Library CciPts





  Inductive mem_sign0 : cci_op -> term -> Prop :=
    | Mem0_mt_mark : mem_sign0 Mt_mark Mark
    | Mem0_mark : mem_sign0 Mark %%so
    | Mem0_nil_mark : mem_sign0 Nil_mark Lmark
    | Mem0_lmark : mem_sign0 Lmark %%so.

  Inductive mem_sign (e : env) :
            term          -> term          -> term          -> Prop :=
    | Mem_cons_mark :
        forall p, mem_sign e (Cst1 Cons_mark p) (Mark ** Lmark) Lmark
    | Mem_proj1 :         forall p a b, mem_sign e p..L (a**b) a
    | Mem_proj2 :
        forall p a b, mem_sign e p..R (a**b) b
    | Mem_app :         forall x f m a b, mem_sign e (f@m) ((Forall x:a, b)**a) b[0:=m]
    | Mem_cst :         forall x m c,
        sign_glob_spec sg x (GlobConst c) ->
        mem_sign e (Cst1 (Const x) m) (c_par c) (TYPE (c_decl c))[0:=m]
    | Mem_record :         forall (sign:rspec) m s,         list_unique (field_names sign) ->
        eq_term e m (record_arity sign) ->         mem_sign e {<field_names sign : m>} %%s %%s
    | Mem_struct :
        forall (md:mspec) s,         mem_sign e (struct_of md) (%%s ** mkvect (fields_type md 0))
          (record_of (rspec_of md))
    | Mem_field :         forall n x m ty (sign:rspec),
        item x (field_names sign) n ->
        item ty (fields_type (expand_sign m sign) 0) n ->
        mem_sign e m..(x) (record_of sign) ty
    | Mem_fix :         forall m (fixdefs:list fix_info) bds s,
        mem_sign e (Fix {(fix_types fixdefs,,bds)})
          (%%s ** fix_bodies m fixdefs) (fix_types fixdefs)
    | Mem_case :         forall inds is (pats:list name) p c br m t,
        sign_glob_spec sg (i_name is) (GlobInd inds is) ->
        type_case inds is pats p c m t ->
        mem_sign e (Match c => p with pats => br end) m t
    | Mem_mutind :         forall ind inds is p a l m,
        sign_glob_spec sg ind (GlobInd inds is) ->
        mem_sign e Ind{ind; m // p,,(a,,l)}
          (i_param is ** ((i_arg is)[0:=p] ** Lmark))
          %%(i_kind is)
    | Mem_constr :         forall x p a is c,
        sign_glob_spec sg x (GlobCstr is c) ->
        mem_sign e Cstr{x // p,,a} (i_param is ** (c_arg c)[0:=p])
          Ind{i_name is // p,,(((c_inst c)[1:=p])[0:=a],,[])}.

  Definition mem_sign1 : sign_relation :=
    fun c e m t u => mem_sign e (Cst1 c m) t u.

Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (44 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (1 entry)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (31 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (6 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (2 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (3 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (1 entry)

Global Index

A

alpha_stab_alpha_def [lemma, in CciPts]
alpha_stab_alpha_var [lemma, in CciPts]
alpha_stab_env [lemma, in CciPts]
alpha_stab_typ [lemma, in CciPts]
alpha_stab_typ' [lemma, in CciPts]


C

CciPts [library]
cci_pts [definition, in CciPts]


E

eq_case_branch0 [lemma, in CciPts]


F

find_in_rspec [lemma, in CciPts]


I

is_signature1 [lemma, in CciPts]


L

lmrk_wf [lemma, in CciPts]


M

map_struct_psubst [lemma, in CciPts]
Mem0_lmark [constructor, in CciPts]
Mem0_mark [constructor, in CciPts]
Mem0_mt_mark [constructor, in CciPts]
Mem0_nil_mark [constructor, in CciPts]
Mem_cons_mark [constructor, in CciPts]
Mem_proj1 [constructor, in CciPts]
mem_sign [inductive, in CciPts]
mem_sign0 [inductive, in CciPts]
mem_sign1 [definition, in CciPts]
mem_sign1_stable [lemma, in CciPts]
mem_sign_stable_val [lemma, in CciPts]
mrk_wf [lemma, in CciPts]


P

par_ctxt_cbr [lemma, in CciPts]
par_ctxt_fields_type [lemma, in CciPts]
par_ctxt_fixs [lemma, in CciPts]
par_ctxt_mktuple [lemma, in CciPts]
par_ctxt_mkvect [lemma, in CciPts]
par_ctxt_struct [axiom, in CciPts]
par_ctxt_struct_psubst [lemma, in CciPts]


R

record_psubst [lemma, in CciPts]
red_fix_ty [lemma, in CciPts]
red_fix_ty1 [lemma, in CciPts]


S

so_wf [lemma, in CciPts]
struct_psubst [definition, in CciPts]
str_subst_cci_sub [lemma, in CciPts]
str_subst_eq_term [lemma, in CciPts]


T

typ_lmark_so [lemma, in CciPts]
typ_mark_so [lemma, in CciPts]
typ_mt_mark [lemma, in CciPts]
typ_nil_mark [lemma, in CciPts]
typ_one_so [lemma, in CciPts]
typ_unit_one [lemma, in CciPts]



Axiom Index

P

par_ctxt_struct [in CciPts]



Lemma Index

A

alpha_stab_alpha_def [in CciPts]
alpha_stab_alpha_var [in CciPts]
alpha_stab_env [in CciPts]
alpha_stab_typ [in CciPts]
alpha_stab_typ' [in CciPts]


E

eq_case_branch0 [in CciPts]


F

find_in_rspec [in CciPts]


I

is_signature1 [in CciPts]


L

lmrk_wf [in CciPts]


M

map_struct_psubst [in CciPts]
mem_sign1_stable [in CciPts]
mem_sign_stable_val [in CciPts]
mrk_wf [in CciPts]


P

par_ctxt_cbr [in CciPts]
par_ctxt_fields_type [in CciPts]
par_ctxt_fixs [in CciPts]
par_ctxt_mktuple [in CciPts]
par_ctxt_mkvect [in CciPts]
par_ctxt_struct_psubst [in CciPts]


R

record_psubst [in CciPts]
red_fix_ty [in CciPts]
red_fix_ty1 [in CciPts]


S

so_wf [in CciPts]
str_subst_cci_sub [in CciPts]
str_subst_eq_term [in CciPts]


T

typ_lmark_so [in CciPts]
typ_mark_so [in CciPts]
typ_mt_mark [in CciPts]
typ_nil_mark [in CciPts]
typ_one_so [in CciPts]
typ_unit_one [in CciPts]



Constructor Index

M

Mem0_lmark [in CciPts]
Mem0_mark [in CciPts]
Mem0_mt_mark [in CciPts]
Mem0_nil_mark [in CciPts]
Mem_cons_mark [in CciPts]
Mem_proj1 [in CciPts]



Inductive Index

M

mem_sign [in CciPts]
mem_sign0 [in CciPts]



Definition Index

C

cci_pts [in CciPts]


M

mem_sign1 [in CciPts]


S

struct_psubst [in CciPts]



Library Index

C

CciPts



Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (44 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (1 entry)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (31 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (6 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (2 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (3 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ (1 entry)

This page has been generated by coqdoc