L21L31

L22
(B.4e)

L33 =
√⟨

Φ2
i

⟩
− L2

31 − L2
32 (B.4f)

And the covariances are modelled through the following equations:
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⟨
γ2i
⟩
=
(
1− α2

i

)
B(s)

i
2T

(s)
i

2
(B.5a)⟨

Γ2
i

⟩
=
(
B(s)

i Či

)2 [(
1− α2

i

) T (s)
i

2
+
(
1− β2

) Ǩ2
i τpart
2

+ 2 (1− αiβ) Q̌i

]
(B.5b)

⟨
Φ2
i

⟩
=
(
B(s)

i Či

)2{
Ǧ2

i dt+
(
1− α2

i

) T (s)
i

3

2
+
(
1− β2

) Ǩ2
i τ

3
part

2

− 2Ǧi

[
(1− αi)T

(s)
i

2 +(1− β) Ǩiτ
2
part

]
+ 2 (1− αiβ) Q̌iT

(s)
i τpart

} (B.5c)

⟨γiΓi⟩ =B(s)
i

2Či

[(
1− α2

i

) T (s)
i

2
+ (1− αiβ) Q̌i

]
(B.5d)

⟨γiΦi⟩ =B(s)
i

2Či

[
(1− αi) ǦiT

(s)
i −

(
1− α2

i

) T (s)
i

2

2
− (1− αiβ) Q̌iτpart

]
(B.5e)

⟨ΓiΦi⟩ =
(
B(s)

i Či

)2{[
(1− αi)T

(s)
i + (1− β) Ǩiτpart

]
Ǧi −

(
1− α2

i

) T (s)
i

2

2

−
(
1− β2

) Ǩ2
i τ

2
part

2
− (1− αiβ) ǨiT

(s)
i τpart

}
(B.5f)

With the following coefficients:

Ǩi =
Fa

Či

− 1 (B.6a)

Q̌i =
ǨiT

(s)
i τpart

T (s)
i + τpart

(B.6b)

Ǧi =T
(s)
i + Ǩiτpart (B.6c)

Furthermore it can be shown that ǦiČi = T (s)
i .

The exact integrator was to develop so that the particle transport model is less dependent on the time
step, thanks to the asymptotic behaviour of the exponents αi and β. In this appendix we will present
the asymptotic behaviour of the exact integrator model for different ration between the numerical
time step dt and the characteristic times T (s)

i and τpart.

B.1 For a time step dt much larger than the integral time scale T (s)
i

For this scenario the following simplifications can be done:

dt

T (s)
i

→∞ (B.7a)

αi →0 (B.7b)

From the simplifications B.7 the covariances are given by:

⟨
γ2i
⟩
=
(
1− α2

i

)
B(s)

i
2T

(s)
i

2

→
B(s)

i
2T (s)

i

2
(B.8)
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⟨
Γ2
i

⟩
=
(
B(s)

i Či

)2 [(
1− α2

i

) T (s)
i

2
+
(
1− β2

) Ǩ2
i τpart
2

+ 2 (1− αiβ) Q̌i

]
→
(
B(s)

i Či

)2 [T (s)
i

2
+
(
1− β2

) Ǩ2
i τpart
2

+ 2Q̌i

]
(B.9)

And:

⟨
Φ2
i

⟩
=B(s)

i
2Č2

i

{
Ǧ2

i dt+
(
1− α2

i

) T (s)
i

3

2
+
(
1− β2

) Ǩ2
i τ

3
part

2

−2Ǧi

[
(1− αi)T

(s)
i

2 + (1− β) Ǩiτ
2
part

]
+ 2 (1− αiβ) Q̌iT

(s)
i τpart

}

→B(s)
i

2T (s)
i

2dt+B(s)
i

2Č2
i

{
T (s)
i

3

2
+
(
1− β2

) Ǩ2
i τ

3
part

2

−2Ǧi

[
T (s)
i

2 + (1− β) Ǩiτ
2
part

]
+ 2Q̌iT

(s)
i τpart

}
(B.10)

However T (s)
i

2dt might not be defined, but it should tend to 0 as usually dt is fixed and this scenario
occurs when T (s)

i
2dt is very small:

⟨γiΓi⟩ =B(s)
i

2Či

[(
1− α2

i

) T (s)
i

2
+ (1− αiβ) Q̌i

]
→B(s)

i
2Či

(
T (s)
i

2
+ Q̌i

)
(B.11)

⟨γiΦi⟩ =B(s)
i

2Či

[
(1− αi) ǦiT

(s)
i −

(
1− α2

i

) T (s)
i

2

2
− (1− αiβ) Q̌iτpart

]
→B(s)

i
2Či

(
ǦiT

(s)
i −

T (s)
i

2

2
− Q̌iτpart

)
(B.12)

⟨ΓiΦi⟩ =B(s)
i

2Č2
i

{[
(1− αi)T

(s)
i + (1− β) Ǩiτpart

]
Ǧi −

(
1− α2

i

) T (s)
i

2

2

−
(
1− β2

) Ǩ2
i τ

2
part

2
− (1− αiβ) ǨiT

(s)
i τpart

}

→B(s)
i

2Č2
i

{[
T (s)
i + (1− β) Ǩiτpart

]
Ǧi −

T (s)
i

2

2

−
(
1− β2

) Ǩ2
i τ

2
part

2
− ǨiT

(s)
i τpart

}
(B.13)

These covariances imply the coefficients of matrix L can be determined (assuming that T (s)
i

2dt → 0),
and therefore stochastic integrals can be defined. The fluid velocity however is modelled as:

U (s)
i (t) =αiU

(s)
i (t0) + (1− αi)C

(s)
i T

(s)
i + γi(t)

→C (s)
i T

(s)
i + γi(t) (B.14)
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Which using equation B.8 is:

U (s)
i (t) =C (s)

i T
(s)
i +

√
B(s)

i
2T (s)

i

2
ξγi (B.15)

Therefore the fluid velocity is modelled through a mean flow component and a random variable. The
solid body velocity is given by:

Vi(t) =βVi(t0) + (1− β)
(
C (s)
i T

(s)
i + Fi,cτpart

)
+ (αi − β) Či

(
U (s)
i (t0)− C (s)

i T
(s)
i

)
+ Γi (B.16)

Hence:

Vi(t) →βVi(t0) + (1− β)
(
C (s)
i T

(s)
i + Fi,cτpart

)
+ βČi

(
U (s)
i (t0)− C (s)

i T
(s)
i

)
+ Γi (B.17)

And the position of the bodies is given by:

Xi(t) =Xi(t0) + (1− β) τpartVi(t0) + [dt− (1− β) τpart]
(
C (s)
i T

(s)
i + Fi,cτpart

)
+ Či

(
U (s)
i (t0)− C (s)

i T
(s)
i

) [
(1− αi)T

(s)
i − (1− β) τpart

]
+Φi (B.18)

Hence:

Xi(t) →Xi(t0) + (1− β) τpartVi(t0) + [dt− (1− β) τpart]
(
C (s)
i T

(s)
i + Fi,cτpart

)
+ Či

(
U (s)
i (t0)− C (s)

i T
(s)
i

) [
T (s)
i − (1− β) τpart

]
+Φi (B.19)

Which is again determined only if T (s)
i dt can be determined.

B.2 For a time step dt much smaller than the integral time scale T (s)
i

For this scenario the following simplifications can be done:

dt

T (s)
i

→0 (B.20a)

αi →1 (B.20b)

Therefore the covariances are given by:
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⟨
γ2i
⟩
=
(
1− α2

i

)
B(s)

i
2T

(s)
i

2
→B(s)

i
2dt (B.21)

And:

⟨
Γ2
i

⟩
=
(
B(s)

i Či

)2 [(
1− α2

i

) T (s)
i

2
+
(
1− β2

) Ǩ2
i τpart
2

+ 2 (1− αiβ) Q̌i

]
→
(
B(s)

i Či

)2{
dt+

(
1− β2

) Ǩ2
i τpart
2

+ 2

[
1− β +

dt

T (s)
i

β

]
Q̌i

}
(B.22)

The following can be defined:

dt

T (s)
i

Q̌i =
dt

T (s)
i

T (s)
i τpart

T (s)
i + τpart

(
T (s)
i − τpart

T (s)
i − Faτpart

Fa − 1

)
=dt

τpart

T (s)
i + τpart

T (s)
i (1− Fa)

T (s)
i − Faτpart

(B.23)

Which is 0 if τpart ≫ T (s)
i or τpart ≪ T (s)

i . If τpart ∼ T (s)
i than this is proportional to dt, and therefore

since it is still determined this scenario is ignored. Therefore:

⟨
Γ2
i

⟩
→
(
B(s)

i Či

)2 [
dt+

(
1− β2

) Ǩ2
i τpart
2

+ 2 (1− β) Q̌i

]
(B.24)

And:

⟨
Φ2
i

⟩
=B(s)

i
2Č2

i

{
Ǧ2

i dt+
(
1− α2

i

) T (s)
i

3

2
+
(
1− β2

) Ǩ2
i τ

3
part

2

−2Ǧi

[
(1− αi)T

(s)
i

2 + (1− β) Ǩiτ
2
part

]
+ 2 (1− αiβ) Q̌iT

(s)
i τpart

} (B.25)

Hence:

⟨
Φ2
i

⟩
→B(s)

i
2Č2

i

{(
Ǧ2

i + T (s)
i

2
)
dt+

(
1− β2

) Ǩ2
i τ

3
part

2

−2Ǧi

[
T (s)
i dt+ (1− β) Ǩiτ

2
part

]
+ 2

[
1− β +

dt

T (s)
i

β

]
Q̌iT

(s)
i τpart

}
(B.26)

In this covariance T (s)
i dt appears and therefore it might be undetermined. We also have:

⟨γiΓi⟩ =B(s)
i

2Či

[(
1− α2

i

) T (s)
i

2
+ (1− αiβ) Q̌i

]
→B(s)

i
2Či

[
dt+ (1− β) Q̌i

] (B.27)
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And:

⟨γiΦi⟩ =B(s)
i

2Či

[
(1− αi) ǦiT

(s)
i −

(
1− α2

i

) T (s)
i

2

2
− (1− αiβ) Q̌iτpart

]
→B(s)

i
2Či

{(
Ǧi − T (s)

i

)
dt−

(
1− β +

dt

T (s)
i

β

)
Q̌iτpart

}
(B.28)

Since Ǧi−T (s)
i = Ǩiτpart this covariance might only be undetermined if τpart ∼ T (s)

i . We can also write:

⟨ΓiΦi⟩ =B(s)
i

2Č2
i

{[
(1− αi)T

(s)
i + (1− β) Ǩiτpart

]
Ǧi −

(
1− α2

i

) T (s)
i

2

2

−
(
1− β2

) Ǩ2
i τ

2
part

2
− (1− αiβ) ǨiT

(s)
i τpart

}
(B.29)

And thus:

⟨ΓiΦi⟩ →B(s)
i

2Č2
i

{[
Ǧi − T (s)

i

]
dt+ (1− β) Ǩiτpartdt

−
(
1− β2

) Ǩ2
i τ

2
part

2
−
[
1− β +

dt

T (s)
i

β

]
ǨiT

(s)
i τpart

}
(B.30)

Again this covariance might be undetermined only if τpart ∼ T (s)
i . The only coefficient of matrix L that

might be undetermined are therefore L31, L31 or L31, because they are dependent on ⟨γiΦi⟩, ⟨ΓiΦi⟩
and ⟨Φ2

i

⟩. This then implies that the stochastic integral Φi could be undetermined. Still, the fluid
velocities becomes can be simplified to:

U (s)
i (t) =αiU

(s)
i (t0) + (1− αi)C

(s)
i T

(s)
i + γi(t)

→U (s)
i (t0) + C (s)

i dt+B(s)
i

√
dtξγi (B.31)

And therefore it appears that the fluid velocities can be modelled using the Langevin model. This is
because in this case the temporal frame of reference is placed around the small turbulent eddies, and
therefore in this case dt is not much greater than the small scales of turbulence τp, which means that
the turbulence model is not valid any more.
The solid particle velocity is given by:

Vi(t) =βVi(t0) + (1− β)
(
C (s)
i T

(s)
i + Fi,cτpart

)
+ (αi − β) Či

(
U (s)
i (t0)− C (s)

i T
(s)
i

)
+ Γi

→βVi(t0) + (1− β)
(
C (s)
i T

(s)
i + Fi,cτpart

)
+ (1− β) Či

(
U (s)
i (t0)− C (s)

i T
(s)
i

)
+ ČiC

(s)
i dt

+ Γi (B.32)

And the position of the body is given by:
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Xi(t) =Xi(t0) + (1− β) τpartVi(t0) + [dt− (1− β) τpart]
(
C (s)
i T

(s)
i + Fi,cτpart

)
+ Či

(
U (s)
i (t0)− C (s)

i T
(s)
i

) [
(1− αi)T

(s)
i − (1− β) τpart

]
+Φi

→Xi(t0) + (1− β) τpartVi(t0) + [dt− (1− β) τpart]
(
C (s)
i T

(s)
i + Fi,cτpart

)
+ Či

(
U (s)
i (t0)− C (s)

i T
(s)
i

)
[dt− (1− β) τpart]

+ Φi (B.33)

Because of Φi, the position of the body is only determined if T (s)
i dt can be determined.

B.3 For a time step dt much larger than the particle relaxation time τpart

For this scenario the following simplifications can be done:

dt

τpart
→∞ (B.34a)

β →0 (B.34b)

The covariance ⟨γ2i ⟩ remains unchanged, as it is independent of β. However the remaining covari-
ances are equal to:

⟨
Γ2
i

⟩
=
(
B(s)

i Či

)2 [(
1− α2

i

) T (s)
i

2
+
(
1− β2

) Ǩ2
i τpart
2

+ 2 (1− αiβ) Q̌i

]
→Č2

i

⟨
γ2i
⟩
+
(
B(s)

i Či

)2 [Ǩ2
i τpart
2

+ 2Q̌i

]
(B.35)

And:

⟨
Φ2
i

⟩
=B(s)

i
2Č2

i

{
Ǧ2

i dt+
(
1− α2

i

) T (s)
i

3

2
+
(
1− β2

) Ǩ2
i τ

3
part

2

−2Ǧi

[
(1− αi)T

(s)
i

2 + (1− β) Ǩiτ
2
part

]
+ 2 (1− αiβ) Q̌iT

(s)
i τpart

}
→B(s)

i
2Č2

i

{
Ǧ2

i dt+
(
1− α2

i

) T (s)
i

3

2
+
Ǩ2

i τ
3
part

2

−2Ǧi

[
(1− αi)T

(s)
i

2 + Ǩiτ
2
part

]
+ 2Q̌iT

(s)
i τpart

} (B.36)

Since ǦiČi = T (s)
i the covariance ⟨Φ2

i

⟩ can be determined for all values of τpart. The final covariances
can the be written as:

⟨γiΓi⟩ =B(s)
i

2Či

[(
1− α2

i

) T (s)
i

2
+ (1− αiβ) Q̌i

]
→Či

⟨
γ2i
⟩
+B(s)

i
2ČiQ̌i (B.37)

And:
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⟨γiΦi⟩ =B(s)
i

2Či

[
(1− αi) ǦiT
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1− α2

i

) T (s)
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i
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⟨
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⟩ (B.38)

Finally:
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i + Ǩiτpart

]
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Ǩ2

i τ
2
part

2
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(B.39)

For matrix L, the coefficient L11 remains unchanged, and there are two significant results:

L21 =
⟨γiΓi⟩
L11

→Či

√⟨
γ2i
⟩
+
B(s)

i
2ČiQ̌i√⟨
γ2i
⟩

→L11 +
(
Či − 1

)
L11 +

B(s)
i

2ČiQ̌i

L11
(B.40)

And:

L22 =
√⟨

Γ2
i

⟩
− L2

21
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)2 Ǩ2
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2

−
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i
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(B.41)

The others coefficient of the matrix L are all defined, but they are less significant, and therefore they
will not be presented. Since L11 remains unchanged, γi is also unchanged. The following conclusions
can be done on Γi:

Γi =L21ξγi + L22ξΓi

→γi +

[(
Či − 1

)
L11 +

B(s)
i

2ČiQ̌i
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]
ξγi

+

[(
B(s)

i Či

)2 Ǩ2
i τpart
2

−
B(s)

i
4Č2

i Q̌
2
i

L2
11

] 1
2

ξΓi (B.42)

The final stochastic integral Φi is determined, as L31, L32 and L33 are all determined. Furthermore
the fluid velocity U (s)

i will remain unchanged, and the solid body velocity is given by:
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Vi(t) =βVi(t0) + (1− β)
(
C (s)
i T
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) (B.43)

Therefore the particle will advance at a velocity close to the fluid velocity, with minor differences
linked to the momentum and buoyancy effects of the particle. Furthermore assuming that T (s)

i is of
the same order as dt will make the equation easier to understand:

T (s)
i ≫τpart (B.44a)

Či =
T (s)
i − Faτpart

T (s)
i − τpart

→1 (B.44b)

Ǩi =
Fa

Či

− 1

→Fa − 1 (B.44c)

Q̌i =Ǩi
T (s)
i τpart

T (s)
i + τpart

→ (Fa − 1) τpart (B.44d)

Using these simplifications the velocity of the solid particle becomes:

Vi(t) →U (s)
i (t) + Fi,cτpart +

B(s)
i (Fa − 1)

2

√
τpartξΓi (B.45)

The position of the particle is given by:

Xi(t) =Xi(t0) + (1− β) τpartVi(t0) + [dt− (1− β) τpart]
(
C (s)
i T

(s)
i + Fi,cτpart

)
+ Či
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U (s)
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i T
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) [
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(
U (s)
i (t0)− C (s)

i T
(s)
i

) [
(1− αi)T

(s)
i − τpart

]
+Φi (B.46)

There is multiple of dtτpart that appears, but since this scenario could only occurs for very small τpart,
it can be assumed that the position of the particle can always be determined.
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B.4 For a time step dt much smaller than the particle relaxation time τpart

For this scenario the following simplifications can be done:

dt

τpart
→0 (B.47a)

β →1 (B.47b)

The covariance ⟨γ2i ⟩ remains unchanged, as it is independent of β. However the remaining covari-
ances are equal to:

⟨
Γ2
i

⟩
=
(
B(s)

i Či
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(B.48)

The following can be defined:

Ǩidt =
T (s)
i (1− Fa)

T (s)
i − Faτpart

dt (B.49)

And:
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(B.50)

Both of these variables can be determined for all values of T (s)
i and τpart, and therefore ⟨Γ2

i

⟩ as well.
Furthermore:
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2Č2

i

{
Ǧ2
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(B.51)

However if τpartdt is undetermined than ⟨Φ2
i

⟩ is also undetermined. Inaddition:
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This covariance is therefore determined. Furthermore ⟨γiΦi⟩ is given by:
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Because of Q̌idt this covariance could also be undetermined. Finally:
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This covariance could also be undetermined.
For the coefficients of matrix L, the first coefficient L11 will remain unchanged, and the two following
coefficients give significant results:
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2Či

(
1− αi + αi

dt
τpart

)
Q̌i

L11
(B.55)

And:
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(B.56)

The coefficients L31, L32 and L33 could however be undetermined, because of the covariances that are
required to calculate them.
The stochastic integral γi will remain unchanged, however Γi can be written as:
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2Či

(
1− αi + αi

dt
τpart

)
Q̌i

L11
ξγi

+

(B(s)
i Či
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In addition the integral Φi might be undetermined, because L31, L32 and L33 are only determined if
dtτpart is determined.
Furthermore the fluid velocity U (s)

i will remain unchanged, whereas the solid body velocity is given
by:
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Therefore the particle velocity will be determined mostly through the external buoyant forces, and
with slight differences resulting from the momentum of the fluid. In addition assuming that T (s)

i is of
the same order as dt will make the equation easier to understand:

T (s)
i ≪τpart (B.59a)

Či =
T (s)
i − Faτpart
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→Fa (B.59b)

Ǩi =
Fa
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→0 (B.59c)

Q̌i =Ǩi
T (s)
i τpart

T (s)
i + τpart

→0 (B.59d)
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Which gives the following expression for the solid particle velocity:

Vi(t) →Vi(t0) + Fi,cdt+ FadU
(s)
i (t0) (B.60)

The position of a solid particle is given by:

Xi(t) =Xi(t0) + (1− β) τpartVi(t0) + [dt− (1− β) τpart]
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) [
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+Φi (B.61)

Therefore Xi(t) is determined only if Φi is also determined, which requires dtτpart to be determined.
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Appendix	C

Video	particle	tracking	image	processing

Où sont expliquées les étapes du traitement des images nécessaires pour obtenir la
trajectoire des particules en milimètres, pour les expériences des chapitres 7 et 8.
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C.1 Methodology for the image processing

The image processing of images recorded by two perpendicular cameras is done in three stages.
Firstly a calibration is necessary to correct for the parallax of the cameras. The images are then
processed to obtain the positions of each recorded particle in millimetres. Finally the third process
links the particles recorded in one camera to the particles recorded in the other, so that the three-
dimensional position of the particles can be given in millimetres.

C.1.1 Calibrating the camera fields

The oscillating grids experiment described in chapter 7 was set up so that the two cameras were placed
perpendicular to two neighbouring sides of the water tank in such a way that the cameras were placed
at the same level, and that the recorded volume was the less deformed possible. Nonetheless the
volume observed is not cubic (because of the parallax of the cameras) and a set of calibrations were
done so that the constants allowing a conversion from pixels to millimetres could be done inside the
volume of measurements. This was done by placing a fishing wire with spherical weights attached
at different locations within the volume of measurement, see figure C.1.

.....

15 cm

.

5 cm

(a) Fishing wire
.....

2 cm

.

2 cm

.

6 cm

.

2 cm

.

2 cm

.

2 cm

(b) Position of the fishing wire

Figure C.1: The tools used to calibrate the cameras of the oscillating grids experiment. The fishing
wire (a) is placed in the holes of the plate, represented in figure (b) by the white circles.
The plate was fixed on the top oscillating grid with screws, the black circles in figure (b).
Therefore spherical weights attached to fishing wire, the black circles of figure (a), enter
the volume of measurement with a known position.

Since the position of the weights placed on the fishing wire are known, and the cameras records
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these positions in pixels (see section C.1.2), then the constants of the relationship linking pixels to
millimetres defined in Cordeiro Fernandes (2005) can be known:

Camera 1: Xx(mm)

Xx(pixels)
= αxXy(mm) + βx ; Xz1(mm)

Xz1(pixels)
= αz1Xy(mm) + βz1 (C.1a)

Camera 2: Xy(mm)

Xy(pixels)
= αyXx(mm) + βy ; Xz2(mm)

Xz2(pixels)
= αz2Xx(mm) + βz2 (C.1b)

This calibration allows to find the maximum difference in level of the two cameras, Xz1(pixels) and
Xz2(pixels), which can be used to link the position of the particles seen by the two cameras (see
section C.1.3), as well as the distribution of the errors between the real positions in millimetres and
those calculated from equations C.1, see figure C.2.
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(b) ρf = 1084 kg·m−3

Figure C.2: Probability density functions of the errors on the positions of the fishing weights after the
transform given by equations C.1. “. ” errors along the x-axis, “. ” errors along the
y-axis and “. ” errors along the z-axis.

For the partially obstructed channel experiment described in chapter 8, only one camera was used, as
the volume of measurement is very shallow, and therefore it is reduced to a two dimensional problem.
This means that only one camera is used, and the parallax of this camera can be neglected (≃ 0.5%).
Nonetheless the equations C.1 can also be used and the camera calibration was done by placing a
uniform dot pattern at two different heights into the window of measurement. Therefore to convert
the positions from pixels to millimetres using a linear relation in one the following relation is used:

Xx(mm)

Xx(pixels)
=αz1Xz1(mm) + βx (C.2a)

Xy(mm)

Xy(pixels)
=αz1Xz1(mm) + βy (C.2b)

Where the value Xz1(mm) was imposed as half the maximum depth of the canal, i.e. 15 millimetres.
All the coefficients for the experiments of chapters 7 and 8 can be found in table C.1.
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Table C.1: Coefficients used to calibrate the camera fields of the experiments presented in chapters 7
and 8. For the first experiment two fluid densities were used, which will affect the coeffi-
cients whereas for the second experiment the camera was placed at different positions in
the canal.

αx αy αz1 αz2 βx βy βz1 βz2

Exp. in chapt. 7,
4.79E−5 5.90E−5 −4.72E−5 −7.48E−7 0.0824 0.0824 0.0730 0.0729

ρf = 1000 kg/m3

Exp. in chapt. 7,
5.49E−5 6.73E−5 −4.35E−5 3.67E−6 0.0810 0.0810 0.0728 0.0733

ρf = 1084 kg/m3

Exp. in chapt. 8, - - −1.78E−4
-

0.521 0.521
- -

window 1
Exp. in chapt. 8, - - −9.37E−5

-
0.521 0.521

- -
window 2

Exp. in chapt. 8, - - −9.37E−5
-

0.521 0.521
- -

window 3

C.1.2 Positions of the particles seen by a camera

The cameras used record images in grey scale. Each of these images can be considered as a matrix
where each element represents the amount of gray of a pixel. Therefore the second step of the image
processing extracts the positions of each solid body from these raw images. The steps of the image
processing are shown in figure C.3.
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(a) Raw image (b) Image with the background removed

(c) Image with a threshold applied (d) Image with the impurities removed

Figure C.3: Steps necessary to obtain the position of the bodies from an image recorded by a camera.

In figure C.3 the classic stages of the image processing are shown. The process starts with a raw image
(fig. C.3a) to which the background is subtracted (fig. C.3b). The background is found by averaging
the images obtained before and after particles enter the window of measurement of a camera. From
this image a threshold in the grey scale is set, and a new binary matrix is composed where the value is
imposed to 0 below a certain amount of grey and 1 above. Therefore the solid bodies are represented
by a group of ones in this binary matrix, for which the center can be calculated (see fig. C.3c). The
impurities present in the fluid are also recorded as solid bodies, and therefore the area of those binary
objects are calculated, and those that are too small are removed (fig. C.3d). However these are the
classic steps but certain additional steps might be required, see figures C.4, C.5 and C.6.
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(a) Raw image (b) Focus on superposed particles

(c) Calculate the distance to the edge of the particle (d) Use a “watershed” to separate the bodies

Figure C.4: Steps required to find the position of two superposed bodies.

Figure C.4 illustrates the first problem that can arise in the image processing, where two bodies ap-
pear superposed in a recorded image. To treat this problem a focus is placed on the two superposed
bodies, for example by looking at the area of the binary object which is greater than a single body
(fig. C.4b). This binary object is then transformed into a grey scale object where the darkness repre-
sents the distance of a pixel from the edge (fig. C.4c). A “watershed” is then performed (fig. C.4d).
The “watershed” is a process that originates from hydrology where it is used to separate drainage
basin, and it can be used in image processing to separate superposed bodies, see Eddins (2002). The
steps presented in figure C.3 are then repeated. Unfortunately certain large impurities present in the
fluid can be considered as superposed bodies and therefore an additional processing step needs to be
applied, see figure C.5.
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(a) Raw image (b) Image before a “watershed”

(c) Image after a “watershed” (d) Check for roundness of the object

Figure C.5: Steps necessary to remove impurities the size of a particle.

Figure C.5 shows the steps necessary in the image processing to remove large impurities. This is
done after a “watershed”, through the calculation of the roundness of a binary object (this can be
done because only spherical bodies were released in the experiments). This roundness Robj is given
by the following equation:

Robj =
4πAobj

P 2
obj

(C.3)

Where Aobj is the area of the binary object, Pobj is its perimeter and every object with a roundness
under a certain value is removed.
There is another difficulty that occurs for the image processing of the partially obstructed channel ex-
periment. These images are very disturbed. This is because of the nature of the flow, which generates
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a lot of air bubbles. This means that certain particles will be hidden by those bubbles, and certain
bubbles might be mistaken for solid particles which is more troublesome, see figure C.6.

Figure C.6: A disturbed image due to the air entrainment. The number in dark grey shows the num-
ber of objects recognised as particles and the number in light grey shows actual solid
bodies.

Figure C.6 shows an example of particles differentiated from entrained air bubbles. This is done by
observing the temporal series of particle positions, as the air bubbles only appear for a brief amount
of time and that way can be easily removed.
Now that the position of the particles are known in every images several additional steps need to be
applied to associate the particle positions found from two perpendicular cameras.

C.1.3 Trajectories of particles in three dimensions

This image processing step is necessary just for the three-dimensional results of the oscillating grids
experiment. This process is more complex than it appears as a particle can be seen by one camera
but not the other. This is because the cameras have bigger depth than width of vision. This image
processing is done in several steps. Firstly particles need to be present in both cameras, then the image
with the lowest amount particles is taken as a starting point, see figure C.7.
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(a) Camera 1 (b) Camera 2

Figure C.7: The starting point to associate recorded particles. The numbers in dark gray represent
the particles found using the algorithm described in section C.1.2 and the number in light
gray the particle which will serve as a starting point to search for its counterpart in the
other camera.

The next step is to find the counterpart of a particle in the image recorded by the other camera. To
do this the difference in the vertical position is studied (|Xz1(pixels)−Xz2(pixels)|). The possible
choices are then found using the maximal difference found from the calibration in section C.1.1. This
next step is shown in figure C.8, for which several options are possible.

(a) Camera 1 (b) Camera 2

Figure C.8: Studying the different possible particle counterparts. The numbers in dark gray represent
the particles found using the algorithm described in section C.1.2 and the letters in light
gray the possible counterparts of the initial particle.

In the case where a particle can be associated to several bodies recorded in the other camera, then
the closest non-associated body is chosen. Once a particle has been detected then its displacement is
followed in all the following images by looking at the displacement between between two time steps.
An example of a particle detected at time t and the all the recognised bodies in each camera at time
t = 1 is given in figure C.9.
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(a) Camera 1, at time t (b) Camera 2, at time t

(c) Camera 1, at time t+ 1 (d) Camera 2, at time t+ 1

Figure C.9: A position of a particle at time t (figures a and b), and the recognised bodies in each camera
at time t = 1 (figures c and d). The numbers in dark gray represent the particles found
using the algorithm described in section C.1.2 and the number in light gray is the particle
at time t for which its equivalent at time t+ 1 is required.

The following figure C.10 shows the distance travelled for all possible particle associations between
time t and time t+ 1.
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(a) Camera 1, particle 1 of the camera 2 (b) Camera 1, particle 2 of the camera 2

(c) Camera 1, particle 3 of the camera 2

Figure C.10: Distance travelled from the intial position at time t. The distances (in pixels) are given
by associating each body to the positions of the bodies 1 to 3 in the other camera (see
figure C.9).

Thus the position of the particle at time t + 1 corresponds to the smallest displacement. However
it is necessary to verify that this particle had not been previously allocated, or that this displace-
ment is not too high. Finally it is also important to verify that the differences in vertical position,
|Xz1(pixels)−Xz2(pixels)|, is not greater than the values found during the calibration. If all these
criterion are not matched than the position of the particle might only be the second or third smallest
displacement. This process is repeated until no more particle positions can correspond, and then the
process starting from figure C.7. The figure C.11 shows an example of several associated bodies in
the volume of measurement.
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(a) Camera 1 (b) Camera 2

Figure C.11: Position of the particles present in the field of vision of both cameras. The numbers in
dark gray represent the particles found using the algorithm described in section C.1.2
and the numbers in light gray the particles present in both cameras.

It should also be noted that because some particles can be superposed, the trajectories of some par-
ticles can superposed. This however does not affect the results, as this will only create erroneous
particle trajectories, but the statistical ensemble of particle trajectories will still be correct.
For the partially obstructed channel experiment, the only step necessary is to link the positions of the
particles at time t to those at time t + 1, however another step is added to verify that an air bubble
was not mistaken for a solid particle, and that is to delete all the particle path that are smaller than
five time steps, as the air bubbles only appear on camera for a short amount of time.
Once the positions of the bodies are found in pixels it is possible to convert these values in millimetres
using equations C.1 for two cameras, or equation C.2a for one camera, and therefore the particle
velocities can be found.
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C.2 Flow charts of the algorithms used in the image processing

For simplicity each stage of the image processing will be simplified as a flow chart.

..Positions in pixels.

Find the position of the weights
attached to the fishing wire, see
figure C.13

.

Find the constants

.

Find the mean spacing in between
the fishing weights

.

Use equations C.1 to find the con-
stants linking the pixels to millime-
tres

.

Use these constants convert the
positions into millimetres

.

Translate the origin to correspond
to the real values

.

Re-calculate the constants to reduce
the errors

.

Read image files

.

Read the images of the fish-
ing weights recorded by both
cameras

.

Define the position of the
bodies

.

The theoretical positions of
the fishing weights are de-
fined in millimetres

.

Write the results results

.

Write a file with all the con-
stants of equations C.1 as
well as those necessary to
translate the origin

.

Repeat these steps

.

Repeat these steps until thee
errors are reduced to their
minimal values

Figure C.12: Flow chart of the algorythm used to calibrate the volume of measurement.
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..Define the variables.

The variables of the positions are
imposed as non-defined numbers
(NaN) to simplify the management
of particles before and after they
enter the volume of measurement

.

Find the background

.

To remove the background of the
images the average of the first and
last images is done

.

Process every image

.

Remove the background

.

Apply a threshold to create a bi-
nary image

.

Find the area of every recognised
object

.

Remove bodies that are too small

.

Search for objects that could be su-
perposed and separate them

.

Only keep round objects

.

Find the center of mass of the re-
maining object

.

Translate the variables to corre-
spond to the referential of the ex-
periment

.

Read images

.

Read the images of falling
bodies seen by the cameras

.

Save the position of the bod-
ies

.

Save the position of the bod-
ies recorded in both cameras,
however the numbering of
these bodies are independent
from one camera to the other

.

IF (A ≤ Aref )

.

Search for objects with an
area smaller than the area of
reference, found through the
constant calculated using the
algorithm of figure C.12, and
removing them

.

IF (Dminor/Dmajor ≤ 0.9)

.

Calculate the ratio between
the length of the minor axis
of the object and the major
axis

.

If it is un 0.9 focus on this
body

.

Impose a color gradient pro-
portional to the distance to
the edge of the object on
each pixel

.

Apply a “watershed”, see
section C.1.2

.

Draw the edges of these ob-
jects on the binary image

.

Verify the roundness

.

The equation C.3 gives the
roundness of an object, every
body under an acceptable
value are removed

Figure C.13: Flow chart of the algorythm used to find the position of particles in an image recorded
by a camera.
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..Define the variables.

The variables are imposed as un-
defined (NaN) to ease the manage-
ment of the variables before and
after the particles enter the volume
of measurement

.

i_part=1

.

Find the trajectory of one particle
for the whole simulation

.

Did the particle have a position
defined at tim t− 1?

.

One must look for a particle
amongst the recognised bod-
ies found from the algorithm
of figure C.13

.

No

.

Are there particles in both
cameras?

.

Calculate the vertical values
(Xzi ) of the recognised ob-
jects

.

If there are several possible
option choose the minimal

.

One must look for the small-
est displacement using the
recognised bodies found
using the algorithm in fig-
ure C.13

.

Yes

.

Find all the possible displace-
ment and choose the smallest

.

Verify that it is not too big

.

Once all the trajectories have been
found

.

The statistics on the displacements
can be calculated

.

Verifications

.

The difference
of the Xzi is
greater then
the allowed
value (see fig-
ure C.12)

.

The body has
not been al-
ready assigned

.

Verifications

.

The difference
of the Xzi is
greater then
the allowed
value (see fig-
ure C.12)

.

The body has
not been al-
ready assigned

Figure C.14: Flow chart of the algorithm used to find the three dimensional trajectories of bodies for
the oscillating grids experiment.

As a reminder in the partially obstructed channel experiment, since only one camera is used the algo-
rithm is similar to the one presented in figure C.14, except that the particle do not need to be associated
with the bodies recognised in an other camera, and the trajectories smaller than five time steps are
neglected, as they are likely to correspond to air bubbles mistaken for solid particles.
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Appendix	D

Stopping	particles	at	boundaries	in	a
triangular	mesh

Où la méthode utilisée pour transporter des particules distinctes dans un maillage
triangulaire du premier ordre est expliquée.
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When particles are transported using the model described in equations 6.7 (chapter 6) the mean flow
characteristics at the position of the particle need to be known. When these particles are released in
an environmental flow, this usually requires an Eulerian flow model to be applied. Commonly these
Eulerian environmental flow models (such as Telemac-2D) use a first order triangular mesh, and the
following step will describe the geometrical steps necessary when transporting a particle inside a
triangular mesh.

D.1 Finding in which element a particle can be found

Let us assume that a particle of interest is inside an element of a known mesh, as is drawn in figure D.1.

..N1.

N2

.

N3

.
V12

.

V23

.

V31

.

NP

.

V2P

Figure D.1: A particle inside a element of a first order triangular mesh.

In figure D.1 N1, N2 and N3 represent the three nodes constructing the element and NP represents the
particle. The positions of the nodes and the particle are given in terms of coordinates (xi, yi), where
the subscript i is used to represent a node number or the particle. Vij represents the vector going from
node i to j, where again the subcripts i or j can also represent the particle. The cross product can be
used to find the angle between to vectors. For example if the vectors in figure D.1 are defined by the
following equations:

V23 =

(
x23
y23

)
=

(
x3 − x2
y3 − y2

)
(D.1a)

V2P =

(
x2P
y2P

)
=

(
xP − x2
yP − y2

)
(D.1b)

Then:

V23 × V2P =(x23y2P − x2P y23) n (D.2)

Where n is a vector orthogonal to the plan formed by the vectors V23 and V2P. Furthermore the cross
product is also equal to the following equation:

V23 × V2P =|V23||V2P| sin(θ)n (D.3)
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Therefore using equations D.1 and D.3 it is possible to find the sine of the angle between the two
vectors:

sin(θ23,2P ) =
1

|V23||V2P|
(x23y2P − x2P y23)

=
1

|V23||V2P|
[(x3 − x2) (yP − y2)− (y3 − y2) (xP − x2)] (D.4)

Where θ23,2P is the angle between the two vectors V23 and V2P. This way if θ23,2P is positive then
sin(θ23,2P ) is positive. Therefore this allows to conclude that for the following determinants:

det 1 = (x3 − x2) (yP − y2)− (y3 − y2) (xP − x2) (D.5a)
det 2 = (x1 − x3) (yP − y3)− (y1 − y3) (xP − x3) (D.5b)
det 3 = (x2 − x1) (yP − y1)− (y2 − y1) (xP − x1) (D.5c)

Then a particle is inside the selected element if, and only if:

det 1 ≥0 (D.6a)
det 2 ≥0 (D.6b)
det 3 ≥0 (D.6c)

D.2 Interpolate the nodal values inside an element

For an Eulerian code using a triangular mesh the flow characteristics, such the fluid velocity U, the
turbulent kinetic energy k or its dissipation rate ε, are usually calculated on the nodes. Therefore a
linear interpolation needs to be done to to find those flow characteristics at the position of a particle.
To simplify the calculations on finite element, a transformation on the coordinates is often done for
each element. This is shown in figure D.2.

..N1.
N2

.

N3

.

⇒
. N1. N2.

N3

Figure D.2: A transformation of coordinates of an element using barycentric coordinates

Therefore for a point r, with coordinates (x, y), the barycentric expansion allows to find these cartesian
coordinates in terms of the nodes of the triangle:

x =λ1x1 + λ2x2 + λ3x3 (D.7a)
y =λ1y1 + λ2y2 + λ3y3 (D.7b)
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Using the supposition that λ1 + λ2 + λ3 = 1 then this equation can be rewritten as:

x =(1− λ2 − λ3)x1 + λ2x2 + λ3x3 (D.8a)
y =(1− λ2 − λ3) y1 + λ2y2 + λ3y3 (D.8b)

And therefore:

λ2 (x2 − x1) + λ3 (x3 − x1) + x1 − x =0 (D.9a)
λ2 (y2 − y1) + λ3 (y3 − y1) + y1 − y =0 (D.9b)

Which can be written in its vectorial form as:

J · λ =r − N1 (D.10)

The matrix J, known as a Jacobian, is equal to:

J =
(
x2 − x1 x3 − x1
y2 − y1 y3 − y1

)
(D.11)

Matrix J is inversible and therefore it is possible to conclude that:

(
λ2
λ3

)
=J−1 (r − N1) (D.12)

Therefore the barycentric coordinates are given by the following equations:

λ1 =1− λ2 − λ3 (D.13a)

λ2 =
(y3 − y1) (x− x1) + (x1 − x3) (y − y1)

det (J) (D.13b)

λ3 =
(y1 − y2) (x− x1) + (x2 − x1) (y − y1)

det (J) (D.13c)

Using these barycentric coordinates it is possible to define that for a function f(x, y):

f (r) =λ1f (N1) + λ2f (N2) + λ3f (N3) (D.14)

Therefore if the function f is used to represent a key flow characteristic (for example the horizontal
fluid velocity Ux) then this value can be linearly interpolated inside an element. Furthermore at the
emplacement of the particle, when r = NP these barycentric coordinates are given by:

λ1 =
det 1

det (J) (D.15a)

λ2 =
det 2

det (J) (D.15b)

λ3 =
det 3

det (J) (D.15c)



FINDING INSIDE WHICH ELEMENT A PARTICLE IS AFTER ITS DISPLACEMENT 178

D.3 Finding inside which element a particle is after its displacement

When particles are transported inside a triangular mesh they can exit the known element inside which
they are situated. After its displacement there are therefore seven zones inside which the particle can
be situated. These zones are defined by the current element and the six neighbouring elements, see
figure D.3. A particle can cross several elements in one displacement, but when this is the case the
path is decomposed into several stages, as will be explained later.

..N1.

N2

.

N3

.
F1

.

F2

.

F3

.

0

.

1

.

2

.

4

.

3

. 5.

6

Figure D.3: A triangular element, with three boundaries, surrounded by six neighbouring elements.
Note that ‘elements’ 3, 5 and 6 can be composed of several triangles.

Using the definition of the determinants given by equations D.5 it is possible to conclude that:

If : det 1 < 0 ⇒ The particle is in zones 1,3 or 5 (D.16a)
If : det 2 < 0 ⇒ The particle is in zones 2,3 or 6 (D.16b)
If : det 3 < 0 ⇒ The particle is in zones 4,5 or 6 (D.16c)

Therefore for variable ISO, which corresponds to the zone number containing the particle after its
displacement, the following series of steps can be used to find its value:

ISO = 0 (D.17a)
If : det 1 < 0 ⇒ ISO =ISO + 1 (D.17b)
If : det 2 < 0 ⇒ ISO =ISO + 2 (D.17c)
If : det 3 < 0 ⇒ ISO =ISO + 4 (D.17d)

We therefore know that if ISO is equal to 1, 2 or 4 it has crossed the boundaries F2, F3 and F1 respec-
tively. The Eulerian flow solver usually have a function defined linking a zone (i.e. the value ISO) to
an element number. For example in Telemac-2D this function is called IFABOR. However it is a better
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modelling process to know exactly which boundary was crossed by the particle path. This way if a
particle path crosses several elements, all of these elements can be known (by looking at each element
boundary crossed), and if the particle exits the domain then a particle can be stopped at the correct
boundary.

D.4 Finding which boundary was crossed by a particle

The boundaries F1, F2 and F3 can be represented by the vectors V12, V23 and V31 respectively. A
particle path is defined as the vector VP ranging from the initial particle position N0 to the final
position NP. This is shown in figure D.4.

..N1.

N2

.

N3

.
V12

.

V23

.

V31

.

N0

.

NP

.

V0P

Figure D.4: A particle path crossing a triangular element boundary.

To find the position at which a particle path crosses an element’s boundary, parametric notation needs
to be used:

V12 =

{
x1 + x12µ

y1 + y12µ
(D.18a)

V23 =

{
x2 + x23µ

y2 + y23µ
(D.18b)

V31 =

{
x3 + x31µ

y3 + y31µ
(D.18c)

V0P =

{
x0 + x0Pµ

y0 + y0Pµ
(D.18d)

Where µ is a parametric coordinate. Therefore to find the intersection between the particle path and
the element boundary in the example presented in figure D.4 one must look for a value of µ so that:

x0 + x0Pµ1 =x2 + x23µ2 (D.19a)
y0 + y0Pµ1 =y2 + y23µ2 (D.19b)
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Which leads to the following definitions:

µ1 =
x2 − x0 + x23µ2

x0P
(D.20a)

µ2 =
y0 − y2 + y0Pµ1

y23
(D.20b)

The value µ1 is of particular interest as it is equal to the percentage of the particle path until it crosses
the boundary V23. Equation D.20b can be substituted in to equation D.20a to give the following
equation for t1:

µ1 =
y23(x2 − x0) + x23(y0 − y2)

x0P y23 − x23y0P
(D.21)

Therefore the parametric coordinates corresponding to the intersection between the line defined by
the particle path vector and each boundary vector is defined by the following equations:

µF1 =
y12(x1 − x0) + x12(y0 − y1)

x0P y12 − x12y0P
(D.22a)

µF2 =
y23(x2 − x0) + x23(y0 − y2)

x0P y23 − x23y0P
(D.22b)

µF3 =
y31(x3 − x0) + x31(y0 − y3)

x0P y31 − x31y0P
(D.22c)

Therefore for the ISO values for which two boundaries are possible (i.e. ISO equal 3, 5 or 6) then the
smallest parametric coordinate µi to the intersection of the two possible possible boundaries gives
the correct intersection. It should also be noted that µi would be negative for boundaries that are not
possibly crossed by a particle.
Finally if the correct element boundary corresponds to a solid boundary in the numerical domain
then a percentage of the parametric coordinate µi can be used to stop the particle before it reaches
this boundary. This method is used to simulate solid particles being stopped by a solid boundary in
the flow, allowing them the be further transported using the model described in equations 6.7 in the
following time step of the numerical simulation.
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