
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenCV

Gary Bradski and Adrian Kaehler

Beijing · Cambridge · Farnham · Köln · Sebastopol · Taipei · Tokyo

FM-R4886-AT1.indd iFM-R4886-AT1.indd i 9/15/08 4:26:38 PM9/15/08 4:26:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenCV
by Gary Bradski and Adrian Kaehler

Copyright © 2008 Gary Bradski and Adrian Kaehler. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides

Production Editor: Rachel Monaghan

Production Services: Newgen Publishing and
Data Services

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrator: Robert Romano

Printing History:

September 2008: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning OpenCV, the image of a giant peacock moth, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

This book uses Repkover,™ a durable and flexible lay-flat binding.

ISBN: 978-0-596-51613-0

[M]

FM-R4886-AT1.indd iiFM-R4886-AT1.indd ii 9/15/08 4:26:40 PM9/15/08 4:26:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Preface . ix

Overview1. . 1

What Is OpenCV? 1

Who Uses OpenCV? 1

What Is Computer Vision? 2

The Origin of OpenCV 6

Downloading and Installing OpenCV 8

Getting the Latest OpenCV via CVS 10

More OpenCV Documentation 11

OpenCV Structure and Content 13

Portability 14

Exercises 15

Introduction to OpenCV2. . 16

Getting Started 16

First Program—Display a Picture 16

Second Program—AVI Video 18

Moving Around 19

A Simple Transformation 22

A Not-So-Simple Transformation 24

Input from a Camera 26

Writing to an AVI File 27

Onward 29

Exercises 29

Contents

FM-R4886-AT1.indd iiiFM-R4886-AT1.indd iii 9/15/08 4:26:40 PM9/15/08 4:26:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

iv | Contents

Getting to Know OpenCV3. . 31

OpenCV Primitive Data Types 31

CvMat Matrix Structure 33

IplImage Data Structure 42

Matrix and Image Operators 47

Drawing Things 77

Data Persistence 82

Integrated Performance Primitives 86

Summary 87

Exercises 87

HighGUI4. . 90

A Portable Graphics Toolkit 90

Creating a Window 91

Loading an Image 92

Displaying Images 93

Working with Video 102

ConvertImage 106

Exercises 107

Image Processing5. . 109

Overview 109

Smoothing 109

Image Morphology 115

Flood Fill 124

Resize 129

Image Pyramids 130

Threshold 135

Exercises 141

Image Transforms6. . 144

Overview 144

Convolution 144

Gradients and Sobel Derivatives 148

Laplace 150

Canny 151

FM-R4886-AT1.indd ivFM-R4886-AT1.indd iv 9/15/08 4:26:40 PM9/15/08 4:26:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Contents | v

Hough Transforms 153

Remap 162

Stretch, Shrink, Warp, and Rotate 163

CartToPolar and PolarToCart 172

LogPolar 174

Discrete Fourier Transform (DFT) 177

Discrete Cosine Transform (DCT) 182

Integral Images 182

Distance Transform 185

Histogram Equalization 186

Exercises 190

Histograms and Matching7. . 193

Basic Histogram Data Structure 195

Accessing Histograms 198

Basic Manipulations with Histograms 199

Some More Complicated Stuff 206

Exercises 219

Contours8. . 222

Memory Storage 222

Sequences 223

Contour Finding 234

Another Contour Example 243

More to Do with Contours 244

Matching Contours 251

Exercises 262

Image Parts and Segmentation9. . 265

Parts and Segments 265

Background Subtraction 265

Watershed Algorithm 295

Image Repair by Inpainting 297

Mean-Shift Segmentation 298

Delaunay Triangulation, Voronoi Tesselation 300

Exercises 313

FM-R4886-AT1.indd vFM-R4886-AT1.indd v 9/15/08 4:26:40 PM9/15/08 4:26:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

vi | Contents

Tracking and Motion10. . 316

The Basics of Tracking 316

Corner Finding 316

Subpixel Corners 319

Invariant Features 321

Optical Flow 322

Mean-Shift and Camshift Tracking 337

Motion Templates 341

Estimators 348

The Condensation Algorithm 364

Exercises 367

Camera Models and Calibration11. . 370

Camera Model 371

Calibration 378

Undistortion 396

Putting Calibration All Together 397

Rodrigues Transform 401

Exercises 403

Projection and 3D Vision12. . 405

Projections 405

Affine and Perspective Transformations 407

POSIT: 3D Pose Estimation 412

Stereo Imaging 415

Structure from Motion 453

Fitting Lines in Two and Three Dimensions 454

Exercises 458

Machine Learning13. . 459

What Is Machine Learning 459

Common Routines in the ML Library 471

Mahalanobis Distance 476

K-Means 479

Naïve/Normal Bayes Classifier 483

Binary Decision Trees 486

Boosting 495

FM-R4886-AT1.indd viFM-R4886-AT1.indd vi 9/15/08 4:26:40 PM9/15/08 4:26:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Contents | vii

Random Trees 501

Face Detection or Haar Classifier 506

Other Machine Learning Algorithms 516

Exercises 517

OpenCV’s Future14. . 521

Past and Future 521

Directions 522

OpenCV for Artists 525

Afterword 526

Bibliography . 527

Index . 543

FM-R4886-AT1.indd viiFM-R4886-AT1.indd vii 9/15/08 4:26:40 PM9/15/08 4:26:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

FM-R4886-AT1.indd viiiFM-R4886-AT1.indd viii 9/15/08 4:26:41 PM9/15/08 4:26:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

ix

Preface

Th is book provides a working guide to the Open Source Computer Vision Library

(OpenCV) and also provides a general background to the fi eld of computer vision suf-

fi cient to use OpenCV eff ectively.

Purpose
Computer vision is a rapidly growing field, partly as a result of both cheaper and more

capable cameras, partly because of affordable processing power, and partly because vi-

sion algorithms are starting to mature. OpenCV itself has played a role in the growth of

computer vision by enabling thousands of people to do more productive work in vision.

With its focus on real-time vision, OpenCV helps students and professionals efficiently

implement projects and jump-start research by providing them with a computer vision

and machine learning infrastructure that was previously available only in a few mature

research labs. The purpose of this text is to:

Better document OpenCV—detail what function calling conventions really mean •

and how to use them correctly.

Rapidly give the reader an intuitive understanding of how the vision algorithms •

work.

Give the reader some sense of what algorithm to use and when to use it.•

Give the reader a boost in implementing computer vision and machine learning algo-•

rithms by providing many working coded examples to start from.

Provide intuitions about how to fix some of the more advanced routines when some-•

thing goes wrong.

Simply put, this is the text the authors wished we had in school and the coding reference

book we wished we had at work.

This book documents a tool kit, OpenCV, that allows the reader to do interesting and

fun things rapidly in computer vision. It gives an intuitive understanding as to how the

algorithms work, which serves to guide the reader in designing and debugging vision

FM-R4886-AT1.indd ixFM-R4886-AT1.indd ix 9/15/08 4:26:41 PM9/15/08 4:26:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

x | Preface

applications and also to make the formal descriptions of computer vision and machine

learning algorithms in other texts easier to comprehend and remember.

Aft er all, it is easier to understand complex algorithms and their associated math when

you start with an intuitive grasp of how those algorithms work.

Who This Book Is For
This book contains descriptions, working coded examples, and explanations of the com-

puter vision tools contained in the OpenCV library. As such, it should be helpful to many

different kinds of users.

Professionals

For those practicing professionals who need to rapidly implement computer vision

systems, the sample code provides a quick framework with which to start. Our de-

scriptions of the intuitions behind the algorithms can quickly teach or remind the

reader how they work.

Students

As we said, this is the text we wish had back in school. The intuitive explanations,

detailed documentation, and sample code will allow you to boot up faster in com-

puter vision, work on more interesting class projects, and ultimately contribute new

research to the field.

Teachers

Computer vision is a fast-moving field. We’ve found it effective to have the students

rapidly cover an accessible text while the instructor fills in formal exposition where

needed and supplements with current papers or guest lecturers from experts. The stu-

dents can meanwhile start class projects earlier and attempt more ambitious tasks.

Hobbyists

Computer vision is fun, here’s how to hack it.

We have a strong focus on giving readers enough intuition, documentation, and work-

ing code to enable rapid implementation of real-time vision applications.

What This Book Is Not
This book is not a formal text. We do go into mathematical detail at various points,* but it

is all in the service of developing deeper intuitions behind the algorithms or to make clear

the implications of any assumptions built into those algorithms. We have not attempted

a formal mathematical exposition here and might even incur some wrath along the way

from those who do write formal expositions.

This book is not for theoreticians because it has more of an “applied” nature. The book

will certainly be of general help, but is not aimed at any of the specialized niches in com-

puter vision (e.g., medical imaging or remote sensing analysis).

* Always with a warning to more casual users that they may skip such sections.

FM-R4886-AT1.indd xFM-R4886-AT1.indd x 9/15/08 4:26:41 PM9/15/08 4:26:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Preface | xi

Th at said, it is the belief of the authors that having read the explanations here fi rst, a stu-

dent will not only learn the theory better but remember it longer. Th erefore, this book

would make a good adjunct text to a theoretical course and would be a great text for an

introductory or project-centric course.

About the Programs in This Book
All the program examples in this book are based on OpenCV version 2.0. The code should

definitely work under Linux or Windows and probably under OS-X, too. Source code

for the examples in the book can be fetched from this book’s website (http://www.oreilly

.com/catalog/9780596516130). OpenCV can be loaded from its source forge site (http://

sourceforge.net/projects/opencvlibrary).

OpenCV is under ongoing development, with offi cial releases occurring once or twice

a year. As a rule of thumb, you should obtain your code updates from the source forge

CVS server (http://sourceforge.net/cvs/?group_id=22870).

Prerequisites
For the most part, readers need only know how to program in C and perhaps some C++.

Many of the math sections are optional and are labeled as such. The mathematics in-

volves simple algebra and basic matrix algebra, and it assumes some familiarity with solu-

tion methods to least-squares optimization problems as well as some basic knowledge of

Gaussian distributions, Bayes’ law, and derivatives of simple functions.

Th e math is in support of developing intuition for the algorithms. Th e reader may skip

the math and the algorithm descriptions, using only the function defi nitions and code

examples to get vision applications up and running.

How This Book Is Best Used
This text need not be read in order. It can serve as a kind of user manual: look up the func-

tion when you need it; read the function’s description if you want the gist of how it works

“under the hood”. The intent of this book is more tutorial, however. It gives you a basic

understanding of computer vision along with details of how and when to use selected

algorithms.

This book was written to allow its use as an adjunct or as a primary textbook for an un-

dergraduate or graduate course in computer vision. The basic strategy with this method is

for students to read the book for a rapid overview and then supplement that reading with

more formal sections in other textbooks and with papers in the field. There are exercises

at the end of each chapter to help test the student’s knowledge and to develop further

intuitions.

You could approach this text in any of the following ways.

FM-R4886-AT1.indd xiFM-R4886-AT1.indd xi 9/15/08 4:26:41 PM9/15/08 4:26:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

xii | Preface

Grab Bag

Go through Chapters 1–3 in the first sitting, then just hit the appropriate chapters or

sections as you need them. This book does not have to be read in sequence, except for

Chapters 11 and 12 (Calibration and Stereo).

Good Progress

Read just two chapters a week until you’ve covered Chapters 1–12 in six weeks (Chap-

ter 13 is a special case, as discussed shortly). Start on projects and start in detail on

selected areas in the field, using additional texts and papers as appropriate.

The Sprint

Just cruise through the book as fast as your comprehension allows, covering Chapters

1–12. Then get started on projects and go into detail on selected areas in the field us-

ing additional texts and papers. This is probably the choice for professionals, but it

might also suit a more advanced computer vision course.

Chapter 13 is a long chapter that gives a general background to machine learning in addi-

tion to details behind the machine learning algorithms implemented in OpenCV and how

to use them. Of course, machine learning is integral to object recognition and a big part

of computer vision, but it’s a field worthy of its own book. Professionals should find this

text a suitable launching point for further explorations of the literature—or for just getting

down to business with the code in that part of the library. This chapter should probably be

considered optional for a typical computer vision class.

Th is is how the authors like to teach computer vision: Sprint through the course content

at a level where the students get the gist of how things work; then get students started

on meaningful class projects while the instructor supplies depth and formal rigor in

selected areas by drawing from other texts or papers in the fi eld. Th is same method

works for quarter, semester, or two-term classes. Students can get quickly up and run-

ning with a general understanding of their vision task and working code to match. As

they begin more challenging and time-consuming projects, the instructor helps them

develop and debug complex systems. For longer courses, the projects themselves can

become instructional in terms of project management. Build up working systems fi rst;

refi ne them with more knowledge, detail, and research later. Th e goal in such courses is

for each project to aim at being worthy of a conference publication and with a few proj-

ect papers being published subsequent to further (postcourse) work.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, path names,

directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions, types,

classes, namespaces, methods, modules, properties, parameters, values, objects,

FM-R4886-AT1.indd xiiFM-R4886-AT1.indd xii 9/15/08 4:26:41 PM9/15/08 4:26:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Preface | xiii

events, event handlers, XMLtags, HTMLtags, the contents of files, or the output from

commands.

Constant width bold
Shows commands or other text that should be typed literally by the user. Also used

for emphasis in code samples.

Constant width italic
Shows text that should be replaced with user-supplied values.

[. . .]

Indicates a reference to the bibliography.

Shows text that should be replaced with user-supplied values. his icon
signifi es a tip, suggestion, or general note.

Th is icon indicates a warning or caution.

Using Code Examples
OpenCV is free for commercial or research use, and we have the same policy on the

code examples in the book. Use them at will for homework, for research, or for commer-

cial products. We would very much appreciate referencing this book when you do, but

it is not required. Other than how it helped with your homework projects (which is best

kept a secret), we would like to hear how you are using computer vision for academic re-

search, teaching courses, and in commercial products when you do use OpenCV to help

you. Again, not required, but you are always invited to drop us a line.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favor-

ite technology book, that means the book is available online through the

O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s virtual library that lets you easily

search thousands of top tech books, cut and paste code samples, download chapters, and

find quick answers when you need the most accurate, current information. Try it for free

at http://safari.oreilly.com.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

FM-R4886-AT1.indd xiiiFM-R4886-AT1.indd xiii 9/15/08 4:26:41 PM9/15/08 4:26:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

xiv | Preface

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list examples and any plans for future edi-

tions. You can access this information at:

http://www.oreilly.com/catalog/9780596516130/

You can also send messages electronically. To be put on the mailing list or request a cata-

log, send an email to:

info@oreilly.com

To comment on the book, send an email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O’Reilly

Network, see our website at:

http://www.oreilly.com

Acknowledgments
A long-term open source eff ort sees many people come and go, each contributing in dif-

ferent ways. Th e list of contributors to this library is far too long to list here, but see the

.../opencv/docs/HTML/Contributors/doc_contributors.html fi le that ships with OpenCV.

Thanks for Help on OpenCV
Intel is where the library was born and deserves great thanks for supporting this project

the whole way through. Open source needs a champion and enough development sup-

port in the beginning to achieve critical mass. Intel gave it both. There are not many other

companies where one could have started and maintained such a project through good

times and bad. Along the way, OpenCV helped give rise to—and now takes (optional)

advantage of—Intel’s Integrated Performance Primitives, which are hand-tuned assembly

language routines in vision, signal processing, speech, linear algebra, and more. Thus the

lives of a great commercial product and an open source product are intertwined.

Mark Holler, a research manager at Intel, allowed OpenCV to get started by knowingly

turning a blind eye to the inordinate amount of time being spent on an unofficial project

back in the library’s earliest days. As divine reward, he now grows wine up in Napa’s Mt.

Vieder area. Stuart Taylor in the Performance Libraries group at Intel enabled OpenCV

by letting us “borrow” part of his Russian software team. Richard Wirt was key to its

continued growth and survival. As the first author took on management responsibility

at Intel, lab director Bob Liang let OpenCV thrive; when Justin Rattner became CTO,

we were able to put OpenCV on a more firm foundation under Software Technology

Lab—supported by software guru Shinn-Horng Lee and indirectly under his manager,

Paul Wiley. Omid Moghadam helped advertise OpenCV in the early days. Mohammad

Haghighat and Bill Butera were great as technical sounding boards. Nuriel Amir, Denver

FM-R4886-AT1.indd xivFM-R4886-AT1.indd xiv 9/15/08 4:26:42 PM9/15/08 4:26:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Preface | xv

Dash, John Mark Agosta, and Marzia Polito were of key assistance in launching the ma-

chine learning library. Rainer Lienhart, Jean-Yves Bouguet, Radek Grzeszczuk, and Ara

Nefian were able technical contributors to OpenCV and great colleagues along the way;

the first is now a professor, the second is now making use of OpenCV in some well-known

Google projects, and the others are staffing research labs and start-ups. There were many

other technical contributors too numerous to name.

On the software side, some individuals stand out for special mention, especially on the

Russian software team. Chief among these is the Russian lead programmer Vadim Pisare-

vsky, who developed large parts of the library and also managed and nurtured the library

through the lean times when boom had turned to bust; he, if anyone, is the true hero of the

library. His technical insights have also been of great help during the writing of this book.

Giving him managerial support and protection in the lean years was Valery Kuriakin, a

man of great talent and intellect. Victor Eruhimov was there in the beginning and stayed

through most of it. We thank Boris Chudinovich for all of the contour components.

Finally, very special thanks go to Willow Garage [WG], not only for its steady fi nancial

backing to OpenCV’s future development but also for supporting one author (and pro-

viding the other with snacks and beverages) during the fi nal period of writing this book.

Thanks for Help on the Book
While preparing this book, we had several key people contributing advice, reviews, and

suggestions. Thanks to John Markoff, Technology Reporter at the New York Times for

encouragement, key contacts, and general writing advice born of years in the trenches.

To our reviewers, a special thanks go to Evgeniy Bart, physics postdoc at CalTech, who

made many helpful comments on every chapter; Kjerstin Williams at Applied Minds,

who did detailed proofs and verification until the end; John Hsu at Willow Garage, who

went through all the example code; and Vadim Pisarevsky, who read each chapter in de-

tail, proofed the function calls and the code, and also provided several coding examples.

There were many other partial reviewers. Jean-Yves Bouguet at Google was of great help

in discussions on the calibration and stereo chapters. Professor Andrew Ng at Stanford

University provided useful early critiques of the machine learning chapter. There were

numerous other reviewers for various chapters—our thanks to all of them. Of course,

any errors result from our own ignorance or misunderstanding, not from the advice we

received.

Finally, many thanks go to our editor, Michael Loukides, for his early support, numer-

ous edits, and continued enthusiasm over the long haul.

Gary Adds . . .
With three young kids at home, my wife Sonya put in more work to enable this book than

I did. Deep thanks and love—even OpenCV gives her recognition, as you can see in the

face detection section example image. Further back, my technical beginnings started with

the physics department at the University of Oregon followed by undergraduate years at

FM-R4886-AT1.indd xvFM-R4886-AT1.indd xv 9/15/08 4:26:42 PM9/15/08 4:26:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

xvi | Preface

UC Berkeley. For graduate school, I’d like to thank my advisor Steve Grossberg and Gail

Carpenter at the Center for Adaptive Systems, Boston University, where I first cut my

academic teeth. Though they focus on mathematical modeling of the brain and I have

ended up firmly on the engineering side of AI, I think the perspectives I developed there

have made all the difference. Some of my former colleagues in graduate school are still

close friends and gave advice, support, and even some editing of the book: thanks to

Frank Guenther, Andrew Worth, Steve Lehar, Dan Cruthirds, Allen Gove, and Krishna

Govindarajan.

I specially thank Stanford University, where I’m currently a consulting professor in the

AI and Robotics lab. Having close contact with the best minds in the world definitely

rubs off, and working with Sebastian Thrun and Mike Montemerlo to apply OpenCV

on Stanley (the robot that won the $2M DARPA Grand Challenge) and with Andrew Ng

on STAIR (one of the most advanced personal robots) was more technological fun than

a person has a right to have. It’s a department that is currently hitting on all cylinders

and simply a great environment to be in. In addition to Sebastian Thrun and Andrew Ng

there, I thank Daphne Koller for setting high scientific standards, and also for letting me

hire away some key interns and students, as well as Kunle Olukotun and Christos Kozy-

rakis for many discussions and joint work. I also thank Oussama Khatib, whose work on

control and manipulation has inspired my current interests in visually guided robotic

manipulation. Horst Haussecker at Intel Research was a great colleague to have, and his

own experience in writing a book helped inspire my effort.

Finally, thanks once again to Willow Garage for allowing me to pursue my lifelong ro-

botic dreams in a great environment featuring world-class talent while also supporting

my time on this book and supporting OpenCV itself.

Adrian Adds . . .
Coming from a background in theoretical physics, the arc that brought me through su-

percomputer design and numerical computing on to machine learning and computer vi-

sion has been a long one. Along the way, many individuals stand out as key contributors. I

have had many wonderful teachers, some formal instructors and others informal guides.

I should single out Professor David Dorfan of UC Santa Cruz and Hartmut Sadrozinski of

SLAC for their encouragement in the beginning, and Norman Christ for teaching me the

fine art of computing with the simple edict that “if you can not make the computer do it,

you don’t know what you are talking about”. Special thanks go to James Guzzo, who let me

spend time on this sort of thing at Intel—even though it was miles from what I was sup-

posed to be doing—and who encouraged my participation in the Grand Challenge during

those years. Finally, I want to thank Danny Hillis for creating the kind of place where all of

this technology can make the leap to wizardry and for encouraging my work on the book

while at Applied Minds.

I also would like to thank Stanford University for the extraordinary amount of support I

have received from them over the years. From my work on the Grand Challenge team with

Sebastian Thrun to the STAIR Robot with Andrew Ng, the Stanford AI Lab was always

FM-R4886-AT1.indd xviFM-R4886-AT1.indd xvi 9/15/08 4:26:42 PM9/15/08 4:26:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Preface | xvii

generous with office space, financial support, and most importantly ideas, enlightening

conversation, and (when needed) simple instruction on so many aspects of vision, robot-

ics, and machine learning. I have a deep gratitude to these people, who have contributed

so significantly to my own growth and learning.

No acknowledgment or thanks would be meaningful without a special thanks to my lady

Lyssa, who never once faltered in her encouragement of this project or in her willingness

to accompany me on trips up and down the state to work with Gary on this book. My

thanks and my love go to her.

FM-R4886-AT1.indd xviiFM-R4886-AT1.indd xvii 9/15/08 4:26:43 PM9/15/08 4:26:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

i

FM-R4886-AT1.indd xviiiFM-R4886-AT1.indd xviii 9/15/08 4:26:43 PM9/15/08 4:26:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

1

CHAPTER 1

Overview

What Is OpenCV?
OpenCV [OpenCV] is an open source (see http://opensource.org) computer vision library

available from http://SourceForge.net/projects/opencvlibrary. Th e library is written in C

and C++ and runs under Linux, Windows and Mac OS X. Th ere is active development

on interfaces for Python, Ruby, Matlab, and other languages.

OpenCV was designed for computational effi ciency and with a strong focus on real-

time applications. OpenCV is written in optimized C and can take advantage of mul-

ticore processors. If you desire further automatic optimization on Intel architectures

[Intel], you can buy Intel’s Integrated Performance Primitives (IPP) libraries [IPP], which

consist of low-level optimized routines in many diff erent algorithmic areas. OpenCV

automatically uses the appropriate IPP library at runtime if that library is installed.

One of OpenCV’s goals is to provide a simple-to-use computer vision infrastructure

that helps people build fairly sophisticated vision applications quickly. Th e OpenCV

library contains over 500 functions that span many areas in vision, including factory

product inspection, medical imaging, security, user interface, camera calibration, stereo

vision, and robotics. Because computer vision and machine learning oft en go hand-in-

hand, OpenCV also contains a full, general-purpose Machine Learning Library (MLL).

Th is sublibrary is focused on statistical pattern recognition and clustering. Th e MLL is

highly useful for the vision tasks that are at the core of OpenCV’s mission, but it is gen-

eral enough to be used for any machine learning problem.

Who Uses OpenCV?
Most computer scientists and practical programmers are aware of some facet of the role

that computer vision plays. But few people are aware of all the ways in which computer

vision is used. For example, most people are somewhat aware of its use in surveillance,

and many also know that it is increasingly being used for images and video on the Web.

A few have seen some use of computer vision in game interfaces. Yet few people realize

that most aerial and street-map images (such as in Google’s Street View) make heavy

01-R4886-RC1.indd 101-R4886-RC1.indd 1 9/15/08 4:17:45 PM9/15/08 4:17:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

2 | Chapter 1: Overview

use of camera calibration and image stitching techniques. Some are aware of niche ap-

plications in safety monitoring, unmanned fl ying vehicles, or biomedical analysis. But

few are aware how pervasive machine vision has become in manufacturing: virtually

everything that is mass-produced has been automatically inspected at some point using

computer vision.

Th e open source license for OpenCV has been structured such that you can build a

commercial product using all or part of OpenCV. You are under no obligation to open-

source your product or to return improvements to the public domain, though we hope

you will. In part because of these liberal licensing terms, there is a large user commu-

nity that includes people from major companies (IBM, Microsoft , Intel, SONY, Siemens,

and Google, to name only a few) and research centers (such as Stanford, MIT, CMU,

Cambridge, and INRIA). Th ere is a Yahoo groups forum where users can post questions

and discussion at http://groups.yahoo.com/group/OpenCV; it has about 20,000 members.

OpenCV is popular around the world, with large user communities in China, Japan,

Russia, Europe, and Israel.

Since its alpha release in January 1999, OpenCV has been used in many applications,

products, and research eff orts. Th ese applications include stitching images together in

satellite and web maps, image scan alignment, medical image noise reduction, object

analysis, security and intrusion detection systems, automatic monitoring and safety sys-

tems, manufacturing inspection systems, camera calibration, military applications, and

unmanned aerial, ground, and underwater vehicles. It has even been used in sound and

music recognition, where vision recognition techniques are applied to sound spectro-

gram images. OpenCV was a key part of the vision system in the robot from Stanford,

“Stanley”, which won the $2M DARPA Grand Challenge desert robot race [Th run06].

What Is Computer Vision?
Computer vision* is the transformation of data from a still or video camera into either a

decision or a new representation. All such transformations are done for achieving some

particular goal. Th e input data may include some contextual information such as “the

camera is mounted in a car” or “laser range fi nder indicates an object is 1 meter away”.

Th e decision might be “there is a person in this scene” or “there are 14 tumor cells on

this slide”. A new representation might mean turning a color image into a grayscale im-

age or removing camera motion from an image sequence.

Because we are such visual creatures, it is easy to be fooled into thinking that com-

puter vision tasks are easy. How hard can it be to fi nd, say, a car when you are staring

at it in an image? Your initial intuitions can be quite misleading. Th e human brain di-

vides the vision signal into many channels that stream diff erent kinds of information

into your brain. Your brain has an attention system that identifi es, in a task-dependent

* Computer vision is a vast fi eld. Th is book will give you a basic grounding in the fi eld, but we also recom-
mend texts by Trucco [Trucco98] for a simple introduction, Forsyth [Forsyth03] as a comprehensive refer-
ence, and Hartley [Hartley06] and Faugeras [Faugeras93] for how 3D vision really works.

01-R4886-RC1.indd 201-R4886-RC1.indd 2 9/15/08 4:17:45 PM9/15/08 4:17:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Computer Vision? | 3

way, important parts of an image to examine while suppressing examination of other

areas. Th ere is massive feedback in the visual stream that is, as yet, little understood.

Th ere are widespread associative inputs from muscle control sensors and all of the other

senses that allow the brain to draw on cross-associations made from years of living in

the world. Th e feedback loops in the brain go back to all stages of processing including

the hardware sensors themselves (the eyes), which mechanically control lighting via the

iris and tune the reception on the surface of the retina.

In a machine vision system, however, a computer receives a grid of numbers from the

camera or from disk, and that’s it. For the most part, there’s no built-in pattern recog-

nition, no automatic control of focus and aperture, no cross-associations with years of

experience. For the most part, vision systems are still fairly naïve. Figure 1-1 shows a

picture of an automobile. In that picture we see a side mirror on the driver’s side of the

car. What the computer “sees” is just a grid of numbers. Any given number within that

grid has a rather large noise component and so by itself gives us little information, but

this grid of numbers is all the computer “sees”. Our task then becomes to turn this noisy

grid of numbers into the perception: “side mirror”. Figure 1-2 gives some more insight

into why computer vision is so hard.

Figure 1-1. To a computer, the car’s side mirror is just a grid of numbers

In fact, the problem, as we have posed it thus far, is worse than hard; it is formally im-

possible to solve. Given a two-dimensional (2D) view of a 3D world, there is no unique

way to reconstruct the 3D signal. Formally, such an ill-posed problem has no unique or

defi nitive solution. Th e same 2D image could represent any of an infi nite combination

of 3D scenes, even if the data were perfect. However, as already mentioned, the data is

01-R4886-RC1.indd 301-R4886-RC1.indd 3 9/15/08 4:17:46 PM9/15/08 4:17:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

4 | Chapter 1: Overview

corrupted by noise and distortions. Such corruption stems from variations in the world

(weather, lighting, refl ections, movements), imperfections in the lens and mechanical

setup, fi nite integration time on the sensor (motion blur), electrical noise in the sensor

or other electronics, and compression artifacts aft er image capture. Given these daunt-

ing challenges, how can we make any progress?

In the design of a practical system, additional contextual knowledge can oft en be used

to work around the limitations imposed on us by visual sensors. Consider the example

of a mobile robot that must fi nd and pick up staplers in a building. Th e robot might use

the facts that a desk is an object found inside offi ces and that staplers are mostly found

on desks. Th is gives an implicit size reference; staplers must be able to fi t on desks. It

also helps to eliminate falsely “recognizing” staplers in impossible places (e.g., on the

ceiling or a window). Th e robot can safely ignore a 200-foot advertising blimp shaped

like a stapler because the blimp lacks the prerequisite wood-grained background of a

desk. In contrast, with tasks such as image retrieval, all stapler images in a database

Figure 1-2. Th e ill-posed nature of vision: the 2D appearance of objects can change radically with
viewpoint

01-R4886-RC1.indd 401-R4886-RC1.indd 4 9/15/08 4:17:46 PM9/15/08 4:17:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Computer Vision? | 5

may be of real staplers and so large sizes and other unusual confi gurations may have

been implicitly precluded by the assumptions of those who took the photographs.

Th at is, the photographer probably took pictures only of real, normal-sized staplers.

People also tend to center objects when taking pictures and tend to put them in char-

acteristic orientations. Th us, there is oft en quite a bit of unintentional implicit informa-

tion within photos taken by people.

Contextual information can also be modeled explicitly with machine learning tech-

niques. Hidden variables such as size, orientation to gravity, and so on can then be

correlated with their values in a labeled training set. Alternatively, one may attempt

to measure hidden bias variables by using additional sensors. Th e use of a laser range

fi nder to measure depth allows us to accurately measure the size of an object.

Th e next problem facing computer vision is noise. We typically deal with noise by us-

ing statistical methods. For example, it may be impossible to detect an edge in an image

merely by comparing a point to its immediate neighbors. But if we look at the statistics

over a local region, edge detection becomes much easier. A real edge should appear as a

string of such immediate neighbor responses over a local region, each of whose orienta-

tion is consistent with its neighbors. It is also possible to compensate for noise by taking

statistics over time. Still other techniques account for noise or distortions by building ex-

plicit models learned directly from the available data. For example, because lens distor-

tions are well understood, one need only learn the parameters for a simple polynomial

model in order to describe—and thus correct almost completely—such distortions.

Th e actions or decisions that computer vision attempts to make based on camera data

are performed in the context of a specifi c purpose or task. We may want to remove noise

or damage from an image so that our security system will issue an alert if someone tries

to climb a fence or because we need a monitoring system that counts how many people

cross through an area in an amusement park. Vision soft ware for robots that wander

through offi ce buildings will employ diff erent strategies than vision soft ware for sta-

tionary security cameras because the two systems have signifi cantly diff erent contexts

and objectives. As a general rule: the more constrained a computer vision context is, the

more we can rely on those constraints to simplify the problem and the more reliable our

fi nal solution will be.

OpenCV is aimed at providing the basic tools needed to solve computer vision prob-

lems. In some cases, high-level functionalities in the library will be suffi cient to solve

the more complex problems in computer vision. Even when this is not the case, the basic

components in the library are complete enough to enable creation of a complete solu-

tion of your own to almost any computer vision problem. In the latter case, there are

several tried-and-true methods of using the library; all of them start with solving the

problem using as many available library components as possible. Typically, aft er you’ve

developed this fi rst-draft solution, you can see where the solution has weaknesses and

then fi x those weaknesses using your own code and cleverness (better known as “solve

the problem you actually have, not the one you imagine”). You can then use your draft

01-R4886-RC1.indd 501-R4886-RC1.indd 5 9/15/08 4:17:46 PM9/15/08 4:17:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

6 | Chapter 1: Overview

solution as a benchmark to assess the improvements you have made. From that point,

whatever weaknesses remain can be tackled by exploiting the context of the larger sys-

tem in which your problem solution is embedded.

The Origin of OpenCV
OpenCV grew out of an Intel Research initiative to advance CPU-intensive applications.

Toward this end, Intel launched many projects including real-time ray tracing and 3D

display walls. One of the authors working for Intel at that time was visiting universities

and noticed that some top university groups, such as the MIT Media Lab, had well-

developed and internally open computer vision infrastructures—code that was passed

from student to student and that gave each new student a valuable head start in develop-

ing his or her own vision application. Instead of reinventing the basic functions from

scratch, a new student could begin by building on top of what came before.

Th us, OpenCV was conceived as a way to make computer vision infrastructure uni-

versally available. With the aid of Intel’s Performance Library Team,* OpenCV started

with a core of implemented code and algorithmic specifi cations being sent to members

of Intel’s Russian library team. Th is is the “where” of OpenCV: it started in Intel’s re-

search lab with collaboration from the Soft ware Performance Libraries group together

with implementation and optimization expertise in Russia.

Chief among the Russian team members was Vadim Pisarevsky, who managed, coded,

and optimized much of OpenCV and who is still at the center of much of the OpenCV

eff ort. Along with him, Victor Eruhimov helped develop the early infrastructure, and

Valery Kuriakin managed the Russian lab and greatly supported the eff ort. Th ere were

several goals for OpenCV at the outset:

Advance vision research by providing not only open but also optimized code for •

basic vision infrastructure. No more reinventing the wheel.

Disseminate vision knowledge by providing a common infrastructure that develop-•

ers could build on, so that code would be more readily readable and transferable.

Advance vision-based commercial applications by making portable, performance-•

optimized code available for free—with a license that did not require commercial

applications to be open or free themselves.

Th ose goals constitute the “why” of OpenCV. Enabling computer vision applications

would increase the need for fast processors. Driving upgrades to faster processors would

generate more income for Intel than selling some extra soft ware. Perhaps that is why this

open and free code arose from a hardware vendor rather than a soft ware company. In

some sense, there is more room to be innovative at soft ware within a hardware company.

In any open source eff ort, it’s important to reach a critical mass at which the project

becomes self-sustaining. Th ere have now been approximately two million downloads

* Shinn Lee was of key help.

01-R4886-RC1.indd 601-R4886-RC1.indd 6 9/15/08 4:17:47 PM9/15/08 4:17:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

The Origin of OpenCV | 7

of OpenCV, and this number is growing by an average of 26,000 downloads a month.

Th e user group now approaches 20,000 members. OpenCV receives many user contri-

butions, and central development has largely moved outside of Intel.* OpenCV’s past

timeline is shown in Figure 1-3. Along the way, OpenCV was aff ected by the dot-com

boom and bust and also by numerous changes of management and direction. During

these fl uctuations, there were times when OpenCV had no one at Intel working on it at

all. However, with the advent of multicore processors and the many new applications

of computer vision, OpenCV’s value began to rise. Today, OpenCV is an active area

of development at several institutions, so expect to see many updates in multicamera

calibration, depth perception, methods for mixing vision with laser range fi nders, and

better pattern recognition as well as a lot of support for robotic vision needs. For more

information on the future of OpenCV, see Chapter 14.

Speeding Up OpenCV with IPP
Because OpenCV was “housed” within the Intel Performance Primitives team and sev-

eral primary developers remain on friendly terms with that team, OpenCV exploits the

hand-tuned, highly optimized code in IPP to speed itself up. Th e improvement in speed

from using IPP can be substantial. Figure 1-4 compares two other vision libraries, LTI

[LTI] and VXL [VXL], against OpenCV and OpenCV using IPP. Note that performance

was a key goal of OpenCV; the library needed the ability to run vision code in real time.

OpenCV is written in performance-optimized C and C++ code. It does not depend in

any way on IPP. If IPP is present, however, OpenCV will automatically take advantage

of IPP by loading IPP’s dynamic link libraries to further enhance its speed.

* As of this writing, Willow Garage [WG] (www.willowgarage.com), a robotics research institute and
incubator, is actively supporting general OpenCV maintenance and new development in the area of
robotics applications.

Figure 1-3. OpenCV timeline

01-R4886-RC1.indd 701-R4886-RC1.indd 7 9/15/08 4:17:47 PM9/15/08 4:17:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

8 | Chapter 1: Overview

Who Owns OpenCV?
Although Intel started OpenCV, the library is and always was intended to promote

commercial and research use. It is therefore open and free, and the code itself may be

used or embedded (in whole or in part) in other applications, whether commercial or

research. It does not force your application code to be open or free. It does not require

that you return improvements back to the library—but we hope that you will.

Downloading and Installing OpenCV
Th e main OpenCV site is on SourceForge at http://SourceForge.net/projects/opencvlibrary

and the OpenCV Wiki [OpenCV Wiki] page is at http://opencvlibrary.SourceForge.net.

For Linux, the source distribution is the fi le opencv-1.0.0.tar.gz; for Windows, you want

OpenCV_1.0.exe. However, the most up-to-date version is always on the CVS server at

SourceForge.

Install
Once you download the libraries, you must install them. For detailed installation in-

structions on Linux or Mac OS, see the text fi le named INSTALL directly under the

Figure 1-4. Two other vision libraries (LTI and VXL) compared with OpenCV (without and with
IPP) on four diff erent performance benchmarks: the four bars for each benchmark indicate scores
proportional to run time for each of the given libraries; in all cases, OpenCV outperforms the other
libraries and OpenCV with IPP outperforms OpenCV without IPP

01-R4886-RC1.indd 801-R4886-RC1.indd 8 9/15/08 4:17:47 PM9/15/08 4:17:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Downloading and Installing OpenCV | 9

.../opencv/ directory; this fi le also describes how to build and run the OpenCV test-

ing routines. INSTALL lists the additional programs you’ll need in order to become an

OpenCV developer, such as autoconf, automake, libtool, and swig.

Windows

Get the executable installation from SourceForge and run it. It will install OpenCV, reg-

ister DirectShow fi lters, and perform various post-installation procedures. You are now

ready to start using OpenCV. You can always go to the .../opencv/_make directory and open

opencv.sln with MSVC++ or MSVC.NET 2005, or you can open opencv.dsw with lower ver -

sions of MSVC++ and build debug versions or rebuild release versions of the library.*

To add the commercial IPP performance optimizations to Windows, obtain and in-

stall IPP from the Intel site (http://www.intel.com/soft ware/products/ipp/index.htm);

use version 5.1 or later. Make sure the appropriate binary folder (e.g., c:/program fi les/

intel/ipp/5.1/ia32/bin) is in the system path. IPP should now be automatically detected

by OpenCV and loaded at runtime (more on this in Chapter 3).

Linux

Prebuilt binaries for Linux are not included with the Linux version of OpenCV owing

to the large variety of versions of GCC and GLIBC in diff erent distributions (SuSE,

Debian, Ubuntu, etc.). If your distribution doesn’t off er OpenCV, you’ll have to build it

from sources as detailed in the .../opencv/INSTALL fi le.

To build the libraries and demos, you’ll need GTK+ 2.x or higher, including headers.

You’ll also need pkgconfi g, libpng, zlib, libjpeg, libtiff , and libjasper with development

fi les. You’ll need Python 2.3, 2.4, or 2.5 with headers installed (developer package).

You will also need libavcodec and the other libav* libraries (including headers) from

ff mpeg 0.4.9-pre1 or later (svn checkout svn://svn.mplayerhq.hu/ff mpeg/trunk ff mpeg).

Download ff mpeg from http://ff mpeg.mplayerhq.hu/download.html.† Th e ff mpeg pro-

gram has a lesser general public license (LGPL). To use it with non-GPL soft ware (such

as OpenCV), build and use a shared ff mpg library:

$> ./configure --enable-shared
$> make
$> sudo make install

You will end up with: /usr/local/lib/libavcodec.so.*, /usr/local/lib/libavformat.so.*,

/usr/local/lib/libavutil.so.*, and include fi les under various /usr/local/include/libav*.

To build OpenCV once it is downloaded:‡

* It is important to know that, although the Windows distribution contains binary libraries for release builds,
it does not contain the debug builds of these libraries. It is therefore likely that, before developing with
OpenCV, you will want to open the solution fi le and build these libraries for yourself.

† You can check out ff mpeg by: svn checkout svn://svn.mplayerhq.hu/ff mpeg/trunk ff mpeg.

‡ To build OpenCV using Red Hat Package Managers (RPMs), use rpmbuild -ta OpenCV-x.y.z.tar.gz (for
RPM 4.x or later), or rpm -ta OpenCV-x.y.z.tar.gz (for earlier versions of RPM), where OpenCV-x.y.z.tar
.gz should be put in /usr/src/redhat/SOURCES/ or a similar directory. Th en install OpenCV using rpm -i
OpenCV-x.y.z.*.rpm.

01-R4886-RC1.indd 901-R4886-RC1.indd 9 9/15/08 4:17:47 PM9/15/08 4:17:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

10 | Chapter 1: Overview

$> ./configure
$> make
$> sudo make install
$> sudo ldconfig

Aft er installation is complete, the default installation path is /usr/local/lib/ and /usr/

local/include/opencv/. Hence you need to add /usr/local/lib/ to /etc/ld.so.conf (and run

ldconfig aft erwards) or add it to the LD_LIBRARY_PATH environment variable; then you

are done.

To add the commercial IPP performance optimizations to Linux, install IPP as de-

scribed previously. Let’s assume it was installed in /opt/intel/ipp/5.1/ia32/. Add <your

install_path>/bin/ and <your install_path>/bin/linux32 LD_LIBRARY_PATH in your initial-

ization script (.bashrc or similar):

LD_LIBRARY_PATH=/opt/intel/ipp/5.1/ia32/bin:/opt/intel/ipp/5.1
/ia32/bin/linux32:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

Alternatively, you can add <your install_path>/bin and <your install_path>/bin/linux32,

one per line, to /etc/ld.so.conf and then run ldconfi g as root (or use sudo).

Th at’s it. Now OpenCV should be able to locate IPP shared libraries and make use of

them on Linux. See .../opencv/INSTALL for more details.

MacOS X

As of this writing, full functionality on MacOS X is a priority but there are still some

limitations (e.g., writing AVIs); these limitations are described in .../opencv/INSTALL.

Th e requirements and building instructions are similar to the Linux case, with the fol-

lowing exceptions:

By default, Carbon is used instead of GTK+.•

By default, QuickTime is used instead of ff mpeg.•

pkg-confi g is optional (it is used explicitly only in the • samples/c/build_all.sh script).

RPM and ldconfi g are not supported by default. Use • configure+make+sudo make
install to build and install OpenCV, update LD_LIBRARY_PATH (unless ./configure
--prefix=/usr is used).

For full functionality, you should install libpng, libtiff , libjpeg and libjasper from

darwinports and/or fi nk and make them available to ./confi gure (see ./configure
--help). For the most current information, see the OpenCV Wiki at http://opencvlibrary

.SourceForge.net/ and the Mac-specifi c page http://opencvlibrary.SourceForge.net/

Mac_OS_X_OpenCV_Port.

Getting the Latest OpenCV via CVS
OpenCV is under active development, and bugs are oft en fi xed rapidly when bug re-

ports contain accurate descriptions and code that demonstrates the bug. However,

01-R4886-RC1.indd 1001-R4886-RC1.indd 10 9/15/08 4:17:48 PM9/15/08 4:17:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

More OpenCV Documentation | 11

offi cial OpenCV releases occur only once or twice a year. If you are seriously develop-

ing a project or product, you will probably want code fi xes and updates as soon as they

become available. To do this, you will need to access OpenCV’s Concurrent Versions

System (CVS) on SourceForge.

Th is isn’t the place for a tutorial in CVS usage. If you’ve worked with other open source

projects then you’re probably familiar with it already. If you haven’t, check out Essential

CVS by Jennifer Vesperman (O’Reilly). A command-line CVS client ships with Linux,

OS X, and most UNIX-like systems. For Windows users, we recommend TortoiseCVS

(http://www.tortoisecvs.org/), which integrates nicely with Windows Explorer.

On Windows, if you want the latest OpenCV from the CVS repository then you’ll need

to access the CVSROOT directory:

:pserver:anonymous@opencvlibrary.cvs.sourceforge.net:2401/cvsroot/opencvlibrary

On Linux, you can just use the following two commands:

cvs -d:pserver:anonymous@opencvlibrary.cvs.sourceforge.net:/cvsroot/opencvlibrary
login

When asked for password, hit return. Th en use:

cvs -z3 -d:pserver:anonymous@opencvlibrary.cvs.sourceforge.net:/cvsroot/opencvlibrary
co -P opencv

More OpenCV Documentation
Th e primary documentation for OpenCV is the HTML documentation that ships with

the source code. In addition to this, the OpenCV Wiki and the older HTML documen-

tation are available on the Web.

Documentation Available in HTML
OpenCV ships with html-based user documentation in the .../opencv/docs subdirectory.

Load the index.htm fi le, which contains the following links.

CXCORE

Contains data structures, matrix algebra, data transforms, object persistence, mem-

ory management, error handling, and dynamic loading of code as well as drawing,

text and basic math.

CV

Contains image processing, image structure analysis, motion and tracking, pattern

recognition, and camera calibration.

Machine Learning (ML)

Contains many clustering, classifi cation and data analysis functions.

HighGUI

Contains user interface GUI and image/video storage and recall.

01-R4886-RC1.indd 1101-R4886-RC1.indd 11 9/15/08 4:17:48 PM9/15/08 4:17:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

12 | Chapter 1: Overview

CVCAM

Camera interface.

Haartraining

How to train the boosted cascade object detector. Th is is in the .../opencv/apps/

HaarTraining/doc/haartraining.htm fi le.

Th e .../opencv/docs directory also contains IPLMAN.pdf, which was the original manual

for OpenCV. It is now defunct and should be used with caution, but it does include de-

tailed descriptions of algorithms and of what image types may be used with a particular

algorithm. Of course, the fi rst stop for such image and algorithm details is the book you

are reading now.

Documentation via the Wiki
OpenCV’s documentation Wiki is more up-to-date than the html pages that ship with

OpenCV and it also features additional content as well. Th e Wiki is located at http://

opencvlibrary.SourceForge.net. It includes information on:

Instructions on compiling OpenCV using Eclipse IDE•

Face recognition with OpenCV•

Video surveillance library•

Tutorials•

Camera compatibility•

Links to the Chinese and the Korean user groups•

Another Wiki, located at http://opencvlibrary.SourceForge.net/CvAux, is the only doc-

umentation of the auxiliary functions discussed in “OpenCV Structure and Content”

(next section). CvAux includes the following functional areas:

Stereo correspondence•

View point morphing of cameras•

3D tracking in stereo•

Eigen object (PCA) functions for object recognition•

Embedded hidden Markov models (HMMs)•

Th is Wiki has been translated into Chinese at http://www.opencv.org.cn/index.php/

%E9%A6%96%E9%A1%B5.

Regardless of your documentation source, it is oft en hard to know:

Which image type (fl oating, integer, byte; 1–3 channels) works with which •

function

Which functions work in place•

Details of how to call the more complex functions (e.g., contours)•

01-R4886-RC1.indd 1201-R4886-RC1.indd 12 9/15/08 4:17:48 PM9/15/08 4:17:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

OpenCV Structure and Content | 13

Figure 1-5 does not include CvAux, which contains both defunct areas (embedded HMM

face recognition) and experimental algorithms (background/foreground segmentation).

CvAux is not particularly well documented in the Wiki and is not documented at all in

the .../opencv/docs subdirectory. CvAux covers:

Eigen objects, a computationally effi cient recognition technique that is, in essence, a •

template matching procedure

1D and 2D hidden Markov models, a statistical recognition technique solved by •

dynamic programming

Embedded HMMs (the observations of a parent HMM are themselves HMMs)•

Details about running many of the examples in the • …/opencv/samples/c/ directory

What• to do, not just how

How to set parameters of certain functions•

One aim of this book is to address these problems.

OpenCV Structure and Content
OpenCV is broadly structured into fi ve main components, four of which are shown in

Figure 1-5. Th e CV component contains the basic image processing and higher-level

computer vision algorithms; ML is the machine learning library, which includes many

statistical classifi ers and clustering tools. HighGUI contains I/O routines and functions

for storing and loading video and images, and CXCore contains the basic data struc-

tures and content.

Figure 1-5. Th e basic structure of OpenCV

01-R4886-RC1.indd 1301-R4886-RC1.indd 13 9/15/08 4:17:48 PM9/15/08 4:17:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

14 | Chapter 1: Overview

Gesture recognition from stereo vision support•

Extensions to Delaunay triangulation, sequences, and so forth•

Stereo vision•

Shape matching with region contours•

Texture descriptors•

Eye and mouth tracking•

3D tracking•

Finding skeletons (central lines) of objects in a scene•

Warping intermediate views between two camera views•

Background-foreground segmentation•

Video surveillance (see Wiki FAQ for more documentation)•

Camera calibration C++ classes (the C functions and engine are in CV)•

Some of these features may migrate to CV in the future; others probably never will.

Portability
OpenCV was designed to be portable. It was originally written to compile across Bor-

land C++, MSVC++, and the Intel compilers. Th is meant that the C and C++ code had

to be fairly standard in order to make cross-platform support easier. Figure 1-6 shows

the platforms on which OpenCV is known to run. Support for 32-bit Intel architecture

(IA32) on Windows is the most mature, followed by Linux on the same architecture.

Mac OS X portability became a priority only aft er Apple started using Intel processors.

(Th e OS X port isn’t as mature as the Windows or Linux versions, but this is changing

rapidly.) Th ese are followed by 64-bit support on extended memory (EM64T) and the

64-bit Intel architecture (IA64). Th e least mature portability is on Sun hardware and

other operating systems.

If an architecture or OS doesn’t appear in Figure 1-6, this doesn’t mean there are no

OpenCV ports to it. OpenCV has been ported to almost every commercial system, from

PowerPC Macs to robotic dogs. OpenCV runs well on AMD’s line of processors, and

even the further optimizations available in IPP will take advantage of multimedia ex-

tensions (MMX) in AMD processors that incorporate this technology.

01-R4886-RC1.indd 1401-R4886-RC1.indd 14 9/15/08 4:17:48 PM9/15/08 4:17:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 15

Exercises
Download and install the latest release of OpenCV. Compile it in debug and release 1.

mode.

Download and build the latest CVS update of OpenCV.2.

Describe at least three ambiguous aspects of converting 3D inputs into a 2D repre-3.

sentation. How would you overcome these ambiguities?

Figure 1-6. OpenCV portability guide for release 1.0: operating systems are shown on the left ; com-
puter architecture types across top

01-R4886-RC1.indd 1501-R4886-RC1.indd 15 9/15/08 4:17:49 PM9/15/08 4:17:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

16

CHAPTER 2

Introduction to OpenCV

Getting Started
Aft er installing the OpenCV library, our fi rst task is, naturally, to get started and make

something interesting happen. In order to do this, we will need to set up the program-

ming environment.

In Visual Studio, it is necessary to create a project and to confi gure the setup so that

(a) the libraries highgui.lib, cxcore.lib, ml.lib, and cv.lib are linked* and (b) the prepro-

cessor will search the OpenCV …/opencv/*/include directories for header fi les. Th ese

“include” directories will typically be named something like C:/program fi les/opencv/

cv/include,† …/opencv/cxcore/include, …/opencv/ml/include, and …/opencv/otherlibs/

highgui. Once you’ve done this, you can create a new C fi le and start your fi rst program.

Certain key header fi les can make your life much easier. Many useful
macros are in the header fi les …/opencv/cxcore/include/cxtypes.h and
cxmisc.h. Th ese can do things like initialize structures and arrays in one
line, sort lists, and so on. Th e most important headers for compiling are
.../cv/include/cv.h and …/cxcore/include/cxcore.h for computer vision,
…/otherlibs/highgui/highgui.h for I/O, and …/ml/include/ml.h for ma-
chine learning.

First Program—Display a Picture
OpenCV provides utilities for reading from a wide array of image fi le types as well as

from video and cameras. Th ese utilities are part of a toolkit called HighGUI, which is

included in the OpenCV package. We will use some of these utilities to create a simple

program that opens an image and displays it on the screen. See Example 2-1.

* For debug builds, you should link to the libraries highguid.lib, cxcored.lib, mld.lib, and cvd.lib.

† C:/program fi les/ is the default installation of the OpenCV directory on Windows, although you can choose
to install it elsewhere. To avoid confusion, from here on we’ll use “…/opencv/” to mean the path to the
opencv directory on your system.

02-R4886-AT1.indd 1602-R4886-AT1.indd 16 9/15/08 4:18:10 PM9/15/08 4:18:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

First Program—Display a Picture | 17

Example 2-1. A simple OpenCV program that loads an image from disk and displays it on the screen

#include “highgui.h”

int main(int argc, char** argv) {
 IplImage* img = cvLoadImage(argv[1]);
 cvNamedWindow(“Example1”, CV_WINDOW_AUTOSIZE);
 cvShowImage(“Example1”, img);
 cvWaitKey(0);
 cvReleaseImage(&img);
 cvDestroyWindow(“Example1”);

}

When compiled and run from the command line with a single argument, this program

loads an image into memory and displays it on the screen. It then waits until the user

presses a key, at which time it closes the window and exits. Let’s go through the program

line by line and take a moment to understand what each command is doing.

IplImage* img = cvLoadImage(argv[1]);

Th is line loads the image.* Th e function cvLoadImage() is a high-level routine that deter-

mines the fi le format to be loaded based on the fi le name; it also automatically allocates

the memory needed for the image data structure. Note that cvLoadImage() can read a

wide variety of image formats, including BMP, DIB, JPEG, JPE, PNG, PBM, PGM, PPM,

SR, RAS, and TIFF. A pointer to an allocated image data structure is then returned.

Th is structure, called IplImage, is the OpenCV construct with which you will deal

the most. OpenCV uses this structure to handle all kinds of images: single-channel,

multichannel, integer-valued, fl oating-point-valued, et cetera. We use the pointer that

cvLoadImage() returns to manipulate the image and the image data.

cvNamedWindow(“Example1”, CV_WINDOW_AUTOSIZE);

Another high-level function, cvNamedWindow(), opens a window on the screen that can

contain and display an image. Th is function, provided by the HighGUI library, also as-

signs a name to the window (in this case, “Example1”). Future HighGUI calls that inter-

act with this window will refer to it by this name.

Th e second argument to cvNamedWindow() defi nes window properties. It may be set ei-

ther to 0 (the default value) or to CV_WINDOW_AUTOSIZE. In the former case, the size of the

window will be the same regardless of the image size, and the image will be scaled to

fi t within the window. In the latter case, the window will expand or contract automati-

cally when an image is loaded so as to accommodate the image’s true size.

cvShowImage(“Example1”, img);

Whenever we have an image in the form of an IplImage* pointer, we can display it in an

existing window with cvShowImage(). Th e cvShowImage() function requires that a named

window already exist (created by cvNamedWindow()). On the call to cvShowImage(), the

* A proper program would check for the existence of argv[1] and, in its absence, deliver an instructional
error message for the user. We will abbreviate such necessities in this book and assume that the reader is
cultured enough to understand the importance of error-handling code.

02-R4886-AT1.indd 1702-R4886-AT1.indd 17 9/15/08 4:18:11 PM9/15/08 4:18:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

18 | Chapter 2: Introduction to OpenCV

window will be redrawn with the appropriate image in it, and the window will resize

itself as appropriate if it was created using the CV_WINDOW_AUTOSIZE fl ag.

cvWaitKey(0);

Th e cvWaitKey() function asks the program to stop and wait for a keystroke. If a positive

argument is given, the program will wait for that number of milliseconds and then con-

tinue even if nothing is pressed. If the argument is set to 0 or to a negative number, the

program will wait indefi nitely for a keypress.

cvReleaseImage(&img);

Once we are through with an image, we can free the allocated memory. OpenCV ex-

pects a pointer to the IplImage* pointer for this operation. Aft er the call is completed,

the pointer img will be set to NULL.

cvDestroyWindow(“Example1”);

Finally, we can destroy the window itself. Th e function cvDestroyWindow() will close the

window and de-allocate any associated memory usage (including the window’s internal

image buff er, which is holding a copy of the pixel information from *img). For a simple

program, you don’t really have to call cvDestroyWindow() or cvReleaseImage() because all

the resources and windows of the application are closed automatically by the operating

system upon exit, but it’s a good habit anyway.

Now that we have this simple program we can toy around with it in various ways, but we

don’t want to get ahead of ourselves. Our next task will be to construct a very simple—

almost as simple as this one—program to read in and display an AVI video fi le. Aft er

that, we will start to tinker a little more.

Second Program—AVI Video
Playing a video with OpenCV is almost as easy as displaying a single picture. Th e only new

issue we face is that we need some kind of loop to read each frame in sequence; we may

also need some way to get out of that loop if the movie is too boring. See Example 2-2.

Example 2-2. A simple OpenCV program for playing a video fi le from disk

#include “highgui.h”

int main(int argc, char** argv) {
 cvNamedWindow(“Example2”, CV_WINDOW_AUTOSIZE);
 CvCapture* capture = cvCreateFileCapture(argv[1]);
 IplImage* frame;
 while(1) {
 frame = cvQueryFrame(capture);
 if(!frame) break;
 cvShowImage(“Example2”, frame);
 char c = cvWaitKey(33);
 if(c == 27) break;
 }
 cvReleaseCapture(&capture);
 cvDestroyWindow(“Example2”);
}

02-R4886-AT1.indd 1802-R4886-AT1.indd 18 9/15/08 4:18:11 PM9/15/08 4:18:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Moving Around | 19

Here we begin the function main() with the usual creation of a named window, in this

case “Example2”. Th ings get a little more interesting aft er that.

CvCapture* capture = cvCreateFileCapture(argv[1]);

Th e function cvCreateFileCapture() takes as its argument the name of the AVI fi le to be

loaded and then returns a pointer to a CvCapture structure. Th is structure contains all of

the information about the AVI fi le being read, including state information. When cre-

ated in this way, the CvCapture structure is initialized to the beginning of the AVI.

frame = cvQueryFrame(capture);

Once inside of the while(1) loop, we begin reading from the AVI fi le. cvQueryFrame()

takes as its argument a pointer to a CvCapture structure. It then grabs the next video

frame into memory (memory that is actually part of the CvCapture structure). A pointer

is returned to that frame. Unlike cvLoadImage, which actually allocates memory for the

image, cvQueryFrame uses memory already allocated in the CvCapture structure. Th us it

will not be necessary (or wise) to call cvReleaseImage() for this “frame” pointer. Instead,

the frame image memory will be freed when the CvCapture structure is released.

c = cvWaitKey(33);
if(c == 27) break;

Once we have displayed the frame, we then wait for 33 ms.* If the user hits a key, then c

will be set to the ASCII value of that key; if not, then it will be set to –1. If the user hits

the Esc key (ASCII 27), then we will exit the read loop. Otherwise, 33 ms will pass and

we will just execute the loop again.

It is worth noting that, in this simple example, we are not explicitly controlling

the speed of the video in any intelligent way. We are relying solely on the timer in

cvWaitKey() to pace the loading of frames. In a more sophisticated application it would

be wise to read the actual frame rate from the CvCapture structure (from the AVI) and

behave accordingly!

cvReleaseCapture(&capture);

When we have exited the read loop—because there was no more video data or because

the user hit the Esc key—we can free the memory associated with the CvCapture struc-

ture. Th is will also close any open fi le handles to the AVI fi le.

Moving Around
OK, that was great. Now it’s time to tinker around, enhance our toy programs, and ex-

plore a little more of the available functionality. Th e fi rst thing we might notice about

the AVI player of Example 2-2 is that it has no way to move around quickly within the

video. Our next task will be to add a slider bar, which will give us this ability.

* You can wait any amount of time you like. In this case, we are simply assuming that it is correct to play
the video at 30 frames per second and allow user input to interrupt between each frame (thus we pause
for input 33 ms between each frame). In practice, it is better to check the CvCapture structure returned by
cvCaptureFromCamera() in order to determine the actual frame rate (more on this in Chapter 4).

02-R4886-AT1.indd 1902-R4886-AT1.indd 19 9/15/08 4:18:11 PM9/15/08 4:18:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

20 | Chapter 2: Introduction to OpenCV

Th e HighGUI toolkit provides a number of simple instruments for working with im-

ages and video beyond the simple display functions we have just demonstrated. One

especially useful mechanism is the slider, which enables us to jump easily from one part

of a video to another. To create a slider, we call cvCreateTrackbar() and indicate which

window we would like the trackbar to appear in. In order to obtain the desired func-

tionality, we need only supply a callback that will perform the relocation. Example 2-3

gives the details.

Example 2-3. Program to add a trackbar slider to the basic viewer window: when the slider is
moved, the function onTrackbarSlide() is called and then passed to the slider’s new value

#include “cv.h”
#include “highgui.h”

int g_slider_position = 0;
CvCapture* g_capture = NULL;

void onTrackbarSlide(int pos) {
 cvSetCaptureProperty(
 g_capture,
 CV_CAP_PROP_POS_FRAMES,
 pos
);
}

int main(int argc, char** argv) {
 cvNamedWindow(“Example3”, CV_WINDOW_AUTOSIZE);
 g_capture = cvCreateFileCapture(argv[1]);
 int frames = (int) cvGetCaptureProperty(
 g_capture,
 CV_CAP_PROP_FRAME_COUNT
);
 if(frames!= 0) {
 cvCreateTrackbar(
 “Position”,
 “Example3”,
 &g_slider_position,
 frames,
 onTrackbarSlide
);
 }
 IplImage* frame;
 // While loop (as in Example 2) capture & show video
 …
 // Release memory and destroy window
 …
 return(0);
}

In essence, then, the strategy is to add a global variable to represent the slider position

and then add a callback that updates this variable and relocates the read position in the

02-R4886-AT1.indd 2002-R4886-AT1.indd 20 9/15/08 4:18:11 PM9/15/08 4:18:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Moving Around | 21

video. One call creates the slider and attaches the callback, and we are off and running.*

Let’s look at the details.

int g_slider_position = 0;
CvCapture* g_capture = NULL;

First we defi ne a global variable for the slider position. Th e callback will need access to

the capture object, so we promote that to a global variable. Because we are nice people

and like our code to be readable and easy to understand, we adopt the convention of

adding a leading g_ to any global variable.

void onTrackbarSlide(int pos) {
 cvSetCaptureProperty(
 g_capture,
 CV_CAP_PROP_POS_FRAMES,
 pos
);

Now we defi ne a callback routine to be used when the user pokes the slider. Th is routine

will be passed to a 32-bit integer, which will be the slider position.

Th e call to cvSetCaptureProperty() is one we will see oft en in the future, along with its

counterpart cvGetCaptureProperty(). Th ese routines allow us to confi gure (or query in

the latter case) various properties of the CvCapture object. In this case we pass the argu-

ment CV_CAP_PROP_POS_FRAMES, which indicates that we would like to set the read position

in units of frames. (We can use AVI_RATIO instead of FRAMES if we want to set the position

as a fraction of the overall video length). Finally, we pass in the new value of the posi-

tion. Because HighGUI is highly civilized, it will automatically handle such issues as

the possibility that the frame we have requested is not a key-frame; it will start at the

previous key-frame and fast forward up to the requested frame without us having to

fuss with such details.

int frames = (int) cvGetCaptureProperty(
 g_capture,
 CV_CAP_PROP_FRAME_COUNT
);

As promised, we use cvGetCaptureProperty()when we want to query some data from the

CvCapture structure. In this case, we want to fi nd out how many frames are in the video

so that we can calibrate the slider (in the next step).

if(frames!= 0) {
 cvCreateTrackbar(
 “Position”,
 “Example3”,
 &g_slider_position,
 frames,
 onTrackbarSlide
);
}

* Th is code does not update the slider position as the video plays; we leave that as an exercise for the reader.
Also note that some mpeg encodings do not allow you to move backward in the video.

02-R4886-AT1.indd 2102-R4886-AT1.indd 21 9/15/08 4:18:11 PM9/15/08 4:18:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

22 | Chapter 2: Introduction to OpenCV

Th e last detail is to create the trackbar itself. Th e function cvCreateTrackbar() allows us

to give the trackbar a label* (in this case Position) and to specify a window to put the

trackbar in. We then provide a variable that will be bound to the trackbar, the maxi-

mum value of the trackbar, and a callback (or NULL if we don’t want one) for when the

slider is moved. Observe that we do not create the trackbar if cvGetCaptureProperty()

returned a zero frame count. Th is is because sometimes, depending on how the video

was encoded, the total number of frames will not be available. In this case we will just

play the movie without providing a trackbar.

It is worth noting that the slider created by HighGUI is not as full-featured as some slid-

ers out there. Of course, there’s no reason you can’t use your favorite windowing toolkit

instead of HighGUI, but the HighGUI tools are quick to implement and get us off the

ground in a hurry.

Finally, we did not include the extra tidbit of code needed to make the slider move as the

video plays. Th is is left as an exercise for the reader.

A Simple Transformation
Great, so now you can use OpenCV to create your own video player, which will not be

much diff erent from countless video players out there already. But we are interested in

computer vision, and we want to do some of that. Many basic vision tasks involve the

application of fi lters to a video stream. We will modify the program we already have to

do a simple operation on every frame of the video as it plays.

One particularly simple operation is the smoothing of an image, which eff ectively re-

duces the information content of the image by convolving it with a Gaussian or other

similar kernel function. OpenCV makes such convolutions exceptionally easy to do. We

can start by creating a new window called “Example4-out”, where we can display the

results of the processing. Th en, aft er we have called cvShowImage() to display the newly

captured frame in the input window, we can compute and display the smoothed image

in the output window. See Example 2-4.

Example 2-4. Loading and then smoothing an image before it is displayed on the screen

#include “cv.h”
#include “highgui.h”

void example2_4(IplImage* image)

 // Create some windows to show the input
 // and output images in.
 //
 cvNamedWindow(“Example4-in”);

* Because HighGUI is a lightweight and easy-to-use toolkit, cvCreateTrackbar() does not distinguish
between the name of the trackbar and the label that actually appears on the screen next to the trackbar. You
may already have noticed that cvNamedWindow() likewise does not distinguish between the name of the
window and the label that appears on the window in the GUI.

02-R4886-AT1.indd 2202-R4886-AT1.indd 22 9/15/08 4:18:11 PM9/15/08 4:18:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

A Simple Transformation | 23

Example 2-4. Loading and then smoothing an image before it is displayed on the screen (continued)

 cvNamedWindow(“Example4-out”);

 // Create a window to show our input image
 //
 cvShowImage(“Example4-in”, image);

 // Create an image to hold the smoothed output
 //
 IplImage* out = cvCreateImage(
 cvGetSize(image),
 IPL_DEPTH_8U,
 3
);

 // Do the smoothing
 //
 cvSmooth(image, out, CV_GAUSSIAN, 3, 3);

 // Show the smoothed image in the output window
 //
 cvShowImage(“Example4-out”, out);

 // Be tidy
 //
 cvReleaseImage(&out);

 // Wait for the user to hit a key, then clean up the windows
 //
 cvWaitKey(0);
 cvDestroyWindow(“Example4-in”);
 cvDestroyWindow(“Example4-out”);

}

Th e fi rst call to cvShowImage() is no diff erent than in our previous example. In the next

call, we allocate another image structure. Previously we relied on cvCreateFileCapture()

to allocate the new frame for us. In fact, that routine actually allocated only one frame

and then wrote over that data each time a capture call was made (so it actually returned

the same pointer every time we called it). In this case, however, we want to allocate our

own image structure to which we can write our smoothed image. Th e fi rst argument is

a CvSize structure, which we can conveniently create by calling cvGetSize(image); this

gives us the size of the existing structure image. Th e second argument tells us what kind

of data type is used for each channel on each pixel, and the last argument indicates the

number of channels. So this image is three channels (with 8 bits per channel) and is the

same size as image.

Th e smoothing operation is itself just a single call to the OpenCV library: we specify

the input image, the output image, the smoothing method, and the parameters for the

smooth. In this case we are requesting a Gaussian smooth over a 3 × 3 area centered on

each pixel. It is actually allowed for the output to be the same as the input image, and

02-R4886-AT1.indd 2302-R4886-AT1.indd 23 9/15/08 4:18:12 PM9/15/08 4:18:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

24 | Chapter 2: Introduction to OpenCV

this would work more effi ciently in our current application, but we avoided doing this

because it gave us a chance to introduce cvCreateImage()!

Now we can show the image in our new second window and then free it: cvReleaseImage()

takes a pointer to the IplImage* pointer and then de-allocates all of the memory associ-

ated with that image.

A Not-So-Simple Transformation
Th at was pretty good, and we are learning to do more interesting things. In Example 2-4

we chose to allocate a new IplImage structure, and into this new structure we wrote the

output of a single transformation. As mentioned, we could have applied the transforma-

tion in such a way that the output overwrites the original, but this is not always a good

idea. In particular, some operators do not produce images with the same size, depth,

and number of channels as the input image. Typically, we want to perform a sequence of

operations on some initial image and so produce a chain of transformed images.

In such cases, it is oft en useful to introduce simple wrapper functions that both allocate

the output image and perform the transformation we are interested in. Consider, for

example, the reduction of an image by a factor of 2 [Rosenfeld80]. In OpenCV this is ac-

complished by the function cvPyrDown(), which performs a Gaussian smooth and then

removes every other line from an image. Th is is useful in a wide variety of important

vision algorithms. We can implement the simple function described in Example 2-5.

Example 2-5. Using cvPyrDown() to create a new image that is half the width and height of the input
image

IplImage* doPyrDown(
 IplImage* in,
 int filter = IPL_GAUSSIAN_5x5
) {

 // Best to make sure input image is divisible by two.
 //
 assert(in->width%2 == 0 && in->height%2 == 0);

 IplImage* out = cvCreateImage(
 cvSize(in->width/2, in->height/2),
 in->depth,
 in->nChannels
);
 cvPyrDown(in, out);
 return(out);
};

Notice that we allocate the new image by reading the needed parameters from the old

image. In OpenCV, all of the important data types are implemented as structures and

passed around as structure pointers. Th ere is no such thing as private data in OpenCV!

02-R4886-AT1.indd 2402-R4886-AT1.indd 24 9/15/08 4:18:12 PM9/15/08 4:18:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

A Not-So-Simple Transformation | 25

Let’s now look at a similar but slightly more involved example involving the Canny edge

detector [Canny86] (see Example 2-6). In this case, the edge detector generates an image

that is the full size of the input image but needs only a single channel image to write to.

Example 2-6. Th e Canny edge detector writes its output to a single channel (grayscale) image

IplImage* doCanny(
 IplImage* in,
 double lowThresh,
 double highThresh,
 double aperture
) {
 If(in->nChannels != 1)
 return(0); //Canny only handles gray scale images

 IplImage* out = cvCreateImage(
 cvSize(cvGetSize(in),
 IPL_DEPTH_8U,
 1
);
 cvCanny(in, out, lowThresh, highThresh, aperture);
 return(out);
};

Th is allows us to string together various operators quite easily. For example, if we wanted

to shrink the image twice and then look for lines that were present in the twice-reduced

image, we could proceed as in Example 2-7.

Example 2-7. Combining the pyramid down operator (twice) and the Canny subroutine in a simple
image pipeline

IplImage* img1 = doPyrDown(in, IPL_GAUSSIAN_5x5);
IplImage* img2 = doPyrDown(img1, IPL_GAUSSIAN_5x5);
IplImage* img3 = doCanny(img2, 10, 100, 3);

// do whatever with ‘img3’
//
…
cvReleaseImage(&img1);
cvReleaseImage(&img2);
cvReleaseImage(&img3);

It is important to observe that nesting the calls to various stages of our fi ltering pipeline

is not a good idea, because then we would have no way to free the images that we are

allocating along the way. If we are too lazy to do this cleanup, we could opt to include

the following line in each of the wrappers:

cvReleaseImage(&in);

Th is “self-cleaning” mechanism would be very tidy, but it would have the following dis-

advantage: if we actually did want to do something with one of the intermediate images,

we would have no access to it. In order to solve that problem, the preceding code could

be simplifi ed as described in Example 2-8.

02-R4886-AT1.indd 2502-R4886-AT1.indd 25 9/15/08 4:18:12 PM9/15/08 4:18:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

26 | Chapter 2: Introduction to OpenCV

Example 2-8. Simplifying the image pipeline of Example 2-7 by making the individual stages release
their intermediate memory allocations

IplImage* out;
out = doPyrDown(in, IPL_GAUSSIAN_5x5);
out = doPyrDown(out, IPL_GAUSSIAN_5x5);
out = doCanny(out, 10, 100, 3);

// do whatever with ‘out’
//
…
cvReleaseImage (&out);

One fi nal word of warning on the self-cleaning fi lter pipeline: in OpenCV we must al-

ways be certain that an image (or other structure) being de-allocated is one that was,

in fact, explicitly allocated previously. Consider the case of the IplImage* pointer re-

turned by cvCreateFileCapture(). Here the pointer points to a structure allocated as

part of the CvCapture structure, and the target structure is allocated only once when the

CvCapture is initialized and an AVI is loaded. De-allocating this structure with a call to

cvRelease Image() would result in some nasty surprises. Th e moral of this story is that,

although it’s important to take care of garbage collection in OpenCV, we should only

clean up the garbage that we have created.

Input from a Camera
Vision can mean many things in the world of computers. In some cases we are analyz-

ing still frames loaded from elsewhere. In other cases we are analyzing video that is be-

ing read from disk. In still other cases, we want to work with real-time data streaming

in from some kind of camera device.

OpenCV—more specifi cally, the HighGUI portion of the OpenCV library—provides us

with an easy way to handle this situation. Th e method is analogous to how we read

AVIs. Instead of calling cvCreateFileCapture(), we call cvCreateCameraCapture(). Th e

latter routine does not take a fi le name but rather a camera ID number as its argument.

Of course, this is important only when multiple cameras are available. Th e default value

is –1, which means “just pick one”; naturally, this works quite well when there is only

one camera to pick (see Chapter 4 for more details).

Th e cvCreateCameraCapture() function returns the same CvCapture* pointer, which we

can hereaft er use exactly as we did with the frames grabbed from a video stream. Of

course, a lot of work is going on behind the scenes to make a sequence of camera images

look like a video, but we are insulated from all of that. We can simply grab images from

the camera whenever we are ready for them and proceed as if we did not know the dif-

ference. For development reasons, most applications that are intended to operate in real

time will have a video-in mode as well, and the universality of the CvCapture structure

makes this particularly easy to implement. See Example 2-9.

02-R4886-AT1.indd 2602-R4886-AT1.indd 26 9/15/08 4:18:12 PM9/15/08 4:18:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Writing to an AVI File | 27

Example 2-9. Aft er the capture structure is initialized, it no longer matters whether the image is
from a camera or a fi le

CvCapture* capture;

if(argc==1) {
 capture = cvCreateCameraCapture(0);
} else {
 capture = cvCreateFileCapture(argv[1]);
}
assert(capture != NULL);

// Rest of program proceeds totally ignorant
…

As you can see, this arrangement is quite ideal.

Writing to an AVI File
In many applications we will want to record streaming input or even disparate captured

images to an output video stream, and OpenCV provides a straightforward method for

doing this. Just as we are able to create a capture device that allows us to grab frames

one at a time from a video stream, we are able to create a writer device that allows us

to place frames one by one into a video fi le. Th e routine that allows us to do this is

cvCreateVideoWriter().

Once this call has been made, we may successively call cvWriteFrame(), once for each

frame, and fi nally cvReleaseVideoWriter() when we are done. Example 2-10 describes

a simple program that opens a video fi le, reads the contents, converts them to a log-

polar format (something like what your eye actually sees, as described in Chapter 6),

and writes out the log-polar image to a new video fi le.

Example 2-10. A complete program to read in a color video and write out the same video in grayscale

// Convert a video to grayscale
 // argv[1]: input video file
 // argv[2]: name of new output file
 //
#include “cv.h”
#include “highgui.h”
main(int argc, char* argv[]) {
 CvCapture* capture = 0;
 capture = cvCreateFileCapture(argv[1]);
 if(!capture){
 return -1;
 }
 IplImage *bgr_frame=cvQueryFrame(capture);//Init the video read
 double fps = cvGetCaptureProperty (
 capture,
 CV_CAP_PROP_FPS
);

02-R4886-AT1.indd 2702-R4886-AT1.indd 27 9/15/08 4:18:12 PM9/15/08 4:18:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

28 | Chapter 2: Introduction to OpenCV

Example 2-10. A complete program to read in a color video and write out the same video in
grayscale (continued)

 CvSize size = cvSize(
 (int)cvGetCaptureProperty(capture, CV_CAP_PROP_FRAME_WIDTH),
 (int)cvGetCaptureProperty(capture, CV_CAP_PROP_FRAME_HEIGHT)
);
 CvVideoWriter *writer = cvCreateVideoWriter(
 argv[2],
 CV_FOURCC(‘M’,‘J’,‘P’,‘G’),
 fps,
 size
);
 IplImage* logpolar_frame = cvCreateImage(
 size,
 IPL_DEPTH_8U,
 3
);
 while((bgr_frame=cvQueryFrame(capture)) != NULL) {
 cvLogPolar(bgr_frame, logpolar_frame,
 cvPoint2D32f(bgr_frame->width/2,
 bgr_frame->height/2),
 40,
 CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS);
 cvWriteFrame(writer, logpolar_frame);
 }
 cvReleaseVideoWriter(&writer);
 cvReleaseImage(&logpolar_frame);
 cvReleaseCapture(&capture);
 return(0);
}

Looking over this program reveals mostly familiar elements. We open one video; start

reading with cvQueryFrame(), which is necessary to read the video properties on some

systems; and then use cvGetCaptureProperty() to ascertain various important proper-

ties of the video stream. We then open a video fi le for writing, convert the frame to log-

polar format, and write the frames to this new fi le one at a time until there are none left .

Th en we close up.

Th e call to cvCreateVideoWriter() contains several parameters that we should under-

stand. Th e fi rst is just the fi lename for the new fi le. Th e second is the video codec with

which the video stream will be compressed. Th ere are countless such codecs in cir-

culation, but whichever codec you choose must be available on your machine (codecs

are installed separately from OpenCV). In our case we choose the relatively popular

MJPG codec; this is indicated to OpenCV by using the macro CV_FOURCC(), which takes

four characters as arguments. Th ese characters constitute the “four-character code” of

the codec, and every codec has such a code. Th e four-character code for motion jpeg is

MJPG, so we specify that as CV_FOURCC(‘M’,‘J’,‘P’,‘G’).

Th e next two arguments are the replay frame rate, and the size of the images we will be

using. In our case, we set these to the values we got from the original (color) video.

02-R4886-AT1.indd 2802-R4886-AT1.indd 28 9/15/08 4:18:12 PM9/15/08 4:18:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 29

Onward
Before moving on to the next chapter, we should take a moment to take stock of where

we are and look ahead to what is coming. We have seen that the OpenCV API provides

us with a variety of easy-to-use tools for loading still images from fi les, reading video

from disk, or capturing video from cameras. We have also seen that the library con-

tains primitive functions for manipulating these images. What we have not yet seen are

the powerful elements of the library, which allow for more sophisticated manipulation

of the entire set of abstract data types that are important to practical vision problem

solving.

In the next few chapters we will delve more deeply into the basics and come to under-

stand in greater detail both the interface-related functions and the image data types. We

will investigate the primitive image manipulation operators and, later, some much more

advanced ones. Th ereaft er, we will be ready to explore the many specialized services

that the API provides for tasks as diverse as camera calibration, tracking, and recogni-

tion. Ready? Let’s go!

Exercises
Download and install OpenCV if you have not already done so. Systematically go

through the directory structure. Note in particular the docs directory; there you can

load index.htm, which further links to the main documentation of the library. Further

explore the main areas of the library. Cvcore contains the basic data structures and algo-

rithms, cv contains the image processing and vision algorithms, ml includes algorithms

for machine learning and clustering, and otherlibs/highgui contains the I/O functions.

Check out the _make directory (containing the OpenCV build fi les) and also the sam-

ples directory, where example code is stored.

Go to the 1. …/opencv/_make directory. On Windows, open the solution fi le opencv

.sln; on Linux, open the appropriate makefi le. Build the library in both the debug

and the release versions. Th is may take some time, but you will need the resulting

library and dll fi les.

Go to the 2. …/opencv/samples/c/ directory. Create a project or make fi le and

then import and build lkdemo.c (this is an example motion tracking program).

Attach a camera to your system and run the code. With the display window se-

lected, type “r” to initialize tracking. You can add points by clicking on video po-

sitions with the mouse. You can also switch to watching only the points (and not

the image) by typing “n”. Typing “n” again will toggle between “night” and “day”

views.

Use the capture and store code in Example 2-10, together with the 3. doPyrDown() code

of Example 2-5 to create a program that reads from a camera and stores downsam-

pled color images to disk.

02-R4886-AT1.indd 2902-R4886-AT1.indd 29 9/15/08 4:18:13 PM9/15/08 4:18:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

30 | Chapter 2: Introduction to OpenCV

Modify the code in exercise 3 and combine it with the window display code in 4.

Example 2-1 to display the frames as they are processed.

Modify the program of exercise 4 with a slider control from Example 2-3 so that the 5.

user can dynamically vary the pyramid downsampling reduction level by factors

of between 2 and 8. You may skip writing this to disk, but you should display the

results.

02-R4886-AT1.indd 3002-R4886-AT1.indd 30 9/15/08 4:18:13 PM9/15/08 4:18:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

31

CHAPTER 3

Getting to Know OpenCV

OpenCV Primitive Data Types
OpenCV has several primitive data types. Th ese data types are not primitive from the

point of view of C, but they are all simple structures, and we will regard them as atomic.

You can examine details of the structures described in what follows (as well as other

structures) in the cxtypes.h header fi le, which is in the .../OpenCV/cxcore/include direc-

tory of the OpenCV install.

Th e simplest of these types is CvPoint. CvPoint is a simple structure with two integer

members, x and y. CvPoint has two siblings: CvPoint2D32f and CvPoint3D32f. Th e former

has the same two members x and y, which are both fl oating-point numbers. Th e latter

also contains a third element, z.

CvSize is more like a cousin to CvPoint. Its members are width and height, which are

both integers. If you want fl oating-point numbers, use CvSize’s cousin CvSize2D32f.

CvRect is another child of CvPoint and CvSize; it contains four members: x, y, width, and

height. (In case you were worried, this child was adopted.)

Last but not least is CvScalar, which is a set of four double-precision numbers. When

memory is not an issue, CvScalar is oft en used to represent one, two, or three real num-

bers (in these cases, the unneeded components are simply ignored). CvScalar has a

single member val, which is a pointer to an array containing the four double-precision

fl oating-point numbers.

All of these data types have constructor methods with names like cvSize() (generally*

the constructor has the same name as the structure type but with the fi rst character

not capitalized). Remember that this is C and not C++, so these “constructors” are just

inline functions that take a list of arguments and return the desired structure with the

values set appropriately.

* We say “generally” here because there are a few oddballs. In particular, we have cvScalarAll(double) and
cvRealScalar(double); the former returns a CvScalar with all four values set to the argument, while the
latter returns a CvScalar with the fi rst value set and the other values 0.

03-R4886-RC1.indd 3103-R4886-RC1.indd 31 9/15/08 4:18:36 PM9/15/08 4:18:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

32 | Chapter 3: Getting to Know OpenCV

Th e inline constructors for the data types listed in Table 3-1—cvPointXXX(), cvSize(),

cvRect(), and cvScalar()—are extremely useful because they make your code not only

easier to write but also easier to read. Suppose you wanted to draw a white rectangle

between (5, 10) and (20, 30); you could simply call:

cvRectangle(
 myImg,
 cvPoint(5,10),
 cvPoint(20,30),
 cvScalar(255,255,255)
);

Table 3-1. Structures for points, size, rectangles, and scalar tuples

Structure Contains Represents

CvPoint int x, y Point in image

CvPoint2D32f float x, y Points in ℜ2

CvPoint3D32f float x, y, z Points in ℜ3

CvSize int width, height Size of image

CvRect int x, y, width, height Portion of image

CvScalar double val[4] RGBA value

cvScalar() is a special case: it has three constructors. Th e fi rst, called cvScalar(), takes

one, two, three, or four arguments and assigns those arguments to the correspond-

ing elements of val[]. Th e second constructor is cvRealScalar(); it takes one argu-

ment, which it assigns to val[0] while setting the other entries to 0. Th e fi nal variant is

cvScalarAll(), which takes a single argument but sets all four elements of val[] to that

same argument.

Matrix and Image Types
Figure 3-1 shows the class or structure hierarchy of the three image types. When using

OpenCV, you will repeatedly encounter the IplImage data type. You have already seen

it many times in the previous chapter. IplImage is the basic structure used to encode

what we generally call “images”. Th ese images may be grayscale, color, four-channel

(RGB+alpha), and each channel may contain any of several types of integer or fl oating-

point numbers. Hence, this type is more general than the ubiquitous three-channel 8-bit

RGB image that immediately comes to mind.*

OpenCV provides a vast arsenal of useful operators that act on these images, including

tools to resize images, extract individual channels, fi nd the largest or smallest value of

a particular channel, add two images, threshold an image, and so on. In this chapter we

will examine these sorts of operators carefully.

* If you are especially picky, you can say that OpenCV is a design, implemented in C, that is not only object-
oriented but also template-oriented.

03-R4886-RC1.indd 3203-R4886-RC1.indd 32 9/15/08 4:18:37 PM9/15/08 4:18:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

CvMat Matrix Structure | 33

Before we can discuss images in detail, we need to look at another data type: CvMat,

the OpenCV matrix structure. Th ough OpenCV is implemented entirely in C, the rela-

tionship between CvMat and IplImage is akin to inheritance in C++. For all intents and

purposes, an IplImage can be thought of as being derived from CvMat. Th erefore, it is

best to understand the (would-be) base class before attempting to understand the added

complexities of the derived class. A third class, called CvArr, can be thought of as an

abstract base class from which CvMat is itself derived. You will oft en see CvArr (or, more

accurately, CvArr*) in function prototypes. When it appears, it is acceptable to pass

CvMat* or IplImage* to the routine.

CvMat Matrix Structure
Th ere are two things you need to know before we dive into the matrix business. First,

there is no “vector” construct in OpenCV. Whenever we want a vector, we just use a

matrix with one column (or one row, if we want a transpose or conjugate vector).

Second, the concept of a matrix in OpenCV is somewhat more abstract than the con-

cept you learned in your linear algebra class. In particular, the elements of a matrix

need not themselves be simple numbers. For example, the routine that creates a new

two-dimensional matrix has the following prototype:

cvMat* cvCreateMat (int rows, int cols, int type);

Here type can be any of a long list of predefi ned types of the form: CV_<bit_depth>(S|U|F)
C<number_of_channels>. Th us, the matrix could consist of 32-bit fl oats (CV_32FC1), of un-

signed integer 8-bit triplets (CV_8UC3), or of countless other elements. An element of a

CvMat is not necessarily a single number. Being able to represent multiple values for a

single entry in the matrix allows us to do things like represent multiple color channels

in an RGB image. For a simple image containing red, green and blue channels, most im-

age operators will be applied to each channel separately (unless otherwise noted).

Internally, the structure of CvMat is relatively simple, as shown in Example 3-1 (you can

see this for yourself by opening up …/opencv/cxcore/include/cxtypes.h). Matrices have

Figure 3-1. Even though OpenCV is implemented in C, the structures used in OpenCV have an
object-oriented design; in eff ect, IplImage is derived from CvMat, which is derived from CvArr

03-R4886-RC1.indd 3303-R4886-RC1.indd 33 9/15/08 4:18:37 PM9/15/08 4:18:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

34 | Chapter 3: Getting to Know OpenCV

a width, a height, a type, a step (the length of a row in bytes, not ints or floats), and a

pointer to a data array (and some more stuff that we won’t talk about just yet). You can

access these members directly by de-referencing a pointer to CvMat or, for some more

popular elements, by using supplied accessor functions. For example, to obtain the size

of a matrix, you can get the information you want either by calling cvGetSize(CvMat*),

which returns a CvSize structure, or by accessing the height and width independently

with such constructs as matrix->height and matrix->width.

Example 3-1. CvMat structure: the matrix “header”

typedef struct CvMat {
 int type;
 int step;
 int* refcount; // for internal use only
 union {
 uchar* ptr;
 short* s;
 int* i;
 float* fl;
 double* db;
 } data;
 union {
 int rows;
 int height;
 };
 union {
 int cols;
 int width;
 };
} CvMat;

Th is information is generally referred to as the matrix header. Many routines distin-

guish between the header and the data, the latter being the memory that the data ele-

ment points to.

Matrices can be created in one of several ways. Th e most common way is to use

cvCreateMat(), which is essentially shorthand for the combination of the more atomic

functions cvCreateMatHeader() and cvCreateData(). cvCreateMatHeader() creates the

CvMat structure without allocating memory for the data, while cvCreateData() handles

the data allocation. Sometimes only cvCreateMatHeader() is required, either because you

have already allocated the data for some other reason or because you are not yet ready

to allocate it. Th e third method is to use the cvCloneMat(CvMat*), which creates a new

matrix from an existing one.* When the matrix is no longer needed, it can be released

by calling cvReleaseMat(CvMat**).

Th e list in Example 3-2 summarizes the functions we have just described as well as some

others that are closely related.

* cvCloneMat() and other OpenCV functions containing the word “clone” not only create a new header that
is identical to the input header, they also allocate a separate data area and copy the data from the source to
the new object.

03-R4886-RC1.indd 3403-R4886-RC1.indd 34 9/15/08 4:18:38 PM9/15/08 4:18:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

CvMat Matrix Structure | 35

Example 3-2. Matrix creation and release

// Create a new rows by cols matrix of type ‘type’.
//
CvMat* cvCreateMat(int rows, int cols, int type);

// Create only matrix header without allocating data
//
CvMat* cvCreateMatHeader(int rows, int cols, int type);

// Initialize header on existing CvMat structure
//
CvMat* cvInitMatHeader(
 CvMat* mat,
 int rows,
 int cols,
 int type,
 void* data = NULL,
 int step = CV_AUTOSTEP
);

// Like cvInitMatHeader() but allocates CvMat as well.
//
CvMat cvMat(
 int rows,
 int cols,
 int type,
 void* data = NULL
);

// Allocate a new matrix just like the matrix ‘mat’.
//
CvMat* cvCloneMat(const cvMat* mat);

// Free the matrix ‘mat’, both header and data.
//
void cvReleaseMat(CvMat** mat);

Analogously to many OpenCV structures, there is a constructor called cvMat() that cre-

ates a CvMat structure. Th is routine does not actually allocate memory; it only creates the

header (this is similar to cvInitMatHeader()). Th ese methods are a good way to take some

data you already have lying around, package it by pointing the matrix header to it as in

Example 3-3, and run it through routines that process OpenCV matrices.

Example 3-3. Creating an OpenCV matrix with fi xed data

// Create an OpenCV Matrix containing some fixed data.
//
float vals[] = { 0.866025, -0.500000, 0.500000, 0.866025 };

CvMat rotmat;

cvInitMatHeader(
 &rotmat,
 2,

03-R4886-RC1.indd 3503-R4886-RC1.indd 35 9/15/08 4:18:38 PM9/15/08 4:18:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

36 | Chapter 3: Getting to Know OpenCV

Example 3-3. Creating an OpenCV matrix with fi xed data (continued)

 2,
 CV_32FC1,
 vals
);

Once we have a matrix, there are many things we can do with it. Th e simplest operations

are querying aspects of the array defi nition and data access. To query the matrix, we have

cvGetElemType(const CvArr* arr), cvGetDims(const CvArr* arr, int* sizes=NULL),

and cvGetDimSize(const CvArr* arr, int index). Th e fi rst returns an integer constant

representing the type of elements stored in the array (this will be equal to something

like CV_8UC1, CV_64FC4, etc). Th e second takes the array and an optional pointer to an

integer; it returns the number of dimensions (two for the cases we are considering, but

later on we will encounter N-dimensional matrixlike objects). If the integer pointer is

not null then it will store the height and width (or N dimensions) of the supplied array.

Th e last function takes an integer indicating the dimension of interest and simply re-

turns the extent of the matrix in that dimension.*

Accessing Data in Your Matrix
Th ere are three ways to access the data in your matrix: the easy way, the hard way, and

the right way.

The easy way

Th e easiest way to get at a member element of an array is with the CV_MAT_ELEM() macro. Th is

macro (see Example 3-4) takes the matrix, the type of element to be retrieved, and the

row and column numbers and then returns the element.

Example 3-4. Accessing a matrix with the CV_MAT_ELEM() macro

CvMat* mat = cvCreateMat(5, 5, CV_32FC1);
float element_3_2 = CV_MAT_ELEM(*mat, float, 3, 2);

“Under the hood” this macro is just calling the macro CV_MAT_ELEM_PTR(). CV_MAT_ELEM_
PTR() (see Example 3-5) takes as arguments the matrix and the row and column of the

desired element and returns (not surprisingly) a pointer to the indicated element. One

important diff erence between CV_MAT_ELEM() and CV_MAT_ELEM_PTR() is that CV_MAT_ELEM()

actually casts the pointer to the indicated type before de-referencing it. If you would

like to set a value rather than just read it, you can call CV_MAT_ELEM_PTR() directly; in this

case, however, you must cast the returned pointer to the appropriate type yourself.

Example 3-5. Setting a single value in a matrix using the CV_MAT_ELEM_PTR() macro

CvMat* mat = cvCreateMat(5, 5, CV_32FC1);
float element_3_2 = 7.7;
((float)CV_MAT_ELEM_PTR(*mat, 3, 2)) = element_3_2;

* For the regular two-dimensional matrices discussed here, dimension zero (0) is always the “width” and
dimension one (1) is always the height.

03-R4886-RC1.indd 3603-R4886-RC1.indd 36 9/15/08 4:18:38 PM9/15/08 4:18:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

CvMat Matrix Structure | 37

Unfortunately, these macros recompute the pointer needed on every call. Th is means

looking up the pointer to the base element of the data area of the matrix, computing an

off set to get the address of the information you are interested in, and then adding that

off set to the computed base. Th us, although these macros are easy to use, they may not

be the best way to access a matrix. Th is is particularly true when you are planning to ac-

cess all of the elements in a matrix sequentially. We will come momentarily to the best

way to accomplish this important task.

The hard way

Th e two macros discussed in “Th e easy way” are suitable only for accessing one- and

two-dimensional arrays (recall that one-dimensional arrays, or “vectors”, are really just

n-by-1 matrices). OpenCV provides mechanisms for dealing with multidimensional ar-

rays. In fact OpenCV allows for a general N-dimensional matrix that can have as many

dimensions as you like.

For accessing data in a general matrix, we use the family of functions cvPtr*D and

cvGet*D… listed in Examples 3-6 and 3-7. Th e cvPtr*D family contains cvPtr1D(),

cvPtr2D(), cvPtr3D(), and cvPtrND() Each of the fi rst three takes a CvArr* matrix

pointer argument followed by the appropriate number of integers for the indices, and

an optional argument indicating the type of the output parameter. Th e routines return

a pointer to the element of interest. With cvPtrND(), the second argument is a pointer to

an array of integers containing the appropriate number of indices. We will return to this

function later. (In the prototypes that follow, you will also notice some optional argu-

ments; we will address those when we need them.)

Example 3-6. Pointer access to matrix structures

uchar* cvPtr1D(
 const CvArr* arr,
 int idx0,
 int* type = NULL
);

uchar* cvPtr2D(
 const CvArr* arr,
 int idx0,
 int idx1,
 int* type = NULL
);

uchar* cvPtr3D(
 const CvArr* arr,
 int idx0,
 int idx1,
 int idx2,
 int* type = NULL
);

uchar* cvPtrND(

03-R4886-RC1.indd 3703-R4886-RC1.indd 37 9/15/08 4:18:38 PM9/15/08 4:18:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

38 | Chapter 3: Getting to Know OpenCV

Example 3-6. Pointer access to matrix structures (continued)

 const CvArr* arr,
 int* idx,
 int* type = NULL,
 int create_node = 1,
 unsigned* precalc_hashval = NULL
);

For merely reading the data, there is another family of functions cvGet*D, listed in Ex-

ample 3-7, that are analogous to those of Example 3-6 but return the actual value of the

matrix element.

Example 3-7. CvMat and IplImage element functions

double cvGetReal1D(const CvArr* arr, int idx0);
double cvGetReal2D(const CvArr* arr, int idx0, int idx1);
double cvGetReal3D(const CvArr* arr, int idx0, int idx1, int idx2);
double cvGetRealND(const CvArr* arr, int* idx);

CvScalar cvGet1D(const CvArr* arr, int idx0);
CvScalar cvGet2D(const CvArr* arr, int idx0, int idx1);
CvScalar cvGet3D(const CvArr* arr, int idx0, int idx1, int idx2);
CvScalar cvGetND(const CvArr* arr, int* idx);

Th e return type of cvGet*D is double for four of the routines and CvScalar for the other

four. Th is means that there can be some signifi cant waste when using these functions.

Th ey should be used only where convenient and effi cient; otherwise, it is better just to

use cvPtr*D.

One reason it is better to use cvPtr*D() is that you can use these pointer functions to

gain access to a particular point in the matrix and then use pointer arithmetic to move

around in the matrix from there. It is important to remember that the channels are con-

tiguous in a multichannel matrix. For example, in a three-channel two-dimensional ma-

trix representing red, green, blue (RGB) bytes, the matrix data is stored: rgbrgbrgb

Th erefore, to move a pointer of the appropriate type to the next channel, we add 1. If

we wanted to go to the next “pixel” or set of elements, we’d add and off set equal to the

number of channels (in this case 3).

Th e other trick to know is that the step element in the matrix array (see Examples 3-1 and

3-3) is the length in bytes of a row in the matrix. In that structure, cols or width alone

is not enough to move between matrix rows because, for machine effi ciency, matrix or

image allocation is done to the nearest four-byte boundary. Th us a matrix of width three

bytes would be allocated four bytes with the last one ignored. For this reason, if we get

a byte pointer to a data element then we add step to the pointer in order to step it to the

next row directly below our point. If we have a matrix of integers or fl oating-point num-

bers and corresponding int or float pointers to a data element, we would step to the

next row by adding step/4; for doubles, we’d add step/8 (this is just to take into account

that C will automatically multiply the off sets we add by the data type’s byte size).

03-R4886-RC1.indd 3803-R4886-RC1.indd 38 9/15/08 4:18:39 PM9/15/08 4:18:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

CvMat Matrix Structure | 39

Somewhat analogous to cvGet*D is cvSet*D in Example 3-8, which sets a matrix or image

element with a single call, and the functions cvSetReal*D() and cvSet*D(), which can be

used to set the values of elements of a matrix or image.

Example 3-8. Set element functions for CvMat or IplImage.

void cvSetReal1D(CvArr* arr, int idx0, double value);
void cvSetReal2D(CvArr* arr, int idx0, int idx1, double value);
void cvSetReal3D(
 CvArr* arr,
 int idx0,
 int idx1,
 int idx2,
 double value
);
void cvSetRealND(CvArr* arr, int* idx, double value);

void cvSet1D(CvArr* arr, int idx0, CvScalar value);
void cvSet2D(CvArr* arr, int idx0, int idx1, CvScalar value);
void cvSet3D(
 CvArr* arr,
 int idx0,
 int idx1,
 int idx2,
 CvScalar value
);
void cvSetND(CvArr* arr, int* idx, CvScalar value);

As an added convenience, we also have cvmSet() and cvmGet(), which are used when

dealing with single-channel fl oating-point matrices. Th ey are very simple:

double cvmGet(const CvMat* mat, int row, int col)
void cvmSet(CvMat* mat, int row, int col, double value)

So the call to the convenience function cvmSet(),

cvmSet(mat, 2, 2, 0.5000);

is the same as the call to the equivalent cvSetReal2D function,

cvSetReal2D(mat, 2, 2, 0.5000);

The right way

With all of those accessor functions, you might think that there’s nothing more to say.

In fact, you will rarely use any of the set and get functions. Most of the time, vision is

a processor-intensive activity, and you will want to do things in the most effi cient way

possible. Needless to say, going through these interface functions is not effi cient. Instead,

you should do your own pointer arithmetic and simply de-reference your way into the

matrix. Managing the pointers yourself is particularly important when you want to do

something to every element in an array (assuming there is no OpenCV routine that can

perform this task for you).

For direct access to the innards of a matrix, all you really need to know is that the data

is stored sequentially in raster scan order, where columns (“x”) are the fastest-running

03-R4886-RC1.indd 3903-R4886-RC1.indd 39 9/15/08 4:18:39 PM9/15/08 4:18:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

40 | Chapter 3: Getting to Know OpenCV

variable. Channels are interleaved, which means that, in the case of a multichannel ma-

trix, they are a still faster-running ordinal. Example 3-9 shows an example of how this

can be done.

Example 3-9. Summing all of the elements in a three-channel matrix

float sum(const CvMat* mat) {

 float s = 0.0f;
 for(int row=0; row<mat->rows; row++) {
 const float* ptr = (const float*)(mat->data.ptr + row * mat->step);
 for(col=0; col<mat->cols; col++) {
 s += *ptr++;
 }
 }
 return(s);
}

When computing the pointer into the matrix, remember that the matrix element data

is a union. Th erefore, when de-referencing this pointer, you must indicate the correct

element of the union in order to obtain the correct pointer type. Th en, to off set that

pointer, you must use the step element of the matrix. As noted previously, the step ele-

ment is in bytes. To be safe, it is best to do your pointer arithmetic in bytes and then

cast to the appropriate type, in this case float. Although the CVMat structure has the

concept of height and width for compatibility with the older IplImage structure, we use

the more up-to-date rows and cols instead. Finally, note that we recompute ptr for every

row rather than simply starting at the beginning and then incrementing that pointer

every read. Th is might seem excessive, but because the CvMat data pointer could just

point to an ROI within a larger array, there is no guarantee that the data will be contigu-

ous across rows.

Arrays of Points
One issue that will come up oft en—and that is important to understand—is the diff er-

ence between a multidimensional array (or matrix) of multidimensional objects and an

array of one higher dimension that contains only one-dimensional objects. Suppose, for

example, that you have n points in three dimensions which you want to pass to some

OpenCV function that takes an argument of type CvMat* (or, more likely, cvArr*). Th ere

are four obvious ways you could do this, and it is absolutely critical to remember that

they are not necessarily equivalent. One method would be to use a two-dimensional ar-

ray of type CV32FC1 with n rows and three columns (n-by-3). Similarly, you could use a

two-dimensional array with three rows and n columns (3-by-n). You could also use an

array with n rows and one column (n-by-1) of type CV32FC3 or an array with one row and

n columns (3-by-1). Some of these cases can be freely converted from one to the other

(meaning you can just pass one where the other is expected) but others cannot. To un-

derstand why, consider the memory layout shown in Figure 3-2.

As you can see in the fi gure, the points are mapped into memory in the same way for three

of the four cases just described above but diff erently for the last. Th e situation is even

03-R4886-RC1.indd 4003-R4886-RC1.indd 40 9/15/08 4:18:39 PM9/15/08 4:18:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

CvMat Matrix Structure | 41

more complicated for the case of an N-dimensional array of c-dimensional points. Th e

key thing to remember is that the location of any given point is given by the formula:

δ = + +⋅ ⋅ ⋅() () (row col ch
cols channels channels

N N N aannel)

where Ncols and Nchannels are the number of columns and channels, respectively.* From

this formula one can see that, in general, an N-dimensional array of c-dimensional ob-

jects is not the same as an (N + c)-dimensional array of one-dimensional objects. In the

special case of N = 1 (i.e., vectors represented either as n-by-1 or 1-by-n arrays), there is

a special degeneracy (specifi cally, the equivalences shown in Figure 3-2) that can some-

times be taken advantage of for performance.

Th e last detail concerns the OpenCV data types such as CvPoint2D and CvPoint2D32f.
Th ese data types are defi ned as C structures and therefore have a strictly defi ned mem-

ory layout. In particular, the integers or fl oating-point numbers that these structures

comprise are “channel” sequential. As a result, a one-dimensional C-style array of these

objects has the same memory layout as an n-by-1 or a 1-by-n array of type CV32FC2. Simi-

lar reasoning applies for arrays of structures of the type CvPoint3D32f.

* In this context we use the term “channel” to refer to the fastest-running index. Th is index is the one associ-
ated with the C3 part of CV32FC3. Shortly, when we talk about images, the “channel” there will be exactly
equivalent to our use of “channel” here.

Figure 3-2. A set of ten points, each represented by three fl oating-point numbers, placed in four ar-
rays that each use a slightly diff erent structure; in three cases the resulting memory layout is identi-
cal, but one case is diff erent

03-R4886-RC1.indd 4103-R4886-RC1.indd 41 9/15/08 4:18:39 PM9/15/08 4:18:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

42 | Chapter 3: Getting to Know OpenCV

IplImage Data Structure
With all of that in hand, it is now easy to discuss the IplImage data structure. In es-

sence this object is a CvMat but with some extra goodies buried in it to make the matrix

interpretable as an image. Th is structure was originally defi ned as part of Intel’s Image

Processing Library (IPL).* Th e exact defi nition of the IplImage structure is shown in

Example 3-10.

Example 3-10. IplImage header structure

typedef struct _IplImage {
 int nSize;
 int ID;
 int nChannels;
 int alphaChannel;
 int depth;
 char colorModel[4];
 char channelSeq[4];
 int dataOrder;
 int origin;
 int align;
 int width;
 int height;
 struct _IplROI* roi;
 struct _IplImage* maskROI;
 void* imageId;
 struct _IplTileInfo* tileInfo;
 int imageSize;
 char* imageData;
 int widthStep;
 int BorderMode[4];
 int BorderConst[4];
 char* imageDataOrigin;
} IplImage;

As crazy as it sounds, we want to discuss the function of several of these variables. Some

are trivial, but many are very important to understanding how OpenCV interprets and

works with images.

Aft er the ubiquitous width and height, depth and nChannels are the next most crucial.

Th e depth variable takes one of a set of values defi ned in ipl.h, which are (unfortunately)

not exactly the values we encountered when looking at matrices. Th is is because for im-

ages we tend to deal with the depth and the number of channels separately (whereas in

the matrix routines we tended to refer to them simultaneously). Th e possible depths are

listed in Table 3-2.

* IPL was the predecessor to the more modern Intel Performance Primitives (IPP), discussed in Chapter 1.
Many of the OpenCV functions are actually relatively thin wrappers around the corresponding IPL or IPP
routines. Th is is why it is so easy for OpenCV to swap in the high-performance IPP library routines when
available.

03-R4886-RC1.indd 4203-R4886-RC1.indd 42 9/15/08 4:18:39 PM9/15/08 4:18:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

IplImage Data Structure | 43

Table 3-2. OpenCV image types

Macro Image pixel type

IPL_DEPTH_8U Unsigned 8-bit integer (8u)

IPL_DEPTH_8S Signed 8-bit integer (8s)

IPL_DEPTH_16S Signed 16-bit integer (16s)

IPL_DEPTH_32S Signed 32-bit integer (32s)

IPL_DEPTH_32F 32-bit fl oating-point single-precision (32f)

IPL_DEPTH_64F 64-bit fl oating-point double-precision (64f)

Th e possible values for nChannels are 1, 2, 3, or 4.

Th e next two important members are origin and dataOrder. Th e origin variable can

take one of two values: IPL_ORIGIN_TL or IPL_ORIGIN_BL, corresponding to the origin of

coordinates being located in either the upper-left or lower-left corners of the image, re-

spectively. Th e lack of a standard origin (upper versus lower) is an important source of

error in computer vision routines. In particular, depending on where an image came

from, the operating system, codec, storage format, and so forth can all aff ect the loca-

tion of the origin of the coordinates of a particular image. For example, you may think

you are sampling pixels from a face in the top quadrant of an image when you are really

sampling from a shirt in the bottom quadrant. It is best to check the system the fi rst

time through by drawing where you think you are operating on an image patch.

Th e dataOrder may be either IPL_DATA_ORDER_PIXEL or IPL_DATA_ORDER_PLANE.* Th is value

indicates whether the data should be packed with multiple channels one aft er the other

for each pixel (interleaved, the usual case), or rather all of the channels clustered into

image planes with the planes placed one aft er another.

Th e parameter widthStep contains the number of bytes between points in the same col-

umn and successive rows (similar to the “step” parameter of CvMat discussed earlier).

Th e variable width is not suffi cient to calculate the distance because each row may be

aligned with a certain number of bytes to achieve faster processing of the image; hence

there may be some gaps between the end of ith row and the start of (i + 1) row. Th e pa-

rameter imageData contains a pointer to the fi rst row of image data. If there are several

separate planes in the image (as when dataOrder = IPL_DATA_ORDER_PLANE) then they are

placed consecutively as separate images with height*nChannels rows in total, but nor-

mally they are interleaved so that the number of rows is equal to height and with each

row containing the interleaved channels in order.

Finally there is the practical and important region of interest (ROI), which is actually an

instance of another IPL/IPP structure, IplROI. An IplROI contains an xOffset, a yOffset,

* We say that dataOrder may be either IPL_DATA_ORDER_PIXEL or IPL_DATA_ORDER_PLANE, but in fact only
IPL_DATA_ORDER_PIXEL is supported by OpenCV. Both values are generally supported by IPL/IPP, but
OpenCV always uses interleaved images.

03-R4886-RC1.indd 4303-R4886-RC1.indd 43 9/15/08 4:18:40 PM9/15/08 4:18:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

44 | Chapter 3: Getting to Know OpenCV

a height, a width, and a coi, where COI stands for channel of interest.* Th e idea behind the

ROI is that, once it is set, functions that would normally operate on the entire image will

instead act only on the subset of the image indicated by the ROI. All OpenCV functions

will use ROI if set. If the COI is set to a nonzero value then some operators will act only on

the indicated channel.† Unfortunately, many OpenCV functions ignore this parameter.

Accessing Image Data
When working with image data we usually need to do so quickly and effi ciently. Th is

suggests that we should not subject ourselves to the overhead of calling accessor func-

tions like cvSet*D or their equivalent. Indeed, we would like to access the data inside of

the image in the most direct way possible. With our knowledge of the internals of the

IplImage structure, we can now understand how best to do this.

Even though there are oft en well-optimized routines in OpenCV that accomplish many

of the tasks we need to perform on images, there will always be tasks for which there is no

prepackaged routine in the library. Consider the case of a three-channel HSV [Smith78]

image‡ in which we want to set the saturation and value to 255 (their maximal values

for an 8-bit image) while leaving the hue unmodifi ed. We can do this best by handling

the pointers into the image ourselves, much as we did with matrices in Example 3-9.

However, there are a few minor diff erences that stem from the diff erence between the

IplImage and CvMat structures. Example 3-11 shows the fastest way.

Example 3-11. Maxing out (saturating) only the “S” and “V” parts of an HSV image

void saturate_sv(IplImage* img) {

 for(int y=0; y<img->height; y++) {
 uchar* ptr = (uchar*) (
 img->imageData + y * img->widthStep
);
 for(int x=0; x<img->width; x++) {
 ptr[3*x+1] = 255;
 ptr[3*x+2] = 255;
 }
 }
}

We simply compute the pointer ptr directly as the head of the relevant row y. From

there, we de-reference the saturation and value of the x column. Because this is a three-

channel image, the location of channel c in column x is 3*x+c.

* Unlike other parts of the ROI, the COI is not respected by all OpenCV functions. More on this later, but for
now you should keep in mind that COI is not as universally applied as the rest of the ROI.

† For the COI, the terminology is to indicate the channel as 1, 2, 3, or 4 and to reserve 0 for deactivating the
COI all together (something like a “don’t care”).

‡ In OpenCV, an HSV image does not diff er from an RGB image except in terms of how the channels are
interpreted. As a result, constructing an HSV image from an RGB image actually occurs entirely within the
“data” area; there is no representation in the header of what meaning is “intended” for the data channels.

03-R4886-RC1.indd 4403-R4886-RC1.indd 44 9/15/08 4:18:40 PM9/15/08 4:18:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

IplImage Data Structure | 45

One important diff erence between the IplImage case and the CvMat case is the behav-

ior of imageData, compared to the element data of CvMat. Th e data element of CvMat is a

union, so you must indicate which pointer type you want to use. Th e imageData pointer

is a byte pointer (uchar*). We already know that the data pointed to is not necessarily of

type uchar, which means that—when doing pointer arithmetic on images—you can sim-

ply add widthStep (also measured in bytes) without worrying about the actual data type

until aft er the addition, when you cast the resultant pointer to the data type you need.

To recap: when working with matrices, you must scale down the off set because the data

pointer may be of nonbyte type; when working with images, you can use the off set “as

is” because the data pointer is always of a byte type, so you can just cast the whole thing

when you are ready to use it.

More on ROI and widthStep
ROI and widthStep have great practical importance, since in many situations they speed

up computer vision operations by allowing the code to process only a small subregion of

the image. Support for ROI and widthStep is universal in OpenCV:* every function allows

operation to be limited to a subregion. To turn ROI on or off , use the cvSetImageROI()
and cvResetImageROI() functions. Given a rectangular subregion of interest in the form

of a CvRect, you may pass an image pointer and the rectangle to cvSetImageROI() to “turn

on” ROI; “turn off ” ROI by passing the image pointer to cvResetImageROI().

void cvSetImageROI(IplImage* image, CvRect rect);
void cvResetImageROI(IplImage* image);

To see how ROI is used, let’s suppose we want to load an image and modify some region

of that image. Th e code in Example 3-12 reads an image and then sets the x, y, width,

and height of the intended ROI and fi nally an integer value add to increment the ROI

region with. Th e program then sets the ROI using the convenience of the inline cvRect()

constructor. It’s important to release the ROI with cvResetImageROI(), for otherwise the

display will observe the ROI and dutifully display only the ROI region.

Example 3-12. Using ImageROI to increment all of the pixels in a region

// roi_add <image> <x> <y> <width> <height> <add>
#include <cv.h>
#include <highgui.h>

int main(int argc, char** argv)
{
 IplImage* src;
 if(argc == 7 && ((src=cvLoadImage(argv[1],1)) != 0))
 {
 int x = atoi(argv[2]);
 int y = atoi(argv[3]);
 int width = atoi(argv[4]);
 int height = atoi(argv[5]);

* Well, in theory at least. Any nonadherence to widthStep or ROI is considered a bug and may be posted
as such to SourceForge, where it will go on a “to fi x” list. Th is is in contrast with color channel of interest,
“COI”, which is supported only where explicitly stated.

03-R4886-RC1.indd 4503-R4886-RC1.indd 45 9/15/08 4:18:40 PM9/15/08 4:18:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

46 | Chapter 3: Getting to Know OpenCV

Figure 3-3. Result of adding 150 to the face ROI of a cat

Example 3-12. Using ImageROI to increment all of the pixels in a region (continued)

 int add = atoi(argv[6]);
 cvSetImageROI(src, cvRect(x,y,width,height));
 cvAddS(src, cvScalar(add),src);
 cvResetImageROI(src);
 cvNamedWindow(“Roi_Add”, 1);
 cvShowImage(“Roi_Add”, src);
 cvWaitKey();
 }
 return 0;
}

Figure 3-3 shows the result of adding 150 to the blue channel of the image of a cat with

an ROI centered over its face, using the code from Example 3-12.

We can achieve the same eff ect by clever use of widthStep. To do this, we create another im-

age header and set its width and height equal to the interest_rect width and height. We

also need to set the image origin (upper left or lower left) to be the same as the interest_
img. Next we set the widthStep of this subimage to be the widthStep of the larger interest_

03-R4886-RC1.indd 4603-R4886-RC1.indd 46 9/15/08 4:18:40 PM9/15/08 4:18:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matrix and Image Operators | 47

img; this way, stepping by rows in the subimage steps you to the appropriate place at the

start of the next line of the subregion within the larger image. We fi nally set the subimage

imageData pointer the start of the interest subregion, as shown in Example 3-13.

Example 3-13. Using alternate widthStep method to increment all of the pixels of interest_img by 1

// Assuming IplImage *interest_img; and
 // CvRect interest_rect;
 // Use widthStep to get a region of interest
 //
 // (Alternate method)
 //
 IplImage *sub_img = cvCreateImageHeader(
 cvSize(
 interest_rect.width,
 interest_rect.height
),
 interest_img->depth,
 interest_img->nChannels
);

 sub_img->origin = interest_img->origin;

 sub_img->widthStep = interest_img->widthStep;

 sub_img->imageData = interest_img->imageData +
 interest_rect.y * interest_img->widthStep +
 interest_rect.x * interest_img->nChannels;

 cvAddS(sub_img, cvScalar(1), sub_img);

 cvReleaseImageHeader(&sub_img);

So, why would you want to use the widthStep trick when setting and resetting ROI seem

to be more convenient? Th e reason is that there are times when you want to set and per-

haps keep multiple subregions of an image active during processing, but ROI can only

be done serially and must be set and reset constantly.

Finally, a word should be said here about masks. Th e cvAddS() function used in the

code examples allows the use of a fourth argument that defaults to NULL: const CvArr*
mask=NULL. Th is is an 8-bit single-channel array that allows you to restrict processing to

an arbitrarily shaped mask region indicated by nonzero pixels in the mask. If ROI is set

along with a mask, processing will be restricted to the intersection of the ROI and the

mask. Masks can be used only in functions that specify their use.

Matrix and Image Operators
Table 3-3 lists a variety of routines for matrix manipulation, most of which work equally

well for images. Th ey do all of the “usual” things, such as diagonalizing or transpos-

ing a matrix, as well as some more complicated operations, such as computing image

statistics.

03-R4886-RC1.indd 4703-R4886-RC1.indd 47 9/15/08 4:18:41 PM9/15/08 4:18:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

48 | Chapter 3: Getting to Know OpenCV

Table 3-3. Basic matrix and image operators

Function Description

cvAbs Absolute value of all elements in an array

cvAbsDiff Absolute value of diff erences between two arrays

cvAbsDiffS Absolute value of diff erence between an array and a scalar

cvAdd Elementwise addition of two arrays

cvAddS Elementwise addition of an array and a scalar

cvAddWeighted Elementwise weighted addition of two arrays (alpha blending)

cvAvg Average value of all elements in an array

cvAvgSdv Absolute value and standard deviation of all elements in an array

cvCalcCovarMatrix Compute covariance of a set of n-dimensional vectors

cvCmp Apply selected comparison operator to all elements in two arrays

cvCmpS Apply selected comparison operator to an array relative to a scalar

cvConvertScale Convert array type with optional rescaling of the value

cvConvertScaleAbs Convert array type after absolute value with optional rescaling

cvCopy Copy elements of one array to another

cvCountNonZero Count nonzero elements in an array

cvCrossProduct Compute cross product of two three-dimensional vectors

cvCvtColor Convert channels of an array from one color space to another

cvDet Compute determinant of a square matrix

cvDiv Elementwise division of one array by another

cvDotProduct Compute dot product of two vectors

cvEigenVV Compute eigenvalues and eigenvectors of a square matrix

cvFlip Flip an array about a selected axis

cvGEMM Generalized matrix multiplication

cvGetCol Copy elements from column slice of an array

cvGetCols Copy elements from multiple adjacent columns of an array

cvGetDiag Copy elements from an array diagonal

cvGetDims Return the number of dimensions of an array

cvGetDimSize Return the sizes of all dimensions of an array

cvGetRow Copy elements from row slice of an array

cvGetRows Copy elements from multiple adjacent rows of an array

cvGetSize Get size of a two-dimensional array and return as CvSize

cvGetSubRect Copy elements from subregion of an array

cvInRange Test if elements of an array are within values of two other arrays

cvInRangeS Test if elements of an array are in range between two scalars

cvInvert Invert a square matrix

03-R4886-RC1.indd 4803-R4886-RC1.indd 48 9/15/08 4:18:41 PM9/15/08 4:18:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matrix and Image Operators | 49

Function Description

cvMahalonobis Compute Mahalonobis distance between two vectors

cvMax Elementwise max operation on two arrays

cvMaxS Elementwise max operation between an array and a scalar

cvMerge Merge several single-channel images into one multichannel image

cvMin Elementwise min operation on two arrays

cvMinS Elementwise min operation between an array and a scalar

cvMinMaxLoc Find minimum and maximum values in an array

cvMul Elementwise multiplication of two arrays

cvNot Bitwise inversion of every element of an array

cvNorm Compute normalized correlations between two arrays

cvNormalize Normalize elements in an array to some value

cvOr Elementwise bit-level OR of two arrays

cvOrS Elementwise bit-level OR of an array and a scalar

cvReduce Reduce a two-dimensional array to a vector by a given operation

cvRepeat Tile the contents of one array into another

cvSet Set all elements of an array to a given value

cvSetZero Set all elements of an array to 0

cvSetIdentity Set all elements of an array to 1 for the diagonal and 0 otherwise

cvSolve Solve a system of linear equations

cvSplit Split a multichannel array into multiple single-channel arrays

cvSub Elementwise subtraction of one array from another

cvSubS Elementwise subtraction of a scalar from an array

cvSubRS Elementwise subtraction of an array from a scalar

cvSum Sum all elements of an array

cvSVD Compute singular value decomposition of a two-dimensional array

cvSVBkSb Compute singular value back-substitution

cvTrace Compute the trace of an array

cvTranspose Transpose all elements of an array across the diagonal

cvXor Elementwise bit-level XOR between two arrays

cvXorS Elementwise bit-level XOR between an array and a scalar

cvZero Set all elements of an array to 0

cvAbs, cvAbsDiff, and cvAbsDiffS
void cvAbs(
 const CvArr* src,
 const dst
);

Table 3-3. Basic matrix and image operators (continued)

03-R4886-RC1.indd 4903-R4886-RC1.indd 49 9/15/08 4:18:41 PM9/15/08 4:18:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

50 | Chapter 3: Getting to Know OpenCV

 void cvAbsDiff(
 const CvArr* src1,
 const CvArr* src2,
 const dst
);
void cvAbsDiffS(
 const CvArr* src,
 CvScalar value,
 const dst
);

Th ese functions compute the absolute value of an array or of the diff erence between the

array and some reference. Th e cvAbs() function simply computes the absolute value of

the elements in src and writes the result to dst; cvAbsDiff() fi rst subtracts src2 from

src1 and then writes the absolute value of the diff erence to dst. Note that cvAbsDiffS()

is essentially the same as cvAbsDiff() except that the value subtracted from all of the

elements of src is the constant scalar value.

cvAdd, cvAddS, cvAddWeighted, and alpha blending

void cvAdd(
 const CvArr* src1,
 const CvArr* src2,
 CvArr* dst,
 const CvArr* mask = NULL
);
void cvAddS(
 const CvArr* src,
 CvScalar value,
 CvArr* dst,
 const CvArr* mask = NULL
);
void cvAddWeighted(
 const CvArr* src1,
 double alpha,
 const CvArr* src2,
 double beta,
 double gamma,
 CvArr* dst
);

cvAdd() is a simple addition function: it adds all of the elements in src1 to the corre-

sponding elements in src2 and puts the results in dst. If mask is not set to NULL, then any

element of dst that corresponds to a zero element of mask remains unaltered by this op-

eration. Th e closely related function cvAddS() does the same thing except that the con-

stant scalar value is added to every element of src.

Th e function cvAddWeighted() is similar to cvAdd() except that the result written to dst is

computed according to the following formula:

dst src src
x y x y x y, , ,
= + +⋅ ⋅α β γ1 2

03-R4886-RC1.indd 5003-R4886-RC1.indd 50 9/15/08 4:18:41 PM9/15/08 4:18:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matrix and Image Operators | 51

Th is function can be used to implement alpha blending [Smith79; Porter84]; that is, it

can be used to blend one image with another. Th e form of this function is:

void cvAddWeighted(
 const CvArr* src1,
 double alpha,
 const CvArr* src2,
 double beta,
 double gamma,
 CvArr* dst
);

In cvAddWeighted() we have two source images, src1 and src2. Th ese images may be of

any pixel type so long as both are of the same type. Th ey may also be one or three chan-

nels (grayscale or color), again as long as they agree. Th e destination result image, dst,

must also have the same pixel type as src1 and src2. Th ese images may be of diff erent

sizes, but their ROIs must agree in size or else OpenCV will issue an error. Th e param-

eter alpha is the blending strength of src1, and beta is the blending strength of src2. Th e

alpha blending equation is:

dst src src
x y x y x y, , ,
= + +⋅ ⋅α β γ1 2

You can convert to the standard alpha blend equation by choosing α between 0 and 1,

setting β = 1 – α, and setting γ to 0; this yields:

dst src src
x y x y x y, , ,

()= + −⋅ ⋅α α1 1 2

However, cvAddWeighted() gives us a little more fl exibility—both in how we weight the

blended images and in the additional parameter γ, which allows for an additive off set to

the resulting destination image. For the general form, you will probably want to keep

alpha and beta at no less than 0 and their sum at no more than 1; gamma may be set

depending on average or max image value to scale the pixels up. A program showing the

use of alpha blending is shown in Example 3-14.

Example 3-14. Complete program to alpha blend the ROI starting at (0,0) in src2 with the ROI
starting at (x,y) in src1

// alphablend <imageA> <image B> <x> <y> <width> <height>
// <alpha> <beta>
#include <cv.h>
#include <highgui.h>

int main(int argc, char** argv)
{
 IplImage *src1, *src2;
 if(argc == 9 && ((src1=cvLoadImage(argv[1],1)) != 0
)&&((src2=cvLoadImage(argv[2],1)) != 0))
 {
 int x = atoi(argv[3]);
 int y = atoi(argv[4]);
 int width = atoi(argv[5]);

03-R4886-RC1.indd 5103-R4886-RC1.indd 51 9/15/08 4:18:42 PM9/15/08 4:18:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

52 | Chapter 3: Getting to Know OpenCV

Example 3-14. Complete program to alpha blend the ROI starting at (0,0) in src2 with the ROI
starting at (x,y) in src1 (continued)

 int height = atoi(argv[6]);
 double alpha = (double)atof(argv[7]);
 double beta = (double)atof(argv[8]);
 cvSetImageROI(src1, cvRect(x,y,width,height));
 cvSetImageROI(src2, cvRect(0,0,width,height));
 cvAddWeighted(src1, alpha, src2, beta,0.0,src1);
 cvResetImageROI(src1);
 cvNamedWindow(“Alpha_blend”, 1);
 cvShowImage(“Alpha_blend”, src1);
 cvWaitKey();
 }
 return 0;
}

Th e code in Example 3-14 takes two source images: the primary one (src1) and the one

to blend (src2). It reads in a rectangle ROI for src1 and applies an ROI of the same size to

src2, this time located at the origin. It reads in alpha and beta levels but sets gamma to 0.

Alpha blending is applied using cvAddWeighted(), and the results are put into src1 and

displayed. Example output is shown in Figure 3-4, where the face of a child is blended

onto the face and body of a cat. Note that the code took the same ROI as in the ROI ad-

dition example in Figure 3-3. Th is time we used the ROI as the target blending region.

cvAnd and cvAndS

void cvAnd(
 const CvArr* src1,
 const CvArr* src2,
 CvArr* dst,
 const CvArr* mask = NULL
);
void cvAndS(
 const CvArr* src1,
 CvScalar value,
 CvArr* dst,
 const CvArr* mask = NULL
);

Th ese two functions compute a bitwise AND operation on the array src1. In the case of

cvAnd(), each element of dst is computed as the bitwise AND of the corresponding two

elements of src1 and src2. In the case of cvAndS(), the bitwise AND is computed with the

constant scalar value. As always, if mask is non-NULL then only the elements of dst cor-

responding to nonzero entries in mask are computed.

Th ough all data types are supported, src1 and src2 must have the same data type for

cvAnd(). If the elements are of a fl oating-point type, then the bitwise representation of

that fl oating-point number is used.

03-R4886-RC1.indd 5203-R4886-RC1.indd 52 9/15/08 4:18:42 PM9/15/08 4:18:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matrix and Image Operators | 53

cvAvg

CvScalar cvAvg(
 const CvArr* arr,
 const CvArr* mask = NULL
);

cvAvg() computes the average value of the pixels in arr. If mask is non-NULL then the aver-

age will be computed only over those pixels for which the corresponding value of mask

is nonzero.

Th is function has the now deprecated alias cvMean().

cvAvgSdv

cvAvgSdv(
 const CvArr* arr,
 CvScalar* mean,
 CvScalar* std_dev,
 const CvArr* mask = NULL
);

Figure 3-4. Th e face of a child is alpha blended onto the face of a cat

03-R4886-RC1.indd 5303-R4886-RC1.indd 53 9/15/08 4:18:42 PM9/15/08 4:18:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

54 | Chapter 3: Getting to Know OpenCV

Th is function is like cvAvg(), but in addition to the average it also computes the standard

deviation of the pixels.

Th is function has the now deprecated alias cvMean_StdDev().

cvCalcCovarMatrix

void cvAdd(
 const CvArr** vects,
 int count,
 CvArr* cov_mat,
 CvArr* avg,
 int flags
);

Given any number of vectors, cvCalcCovarMatrix() will compute the mean and covari-

ance matrix for the Gaussian approximation to the distribution of those points. Th is can

be used in many ways, of course, and OpenCV has some additional fl ags that will help

in particular contexts (see Table 3-4). Th ese fl ags may be combined by the standard use

of the Boolean OR operator.

Table 3-4. Possible components of fl ags argument to cvCalcCovarMatrix()

Flag in flags argument Meaning

CV_COVAR_NORMAL Compute mean and covariance

CV_COVAR_SCRAMBLED Fast PCA “scrambled” covariance

CV_COVAR_USE_AVERAGE Use avg as input instead of computing it

CV_COVAR_SCALE Rescale output covariance matrix

In all cases, the vectors are supplied in vects as an array of OpenCV arrays (i.e., a pointer

to a list of pointers to arrays), with the argument count indicating how many arrays are

being supplied. Th e results will be placed in cov_mat in all cases, but the exact meaning

of avg depends on the fl ag values (see Table 3-4).

Th e fl ags CV_COVAR_NORMAL and CV_COVAR_SCRAMBLED are mutually exclusive; you should

use one or the other but not both. In the case of CV_COVAR_NORMAL, the function will sim-

ply compute the mean and covariance of the points provided.

Σ
normal

2

0 0 0 0 0

0

=

− −

− −
z

v v

v v

v v

v v

m

n n m n n

, ,

, ,

L

M O M

L

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

− −

− −

v v

v v

v v

v v

m

n n m n

0 0 0 0 0

0

, ,

, ,

L

M O M

L
nn

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

T

Th us the normal covariance Σ2
normal is computed from the m vectors of length n, where

v –
n is defi ned as the nth element of the average vector v –. Th e resulting covariance matrix

is an n-by-n matrix. Th e factor z is an optional scale factor; it will be set to 1 unless the

CV_COVAR_SCALE fl ag is used.

In the case of CV_COVAR_SCRAMBLED, cvCalcCovarMatrix() will compute the following:

03-R4886-RC1.indd 5403-R4886-RC1.indd 54 9/15/08 4:18:42 PM9/15/08 4:18:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matrix and Image Operators | 55

Σ
scrambled

2

0 0 0 0 0

0

=

− −

−
z

v v

v

v v

v v

m

n n m n

, ,

, ,

L

M O M

L −−

− −

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥v

v v

v

v v

v v
n

m

n n m

T

0 0 0 0 0

0

, ,

,

L

M O M

L
,,n n

v−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Th is matrix is not the usual covariance matrix (note the location of the transpose op-

erator). Th is matrix is computed from the same m vectors of length n, but the resulting

scrambled covariance matrix is an m-by-m matrix. Th is matrix is used in some specifi c

algorithms such as fast PCA for very large vectors (as in the eigenfaces technique for face

recognition).

Th e fl ag CV_COVAR_USE_AVG is used when the mean of the input vectors is already known.

In this case, the argument avg is used as an input rather than an output, which reduces

computation time.

Finally, the fl ag CV_COVAR_SCALE is used to apply a uniform scale to the covariance matrix

calculated. Th is is the factor z in the preceding equations. When used in conjunction

with the CV_COVAR_NORMAL fl ag, the applied scale factor will be 1.0/m (or, equivalently, 1.0/
count). If instead CV_COVAR_SCRAMBLED is used, then the value of z will be 1.0/n (the inverse

of the length of the vectors).

Th e input and output arrays to cvCalcCovarMatrix() should all be of the same fl oat-

ing-point type. Th e size of the resulting matrix cov_mat should be either n-by-n or

m-by-m depending on whether the standard or scrambled covariance is being com-

puted. It should be noted that the “vectors” input in vects do not actually have to be one-

dimensional; they can be two-dimensional objects (e.g., images) as well.

cvCmp and cvCmpS

void cvCmp(
 const CvArr* src1,
 const CvArr* src2,
 CvArr* dst,
 int cmp_op
);
void cvCmpS(
 const CvArr* src,
 double value,
 CvArr* dst,
 int cmp_op
);

Both of these functions make comparisons, either between corresponding pixels in two

images or between pixels in one image and a constant scalar value. Both cvCmp() and

cvCmpS() take as their last argument a comparison operator, which may be any of the

types listed in Table 3-5.

03-R4886-RC1.indd 5503-R4886-RC1.indd 55 9/15/08 4:18:43 PM9/15/08 4:18:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

56 | Chapter 3: Getting to Know OpenCV

Table 3-5. Values of cmp_op used by cvCmp() and cvCmpS()
and the resulting comparison operation performed

Value of cmp_op Comparison

CV_CMP_EQ (src1i == src2i)

CV_CMP_GT (src1i > src2i)

CV_CMP_GE (src1i >= src2i)

CV_CMP_LT (src1i < src2i)

CV_CMP_LE (src1i <= src2i)

CV_CMP_NE (src1i != src2i)

All the listed comparisons are done with the same functions; you just pass in the ap-

propriate argument to indicate what you would like done. Th ese particular functions

operate only on single-channel images.

Th ese comparison functions are useful in applications where you employ some version

of background subtraction and want to mask the results (e.g., looking at a video stream

from a security camera) such that only novel information is pulled out of the image.

cvConvertScale

void cvConvertScale(
 const CvArr* src,
 CvArr* dst,
 double scale = 1.0,
 double shift = 0.0
);

Th e cvConvertScale() function is actually several functions rolled into one; it will per-

form any of several functions or, if desired, all of them together. Th e fi rst function is to

convert the data type in the source image to the data type of the destination image. For

example, if we have an 8-bit RGB grayscale image and would like to convert it to a 16-bit

signed image, we can do that by calling cvConvertScale().

Th e second function of cvConvertScale() is to perform a linear transformation on the

image data. Aft er conversion to the new data type, each pixel value will be multiplied by

the value scale and then have added to it the value shift.

It is critical to remember that, even though “Convert” precedes “Scale” in the function

name, the actual order in which these operations is performed is the opposite. Specifi -

cally, multiplication by scale and the addition of shift occurs before the type conver-

sion takes place.

When you simply pass the default values (scale = 1.0 and shift = 0.0), you need not

have performance fears; OpenCV is smart enough to recognize this case and not waste

processor time on useless operations. For clarity (if you think it adds any), OpenCV also

provides the macro cvConvert(), which is the same as cvConvertScale() but is conven-

tionally used when the scale and shift arguments will be left at their default values.

03-R4886-RC1.indd 5603-R4886-RC1.indd 56 9/15/08 4:18:43 PM9/15/08 4:18:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matrix and Image Operators | 57

cvConvertScale() will work on all data types and any number of channels, but the num-

ber of channels in the source and destination images must be the same. (If you want to,

say, convert from color to grayscale or vice versa, see cvCvtColor(), which is coming up

shortly.)

cvConvertScaleAbs

void cvConvertScaleAbs(
 const CvArr* src,
 CvArr* dst,
 double scale = 1.0,
 double shift = 0.0
);

cvConvertScaleAbs() is essentially identical to cvConvertScale() except that the dst im-

age contains the absolute value of the resulting data. Specifi cally, cvConvertScaleAbs()

fi rst scales and shift s, then computes the absolute value, and fi nally performs the data-

type conversion.

cvCopy

void cvCopy(
 const CvArr* src,
 CvArr* dst,
 const CvArr* mask = NULL
);

Th is is how you copy one image to another. Th e cvCopy() function expects both arrays to

have the same type, the same size, and the same number of dimensions. You can use it

to copy sparse arrays as well, but for this the use of mask is not supported. For nonsparse

arrays and images, the eff ect of mask (if non-NULL) is that only the pixels in dst that cor-

respond to nonzero entries in mask will be altered.

cvCountNonZero

int cvCountNonZero(const CvArr* arr);

cvCountNonZero() returns the number of nonzero pixels in the array arr.

cvCrossProduct

void cvCrossProduct(
 const CvArr* src1,
 const CvArr* src2,
 CvArr* dst
);

Th is function computes the vector cross product [Lagrange1773] of two three-

dimensional vectors. It does not matter if the vectors are in row or column form (a little

refl ection reveals that, for single-channel objects, these two are really the same inter-

nally). Both src1 and src2 should be single-channel arrays, and dst should be single-

channel and of length exactly 3.All three arrays should be of the same data type.

03-R4886-RC1.indd 5703-R4886-RC1.indd 57 9/15/08 4:18:43 PM9/15/08 4:18:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

58 | Chapter 3: Getting to Know OpenCV

cvCvtColor

void cvCvtColor(
 const CvArr* src,
 CvArr* dst,
 int code
);

Th e previous functions were for converting from one data type to another, and they

expected the number of channels to be the same in both source and destination im-

ages. Th e complementary function is cvCvtColor(), which converts from one color space

(number of channels) to another [Wharton71] while expecting the data type to be the

same. Th e exact conversion operation to be done is specifi ed by the argument code,

whose possible values are listed in Table 3-6.*

Table 3-6. Conversions available by means of cvCvtColor()

Conversion code Meaning

CV_BGR2RGB
CV_RGB2BGR
CV_RGBA2BGRA
CV_BGRA2RGBA

Convert between RGB and BGR color spaces (with or without alpha channel)

CV_RGB2RGBA
CV_BGR2BGRA

Add alpha channel to RGB or BGR image

CV_RGBA2RGB
CV_BGRA2BGR

Remove alpha channel from RGB or BGR image

CV_RGB2BGRA
CV_RGBA2BGR
CV_BGRA2RGB
CV_BGR2RGBA

Convert RGB to BGR color spaces while adding or removing alpha channel

CV_RGB2GRAY
CV_BGR2GRAY

Convert RGB or BGR color spaces to grayscale

CV_GRAY2RGB
CV_GRAY2BGR
CV_RGBA2GRAY
CV_BGRA2GRAY

Convert grayscale to RGB or BGR color spaces (optionally removing alpha channel
in the process)

CV_GRAY2RGBA
CV_GRAY2BGRA

Convert grayscale to RGB or BGR color spaces and add alpha channel

CV_RGB2BGR565
CV_BGR2BGR565
CV_BGR5652RGB
CV_BGR5652BGR
CV_RGBA2BGR565
CV_BGRA2BGR565
CV_BGR5652RGBA
CV_BGR5652BGRA

Convert from RGB or BGR color space to BGR565 color representation with
optional addition or removal of alpha channel (16-bit images)

CV_GRAY2BGR565
CV_BGR5652GRAY

Convert grayscale to BGR565 color representation or vice versa (16-bit images)

* Long-time users of IPL should note that the function cvCvtColor() ignores the colorModel and chan-
nelSeq fi elds of the IplImage header. Th e conversions are done exactly as implied by the code argument.

03-R4886-RC1.indd 5803-R4886-RC1.indd 58 9/15/08 4:18:43 PM9/15/08 4:18:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matrix and Image Operators | 59

Conversion code Meaning

CV_RGB2BGR555
CV_BGR2BGR555
CV_BGR5552RGB
CV_BGR5552BGR
CV_RGBA2BGR555
CV_BGRA2BGR555
CV_BGR5552RGBA
CV_BGR5552BGRA

Convert from RGB or BGR color space to BGR555 color representation with
optional addition or removal of alpha channel (16-bit images)

CV_GRAY2BGR555
CV_BGR5552GRAY

Convert grayscale to BGR555 color representation or vice versa (16-bit images)

CV_RGB2XYZ
CV_BGR2XYZ
CV_XYZ2RGB
CV_XYZ2BGR

Convert RGB or BGR image to CIE XYZ representation or vice versa (Rec 709 with
D65 white point)

CV_RGB2YCrCb
CV_BGR2YCrCb
CV_YCrCb2RGB
CV_YCrCb2BGR

Convert RGB or BGR image to luma-chroma (aka YCC) color representation

CV_RGB2HSV
CV_BGR2HSV
CV_HSV2RGB
CV_HSV2BGR

Convert RGB or BGR image to HSV (hue saturation value) color representation or
vice versa

CV_RGB2HLS
CV_BGR2HLS
CV_HLS2RGB
CV_HLS2BGR

Convert RGB or BGR image to HLS (hue lightness saturation) color representation
or vice versa

CV_RGB2Lab
CV_BGR2Lab
CV_Lab2RGB
CV_Lab2BGR

Convert RGB or BGR image to CIE Lab color representation or vice versa

CV_RGB2Luv
CV_BGR2Luv
CV_Luv2RGB
CV_Luv2BGR

Convert RGB or BGR image to CIE Luv color representation

CV_BayerBG2RGB
CV_BayerGB2RGB
CV_BayerRG2RGB
CV_BayerGR2RGB
CV_BayerBG2BGR
CV_BayerGB2BGR
CV_BayerRG2BGR
CV_BayerGR2BGR

Convert from Bayer pattern (single-channel) to RGB or BGR image

Th e details of many of these conversions are nontrivial, and we will not go into the sub-

tleties of Bayer representations of the CIE color spaces here. For our purposes, it is suf-

fi cient to note that OpenCV contains tools to convert to and from these various color

spaces, which are of importance to various classes of users.

Th e color-space conversions all use the conventions: 8-bit images are in the range 0–255,

16-bit images are in the range 0–65536, and fl oating-point numbers are in the range

Table 3-6. Conversions available by means of cvCvtColor() (continued)

03-R4886-RC1.indd 5903-R4886-RC1.indd 59 9/15/08 4:18:44 PM9/15/08 4:18:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

60 | Chapter 3: Getting to Know OpenCV

0.0–1.0. When grayscale images are converted to color images, all components of the

resulting image are taken to be equal; but for the reverse transformation (e.g., RGB or

BGR to grayscale), the gray value is computed using the perceptually weighted formula:

Y R G B= + +(.) (.) (.)0 299 0 587 0 114

In the case of HSV or HLS representations, hue is normally represented as a value from

0 to 360.* Th is can cause trouble in 8-bit representations and so, when converting to

HSV, the hue is divided by 2 when the output image is an 8-bit image.

cvDet

double cvDet(
 const CvArr* mat
);

cvDet() computes the determinant (Det) of a square array. Th e array can be of any data

type, but it must be single-channel. If the matrix is small then the determinant is di-

rectly computed by the standard formula. For large matrices, this is not particularly

effi cient and so the determinant is computed by Gaussian elimination.

It is worth noting that if you already know that a matrix is symmetric and has a posi-

tive determinant, you can also use the trick of solving via singular value decomposition

(SVD). For more information see the section “cvSVD” to follow, but the trick is to set

both U and V to NULL and then just take the products of the matrix W to obtain the

determinant.

cvDiv

void cvDiv(
 const CvArr* src1,
 const CvArr* src2,
 CvArr* dst,
 double scale = 1
);

cvDiv() is a simple division function; it divides all of the elements in src1 by the cor-

responding elements in src2 and puts the results in dst. If mask is non-NULL, then any

element of dst that corresponds to a zero element of mask is not altered by this operation.

If you only want to invert all the elements in an array, you can pass NULL in the place of

src1; the routine will treat this as an array full of 1s.

cvDotProduct

double cvDotProduct(
 const CvArr* src1,
 const CvArr* src2
);

* Excluding 360, of course.

03-R4886-RC1.indd 6003-R4886-RC1.indd 60 9/15/08 4:18:44 PM9/15/08 4:18:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matrix and Image Operators | 61

Th is function computes the vector dot product [Lagrange1773] of two N-dimensional

vectors.* As with the cross product (and for the same reason), it does not matter if the

vectors are in row or column form. Both src1 and src2 should be single-channel arrays,

and both arrays should be of the same data type.

cvEigenVV

double cvEigenVV(
 CvArr* mat,
 CvArr* evects,
 CvArr* evals,
 double eps = 0
);

Given a symmetric matrix mat, cvEigenVV() will compute the eigenvectors and the corre-

sponding eigenvalues of that matrix. Th is is done using Jacobi’s method [Bronshtein97], so

it is effi cient for smaller matrices.† Jacobi’s method requires a stopping parameter, which

is the maximum size of the off -diagonal elements in the fi nal matrix.‡ Th e optional ar-

gument eps sets this termination value. In the process of computation, the supplied ma-

trix mat is used for the computation, so its values will be altered by the function. When

the function returns, you will fi nd your eigenvectors in evects in the form of subsequent

rows. Th e corresponding eigenvalues are stored in evals. Th e order of the eigenvectors

will always be in descending order of the magnitudes of the corresponding eigenvalues.

Th e cvEigenVV() function requires all three arrays to be of fl oating-point type.

As with cvDet() (described previously), if the matrix in question is known to be sym-

metric and positive defi nite§ then it is better to use SVD to fi nd the eigenvalues and

eigenvectors of mat.

cvFlip

void cvFlip(
 const CvArr* src,
 CvArr* dst = NULL,
 int flip_mode = 0
);

Th is function fl ips an image around the x-axis, the y-axis, or both. In particular, if

the argument flip_mode is set to 0 then the image will be fl ipped around the x-axis.

* Actually, the behavior of cvDotProduct() is a little more general than described here. Given any pair of
n-by-m matrices, cvDotProduct() will return the sum of the products of the corresponding elements.

† A good rule of thumb would be that matrices 10-by-10 or smaller are small enough for Jacobi’s method to be
effi cient. If the matrix is larger than 20-by-20 then you are in a domain where this method is probably not
the way to go.

‡ In principle, once the Jacobi method is complete then the original matrix is transformed into one that is
diagonal and contains only the eigenvalues; however, the method can be terminated before the off -diagonal
elements are all the way to zero in order to save on computation. In practice is it usually suffi cient to set this
value to DBL_EPSILON, or about 10–15.

§ Th is is, for example, always the case for covariance matrices. See cvCalcCovarMatrix().

03-R4886-RC1.indd 6103-R4886-RC1.indd 61 9/15/08 4:18:44 PM9/15/08 4:18:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

62 | Chapter 3: Getting to Know OpenCV

If flip_mode is set to a positive value (e.g., +1) the image will be fl ipped around the y-

axis, and if set to a negative value (e.g., –1) the image will be fl ipped about both axes.

When video processing on Win32 systems, you will fi nd yourself using this function

oft en to switch between image formats with their origins at the upper-left and lower-left

of the image.

cvGEMM

double cvGEMM(
 const CvArr* src1,
 const CvArr* src2,
 double alpha,
 const CvArr* src3,
 double beta,
 CvArr* dst,
 int tABC = 0
);

Generalized matrix multiplication (GEMM) in OpenCV is performed by cvGEMM(),

which performs matrix multiplication, multiplication by a transpose, scaled multiplica-

tion, et cetera. In its most general form, cvGEMM() computes the following:

D = +⋅ ⋅ ⋅α βop op op() () ()A B C

Where A, B, and C are (respectively) the matrices src1, src2, and src3, α and β are nu-

merical coeffi cients, and op() is an optional transposition of the matrix enclosed. Th e

argument src3 may be set to NULL, in which case it will not be added. Th e transpositions

are controlled by the optional argument tABC, which may be 0 or any combination (by

means of Boolean OR) of CV_GEMM_A_T, CV_GEMM_B_T, and CV_GEMM_C_T (with each fl ag indi-

cating a transposition of the corresponding matrix).

In the distant past OpenCV contained the methods cvMatMul() and cvMatMulAdd(), but

these were too oft en confused with cvMul(), which does something entirely diff erent

(i.e., element-by-element multiplication of two arrays). Th ese functions continue to ex-

ist as macros for calls to cvGEMM(). In particular, we have the equivalences listed in

Table 3-7.

Table 3-7. Macro aliases for common usages of cvGEMM()

cvMatMul(A, B, D) cvGEMM(A, A, 1, NULL, 0, D, 0)

cvMatMulAdd(A, B, C, D) cvGEMM(A, A, 1, C, 1, D, 0)

All matrices must be of the appropriate size for the multiplication, and all should be

of fl oating-point type. Th e cvGEMM() function supports two-channel matrices, in which

case it will treat the two channels as the two components of a single complex number.

cvGetCol and cvGetCols

CvMat* cvGetCol(
 const CvArr* arr,

03-R4886-RC1.indd 6203-R4886-RC1.indd 62 9/15/08 4:18:44 PM9/15/08 4:18:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matrix and Image Operators | 63

 CvMat* submat,
 int col
);
CvMat* cvGetCols(
 const CvArr* arr,
 CvMat* submat,
 int start_col,
 int end_col
);

Th e function cvGetCol() is used to pick a single column out of a matrix and return it as

a vector (i.e., as a matrix with only one column). In this case the matrix header submat

will be modifi ed to point to a particular column in arr. It is important to note that such

header modifi cation does not include the allocation of memory or the copying of data.

Th e contents of submat will simply be altered so that it correctly indicates the selected

column in arr. All data types are supported.

cvGetCols() works precisely the same way, except that all columns from start_col to

end_col are selected. With both functions, the return value is a pointer to a header cor-

responding to the particular specifi ed column or column span (i.e., submat) selected by

the caller.

cvGetDiag

CvMat* cvGetDiag(
 const CvArr* arr,
 CvMat* submat,
 int diag = 0
);

cvGetDiag() is analogous to cvGetCol(); it is used to pick a single diagonal from a

matrix and return it as a vector. Th e argument submat is a matrix header. Th e function

cvGetDiag() will fi ll the components of this header so that it points to the correct infor-

mation in arr. Note that the result of calling cvGetDiag() is that the header you supplied

is correctly confi gured to point at the diagonal data in arr, but the data from arr is not

copied. Th e optional argument diag specifi es which diagonal is to be pointed to by sub-
mat. If diag is set to the default value of 0, the main diagonal will be selected. If diag is

greater than 0, then the diagonal starting at (diag,0) will be selected; if diag is less than

0, then the diagonal starting at (0,-diag) will be selected instead. Th e cvGetDiag() func-

tion does not require the matrix arr to be square, but the array submat must have the

correct length for the size of the input array. Th e fi nal returned value is the same as the

value of submat passed in when the function was called.

cvGetDims and cvGetDimSize

int cvGetDims(
 const CvArr* arr,
 int* sizes=NULL
);
int cvGetDimSize(
 const CvArr* arr,

03-R4886-RC1.indd 6303-R4886-RC1.indd 63 9/15/08 4:18:45 PM9/15/08 4:18:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

64 | Chapter 3: Getting to Know OpenCV

 int index
);

Recall that arrays in OpenCV can be of dimension much greater than two. Th e function

cvGetDims() returns the number of array dimensions of a particular array and (option-

ally) the sizes of each of those dimensions. Th e sizes will be reported if the array sizes is

non-NULL. If sizes is used, it should be a pointer to n integers, where n is the number of

dimensions. If you do not know the number of dimensions in advance, you can allocate

sizes to CV_MAX_DIM integers just to be safe.

Th e function cvGetDimSize() returns the size of a single dimension specifi ed by index.

If the array is either a matrix or an image, the number of dimensions returned will al-

ways be two.* For matrices and images, the order of sizes returned by cvGetDims() will

always be the number of rows fi rst followed by the number of columns.

cvGetRow and cvGetRows

CvMat* cvGetRow(
 const CvArr* arr,
 CvMat* submat,
 int row
);
CvMat* cvGetRows(
 const CvArr* arr,
 CvMat* submat,
 int start_row,
 int end_row
);

cvGetRow() picks a single row out of a matrix and returns it as a vector (a matrix with

only one row). As with cvGetRow(), the matrix header submat will be modifi ed to point to

a particular row in arr, and the modifi cation of this header does not include the alloca-

tion of memory or the copying of data; the contents of submat will simply be altered such

that it correctly indicates the selected column in arr. All data types are supported.

Th e function cvGetRows() works precisely the same way, except that all rows from start_
row to end_row are selected. With both functions, the return value is a pointer to a header

corresponding to the particular specifi ed row or row span selected by the caller.

cvGetSize

CvSize cvGetSize(const CvArr* arr);

Closely related to cvGetDims(), cvGetSize() returns the size of an array. Th e primary dif-

ference is that cvGetSize() is designed to be used on matrices and images, which always

have dimension two. Th e size can then be returned in the form of a CvSize structure,

which is suitable to use when (for example) constructing a new matrix or image of the

same size.

* Remember that OpenCV regards a “vector” as a matrix of size n-by-1 or 1-by-n.

03-R4886-RC1.indd 6403-R4886-RC1.indd 64 9/15/08 4:18:45 PM9/15/08 4:18:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matrix and Image Operators | 65

cvGetSubRect

CvSize cvGetSubRect(
 const CvArr* arr,
 CvArr* submat,
 CvRect rect
);

cvGetSubRect() is similar to cvGetColumns() or cvGetRows() except that it selects some

arbitrary subrectangle in the array specifi ed by the argument rect. As with other rou-

tines that select subsections of arrays, submat is simply a header that will be fi lled by

cvGetSubRect() in such a way that it correctly points to the desired submatrix (i.e., no

memory is allocated and no data is copied).

cvInRange and cvInRangeS

void cvInRange(
 const CvArr* src,
 const CvArr* lower,
 const CvArr* upper,
 CvArr* dst
);
void cvInRangeS(
 const CvArr* src,
 CvScalar lower,
 CvScalar upper,
 CvArr* dst
);

Th ese two functions can be used to check if the pixels in an image fall within a particu-

lar specifi ed range. In the case of cvInRange(), each pixel of src is compared with the

corresponding value in the images lower and upper. If the value in src is greater than or

equal to the value in lower and also less than the value in upper, then the corresponding

value in dst will be set to 0xff; otherwise, the value in dst will be set to 0.

Th e function cvInRangeS() works precisely the same way except that the image src is

compared to the constant (CvScalar) values in lower and upper. For both functions, the

image src may be of any type; if it has multiple channels then each channel will be

handled separately. Note that dst must be of the same size and number of channels and

also must be an 8-bit image.

cvInvert

double cvInvert(
 const CvArr* src,
 CvArr* dst,
 Int method = CV_LU
);

cvInvert() inverts the matrix in src and places the result in dst. Th is function sup-

ports several methods of computing the inverse matrix (see Table 3-8), but the default is

Gaussian elimination. Th e return value depends on the method used.

03-R4886-RC1.indd 6503-R4886-RC1.indd 65 9/15/08 4:18:45 PM9/15/08 4:18:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

66 | Chapter 3: Getting to Know OpenCV

Table 3-8. Possible values of method argument to cvInvert()

Value of method argument Meaning

CV_LU Gaussian elimination (LU Decomposition)

CV_SVD Singular value decomposition (SVD)

CV_SVD_SYM SVD for symmetric matrices

In the case of Gaussian elimination (method=CV_LU), the determinant of src is returned

when the function is complete. If the determinant is 0, then the inversion is not actually

performed and the array dst is simply set to all 0s.

In the case of CV_SVD or CV_SVD_SYM, the return value is the inverse condition number for

the matrix (the ratio of the smallest to the largest eigenvalue). If the matrix src is singu-

lar, then cvInvert() in SVD mode will instead compute the pseudo-inverse.

cvMahalonobis

CvSize cvMahalonobis(
 const CvArr* vec1,
 const CvArr* vec2,
 CvArr* mat
);

Th e Mahalonobis distance (Mahal) is defi ned as the vector distance measured between

a point and the center of a Gaussian distribution; it is computed using the inverse co-

variance of that distribution as a metric. See Figure 3-5. Intuitively, this is analogous

to the z-score in basic statistics, where the distance from the center of a distribution is

measured in units of the variance of that distribution. Th e Mahalonobis distance is just

a multivariable generalization of the same idea.

cvMahalonobis() computes the value:

r
Mahalonobis

= − −−() ()x xμ μTΣ 1

Th e vector vec1 is presumed to be the point x, and the vector vec2 is taken to be the dis-

tribution’s mean.* Th at matrix mat is the inverse covariance.

In practice, this covariance matrix will usually have been computed with cvCalcCovar
Matrix() (described previously) and then inverted with cvInvert(). It is good program-

ming practice to use the SV_SVD method for this inversion because someday you will en-

counter a distribution for which one of the eigenvalues is 0!

cvMax and cvMaxS

void cvMax(
 const CvArr* src1,
 const CvArr* src2,

* Actually, the Mahalonobis distance is more generally defi ned as the distance between any two vectors;
in any case, the vector vec2 is subtracted from the vector vec1. Neither is there any fundamental con-
nection between mat in cvMahalonobis() and the inverse covariance; any metric can be imposed here as
appropriate.

03-R4886-RC1.indd 6603-R4886-RC1.indd 66 9/15/08 4:18:45 PM9/15/08 4:18:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matrix and Image Operators | 67

 CvArr* dst
);
void cvMaxS(
 const CvArr* src,
 double value,
 CvArr* dst
);

cvMax() computes the maximum value of each corresponding pair of pixels in the arrays

src1 and src2. With cvMaxS(), the src array is compared with the constant scalar value.

As always, if mask is non-NULL then only the elements of dst corresponding to nonzero

entries in mask are computed.

cvMerge

void cvMerge(
 const CvArr* src0,
 const CvArr* src1,
 const CvArr* src2,
 const CvArr* src3,
 CvArr* dst
);

Figure 3-5. A distribution of points in two dimensions with superimposed ellipsoids representing
Mahalonobis distances of 1.0, 2.0, and 3.0 from the distribution’s mean

03-R4886-RC1.indd 6703-R4886-RC1.indd 67 9/15/08 4:18:45 PM9/15/08 4:18:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

68 | Chapter 3: Getting to Know OpenCV

cvMerge() is the inverse operation of cvSplit(). Th e arrays in src0, src1, src2, and src3

are combined into the array dst. Of course, dst should have the same data type and

size as all of the source arrays, but it can have two, three, or four channels. Th e unused

source images can be left set to NULL.

cvMin and cvMinS

void cvMin(
 const CvArr* src1,
 const CvArr* src2,
 CvArr* dst
);
void cvMinS(
 const CvArr* src,
 double value,
 CvArr* dst
);

cvMin() computes the minimum value of each corresponding pair of pixels in the ar-

rays src1 and src2. With cvMinS(), the src arrays are compared with the constant scalar

value. Again, if mask is non-NULL then only the elements of dst corresponding to nonzero

entries in mask are computed.

cvMinMaxLoc

void cvMinMaxLoc(
 const CvArr* arr,
 double* min_val,
 double* max_val,
 CvPoint* min_loc = NULL,
 CvPoint* max_loc = NULL,
 const CvArr* mask = NULL
);

Th is routine fi nds the minimal and maximal values in the array arr and (optionally)

returns their locations. Th e computed minimum and maximum values are placed in

min_val and max_val. Optionally, the locations of those extrema will also be written to

the addresses given by min_loc and max_loc if those values are non-NULL.

As usual, if mask is non-NULL then only those portions of the image arr that corre-

spond to nonzero pixels in mask are considered. Th e cvMinMaxLoc() routine handles only

single-channel arrays, however, so if you have a multichannel array then you should use

cvSetCOI() to set a particular channel for consideration.

cvMul

void cvMul(
 const CvArr* src1,
 const CvArr* src2,
 CvArr* dst,
 double scale=1
);

03-R4886-RC1.indd 6803-R4886-RC1.indd 68 9/15/08 4:18:46 PM9/15/08 4:18:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matrix and Image Operators | 69

cvMul() is a simple multiplication function. It multiplies all of the elements in src1 by

the corresponding elements in src2 and then puts the results in dst. If mask is non-NULL,

then any element of dst that corresponds to a zero element of mask is not altered by this

operation. Th ere is no function cvMulS() because that functionality is already provided

by cvScale() or cvCvtScale().

One further thing to keep in mind: cvMul() performs element-by-element multiplica-

tion. Someday, when you are multiplying some matrices, you may be tempted to reach

for cvMul(). Th is will not work; remember that matrix multiplication is done with

cvGEMM(), not cvMul().

cvNot

void(
 const CvArr* src,
 CvArr* dst
);

Th e function cvNot() inverts every bit in every element of src and then places the result

in dst. Th us, for an 8-bit image the value 0x00 would be mapped to 0xff and the value

0x83 would be mapped to 0x7c.

cvNorm

double cvNorm(
 const CvArr* arr1,
 const CvArr* arr2 = NULL,
 int norm_type = CV_L2,
 const CvArr* mask = NULL
);

Th is function can be used to compute the total norm of an array and also a variety of

relative distance norms if two arrays are provided. In the former case, the norm com-

puted is shown in Table 3-9.

Table 3-9. Norm computed by cvNorm() for diff erent values of norm_type when arr2=NULL

norm_type Result

CV_C || || max ()
, ,

arr1 abs arr1
C
=

x y x y

CV_L1 || || ()
,

arr1 abs arr1
L1
=∑ x y

,x y

CV_L2 || ||
,

arr1 arr1
L2

=∑ x y
,x y

2

If the second array argument arr2 is non-NULL, then the norm computed is a diff erence

norm—that is, something like the distance between the two arrays.* In the fi rst three

* At least in the case of the L2 norm, there is an intuitive interpretation of the diff erence norm as a Euclidean
distance in a space of dimension equal to the number of pixels in the images.

03-R4886-RC1.indd 6903-R4886-RC1.indd 69 9/15/08 4:18:46 PM9/15/08 4:18:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

70 | Chapter 3: Getting to Know OpenCV

cases shown in Table 3-10, the norm is absolute; in the latter three cases it is rescaled by

the magnitude of the second array arr2.

Table 3-10. Norm computed by cvNorm() for diff erent values of norm_type when arr2 is non-NULL

norm_type Result

CV_C || || max ()
, , ,

arr1 arr2 abs arr1 arr2
C

− = −
x y x y x y

CV_L1 || ||arr1 arr2
L1

− =∑ ()
, ,

abs arr1 arr2−
x y x y

,x y

CV_L2 || || ()
, ,

arr1 arr2 arr1 arr2
L2

− = −∑ x y x y
,x y

2

CV_RELATIVE_C ||

||

||

||

arr1 arr2

arr2
C

C

−

CV_ RELATIVE_L1 ||

||

||

||

arr1 arr2

arr2
L1

L1

−

CV_ RELATIVE_L2 ||

||

||

||

arr1 arr2

arr2
L2

L2

−

In all cases, arr1 and arr2 must have the same size and number of channels. When there

is more than one channel, the norm is computed over all of the channels together (i.e.,

the sums in Tables 3-9 and 3-10 are not only over x and y but also over the channels).

cvNormalize

cvNormalize(
 const CvArr* src,
 CvArr* dst,
 double a = 1.0,
 double b = 0.0,
 int norm_type = CV_L2,
 const CvArr* mask = NULL
);

As with so many OpenCV functions, cvNormalize() does more than it might at fi rst ap-

pear. Depending on the value of norm_type, image src is normalized or otherwise mapped

into a particular range in dst. Th e possible values of norm_type are shown in Table 3-11.

Table 3-11. Possible values of norm_type argument to cvNormalize()

norm_type Result

CV_C || || max ()
,

arr1 abs
C dst
= =I a

x y

CV_L1 = =()ab I a
x y

s
,

|| ||arr1
L1

dst

∑

CV_L2 || ||
,

arr1
L2

dst

= =∑ I a
x y

2

CV_MINMAX Map into range [a, b]

03-R4886-RC1.indd 7003-R4886-RC1.indd 70 9/15/08 4:18:46 PM9/15/08 4:18:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matrix and Image Operators | 71

In the case of the C norm, the array src is rescaled such that the magnitude of the abso-

lute value of the largest entry is equal to a. In the case of the L1 or L2 norm, the array is

rescaled so that the given norm is equal to the value of a. If norm_type is set to CV_MINMAX,

then the values of the array are rescaled and translated so that they are linearly mapped

into the interval between a and b (inclusive).

As before, if mask is non-NULL then only those pixels corresponding to nonzero values of

the mask image will contribute to the computation of the norm—and only those pixels

will be altered by cvNormalize().

cvOr and cvOrS

void cvOr(
 const CvArr* src1,
 const CvArr* src2,
 CvArr* dst,
 const CvArr* mask=NULL
);
void cvOrS(
 const CvArr* src,
 CvScalar value,
 CvArr* dst,
 const CvArr* mask = NULL
);

Th ese two functions compute a bitwise OR operation on the array src1. In the case of

cvOr(), each element of dst is computed as the bitwise OR of the corresponding two

elements of src1 and src2. In the case of cvOrS(), the bitwise OR is computed with the

constant scalar value. As usual, if mask is non-NULL then only the elements of dst corre-

sponding to nonzero entries in mask are computed.

All data types are supported, but src1 and src2 must have the same data type for

cvOr(). If the elements are of fl oating-point type, then the bitwise representation of that

fl oating-point number is used.

cvReduce

CvSize cvReduce(
 const CvArr* src,
 CvArr* dst,
 int dim,
 int op = CV_REDUCE_SUM
);

Reduction is the systematic transformation of the input matrix src into a vector dst

by applying some combination rule op on each row (or column) and its neighbor until

only one row (or column) remains (see Table 3-12).* Th e argument op controls how the

reduction is done, as summarized in Table 3-13.

* Purists will note that averaging is not technically a proper fold in the sense implied here. OpenCV has a
more practical view of reductions and so includes this useful operation in cvReduce.

03-R4886-RC1.indd 7103-R4886-RC1.indd 71 9/15/08 4:18:47 PM9/15/08 4:18:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

72 | Chapter 3: Getting to Know OpenCV

Table 3-12. Argument op in cvReduce() selects the reduction operator

Value of op Result

CV_REDUCE_SUM Compute sum across vectors

CV_REDUCE_AVG Compute average across vectors

CV_REDUCE_MAX Compute maximum across vectors

CV_REDUCE_MIN Compute minimum across vectors

Table 3-13. Argument dim in cvReduce() controls the direction of the reduction

Value of dim Result

+1 Collapse to a single row

0 Collapse to a single column

–1 Collapse as appropriate for dst

cvReduce() supports multichannel arrays of fl oating-point type. It is also allowable to

use a higher precision type in dst than appears in src. Th is is primarily relevant for CV_
REDUCE_SUM and CV_REDUCE_AVG, where overfl ows and summation problems are possible.

cvRepeat

void cvRepeat(
 const CvArr* src,
 CvArr* dst
);

Th is function copies the contents of src into dst, repeating as many times as necessary

to fi ll dst. In particular, dst can be of any size relative to src. It may be larger or smaller,

and it need not have an integer relationship between any of its dimensions and the cor-

responding dimensions of src.

cvScale

void cvScale(
 const CvArr* src,
 CvArr* dst,
 double scale
);

Th e function cvScale() is actually a macro for cvConvertScale() that sets the shift argu-

ment to 0.0. Th us, it can be used to rescale the contents of an array and to convert from

one kind of data type to another.

cvSet and cvSetZero

void cvSet(
 CvArr* arr,
 CvScalar value,
 const CvArr* mask = NULL
);

03-R4886-RC1.indd 7203-R4886-RC1.indd 72 9/15/08 4:18:47 PM9/15/08 4:18:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matrix and Image Operators | 73

Th ese functions set all values in all channels of the array to a specifi ed value. Th e

cvSet() function accepts an optional mask argument: if a mask is provided, then only

those pixels in the image arr that correspond to nonzero values of the mask image will

be set to the specifi ed value. Th e function cvSetZero() is just a synonym for cvSet(0.0).

cvSetIdentity

void cvSetIdentity(CvArr* arr);

cvSetIdentity() sets all elements of the array to 0 except for elements whose row and

column are equal; those elements are set to 1. cvSetIdentity() supports all data types

and does not even require the array to be square.

cvSolve

int cvSolve(
 const CvArr* src1,
 const CvArr* src2,
 CvArr* dst,
 int method = CV_LU
);

Th e function cvSolve() provides a fast way to solve linear systems based on cvInvert().

It computes the solution to

C = −⋅argmin
X

A X B

where A is a square matrix given by src1, B is the vector src2, and C is the solution

computed by cvSolve() for the best vector X it could fi nd. Th at best vector X is returned

in dst. Th e same methods are supported as by cvInvert() (described previously); only

fl oating-point data types are supported. Th e function returns an integer value where a

nonzero return indicates that it could fi nd a solution.

It should be noted that cvSolve() can be used to solve overdetermined linear systems.

Overdetermined systems will be solved using something called the pseudo-inverse,

which uses SVD methods to fi nd the least-squares solution for the system of equations.

cvSplit

void cvSplit(
 const CvArr* src,
 CvArr* dst0,
 CvArr* dst1,
 CvArr* dst2,
 CvArr* dst3
);

Th ere are times when it is not convenient to work with a multichannel image. In such

cases, we can use cvSplit() to copy each channel separately into one of several sup-

plied single-channel images. Th e cvSplit() function will copy the channels in src into

the images dst0, dst1, dst2, and dst3 as needed. Th e destination images must match

the source image in size and data type but, of course, should be single-channel images.

03-R4886-RC1.indd 7303-R4886-RC1.indd 73 9/15/08 4:18:48 PM9/15/08 4:18:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

74 | Chapter 3: Getting to Know OpenCV

If the source image has fewer than four channels (as it oft en will), then the unneeded

destination arguments to cvSplit() can be set to NULL.

cvSub

void cvSub(
 const CvArr* src1,
 const CvArr* src2,
 CvArr* dst,
 const CvArr* mask = NULL
);

Th is function performs a basic element-by-element subtraction of one array src2 from

another src1 and places the result in dst. If the array mask is non-NULL, then only those

elements of dst corresponding to nonzero elements of mask are computed. Note that

src1, src2, and dst must all have the same type, size, and number of channels; mask, if

used, should be an 8-bit array of the same size and number of channels as dst.

cvSub, cvSubS, and cvSubRS

void cvSub(
 const CvArr* src1,
 const CvArr* src2,
 CvArr* dst,
 const CvArr* mask = NULL
);
void cvSubS(
 const CvArr* src,
 CvScalar value,
 CvArr* dst,
 const CvArr* mask = NULL
);
void cvSubRS(
 const CvArr* src,
 CvScalar value,
 CvArr* dst,
 const CvArr* mask = NULL
);

cvSub() is a simple subtraction function; it subtracts all of the elements in src2 from the

corresponding elements in src1 and puts the results in dst. If mask is non-NULL, then any

element of dst that corresponds to a zero element of mask is not altered by this operation.

Th e closely related function cvSubS() does the same thing except that the constant scalar

value is added to every element of src. Th e function cvSubRS() is the same as cvSubS()

except that, rather than subtracting a constant from every element of src, it subtracts

every element of src from the constant value.

cvSum

CvScalar cvSum(
 CvArr* arr
);

03-R4886-RC1.indd 7403-R4886-RC1.indd 74 9/15/08 4:18:48 PM9/15/08 4:18:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matrix and Image Operators | 75

cvSum() sums all of the pixels in all of the channels of the array arr. Observe that the

return value is of type CvScalar, which means that cvSum() can accommodate multi-

channel arrays. In that case, the sum for each channel is placed in the corresponding

component of the CvScalar return value.

cvSVD

void cvSVD(
 CvArr* A,
 CvArr* W,
 CvArr* U = NULL,
 CvArr* V = NULL,
 int flags = 0
);

Singular value decomposition (SVD) is the decomposing of an m-by-m matrix A into

the form:

A U W V= ⋅ ⋅ T

where W is a diagonal matrix and U and V are m-by-m and n-by-n unitary matrices.

Of course the matrix W is also an m-by-n matrix, so here “diagonal” means that any

element whose row and column numbers are not equal is necessarily 0. Because W is

necessarily diagonal, OpenCV allows it to be represented either by an m-by-n matrix or

by an n-by-1 vector (in which case that vector will contain only the diagonal “singular”

values).

Th e matrices U and V are optional to cvSVD(), and if they are left set to NULL then no value

will be returned. Th e fi nal argument fl ags can be any or all of the three options de-

scribed in Table 3-14 (combined as appropriate with the Boolean OR operator).

Table 3-14. Possible fl ags for fl ags argument to cvSVD()

Flag Result

CV_SVD_MODIFY_A Allows modifi cation of matrix A

CV_SVD_U_T Return UT instead of U

CV_SVD_V_T Return VT instead of V

cvSVBkSb
void cvSVBkSb(
 const CvArr* W,
 const CvArr* U,
 const CvArr* V,
 const CvArr* B,
 CvArr* X,
 int flags = 0
);

Th is is a function that you are unlikely to call directly. In conjunction with cvSVD() (just

described), it underlies the SVD-based methods of cvInvert() and cvSolve(). Th at be-

ing said, you may want to cut out the middleman and do your own matrix inversions

03-R4886-RC1.indd 7503-R4886-RC1.indd 75 9/15/08 4:18:48 PM9/15/08 4:18:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

76 | Chapter 3: Getting to Know OpenCV

(depending on the data source, this could save you from making a bunch of memory

allocations for temporary matrices inside of cvInvert() or cvSolve()).

Th e function cvSVBkSb() computes the back-substitution for a matrix A that is repre-

sented in the form of a decomposition of matrices U, W, and V (e.g., an SVD). Th e result

matrix X is given by the formula:

X V W U B= ⋅ ⋅ ⋅* T

Th e matrix B is optional, and if set to NULL it will be ignored. Th e matrix W* is a matrix

whose diagonal elements are defi ned by λ λ
i i

* = −1 for λi ≥ ε. Th is value ε is the singularity

threshold, a very small number that is typically proportional to the sum of the diagonal

elements of W (i.e., ε λ
i

∝∑
i

).

cvTrace

CvScalar cvTrace(const CvArr* mat);

Th e trace of a matrix (Trace) is the sum of all of the diagonal elements. Th e trace in OpenCV

is implemented on top of the cvGetDiag() function, so it does not require the array

passed in to be square. Multichannel arrays are supported, but the array mat should be

of fl oating-point type.

cvTranspose and cvT

void cvTranspose(
 const CvArr* src,
 CvArr* dst
);

cvTranspose() copies every element of src into the location in dst indicated by reversing

the row and column index. Th is function does support multichannel arrays; however,

if you are using multiple channels to represent complex numbers, remember that

cvTranspose() does not perform complex conjugation (a fast way to accomplish this task

is by means of the cvXorS() function, which can be used to directly fl ip the sign bits in

the imaginary part of the array). Th e macro cvT() is simply shorthand for cvTranspose().

cvXor and cvXorS

void cvXor(
 const CvArr* src1,
 const CvArr* src2,
 CvArr* dst,
 const CvArr* mask=NULL
);
void cvXorS(
 const CvArr* src,
 CvScalar value,
 CvArr* dst,
 const CvArr* mask=NULL
);

03-R4886-RC1.indd 7603-R4886-RC1.indd 76 9/15/08 4:18:48 PM9/15/08 4:18:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Things | 77

Th ese two functions compute a bitwise XOR operation on the array src1. In the case of

cvXor(), each element of dst is computed as the bitwise XOR of the corresponding two

elements of src1 and src2. In the case of cvXorS(), the bitwise XOR is computed with the

constant scalar value. Once again, if mask is non-NULL then only the elements of dst cor-

responding to nonzero entries in mask are computed.

All data types are supported, but src1 and src2 must be of the same data type for cvXor().

For fl oating-point elements, the bitwise representation of that fl oating-point number

is used.

cvZero

void cvZero(CvArr* arr);

Th is function sets all values in all channels of the array to 0.

Drawing Things
Something that frequently occurs is the need to draw some kind of picture or to draw

something on top of an image obtained from somewhere else. Toward this end, OpenCV

provides a menagerie of functions that will allow us to make lines, squares, circles, and

the like.

Lines
Th e simplest of these routines just draws a line by the Bresenham algorithm

[Bresenham65]:

void cvLine(
 CvArr* array,
 CvPoint pt1,
 CvPoint pt2,
 CvScalar color,
 int thickness = 1,
 int connectivity = 8
);

Th e fi rst argument to cvLine() is the usual CvArr*, which in this context typically means

an IplImage* image pointer. Th e next two arguments are CvPoints. As a quick reminder,

CvPoint is a simple structure containing only the integer members x and y. We can cre-

ate a CvPoint “on the fl y” with the routine cvPoint(int x, int y), which conveniently

packs the two integers into a CvPoint structure for us.

Th e next argument, color, is of type CvScalar. CvScalars are also structures, which (you

may recall) are defi ned as follows:

typdef struct {
 double val[4];
} CvScalar;

As you can see, this structure is just a collection of four doubles. In this case, the fi rst

three represent the red, green, and blue channels; the fourth is not used (it can be used

03-R4886-RC1.indd 7703-R4886-RC1.indd 77 9/15/08 4:18:49 PM9/15/08 4:18:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

78 | Chapter 3: Getting to Know OpenCV

for an alpha channel when appropriate). One typically makes use of the handy macro

CV_RGB(r, g, b). Th is macro takes three numbers and packs them up into a CvScalar.

Th e next two arguments are optional. Th e thickness is the thickness of the line (in pix-

els), and connectivity sets the anti-aliasing mode. Th e default is “8 connected”, which

will give a nice, smooth, anti-aliased line. You can also set this to a “4 connected” line;

diagonals will be blocky and chunky, but they will be drawn a lot faster.

At least as handy as cvLine() is cvRectangle(). It is probably unnecessary to tell you that

cvRectangle() draws a rectangle. It has the same arguments as cvLine() except that there

is no connectivity argument. Th is is because the resulting rectangles are always ori-

ented with their sides parallel to the x- and y-axes. With cvRectangle(), we simply give

two points for the opposite corners and OpenCV will draw a rectangle.

void cvRectangle(
 CvArr* array,
 CvPoint pt1,
 CvPoint pt2,
 CvScalar color,
 int thickness = 1
);

Circles and Ellipses
Similarly straightforward is the method for drawing circles, which pretty much has the

same arguments.

void cvCircle (
 CvArr* array,
 CvPoint center,
 int radius,
 CvScalar color,
 int thickness = 1,
 int connectivity = 8
);

For circles, rectangles, and all of the other closed shapes to come, the thickness argu-

ment can also be set to CV_FILL, which is just an alias for –1; the result is that the drawn

fi gure will be fi lled in the same color as the edges.

Only slightly more complicated than cvCircle() is the routine for drawing generalized

ellipses:
void cvEllipse(
 CvArr* img,
 CvPoint center,
 CvSize axes,
 double angle,
 double start_angle,
 double end_angle,
 CvScalar color,
 int thickness = 1,
 int line_type = 8
);

03-R4886-RC1.indd 7803-R4886-RC1.indd 78 9/15/08 4:18:49 PM9/15/08 4:18:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Things | 79

In this case, the major new ingredient is the axes argument, which is of type CvSize. Th e

function CvSize is very much like CvPoint and CvScalar; it is a simple structure, in this

case containing only the members width and height. Like CvPoint and CvScalar, there

is a convenient helper function cvSize(int height, int width) that will return a CvSize

structure when we need one. In this case, the height and width arguments represent the

length of the ellipse’s major and minor axes.

Th e angle is the angle (in degrees) of the major axis, which is measured counterclock-

wise from horizontal (i.e., from the x-axis). Similarly the start_angle and end_angle

indicate (also in degrees) the angle for the arc to start and for it to fi nish. Th us, for a

complete ellipse you must set these values to 0 and 360, respectively.

An alternate way to specify the drawing of an ellipse is to use a bounding box:

void cvEllipseBox(
 CvArr* img,
 CvBox2D box,
 CvScalar color,
 int thickness = 1,
 int line_type = 8,
 int shift = 0
);

Here again we see another of OpenCV’s helper structures, CvBox2D:

typdef struct {
 CvPoint2D32f center;
 CvSize2D32f size;
 float angle;
} CvBox2D;

CvPoint2D32f is the fl oating-point analogue of CvPoint, and CvSize2D32f is the fl oating-

point analog of CvSize. Th ese, along with the tilt angle, eff ectively specify the bounding

box for the ellipse.

Polygons
Finally, we have a set of functions for drawing polygons:

void cvFillPoly(
 CvArr* img,
 CvPoint** pts,
 int* npts,
 int contours,
 CvScalar color,
 int line_type = 8
);

void cvFillConvexPoly(
 CvArr* img,
 CvPoint* pts,
 int npts,
 CvScalar color,
 int line_type = 8

03-R4886-RC1.indd 7903-R4886-RC1.indd 79 9/15/08 4:18:49 PM9/15/08 4:18:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

80 | Chapter 3: Getting to Know OpenCV

);

void cvPolyLine(
 CvArr* img,
 CvPoint** pts,
 int* npts,
 int contours,
 int is_closed,
 CvScalar color,
 int thickness = 1,
 int line_type = 8
);

All three of these are slight variants on the same idea, with the main diff erence being

how the points are specifi ed.

In cvFillPoly(), the points are provided as an array of CvPoint structures. Th is allows

cvFillPoly() to draw many polygons in a single call. Similarly npts is an array of point

counts, one for each polygon to be drawn. If the is_closed variable is set to true, then

an additional segment will be drawn from the last to the fi rst point for each polygon.

cvFillPoly() is quite robust and will handle self-intersecting polygons, polygons with

holes, and other such complexities. Unfortunately, this means the routine is compara-

tively slow.

cvFillConvexPoly() works like cvFillPoly() except that it draws only one polygon at a

time and can draw only convex polygons.* Th e upside is that cvFillConvexPoly() runs

much faster.

Th e third function, cvPolyLine(), takes the same arguments as cvFillPoly(); however,

since only the polygon edges are drawn, self-intersection presents no particular com-

plexity. Hence this function is much faster than cvFillPoly().

Fonts and Text
One last form of drawing that one may well need is to draw text. Of course, text creates

its own set of complexities, but—as always with this sort of thing—OpenCV is more

concerned with providing a simple “down and dirty” solution that will work for simple

cases than a robust, complex solution (which would be redundant anyway given the ca-

pabilities of other libraries).

OpenCV has one main routine, called cvPutText() that just throws some text onto an

image. Th e text indicated by text is printed with its lower-left corner of the text box at

origin and in the color indicated by color.

void cvPutText(
 CvArr* img,
 const char* text,
 CvPoint origin,
 const CvFont* font,

* Strictly speaking, this is not quite true; it can actually draw and fi ll any monotone polygon, which is a
slightly larger class of polygons.

03-R4886-RC1.indd 8003-R4886-RC1.indd 80 9/15/08 4:18:49 PM9/15/08 4:18:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Drawing Things | 81

 CvScalar color
);

Th ere is always some little thing that makes our job a bit more complicated than we’d

like, and in this case it’s the appearance of the pointer to CvFont.

In a nutshell, the way to get a valid CvFont* pointer is to call the function cvInitFont().

Th is function takes a group of arguments that confi gure some particular font for use on

the screen. Th ose of you familiar with GUI programming in other environments will

fi nd cvInitFont() to be reminiscent of similar devices but with many fewer options.

In order to create a CvFont that we can pass to cvPutText(), we must fi rst declare a CvFont

variable; then we can pass it to cvInitFont().

void cvInitFont(
 CvFont* font,
 int font_face,
 double hscale,
 double vscale,
 double shear = 0,
 int thickness = 1,
 int line_type = 8
);

Observe that this is a little diff erent than how seemingly similar functions, such as

cvCreateImage(), work in OpenCV. Th e call to cvInitFont() initializes an existing CvFont

structure (which means that you create the variable and pass cvInitFont() a pointer to

the variable you created). Th is is unlike cvCreateImage(), which creates the structure for

you and returns a pointer.

Th e argument font_face is one of those listed in Table 3-15 (and pictured in Figure 3-6),

and it may optionally be combined (by Boolean OR) with CV_FONT_ITALIC.

Table 3-15. Available fonts (all are variations of Hershey)

Identifier Description

CV_FONT_HERSHEY_SIMPLEX Normal size sanserif

CV_FONT_HERSHEY_PLAIN Small size sanserif

CV_FONT_HERSHEY_DUPLEX Normal size sanserif, more complex than
CV_FONT_HERSHEY_SIMPLEX

CV_FONT_HERSHEY_COMPLEX Normal size serif, more complex than
CV_FONT_HERSHEY_DUPLEX

CV_FONT_HERSHEY_TRIPLEX Normal size serif, more complex than
CV_FONT_HERSHEY_COMPLEX

CV_FONT_HERSHEY_COMPLEX_SMALL Smaller version of
CV_FONT_HERSHEY_COMPLEX

CV_FONT_HERSHEY_SCRIPT_SIMPLEX Handwriting style

CV_FONT_HERSHEY_SCRIPT_COMPLEX More complex variant of
CV_FONT_HERSHEY_SCRIPT_SIMPLEX

03-R4886-RC1.indd 8103-R4886-RC1.indd 81 9/15/08 4:18:49 PM9/15/08 4:18:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

82 | Chapter 3: Getting to Know OpenCV

Figure 3-6. Th e eight fonts of Table 3-15 drawn with hscale = vscale = 1.0, with the origin of each
line separated from the vertical by 30 pixels

Both hscale and vscale can be set to either 1.0 or 0.5 only. Th is causes the font to be ren-

dered at full or half height (and width) relative to the basic defi nition of the particular

font.

Th e shear function creates an italicized slant to the font; if set to 0.0, the font is not

slanted. It can be set as large as 1.0, which sets the slope of the characters to approxi-

mately 45 degrees.

Both thickness and line_type are the same as defi ned for all the other drawing

functions.

Data Persistence
OpenCV provides a mechanism for serializing and de-serializing its various data types

to and from disk in either YAML or XML format. In the chapter on HighGUI, which ad-

dresses user interface functions, we will cover specifi c functions that store and recall our

most common object: IplImages (these functions are cvSaveImage() and cvLoadImage()).

03-R4886-RC1.indd 8203-R4886-RC1.indd 82 9/15/08 4:18:50 PM9/15/08 4:18:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Data Persistence | 83

In addition, the HighGUI chapter will discuss read and write functions specifi c to mov-

ies: cvGrabFrame(), which reads from fi le or from camera; and cvCreateVideoWriter()

and cvWriteFrame(). In this section, we will focus on general object persistence: reading

and writing matrices, OpenCV structures, and confi guration and log fi les.

First we start with specifi c and convenient functions that save and load OpenCV ma-

trices. Th ese functions are cvSave() and cvLoad(). Suppose you had a 5-by-5 identity

matrix (0 everywhere except for 1s on the diagonal). Example 3-15 shows how to ac-

complish this.

Example 3-15. Saving and loading a CvMat

CvMat A = cvMat(5, 5, CV_32F, the_matrix_data);

cvSave(“my_matrix.xml”, &A);
. . .
// to load it then in some other program use …
CvMat* A1 = (CvMat*) cvLoad(“my_matrix.xml”);

Th e CxCore reference manual contains an entire section on data persistence. What you

really need to know is that general data persistence in OpenCV consists of creating a

CvFileStorage structure, as in Example 3-16, that stores memory objects in a tree struc-

ture. You can create and fi ll this structure by reading from disk via cvOpenFileStorage()

with CV_STORAGE_READ, or you can create and open CvFileStorage via cvOpenFileStorage()

with CV_STORAGE_WRITE for writing and then fi ll it using the appropriate data persistence

functions. On disk, the data is stored in an XML or YAML format.

Example 3-16. CvFileStorage structure; data is accessed by CxCore data persistence functions

typedef struct CvFileStorage
{
 ... // hidden fields
} CvFileStorage;

Th e internal data inside the CvFileStorage tree may consist of a hierarchical collection of

scalars, CxCore objects (matrices, sequences, and graphs) and/or user-defi ned objects.

Let’s say you have a confi guration or logging fi le. For example, consider the case of a

movie confi guration fi le that tells us how many frames we want (10), what their size is

(320 by 240) and a 3-by-3 color conversion matrix that should be applied. We want to

call the fi le “cfg.xml” on disk. Example 3-17 shows how to do this.

Example 3-17. Writing a confi guration fi le “cfg.xml” to disk

CvFileStorage* fs = cvOpenFileStorage(
 “cfg.xml”,
 0,
 CV_STORAGE_WRITE
);
cvWriteInt(fs, “frame_count”, 10);
cvStartWriteStruct(fs, “frame_size”, CV_NODE_SEQ);
cvWriteInt(fs, 0, 320);
cvWriteInt(fs, 0, 200);

03-R4886-RC1.indd 8303-R4886-RC1.indd 83 9/15/08 4:18:50 PM9/15/08 4:18:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

84 | Chapter 3: Getting to Know OpenCV

Example 3-17. Writing a confi guration fi le “cfg.xml” to disk (continued)

cvEndWriteStruct(fs);
cvWrite(fs, “color_cvt_matrix”, cmatrix);
cvReleaseFileStorage(&fs);

Note some of the key functions in this example. We can give a name to integers that

we write to the structure using cvWriteInt(). We can create an arbitrary structure, us-

ing cvStartWriteStruct(), which is also given an optional name (pass a 0 or NULL if

there is no name). Th is structure has two ints that have no name and so we pass a 0

for them in the name fi eld, aft er which we use cvEndWriteStruct() to end the writing of

that structure. If there were more structures, we’d Start and End each of them similarly;

the structures may be nested to arbitrary depth. We then use cvWrite() to write out the

color conversion matrix. Contrast this fairly complex matrix write procedure with the

simpler cvSave() in Example 3-15. Th e cvSave() function is just a convenient shortcut

for cvWrite() when you have only one matrix to write. When we are fi nished writing the

data, the CvFileStorage handle is released in cvReleaseFileStorage(). Th e output (here,

in XML form) would look like Example 3-18.

Example 3-18. XML version of cfg.xml on disk

<?xml version=“1.0”?>
<opencv_storage>
<frame_count>10</frame_count>
<frame_size>320 200</frame_size>
<color_cvt_matrix type_id=“opencv-matrix”>
 <rows>3</rows> <cols>3</cols>
 <dt>f</dt>
 <data>…</data></color_cvt_matrix>
</opencv_storage>

We may then read this confi guration fi le as shown in Example 3-19.

Example 3-19. Reading cfg.xml from disk

CvFileStorage* fs = cvOpenFileStorage(
 “cfg.xml”,
 0,
 CV_STORAGE_READ
);

int frame_count = cvReadIntByName(
 fs,
 0,
 “frame_count”,
 5 /* default value */
);

CvSeq* s = cvGetFileNodeByName(fs,0,“frame_size”)->data.seq;

int frame_width = cvReadInt(
 (CvFileNode*)cvGetSeqElem(s,0)
);

03-R4886-RC1.indd 8403-R4886-RC1.indd 84 9/15/08 4:18:50 PM9/15/08 4:18:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Data Persistence | 85

Example 3-19. Reading cfg.xml from disk (continued)

int frame_height = cvReadInt(
 (CvFileNode*)cvGetSeqElem(s,1)
);

CvMat* color_cvt_matrix = (CvMat*) cvReadByName(
 fs,
 0,
 “color_cvt_matrix”
);

cvReleaseFileStorage(&fs);

When reading, we open the XML confi guration fi le with cvOpenFileStorage() as in Ex-

ample 3-19. We then read the frame_count using cvReadIntByName(), which allows for a

default value to be given if no number is read. In this case the default is 5. We then get

the structure that we named “frame_size” using cvGetFileNodeByName(). From here, we

read our two unnamed integers using cvReadInt(). Next we read our named color con-

version matrix using cvReadByName().* Again, contrast this with the short form cvLoad()

in Example 3-15. We can use cvLoad() if we only have one matrix to read, but we must

use cvRead() if the matrix is embedded within a larger structure. Finally, we release the

CvFileStorage structure.

Th e list of relevant data persistence functions associated with the CvFileStorage struc-

ture is shown in Table 3-16. See the CxCore manual for more details.

Table 3-16. Data persistence functions

Function Description

Open and Release

cvOpenFileStorage Opens fi le storage for reading or writing

cvReleaseFileStorage Releases data storage

Writing

cvStartWriteStruct Starts writing a new structure

cvEndWriteStruct Ends writing a structure

cvWriteInt Writes integer

cvWriteReal Writes fl oat

cvWriteString Writes text string

cvWriteComment Writes an XML or YAML comment string

cvWrite Writes an object such as a CvMat

cvWriteRawData Writes multiple numbers

cvWriteFileNode Writes fi le node to another fi le storage

* One could also use cvRead() to read in the matrix, but it can only be called aft er the appropriate CvFile-
Node{} is located, e.g., using cvGetFileNodeByName().

03-R4886-RC1.indd 8503-R4886-RC1.indd 85 9/15/08 4:18:50 PM9/15/08 4:18:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

86 | Chapter 3: Getting to Know OpenCV

Function Description

Reading

cvGetRootFileNode Gets the top-level nodes of the fi le storage

cvGetFileNodeByName Finds node in the map or fi le storage

cvGetHashedKey Returns a unique pointer for given name

cvGetFileNode Finds node in the map or fi le storage

cvGetFileNodeName Returns name of fi le node

cvReadInt Reads unnamed int

cvReadIntByName Reads named int

cvReadReal Reads unnamed fl oat

cvReadRealByName Reads named fl oat

cvReadString Retrieves text string from fi le node

cvReadStringByName Finds named fi le node and returns its value

cvRead Decodes object and returns pointer to it

cvReadByName Finds object and decodes it

cvReadRawData Reads multiple numbers

cvStartReadRawData Initializes fi le node sequence reader

cvReadRawDataSlice Reads data from sequence reader above

Integrated Performance Primitives
Intel has a product called the Integrated Performance Primitives (IPP) library (IPP).

Th is library is essentially a toolbox of high-performance kernels for handling multime-

dia and other processor-intensive operations in a manner that makes extensive use of

the detailed architecture of their processors (and, to a lesser degree, other manufactur-

ers’ processors that have a similar architecture).

As discussed in Chapter 1, OpenCV enjoys a close relationship with IPP, both at a soft -

ware level and at an organizational level inside of the company. As a result, OpenCV is

designed to automatically* recognize the presence of the IPP library and to automati-

cally “swap out” the lower-performance implementations of many core functionalities

for their higher-performance counterparts in IPP. Th e IPP library allows OpenCV to

take advantage of performance opportunities that arrive from SIMD instructions in a

single processor as well as from modern multicore architectures.

With these basics in hand, we can perform a wide variety of basic tasks. Moving on-

ward through the text, we will look at many more sophisticated capabilities of OpenCV,

* Th e one prerequisite to this automatic recognition is that the binary directory of IPP must be in the system
path. So on a Windows system, for example, if you have IPP in C:/Program Files/Intel/IPP then you want to
ensure that C:/Program Files/Intel/IPP/bin is in your system path.

Table 3-16. Data persistence functions (continued)

03-R4886-RC1.indd 8603-R4886-RC1.indd 86 9/15/08 4:18:51 PM9/15/08 4:18:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 87

almost all of which are built on these routines. It should be no surprise that image

processing—which oft en requires doing the same thing to a whole lot of data, much of

which is completely parallel—would realize a great benefi t from any code that allows it

to take advantage of parallel execution units of any form (MMX, SSE, SSE2, etc.).

Verifying Installation
Th e way to check and make sure that IPP is installed and working correctly is with the

function cvGetModuleInfo(), shown in Example 3-20. Th is function will identify both

the version of OpenCV you are currently running and the version and identity of any

add-in modules.

Example 3-20. Using cvGetModuleInfo() to check for IPP

char* libraries;
char* modules;
cvGetModuleInfo(0, &libraries, &modules);
printf(“Libraries: %s/nModules: %s/n”, libraries, modules);

Th e code in Example 3-20 will generate text strings which describe the installed librar-

ies and modules. Th e output might look like this:

Libraries cxcore: 1.0.0
Modules: ippcv20.dll, ippi20.dll, ipps20.dll, ippvm20.dll

Th e modules listed in this output are the IPP modules used by OpenCV. Th ose modules

are themselves actually proxies for even lower-level CPU-specifi c libraries. Th e details

of how it all works are well beyond the scope of this book, but if you see the IPP libraries

in the Modules string then you can be pretty confi dent that everything is working as ex-

pected. Of course, you could use this information to verify that IPP is running correctly

on your own system. You might also use it to check for IPP on a machine on which your

fi nished soft ware is installed, perhaps then making some dynamic adjustments depend-

ing on whether IPP is available.

Summary
In this chapter we introduced some basic data structures that we will oft en encounter.

In particular, we met the OpenCV matrix structure and the all-important OpenCV im-

age structure, IplImage. We considered both in some detail and found that the matrix

and image structures are very similar: the functions used for primitive manipulations

in one work equally well in the other.

Exercises
In the following exercises, you may need to refer to the CxCore manual that ships with

OpenCV or to the OpenCV Wiki on the Web for details of the functions outlined in

this chapter.

Find and open 1. .../opencv/cxcore/include/cxtypes.h. Read through and fi nd the many

conversion helper functions.

03-R4886-RC1.indd 8703-R4886-RC1.indd 87 9/15/08 4:18:51 PM9/15/08 4:18:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

88 | Chapter 3: Getting to Know OpenCV

Choose a negative fl oating-point number. Take its absolute value, round it, and a.

then take its ceiling and fl oor.

Generate some random numbers.b.

Create a fl oating point c. CvPoint2D32f and convert it to an integer CvPoint.

Convert a d. CvPoint to a CvPoint2D32f.

Th is exercise will accustom you to the idea of many functions taking matrix types. 2.

Create a two-dimensional matrix with three channels of type byte with data size

100-by-100. Set all the values to 0.

Draw a circle in the matrix using a. void cvCircle(CvArr* img, CvPoint center,
intradius, CvScalar color, int thickness=1, int line_type=8, int shift=0).

Display this image using methods described in Chapter 2.b.

Create a two-dimensional matrix with three channels of type byte with data 3.

size 100-by-100, and set all the values to 0. Use the pointer element access function

cvPtr2D to point to the middle (“green”) channel. Draw a green rectangle between

(20, 5) and (40, 20).

Create a three-channel RGB image of size 100-by-100. Clear it. Use pointer arith-4.

metic to draw a green square between (20, 5) and (40, 20).

Practice using region of interest (ROI). Create a 210-by-210 single-channel byte im-5.

age and zero it. Within the image, build a pyramid of increasing values using ROI

and cvSet(). Th at is: the outer border should be 0, the next inner border should be

20, the next inner border should be 40, and so on until the fi nal innermost square is

set to value 200; all borders should be 10 pixels wide. Display the image.

Use multiple image headers for one image6. . Load an image that is at least 100-by-100.

Create two additional image headers and set their origin, depth, number of chan-

nels, and widthstep to be the same as the loaded image. In the new image headers,

set the width at 20 and the height at 30. Finally, set their imageData pointers to point

to the pixel at (5, 10) and (50, 60), respectively. Pass these new image subheaders

to cvNot(). Display the loaded image, which should have two inverted rectangles

within the larger image.

Create a mask using 7. cvCmp(). Load a real image. Use cvSplit() to split the image

into red, green, and blue images.

Find and display the green image.a.

Clone this green plane image twice (call these clone1 and clone2).b.

Find the green plane’s minimum and maximum value.c.

Set clone1’s values to d. thresh = (unsigned char)((maximum - minimum)/2.0).

Set e. clone2 to 0 and use cvCmp(green_image, clone1, clone2, CV_CMP_GE). Now

clone2 will have a mask of where the value exceeds thresh in the green image.

03-R4886-RC1.indd 8803-R4886-RC1.indd 88 9/15/08 4:18:51 PM9/15/08 4:18:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 89

Finally, use f. cvSubS(green_image,thresh/2, green_image, clone2) and display the

results.

Create a structure of an integer, a 8. CvPoint and a CvRect; call it “my_struct”.

Write two functions: a. void write_my_struct(CvFileStorage * fs, const char *

name, my_struct *ms) and void read_my_struct(CvFileStorage* fs, CvFileNode*
ms_node, my_struct* ms). Use them to write and read my_struct.

Write and read an array of 10 b. my_struct structures.

03-R4886-RC1.indd 8903-R4886-RC1.indd 89 9/15/08 4:18:51 PM9/15/08 4:18:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

90

CHAPTER 4

HighGUI

A Portable Graphics Toolkit
Th e OpenCV functions that allow us to interact with the operating system, the fi le sys-

tem, and hardware such as cameras are collected into a library called HighGUI (which

stands for “high-level graphical user interface”). HighGUI allows us to open windows,

to display images, to read and write graphics-related fi les (both images and video), and

to handle simple mouse, pointer, and keyboard events. We can also use it to create other

useful doodads like sliders and then add them to our windows. If you are a GUI guru in

your window environment of choice, then you might fi nd that much of what HighGUI

off ers is redundant. Yet even so you might fi nd that the benefi t of cross-platform porta-

bility is itself a tempting morsel.

From our initial perspective, the HighGUI library in OpenCV can be divided into three

parts: the hardware part, the fi le system part, and the GUI part.* We will take a moment

to overview what is in each part before we really dive in.

Th e hardware part is primarily concerned with the operation of cameras. In most oper-

ating systems, interaction with a camera is a tedious and painful task. HighGUI allows

an easy way to query a camera and retrieve the latest image from the camera. It hides all

of the nasty stuff , and that keeps us happy.

Th e fi le system part is concerned primarily with loading and saving images. One nice

feature of the library is that it allows us to read video using the same methods we would

use to read a camera. We can therefore abstract ourselves away from the particular de-

vice we’re using and get on with writing interesting code. In a similar spirit, HighGUI

provides us with a (relatively) universal pair of functions to load and save still images.

Th ese functions simply rely on the fi lename extension and automatically handle all of

the decoding or encoding that is necessary.

* Under the hood, the architectural organization is a bit diff erent from what we described, but the breakdown
into hardware, fi le system, and GUI is an easier way to organize things conceptually. Th e actual HighGUI
functions are divided into “video IO”, “image IO”, and “GUI tools”. Th ese categories are represented by the
cvcap*, grfmt*, and window* source fi les, respectively.

04-R4886-RC1.indd 9004-R4886-RC1.indd 90 9/15/08 4:19:24 PM9/15/08 4:19:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Window | 91

Th e third part of HighGUI is the window system (or GUI). Th e library provides some

simple functions that will allow us to open a window and throw an image into that

window. It also allows us to register and respond to mouse and keyboard events on that

window. Th ese features are most useful when trying to get off of the ground with a sim-

ple application. Tossing in some slider bars, which we can also use as switches,* we fi nd

ourselves able to prototype a surprising variety of applications using only the HighGUI

library.

As we proceed in this chapter, we will not treat these three segments separately; rather,

we will start with some functions of highest immediate utility and work our way to the

subtler points thereaft er. In this way you will learn what you need to get going as soon

as possible.

Creating a Window
First, we want to show an image on the screen using HighGUI. Th e function that does

this for us is cvNamedWindow(). Th e function expects a name for the new window and one

fl ag. Th e name appears at the top of the window, and the name is also used as a handle

for the window that can be passed to other HighGUI functions. Th e fl ag indicates if the

window should autosize itself to fi t an image we put into it. Here is the full prototype:

int cvNamedWindow(
 const char* name,
 int flags = CV_WINDOW_AUTOSIZE
);

Notice the parameter flags. For now, the only valid options available are to set flags

to 0 or to use the default setting, CV_WINDOW_AUTOSIZE. If CV_WINDOW_AUTOSIZE is set, then

HighGUI resizes the window to fi t the image. Th ereaft er, the window will automatically

resize itself if a new image is loaded into the window but cannot be resized by the user.

If you don’t want autosizing, you can set this argument to 0; then users can resize the

window as they wish.

Once we create a window, we usually want to put something into it. But before we do

that, let’s see how to get rid of the window when it is no longer needed. For this we use

cvDestroyWindow(), a function whose argument is a string: the name given to the win-

dow when it was created. In OpenCV, windows are referenced by name instead of by

some unfriendly (and invariably OS-dependent) “handle”. Conversion between handles

and names happens under the hood of HighGUI, so you needn’t worry about it.

Having said that, some people do worry about it, and that’s OK, too. For those people,

HighGUI provides the following functions:

void* cvGetWindowHandle(const char* name);
const char* cvGetWindowName(void* window_handle);

* OpenCV HighGUI does not provide anything like a button. Th e common trick is to use a two-position
slider to achieve this functionality (more on this later).

04-R4886-RC1.indd 9104-R4886-RC1.indd 91 9/15/08 4:19:24 PM9/15/08 4:19:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

92 | Chapter 4: HighGUI

Th ese functions allow us to convert back and forth between the human-readable names

preferred by OpenCV and the “handle” style of reference used by diff erent window

systems.*

To resize a window, call (not surprisingly) cvResizeWindow():

void cvResizeWindow(
 const char* name,
 int width,
 int height
);

Here the width and height are in pixels and give the size of the drawable part of the win-

dow (which are probably the dimensions you actually care about).

Loading an Image
Before we can display an image in our window, we’ll need to know how to load an image

from disk. Th e function for this is cvLoadImage():

IplImage* cvLoadImage(
 const char* filename,
 int iscolor = CV_LOAD_IMAGE_COLOR
);

When opening an image, cvLoadImage() does not look at the fi le extension. Instead,

cvLoadImage() analyzes the fi rst few bytes of the fi le (aka its signature or “magic sequence”)

and determines the appropriate codec using that. Th e second argument iscolor can be

set to one of several values. By default, images are loaded as three-channel images with

8 bits per channel; the optional fl ag CV_LOAD_IMAGE_ANYDEPTH can be added to allow load-

ing of non-8-bit images. By default, the number of channels will be three because the

iscolor fl ag has the default value of CV_LOAD_IMAGE_COLOR. Th is means that, regardless

of the number of channels in the image fi le, the image will be converted to three chan-

nels if needed. Th e alternatives to CV_LOAD_IMAGE_COLOR are CV_LOAD_IMAGE_GRAYSCALE and

CV_LOAD_IMAGE_ANYCOLOR. Just as CV_LOAD_IMAGE_COLOR forces any image into a three-channel

image, CV_LOAD_IMAGE_GRAYSCALE automatically converts any image into a single-channel

image. CV_LOAD_IMAGE_ANYCOLOR will simply load the image as it is stored in the fi le. Th us, to

load a 16-bit color image you would use CV_LOAD_IMAGE_COLOR | CV_LOAD_IMAGE_ANYDEPTH.

If you want both the color and depth to be loaded exactly “as is”, you could instead use

the all-purpose fl ag CV_LOAD_IMAGE_UNCHANGED. Note that cvLoadImage() does not signal a

runtime error when it fails to load an image; it simply returns a null pointer.

Th e obvious complementary function to cvLoadImage() is cvSaveImage(), which takes

two arguments:

int cvSaveImage(
 const char* filename,
 const CvArr* image
);

* For those who know what this means: the window handle returned is a HWND on Win32 systems, a Carbon
WindowRef on Mac OS X, and a Widget* pointer on systems (e.g., GtkWidget) of X Window type.

04-R4886-RC1.indd 9204-R4886-RC1.indd 92 9/15/08 4:19:24 PM9/15/08 4:19:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying Images | 93

Th e fi rst argument gives the fi lename, whose extension is used to determine the format

in which the fi le will be stored. Th e second argument is the name of the image to be

stored. Recall that CvArr is kind of a C-style way of creating something equivalent to

a base-class in an object-oriented language; wherever you see CvArr*, you can use an

IplImage*. Th e cvSaveImage() function will store only 8-bit single- or three-channel im-

ages for most fi le formats. Newer back ends for fl exible image formats like PNG, TIFF

or JPEG2000 allow storing 16-bit or even fl oat formats and some allow four-channel

images (BGR plus alpha) as well. Th e return value will be 1 if the save was successful and

should be 0 if the save was not.*

Displaying Images
Now we are ready for what we really want to do, and that is to load an image and to put

it into the window where we can view it and appreciate its profundity. We do this via

one simple function, cvShowImage():

void cvShowImage(
 const char* name,
 const CvArr* image
);

Th e fi rst argument here is the name of the window within which we intend to draw. Th e

second argument is the image to be drawn.

Let’s now put together a simple program that will display an image on the screen. We can

read a fi lename from the command line, create a window, and put our image in the win-

dow in 25 lines, including comments and tidily cleaning up our memory allocations!

int main(int argc, char** argv)
{

 // Create a named window with the name of the file.
 cvNamedWindow(argv[1], 1);

 // Load the image from the given file name.
 IplImage* img = cvLoadImage(argv[1]);

 // Show the image in the named window
 cvShowImage(argv[1], img);

 // Idle until the user hits the “Esc” key.
 while(1) {
 if(cvWaitKey(100) == 27) break;
 }

 // Clean up and don’t be piggies
 cvDestroyWindow(argv[1]);
 cvReleaseImage(&img);

* Th e reason we say “should” is that, in some OS environments, it is possible to issue save commands that
will actually cause the operating system to throw an exception. Normally, however, a zero value will be
returned to indicate failure.

04-R4886-RC1.indd 9304-R4886-RC1.indd 93 9/15/08 4:19:25 PM9/15/08 4:19:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

94 | Chapter 4: HighGUI

 exit(0);
}

For convenience we have used the fi lename as the window name. Th is is nice because

OpenCV automatically puts the window name at the top of the window, so we can tell

which fi le we are viewing (see Figure 4-1). Easy as cake.

Figure 4-1. A simple image displayed with cvShowImage()

Before we move on, there are a few other window-related functions you ought to know

about. Th ey are:

void cvMoveWindow(const char* name, int x, int y);
void cvDestroyAllWindows(void);
int cvStartWindowThread(void);

cvMoveWindow() simply moves a window on the screen so that its upper left corner is

positioned at x,y.

cvDestroyAllWindows() is a useful cleanup function that closes all of the windows and

de-allocates the associated memory.

On Linux and MacOS, cvStartWindowThread() tries to start a thread that updates the

window automatically and handles resizing and so forth. A return value of 0 indicates

that no thread could be started—for example, because there is no support for this feature

in the version of OpenCV that you are using. Note that, if you do not start a separate win-

dow thread, OpenCV can react to user interface actions only when it is explicitly given

time to do so (this happens when your program invokes cvWaitKey(), as described next).

04-R4886-RC1.indd 9404-R4886-RC1.indd 94 9/15/08 4:19:25 PM9/15/08 4:19:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying Images | 95

WaitKey
Observe that inside the while loop in our window creation example there is a new func-

tion we have not seen before: cvWaitKey(). Th is function causes OpenCV to wait for a

specifi ed number of milliseconds for a user keystroke. If the key is pressed within the

allotted time, the function returns the key pressed;* otherwise, it returns 0. With the

construction:

while(1) {
 if(cvWaitKey(100)==27) break;
}

we tell OpenCV to wait 100 ms for a key stroke. If there is no keystroke, then repeat ad

infi nitum. If there is a keystroke and it happens to have ASCII value 27 (the Escape key),

then break out of that loop. Th is allows our user to leisurely peruse the image before

ultimately exiting the program by hitting Escape.

As long as we’re introducing cvWaitKey(), it is worth mentioning that cvWaitKey() can

also be called with 0 as an argument. In this case, cvWaitKey() will wait indefi nitely until

a keystroke is received and then return that key. Th us, in our example we could just as

easily have used cvWaitKey(0). Th e diff erence between these two options would be more

apparent if we were displaying a video, in which case we would want to take an action

(i.e., display the next frame) if the user supplied no keystroke.

Mouse Events
Now that we can display an image to a user, we might also want to allow the user to in-

teract with the image we have created. Since we are working in a window environment

and since we already learned how to capture single keystrokes with cvWaitKey(), the next

logical thing to consider is how to “listen to” and respond to mouse events.

Unlike keyboard events, mouse events are handled by a more typical callback mecha-

nism. Th is means that, to enable response to mouse clicks, we must fi rst write a callback

routine that OpenCV can call whenever a mouse event occurs. Once we have done that,

we must register the callback with OpenCV, thereby informing OpenCV that this is the

correct function to use whenever the user does something with the mouse over a par-

ticular window.

Let’s start with the callback. For those of you who are a little rusty on your event-driven

program lingo, the callback can be any function that takes the correct set of arguments

and returns the correct type. Here, we must be able to tell the function to be used as a

* Th e careful reader might legitimately ask exactly what this means. Th e short answer is “an ASCII value”, but
the long answer depends on the operating system. In Win32 environments, cvWaitKey() is actually waiting
for a message of type WM_CHAR and, aft er receiving that message, returns the wParam fi eld from the message
(wParam is not actually type char at all!). On Unix-like systems, cvWaitKey() is using GTK; the return value
is (event->keyval | (event->state<<16)), where event is a GdkEventKey structure. Again, this is not
really a char. Th at state information is essentially the state of the Shift , Control, etc. keys at the time of the
key press. Th is means that, if you are expecting (say) a capital Q, then you should either cast the return of
cvWaitKey() to type char or AND with 0xff, because the shift key will appear in the upper bits (e.g., Shift -
Q will return 0x10051).

04-R4886-RC1.indd 9504-R4886-RC1.indd 95 9/15/08 4:19:25 PM9/15/08 4:19:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

96 | Chapter 4: HighGUI

callback exactly what kind of event occurred and where it occurred. Th e function must

also be told if the user was pressing such keys as Shift or Alt when the mouse event oc-

curred. Here is the exact prototype that your callback function must match:

void CvMouseCallback(
 int event,
 int x,
 int y,
 int flags,
 void* param
);

Now, whenever your function is called, OpenCV will fi ll in the arguments with their ap-

propriate values. Th e fi rst argument, called the event, will have one of the values shown

in Table 4-1.

Table 4-1. Mouse event types

Event Numerical value

CV_EVENT_MOUSEMOVE 0

CV_EVENT_LBUTTONDOWN 1

CV_EVENT_RBUTTONDOWN 2

CV_EVENT_MBUTTONDOWN 3

CV_EVENT_LBUTTONUP 4

CV_EVENT_RBUTTONUP 5

CV_EVENT_MBUTTONUP 6

CV_EVENT_LBUTTONDBLCLK 7

CV_EVENT_RBUTTONDBLCLK 8

CV_EVENT_MBUTTONDBLCLK 9

Th e second and third arguments will be set to the x and y coordinates of the mouse

event. It is worth noting that these coordinates represent the pixel in the image indepen-

dent of the size of the window (in general, this is not the same as the pixel coordinates

of the event).

Th e fourth argument, called flags, is a bit fi eld in which individual bits indicate special

conditions present at the time of the event. For example, CV_EVENT_FLAG_SHIFTKEY has a

numerical value of 16 (i.e., the fi ft h bit) and so, if we wanted to test whether the shift key

were down, we could AND the fl ags variable with the bit mask (1<<4). Table 4-2 shows a

complete list of the fl ags.

Table 4-2. Mouse event fl ags

Flag Numerical value

CV_EVENT_FLAG_LBUTTON 1

CV_EVENT_FLAG_RBUTTON 2

CV_EVENT_FLAG_MBUTTON 4

04-R4886-RC1.indd 9604-R4886-RC1.indd 96 9/15/08 4:19:25 PM9/15/08 4:19:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying Images | 97

Flag Numerical value

CV_EVENT_FLAG_CTRLKEY 8

CV_EVENT_FLAG_SHIFTKEY 16

CV_EVENT_FLAG_ALTKEY 32

Th e fi nal argument is a void pointer that can be used to have OpenCV pass in any ad-

ditional information in the form of a pointer to whatever kind of structure you need.

A common situation in which you will want to use the param argument is when the

callback itself is a static member function of a class. In this case, you will probably fi nd

yourself wanting to pass the this pointer and so indicate which class object instance the

callback is intended to aff ect.

Next we need the function that registers the callback. Th at function is called

cvSetMouseCallback(), and it requires three arguments.

void cvSetMouseCallback(
 const char* window_name,
 CvMouseCallback on_mouse,
 void* param = NULL
);

Th e fi rst argument is the name of the window to which the callback will be attached.

Only events in that particular window will trigger this specifi c callback. Th e second ar-

gument is your callback function. Finally, the third param argument allows us to specify

the param information that should be given to the callback whenever it is executed. Th is

is, of course, the same param we were just discussing in regard to the callback prototype.

In Example 4-1 we write a small program to draw boxes on the screen with the mouse.

Th e function my_mouse_callback() is installed to respond to mouse events, and it uses

the event to determine what to do when it is called.

Example 4-1. Toy program for using a mouse to draw boxes on the screen

// An example program in which the
// user can draw boxes on the screen.
//
#include <cv.h>
#include <highgui.h>

// Define our callback which we will install for
// mouse events.
//
void my_mouse_callback(
 int event, int x, int y, int flags, void* param
);

CvRect box;
bool drawing_box = false;

// A litte subroutine to draw a box onto an image

Table 4-2. Mouse event fl ags (continued)

04-R4886-RC1.indd 9704-R4886-RC1.indd 97 9/15/08 4:19:26 PM9/15/08 4:19:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

98 | Chapter 4: HighGUI

//
void draw_box(IplImage* img, CvRect rect) {
 cvRectangle (
 img,
 cvPoint(box.x,box.y),
 cvPoint(box.x+box.width,box.y+box.height),
 cvScalar(0xff,0x00,0x00) /* red */
);
}

int main(int argc, char* argv[]) {

 box = cvRect(-1,-1,0,0);

 IplImage* image = cvCreateImage(
 cvSize(200,200),
 IPL_DEPTH_8U,
 3
);
 cvZero(image);
 IplImage* temp = cvCloneImage(image);

 cvNamedWindow(“Box Example”);

 // Here is the crucial moment that we actually install
 // the callback. Note that we set the value ‘param’ to
 // be the image we are working with so that the callback
 // will have the image to edit.
 //
 cvSetMouseCallback(
 “Box Example”,
 my_mouse_callback,
 (void*) image
);

 // The main program loop. Here we copy the working image
 // to the ‘temp’ image, and if the user is drawing, then
 // put the currently contemplated box onto that temp image.
 // display the temp image, and wait 15ms for a keystroke,
 // then repeat…
 //
 while(1) {

 cvCopyImage(image, temp);
 if(drawing_box) draw_box(temp, box);
 cvShowImage(“Box Example”, temp);

 if(cvWaitKey(15)==27) break;
 }

 // Be tidy
 //
 cvReleaseImage(&image);

Example 4-1. Toy program for using a mouse to draw boxes on the screen (continued)

04-R4886-RC1.indd 9804-R4886-RC1.indd 98 9/15/08 4:19:26 PM9/15/08 4:19:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying Images | 99

 cvReleaseImage(&temp);
 cvDestroyWindow(“Box Example”);
}

// This is our mouse callback. If the user
// presses the left button, we start a box.
// when the user releases that button, then we
// add the box to the current image. When the
// mouse is dragged (with the button down) we
// resize the box.
//
void my_mouse_callback(
 int event, int x, int y, int flags, void* param
) {

 IplImage* image = (IplImage*) param;

 switch(event) {
 case CV_EVENT_MOUSEMOVE: {
 if(drawing_box) {
 box.width = x-box.x;
 box.height = y-box.y;
 }
 }
 break;
 case CV_EVENT_LBUTTONDOWN: {
 drawing_box = true;
 box = cvRect(x, y, 0, 0);
 }
 break;
 case CV_EVENT_LBUTTONUP: {
 drawing_box = false;
 if(box.width<0) {
 box.x+=box.width;
 box.width *=-1;
 }
 if(box.height<0) {
 box.y+=box.height;
 box.height*=-1;
 }
 draw_box(image, box);
 }
 break;
 }
}

Sliders, Trackbars, and Switches
HighGUI provides a convenient slider element. In HighGUI, sliders are called trackbars.

Th is is because their original (historical) intent was for selecting a particular frame

in the playback of a video. Of course, once added to HighGUI, people began to use

Example 4-1. Toy program for using a mouse to draw boxes on the screen (continued)

04-R4886-RC1.indd 9904-R4886-RC1.indd 99 9/15/08 4:19:26 PM9/15/08 4:19:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

100 | Chapter 4: HighGUI

trackbars for all of the usual things one might do with a slider as well as many unusual

ones (see the next section, “No Buttons”)!

As with the parent window, the slider is given a unique name (in the form of a character

string) and is thereaft er always referred to by that name. Th e HighGUI routine for cre-

ating a trackbar is:

int cvCreateTrackbar(
 const char* trackbar_name,
 const char* window_name,
 int* value,
 int count,
 CvTrackbarCallback on_change
);

Th e fi rst two arguments are the name for the trackbar itself and the name of the parent

window to which the trackbar will be attached. When the trackbar is created it is added

to either the top or the bottom of the parent window;* it will not occlude any image that

is already in the window.

Th e next two arguments are value, a pointer to an integer that will be set automatically

to the value to which the slider has been moved, and count, a numerical value for the

maximum value of the slider.

Th e last argument is a pointer to a callback function that will be automatically called

whenever the slider is moved. Th is is exactly analogous to the callback for mouse events. If

used, the callback function must have the form CvTrackbarCallback, which is defi ned as:

void (*callback)(int position)

Th is callback is not actually required, so if you don’t want a callback then you can sim-

ply set this value to NULL. Without a callback, the only eff ect of the user moving the slider

will be the value of *value being changed.

Finally, here are two more routines that will allow you to programmatically set or read

the value of a trackbar if you know its name:

int cvGetTrackbarPos(
 const char* trackbar_name,
 const char* window_name
);

void cvSetTrackbarPos(
 const char* trackbar_name,
 const char* window_name,
 int pos
);

Th ese functions allow you to set or read the value of a trackbar from anywhere in your

program.

* Whether it is added to the top or bottom depends on the operating system, but it will always appear in the
same place on any given platform.

04-R4886-RC1.indd 10004-R4886-RC1.indd 100 9/15/08 4:19:26 PM9/15/08 4:19:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Displaying Images | 101

No Buttons
Unfortunately, HighGUI does not provide any explicit support for buttons. It is thus

common practice, among the particularly lazy,* to instead use sliders with only two

positions. Another option that occurs oft en in the OpenCV samples in …/opencv/

samples/c/ is to use keyboard shortcuts instead of buttons (see, e.g., the fl oodfi ll demo in

the OpenCV source-code bundle).

Switches are just sliders (trackbars) that have only two positions, “on” (1) and “off ” (0)

(i.e., count has been set to 1). You can see how this is an easy way to obtain the func-

tionality of a button using only the available trackbar tools. Depending on exactly how

you want the switch to behave, you can use the trackbar callback to automatically reset

the button back to 0 (as in Example 4-2; this is something like the standard behavior of

most GUI “buttons”) or to automatically set other switches to 0 (which gives the eff ect

of a “radio button”).

Example 4-2. Using a trackbar to create a “switch” that the user can turn on and off

// We make this value global so everyone can see it.
//
int g_switch_value = 0;

// This will be the callback that we give to the
// trackbar.
//
void switch_callback(int position) {
 if(position == 0) {
 switch_off_function();
 } else {
 switch_on_function();
 }
}

int main(int argc, char* argv[]) {

 // Name the main window
 //
 cvNamedWindow(“Demo Window”, 1);

 // Create the trackbar. We give it a name,
 // and tell it the name of the parent window.
 //
 cvCreateTrackbar(
 “Switch”,
 “Demo Window”,
 &g_switch_value,
 1,

* For the less lazy, another common practice is to compose the image you are displaying with a “control
panel” you have drawn and then use the mouse event callback to test for the mouse’s location when the
event occurs. When the (x, y) location is within the area of a button you have drawn on your control panel,
the callback is set to perform the button action. In this way, all “buttons” are internal to the mouse event
callback routine associated with the parent window.

04-R4886-RC1.indd 10104-R4886-RC1.indd 101 9/15/08 4:19:27 PM9/15/08 4:19:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

102 | Chapter 4: HighGUI

 Switch_callback
);

 // This will just cause OpenCV to idle until
 // someone hits the “Escape” key.
 //
 while(1) {
 if(cvWaitKey(15)==27) break;
 }

}

You can see that this will turn on and off just like a light switch. In our example,

whenever the trackbar “switch” is set to 0, the callback executes the function switch_off_
function(), and whenever it is switched on, the switch_on_function() is called.

Working with Video
When working with video we must consider several functions, including (of course)

how to read and write video fi les. We must also think about how to actually play back

such fi les on the screen.

Th e fi rst thing we need is the CvCapture device. Th is structure contains the information

needed for reading frames from a camera or video fi le. Depending on the source, we use

one of two diff erent calls to create and initialize a CvCapture structure.

CvCapture* cvCreateFileCapture(const char* filename);
CvCapture* cvCreateCameraCapture(int index);

In the case of cvCreateFileCapture(), we can simply give a fi lename for an MPG or AVI

fi le and OpenCV will open the fi le and prepare to read it. If the open is successful and

we are able to start reading frames, a pointer to an initialized CvCapture structure will

be returned.

A lot of people don’t always check these sorts of things, thinking that nothing will go

wrong. Don’t do that here. Th e returned pointer will be NULL if for some reason the fi le

could not be opened (e.g., if the fi le does not exist), but cvCreateFileCapture() will also

return a NULL pointer if the codec with which the video is compressed is not known.

Th e subtleties of compression codecs are beyond the scope of this book, but in general

you will need to have the appropriate library already resident on your computer in or-

der to successfully read the video fi le. For example, if you want to read a fi le encoded

with DIVX or MPG4 compression on a Windows machine, there are specifi c DLLs that

provide the necessary resources to decode the video. Th is is why it is always important

to check the return value of cvCreateFileCapture(), because even if it works on one ma-

chine (where the needed DLL is available) it might not work on another machine (where

that codec DLL is missing). Once we have the CvCapture structure, we can begin reading

frames and do a number of other things. But before we get into that, let’s take a look at

how to capture images from a camera.

Example 4-2. Using a trackbar to create a “switch” that the user can turn on and off (continued)

04-R4886-RC1.indd 10204-R4886-RC1.indd 102 9/15/08 4:19:27 PM9/15/08 4:19:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Video | 103

Th e routine cvCreateCameraCapture() works very much like cvCreateFileCapture() ex-

cept without the headache from the codecs.* In this case we give an identifi er that indi-

cates which camera we would like to access and how we expect the operating system to

talk to that camera. For the former, this is just an identifi cation number that is zero (0)

when we only have one camera, and increments upward when there are multiple cam-

eras on the same system. Th e other part of the identifi er is called the domain of the

camera and indicates (in essence) what type of camera we have. Th e domain can be any

of the predefi ned constants shown in Table 4-3.

Table 4-3. Camera “domain” indicates where HighGUI
should look for your camera

Camera capture constant Numerical value

CV_CAP_ANY 0

CV_CAP_MIL 100

CV_CAP_VFW 200

CV_CAP_V4L 200

CV_CAP_V4L2 200

CV_CAP_FIREWIRE 300

CV_CAP_IEEE1394 300

CV_CAP_DC1394 300

CV_CAP_CMU1394 300

When we call cvCreateCameraCapture(), we pass in an identifi er that is just the sum of

the domain index and the camera index. For example:

CvCapture* capture = cvCreateCameraCapture(CV_CAP_FIREWIRE);

In this example, cvCreateCameraCapture() will attempt to open the fi rst (i.e., number-

zero) Firewire camera. In most cases, the domain is unnecessary when we have only one

camera; it is suffi cient to use CV_CAP_ANY (which is conveniently equal to 0, so we don’t

even have to type that in). One last useful hint before we move on: you can pass -1 to

cvCreateCameraCapture(), which will cause OpenCV to open a window that allows you

to select the desired camera.

Reading Video

int cvGrabFrame(CvCapture* capture);
IplImage* cvRetrieveFrame(CvCapture* capture);
IplImage* cvQueryFrame(CvCapture* capture);

Once you have a valid CvCapture object, you can start grabbing frames. Th ere are two

ways to do this. One way is to call cvGrabFrame(), which takes the CvCapture* pointer

and returns an integer. Th is integer will be 1 if the grab was successful and 0 if the grab

* Of course, to be completely fair, we should probably confess that the headache caused by diff erent codecs
has been replaced by the analogous headache of determining which cameras are (or are not) supported on
our system.

04-R4886-RC1.indd 10304-R4886-RC1.indd 103 9/15/08 4:19:27 PM9/15/08 4:19:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

104 | Chapter 4: HighGUI

failed. Th e cvGrabFrame() function copies the captured image to an internal buff er that

is invisible to the user. Why would you want OpenCV to put the frame somewhere you

can’t access it? Th e answer is that this grabbed frame is unprocessed, and cvGrabFrame()

is designed simply to get it onto the computer as quickly as possible.

Once you have called cvGrabFrame(), you can then call cvRetrieveFrame(). Th is func-

tion will do any necessary processing on the frame (such as the decompression stage in

the codec) and then return an IplImage* pointer that points to another internal buff er

(so do not rely on this image, because it will be overwritten the next time you call

cvGrabFrame()). If you want to do anything in particular with this image, copy it else-

where fi rst. Because this pointer points to a structure maintained by OpenCV itself, you

are not required to release the image and can expect trouble if you do so.

Having said all that, there is a somewhat simpler method called cvQueryFrame(). Th is

is, in eff ect, a combination of cvGrabFrame() and cvRetrieveFrame(); it also returns the

same IplImage* pointer as cvRetrieveFrame() did.

It should be noted that, with a video fi le, the frame is automatically advanced when-

ever a cvGrabFrame() call is made. Hence a subsequent call will retrieve the next frame

automatically.

Once you are done with the CvCapture device, you can release it with a call to

cvReleaseCapture(). As with most other de-allocators in OpenCV, this routine takes a

pointer to the CvCapture* pointer:

void cvReleaseCapture(CvCapture** capture);

Th ere are many other things we can do with the CvCapture structure. In particular, we

can check and set various properties of the video source:

double cvGetCaptureProperty(
 CvCapture* capture,
 int property_id
);

int cvSetCaptureProperty(
 CvCapture* capture,
 int property_id,
 double value
);

Th e routine cvGetCaptureProperty() accepts any of the property IDs shown in Table 4-4.

Table 4-4. Video capture properties used by cvGetCaptureProperty()
and cvSetCaptureProperty()

Video capture property Numerical value

CV_CAP_PROP_POS_MSEC 0

CV_CAP_PROP_POS_FRAME 1

CV_CAP_PROP_POS_AVI_RATIO 2

CV_CAP_PROP_FRAME_WIDTH 3

CV_CAP_PROP_FRAME_HEIGHT 4

04-R4886-RC1.indd 10404-R4886-RC1.indd 104 9/15/08 4:19:27 PM9/15/08 4:19:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Video | 105

Video capture property Numerical value

CV_CAP_PROP_FPS 5

CV_CAP_PROP_FOURCC 6

CV_CAP_PROP_FRAME_COUNT 7

Most of these properties are self explanatory. POS_MSEC is the current position in a video

fi le, measured in milliseconds. POS_FRAME is the current position in frame number. POS_
AVI_RATIO is the position given as a number between 0 and 1 (this is actually quite use-

ful when you want to position a trackbar to allow folks to navigate around your video).

FRAME_WIDTH and FRAME_HEIGHT are the dimensions of the individual frames of the video

to be read (or to be captured at the camera’s current settings). FPS is specifi c to video fi les

and indicates the number of frames per second at which the video was captured; you

will need to know this if you want to play back your video and have it come out at the

right speed. FOURCC is the four-character code for the compression codec to be used for

the video you are currently reading. FRAME_COUNT should be the total number of frames

in the video, but this fi gure is not entirely reliable.

All of these values are returned as type double, which is perfectly reasonable except for

the case of FOURCC (FourCC) [FourCC85]. Here you will have to recast the result in order

to interpret it, as described in Example 4-3.

Example 4-3. Unpacking a four-character code to identify a video codec

double f = cvGetCaptureProperty(
 capture,
 CV_CAP_PROP_FOURCC
);

char* fourcc = (char*) (&f);

For each of these video capture properties, there is a corresponding cvSetCapture
Property() function that will attempt to set the property. Th ese are not all entirely mean-

ingful; for example, you should not be setting the FOURCC of a video you are currently

reading. Attempting to move around the video by setting one of the position properties

will work, but only for some video codecs (we’ll have more to say about video codecs in

the next section).

Writing Video
Th e other thing we might want to do with video is writing it out to disk. OpenCV makes

this easy; it is essentially the same as reading video but with a few extra details.

First we must create a CvVideoWriter device, which is the video writing analogue of

CvCapture. Th is device will incorporate the following functions.

CvVideoWriter* cvCreateVideoWriter(
 const char* filename,

Table 4-4. Video capture properties used by cvGetCaptureProperty()
and cvSetCaptureProperty() (continued)

04-R4886-RC1.indd 10504-R4886-RC1.indd 105 9/15/08 4:19:28 PM9/15/08 4:19:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

106 | Chapter 4: HighGUI

 int fourcc,
 double fps,
 CvSize frame_size,
 int is_color = 1
);
int cvWriteFrame(
 CvVideoWriter* writer,
 const IplImage* image
);
void cvReleaseVideoWriter(
 CvVideoWriter** writer
);

You will notice that the video writer requires a few extra arguments. In addition to the

fi lename, we have to tell the writer what codec to use, what the frame rate is, and how

big the frames will be. Optionally we can tell OpenCV if the frames are black and white

or color (the default is color).

Here, the codec is indicated by its four-character code. (For those of you who are not

experts in compression codecs, they all have a unique four-character identifi er asso-

ciated with them). In this case the int that is named fourcc in the argument list for

cvCreate VideoWriter() is actually the four characters of the fourcc packed to-

gether. Since this comes up relatively oft en, OpenCV provides a convenient macro

CV_FOURCC(c0,c1,c2,c3) that will do the bit packing for you.

Once you have a video writer, all you have to do is call cvWriteFrame() and pass in the

CvVideoWriter* pointer and the IplImage* pointer for the image you want to write out.

Once you are fi nished, you must call CvReleaseVideoWriter() in order to close the writer

and the fi le you were writing to. Even if you are normally a bit sloppy about de-allocating

things at the end of a program, do not be sloppy about this. Unless you explicitly release

the video writer, the video fi le to which you are writing may be corrupted.

ConvertImage
For purely historical reasons, there is one orphan routine in the HighGUI that fi ts into

none of the categories described above. It is so tremendously useful, however, that you

should know about it and what it does. Th e function is called cvConvertImage().

void cvConvertImage(
 const CvArr* src,
 CvArr* dst,
 int flags = 0
);

cvConvertImage() is used to perform common conversions between image formats. Th e

formats are specifi ed in the headers of the src and dst images or arrays (the function

prototype allows the more general CvArr type that works with IplImage).

Th e source image may be one, three, or four channels with either 8-bit or fl oating-point

pixels. Th e destination must be 8 bits with one or three channels. Th is function can also

convert color to grayscale or one-channel grayscale to three-channel grayscale (color).

04-R4886-RC1.indd 10604-R4886-RC1.indd 106 9/15/08 4:19:28 PM9/15/08 4:19:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 107

Finally, the flag (if set) will fl ip the image vertically. Th is is useful because sometimes

camera formats and display formats are reversed. Setting this fl ag actually fl ips the pix-

els in memory.

Exercises
Th is chapter completes our introduction to basic I/O programming and data struc-1.

tures in OpenCV. Th e following exercises build on this knowledge and create useful

utilities for later use.

Create a program that (1) reads frames from a video, (2) turns the result to gray-a.

scale, and (3) performs Canny edge detection on the image. Display all three

stages of processing in three diff erent windows, with each window appropri-

ately named for its function.

Display all three stages of processing in one image.b.

Hint: Create another image of the same height but three times the width
as the video frame. Copy the images into this, either by using pointers
or (more cleverly) by creating three new image headers that point to
the beginning of and to one-third and two-thirds of the way into the
imageData. Th en use cvCopy().

Write appropriate text labels describing the processing in each of the three c.

slots.

Create a program that reads in and displays an image. When the user’s mouse clicks 2.

on the image, read in the corresponding pixel (blue, green, red) values and write

those values as text to the screen at the mouse location.

For the program of exercise 1b, display the mouse coordinates of the individual a.

image when clicking anywhere within the three-image display.

Create a program that reads in and displays an image.3.

Allow the user to select a rectangular region in the image by drawing a rectan-a.

gle with the mouse button held down, and highlight the region when the mouse

button is released. Be careful to save an image copy in memory so that your

drawing into the image does not destroy the original values there. Th e next

mouse click should start the process all over again from the original image.

In a separate window, use the drawing functions to draw a graph in blue, green, b.

and red for how many pixels of each value were found in the selected box. Th is

is the color histogram of that color region. Th e x-axis should be eight bins that

represent pixel values falling within the ranges 0–31, 32–63, . . ., 223–255. Th e

y-axis should be counts of the number of pixels that were found in that bin

range. Do this for each color channel, BGR.

Make an application that reads and displays a video and is controlled by slid-4.

ers. One slider will control the position within the video from start to end in 10

04-R4886-RC1.indd 10704-R4886-RC1.indd 107 9/15/08 4:19:28 PM9/15/08 4:19:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

108 | Chapter 4: HighGUI

increments; another binary slider should control pause/unpause. Label both sliders

appropriately.

Create your own simple paint program.5.

Write a program that creates an image, sets it to 0, and then displays it. Allow a.

the user to draw lines, circles, ellipses, and polygons on the image using the

left mouse button. Create an eraser function when the right mouse button is

held down.

Allow “logical drawing” by allowing the user to set a slider setting to AND, b.

OR, and XOR. Th at is, if the setting is AND then the drawing will appear only

when it crosses pixels greater than 0 (and so on for the other logical functions).

Write a program that creates an image, sets it to 0, and then displays it. When the user 6.

clicks on a location, he or she can type in a label there. Allow Backspace to edit and

provide for an abort key. Hitting Enter should fi x the label at the spot it was typed.

Perspective transform.7.

Write a program that reads in an image and uses the numbers 1–9 on the keypad a.

to control a perspective transformation matrix (refer to our discussion of the

cvWarpPerspective() in the Dense Perspective Transform section of Chapter 6).

Tapping any number should increment the corresponding cell in the perspective

transform matrix; tapping with the Shift key depressed should decrement the

number associated with that cell (stopping at 0). Each time a number is changed,

display the results in two images: the raw image and the transformed image.

Add functionality to zoom in or out?b.

Add functionality to rotate the image?c.

Face fun. Go to the 8. /samples/c/ directory and build the facedetect.c code. Draw a

skull image (or fi nd one on the Web) and store it to disk. Modify the facedetect pro-

gram to load in the image of the skull.

When a face rectangle is detected, draw the skull in that rectangle.a.

Hint: cvConvertImage() can convert the size of the image, or you
could look up the cvResize function. One may then set the ROI to the
rectangle and use cvCopy() to copy the properly resized image there.

Add a slider with 10 settings corresponding to 0.0 to 1.0. Use this slider to al-b.

pha blend the skull over the face rectangle using the cvAddWeighted function.

Image stabilization. Go to the 9. /samples/c/ directory and build the lkdemo code (the

motion tracking or optical fl ow code). Create and display a video image in a much

larger window image. Move the camera slightly but use the optical fl ow vectors to

display the image in the same place within the larger window. Th is is a rudimentary

image stabilization technique.

04-R4886-RC1.indd 10804-R4886-RC1.indd 108 9/15/08 4:19:28 PM9/15/08 4:19:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

109

CHAPTER 5

Image Processing

Overview
At this point we have all of the basics at our disposal. We understand the structure of

the library as well as the basic data structures it uses to represent images. We under-

stand the HighGUI interface and can actually run a program and display our results on

the screen. Now that we understand these primitive methods required to manipulate

image structures, we are ready to learn some more sophisticated operations.

We will now move on to higher-level methods that treat the images as images, and not just

as arrays of colored (or grayscale) values. When we say “image processing”, we mean just

that: using higher-level operators that are defi ned on image structures in order to accom-

plish tasks whose meaning is naturally defi ned in the context of graphical, visual images.

Smoothing
Smoothing, also called blurring, is a simple and frequently used image processing opera-

tion. Th ere are many reasons for smoothing, but it is usually done to reduce noise or

camera artifacts. Smoothing is also important when we wish to reduce the resolution

of an image in a principled way (we will discuss this in more detail in the “Image Pyra-

mids” section of this chapter).

OpenCV off ers fi ve diff erent smoothing operations at this time. All of them are sup-

ported through one function, cvSmooth(),* which takes our desired form of smoothing

as an argument.

void cvSmooth(
 const CvArr* src,
 CvArr* dst,
 int smoothtype = CV_GAUSSIAN,
 int param1 = 3,

* Note that—unlike in, say, Matlab—the fi ltering operations in OpenCV (e.g., cvSmooth(), cvErode(),
cvDilate()) produce output images of the same size as the input. To achieve that result, OpenCV creates
“virtual” pixels outside of the image at the borders. By default, this is done by replication at the border, i.e.,
input(-dx,y)=input(0,y), input(w+dx,y)=input(w-1,y), and so forth.

05-R4886-AT1.indd 10905-R4886-AT1.indd 109 9/15/08 4:19:56 PM9/15/08 4:19:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

110 | Chapter 5: Image Processing

 int param2 = 0,
 double param3 = 0,
 double param4 = 0
);

Th e src and dst arguments are the usual source and destination for the smooth opera-

tion. Th e cv_Smooth() function has four parameters with the particularly uninformative

names of param1, param2, param3, and param4. Th e meaning of these parameters de-

pends on the value of smoothtype, which may take any of the fi ve values listed in Table 5-1.*

(Please notice that for some values of ST, “in place operation”, in which src and dst indi-

cate the same image, is not allowed.)

Table 5-1. Types of smoothing operations

Smooth type Name
In
place? Nc

Depth
of src

Depth
of dst Brief description

CV_BLUR Simple blur Yes 1,3 8u, 32f 8u, 32f Sum over a param1×param2
neighborhood with sub-
sequent scaling by 1/
(param1×param2).

CV_BLUR_NO
_SCALE

Simple blur
with no scaling

No 1 8u 16s (for 8u
source) or
32f (for 32f
source)

Sum over a param1×param2
neighborhood.

CV_MEDIAN Median blur No 1,3 8u 8u Find median over a
param1×param1 square
neighborhood.

CV_GAUSSIAN Gaussian blur Yes 1,3 8u, 32f 8u (for 8u
source) or
32f (for 32f
source)

Sum over a param1×param2
neighborhood.

CV_BILATERAL Bilateral fi lter No 1,3 8u 8u Apply bilateral 3-by-3 fi ltering
with color sigma=param1 and
a space sigma=param2.

Th e simple blur operation, as exemplifi ed by CV_BLUR in Figure 5-1, is the simplest case.

Each pixel in the output is the simple mean of all of the pixels in a window around the

corresponding pixel in the input. Simple blur supports 1–4 image channels and works

on 8-bit images or 32-bit fl oating-point images.

Not all of the smoothing operators act on the same sorts of images. CV_BLUR_NO_SCALE

(simple blur without scaling) is essentially the same as simple blur except that there is no

division performed to create an average. Hence the source and destination images must

have diff erent numerical precision so that the blurring operation will not result in an

overfl ow. Simple blur without scaling may be performed on 8-bit images, in which case

the destination image should have IPL_DEPTH_16S (CV_16S) or IPL_DEPTH_32S (CV_32S)

* Here and elsewhere we sometimes use 8u as shorthand for 8-bit unsigned image depth (IPL_DEPTH_8U). See
Table 3-2 for other shorthand notation.

05-R4886-AT1.indd 11005-R4886-AT1.indd 110 9/15/08 4:19:57 PM9/15/08 4:19:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Smoothing | 111

data types. Th e same operation may also be performed on 32-bit fl oating-point images,

in which case the destination image may also be a 32-bit fl oating-point image. Simple

blur without scaling cannot be done in place: the source and destination images must be

diff erent. (Th is requirement is obvious in the case of 8 bits to 16 bits, but it applies even

when you are using a 32-bit image). Simple blur without scaling is sometimes chosen

because it is a little faster than blurring with scaling.

Th e median fi lter (CV_MEDIAN) [Bardyn84] replaces each pixel by the median or “middle”

pixel (as opposed to the mean pixel) value in a square neighborhood around the center

pixel. Median fi lter will work on single-channel or three-channel or four-channel 8-bit

images, but it cannot be done in place. Results of median fi ltering are shown in Figure 5-2.

Simple blurring by averaging can be sensitive to noisy images, especially images with

large isolated outlier points (sometimes called “shot noise”). Large diff erences in even a

small number of points can cause a noticeable movement in the average value. Median

fi ltering is able to ignore the outliers by selecting the middle points.

Th e next smoothing fi lter, the Gaussian fi lter (CV_GAUSSIAN), is probably the most useful

though not the fastest. Gaussian fi ltering is done by convolving each point in the input

array with a Gaussian kernel and then summing to produce the output array.

Figure 5-1. Image smoothing by block averaging: on the left are the input images; on the right, the
output images

05-R4886-AT1.indd 11105-R4886-AT1.indd 111 9/15/08 4:19:57 PM9/15/08 4:19:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

112 | Chapter 5: Image Processing

For the Gaussian blur (Figure 5-3), the fi rst two parameters give the width and height of

the fi lter window; the (optional) third parameter indicates the sigma value (half width at

half max) of the Gaussian kernel. If the third parameter is not specifi ed, then the Gaussian

will be automatically determined from the window size using the following formulae:

1 0σ
x

x
x

n
n= −

⎛

⎝
⎜

⎞

⎠
⎟ + =⋅

2
30 0 80. . , param1

= −σ
y

y
n

2
1

⎝⎝
⎜⎜

⎠
⎟⎟ + =⋅0 30 0 80. . , n

y
param2

⎛ ⎞

If you wish the kernel to be asymmetric, then you may also (optionally) supply a fourth

parameter; in this case, the third and fourth parameters will be the values of sigma in

the horizontal and vertical directions, respectively.

If the third and fourth parameters are given but the fi rst two are set to 0, then the size of

the window will be automatically determined from the value of sigma.

Th e OpenCV implementation of Gaussian smoothing also provides a higher per-

formance optimization for several common kernels. 3-by-3, 5-by-5 and 7-by-7 with

Figure 5-2. Image blurring by taking the median of surrounding pixels

05-R4886-AT1.indd 11205-R4886-AT1.indd 112 9/15/08 4:19:58 PM9/15/08 4:19:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Smoothing | 113

the “standard” sigma (i.e., param3 = 0.0) give better performance than other kernels.

Gaussian blur supports single- or three-channel images in either 8-bit or 32-bit fl oating-

point formats, and it can be done in place. Results of Gaussian blurring are shown in

Figure 5-4.

Th e fi ft h and fi nal form of smoothing supported by OpenCV is called bilateral fi ltering

[Tomasi98], an example of which is shown in Figure 5-5. Bilateral fi ltering is one opera-

tion from a somewhat larger class of image analysis operators known as edge-preserving

smoothing. Bilateral fi ltering is most easily understood when contrasted to Gaussian

smoothing. A typical motivation for Gaussian smoothing is that pixels in a real image

should vary slowly over space and thus be correlated to their neighbors, whereas ran-

dom noise can be expected to vary greatly from one pixel to the next (i.e., noise is not

spatially correlated). It is in this sense that Gaussian smoothing reduces noise while pre-

serving signal. Unfortunately, this method breaks down near edges, where you do ex-

pect pixels to be uncorrelated with their neighbors. Th us Gaussian smoothing smoothes

away the edges. At the cost of a little more processing time, bilateral fi ltering provides us

a means of smoothing an image without smoothing away the edges.

Like Gaussian smoothing, bilateral fi ltering constructs a weighted average of each

pixel and its neighboring components. Th e weighting has two components, the fi rst of

which is the same weighting used by Gaussian smoothing. Th e second component is

also a Gaussian weighting but is based not on the spatial distance from the center pixel

Figure 5-3. Gaussian blur on 1D pixel array

05-R4886-AT1.indd 11305-R4886-AT1.indd 113 9/15/08 4:19:58 PM9/15/08 4:19:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

114 | Chapter 5: Image Processing

but rather on the diff erence in intensity* from the center pixel.† You can think of bilat-

eral fi ltering as Gaussian smoothing that weights more similar pixels more highly than

less similar ones. Th e eff ect of this fi lter is typically to turn an image into what appears

to be a watercolor painting of the same scene.‡ Th is can be useful as an aid to segment-

ing the image.

Bilateral fi ltering takes two parameters. Th e fi rst is the width of the Gaussian kernel

used in the spatial domain, which is analogous to the sigma parameters in the Gaussian

fi lter. Th e second is the width of the Gaussian kernel in the color domain. Th e larger

this second parameter is, the broader is the range of intensities (or colors) that will be

included in the smoothing (and thus the more extreme a discontinuity must be in order

to be preserved).

* In the case of multichannel (i.e., color) images, the diff erence in intensity is replaced with a weighted sum
over colors. Th is weighting is chosen to enforce a Euclidean distance in the CIE color space.

† Technically, the use of Gaussian distribution functions is not a necessary feature of bilateral fi ltering. Th e
implementation in OpenCV uses Gaussian weighting even though the method is general to many possible
weighting functions.

‡ Th is eff ect is particularly pronounced aft er multiple iterations of bilateral fi ltering.

Figure 5-4. Gaussian blurring

05-R4886-AT1.indd 11405-R4886-AT1.indd 114 9/15/08 4:19:58 PM9/15/08 4:19:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Image Morphology | 115

Image Morphology
OpenCV provides a fast, convenient interface for doing morphological transformations

[Serra83] on an image. Th e basic morphological transformations are called dilation and

erosion, and they arise in a wide variety of contexts such as removing noise, isolating

individual elements, and joining disparate elements in an image. Morphology can also

be used to fi nd intensity bumps or holes in an image and to fi nd image gradients.

Dilation and Erosion
Dilation is a convolution of some image (or region of an image), which we will call A,

with some kernel, which we will call B. Th e kernel, which can be any shape or size, has

a single defi ned anchor point. Most oft en, the kernel is a small solid square or disk with

the anchor point at the center. Th e kernel can be thought of as a template or mask, and

its eff ect for dilation is that of a local maximum operator. As the kernel B is scanned

over the image, we compute the maximal pixel value overlapped by B and replace the

image pixel under the anchor point with that maximal value. Th is causes bright regions

within an image to grow as diagrammed in Figure 5-6. Th is growth is the origin of the

term “dilation operator”.

Figure 5-5. Results of bilateral smoothing

05-R4886-AT1.indd 11505-R4886-AT1.indd 115 9/15/08 4:19:59 PM9/15/08 4:19:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

116 | Chapter 5: Image Processing

Erosion is the converse operation. Th e action of the erosion operator is equivalent to

computing a local minimum over the area of the kernel. Erosion generates a new image

from the original using the following algorithm: as the kernel B is scanned over the im-

age, we compute the minimal pixel value overlapped by B and replace the image pixel

under the anchor point with that minimal value.* Erosion is diagrammed in Figure 5-7.

Image morphology is oft en done on binary images that result from
thresholding. However, because dilation is just a max operator and
erosion is just a min operator, morphology may be used on intensity
images as well.

In general, whereas dilation expands region A, erosion reduces region A. Moreover, di-

lation will tend to smooth concavities and erosion will tend to smooth away protrusions.

Of course, the exact result will depend on the kernel, but these statements are generally

true for the fi lled convex kernels typically used.

In OpenCV, we eff ect these transformations using the cvErode() and cvDilate()

functions:

void cvErode(
 IplImage* src,
 IplImage* dst,
 IplConvKernel* B = NULL,
 int iterations = 1
);

* To be precise, the pixel in the destination image is set to the value equal to the minimal value of the pixels
under the kernel in the source image.

Figure 5-6. Morphological dilation: take the maximum under the kernel B

05-R4886-AT1.indd 11605-R4886-AT1.indd 116 9/15/08 4:19:59 PM9/15/08 4:19:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Image Morphology | 117

void cvDilate(
 IplImage* src,
 IplImage* dst,
 IplConvKernel* B = NULL,
 int iterations = 1
);

Both cvErode() and cvDilate() take a source and destination image, and both support

“in place” calls (in which the source and destination are the same image). Th e third ar-

gument is the kernel, which defaults to NULL. In the NULL case, the kernel used is a 3-by-3

kernel with the anchor at its center (we will discuss shortly how to create your own

kernels). Finally, the fourth argument is the number of iterations. If not set to the de-

fault value of 1, the operation will be applied multiple times during the single call to the

function. Th e results of an erode operation are shown in Figure 5-8 and those of a dila-

tion operation in Figure 5-9. Th e erode operation is oft en used to eliminate “speckle”

noise in an image. Th e idea here is that the speckles are eroded to nothing while larger

regions that contain visually signifi cant content are not aff ected. Th e dilate operation

is oft en used when attempting to fi nd connected components (i.e., large discrete regions

of similar pixel color or intensity). Th e utility of dilation arises because in many cases

a large region might otherwise be broken apart into multiple components as a result of

noise, shadows, or some other similar eff ect. A small dilation will cause such compo-

nents to “melt” together into one.

To recap: when OpenCV processes the cvErode() function, what happens beneath the

hood is that the value of some point p is set to the minimum value of all of the points

covered by the kernel when aligned at p; for the dilation operator, the equation is the

same except that max is considered rather than min:

Figure 5-7. Morphological erosion: take the minimum under the kernel B

05-R4886-AT1.indd 11705-R4886-AT1.indd 117 9/15/08 4:20:00 PM9/15/08 4:20:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

118 | Chapter 5: Image Processing

erode src

d
kernel

(,) min (,)
(,)

x y x x y y
x y

= + ′ + ′
′ ′ ∈

iilate src
kernel

(,) max (,)
(,)

x y x x y y
x y

= + ′ + ′
′ ′ ∈

You might be wondering why we need a complicated formula when the earlier heuris-

tic description was perfectly suffi cient. Some readers actually prefer such formulas but,

more importantly, the formulas capture some generality that isn’t apparent in the quali-

tative description. Observe that if the image is not binary then the min and max opera-

tors play a less trivial role. Take another look at Figures 5-8 and 5-9, which show the

erosion and dilation operators applied to two real images.

Making Your Own Kernel
You are not limited to the simple 3-by-3 square kernel. You can make your own cus-

tom morphological kernels (our previous “kernel B”) using IplConvKernel. Such

kernels are allocated using cvCreateStructuringElementEx() and are released using

cvReleaseStructuringElement().

IplConvKernel* cvCreateStructuringElementEx(
 int cols,
 int rows,

Figure 5-8. Results of the erosion, or “min”, operator: bright regions are isolated and shrunk

05-R4886-AT1.indd 11805-R4886-AT1.indd 118 9/15/08 4:20:00 PM9/15/08 4:20:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Image Morphology | 119

 int anchor_x,
 int anchor_y,
 int shape,
 int* values=NULL
);

void cvReleaseStructuringElement(IplConvKernel** element);

A morphological kernel, unlike a convolution kernel, doesn’t require any numerical val-

ues. Th e elements of the kernel simply indicate where the max or min computations

take place as the kernel moves around the image. Th e anchor point indicates how the

kernel is to be aligned with the source image and also where the result of the computa-

tion is to be placed in the destination image. When creating the kernel, cols and rows

indicate the size of the rectangle that holds the structuring element. Th e next param-

eters, anchor_x and anchor_y, are the (x, y) coordinates of the anchor point within the

enclosing rectangle of the kernel. Th e fi ft h parameter, shape, can take on values listed

in Table 5-2. If CV_SHAPE_CUSTOM is used, then the integer vector values is used

to defi ne a custom shape of the kernel within the rows-by-cols enclosing rectangle. Th is

vector is read in raster scan order with each entry representing a diff erent pixel in the

enclosing rectangle. Any nonzero value is taken to indicate that the corresponding pixel

Figure 5-9. Results of the dilation, or “max”, operator: bright regions are expanded and oft en joined

05-R4886-AT1.indd 11905-R4886-AT1.indd 119 9/15/08 4:20:00 PM9/15/08 4:20:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

120 | Chapter 5: Image Processing

should be included in the kernel. If values is NULL then the custom shape is interpreted

to be all nonzero, resulting in a rectangular kernel.*

Table 5-2. Possible IplConvKernel shape values

Shape value Meaning

CV_SHAPE_RECT The kernel is rectangular

CV_SHAPE_CROSS The kernel is cross shaped

CV_SHAPE_ELLIPSE The kernel is elliptical

CV_SHAPE_CUSTOM The kernel is user-defi ned via values

More General Morphology
When working with Boolean images and image masks, the basic erode and dilate opera-

tions are usually suffi cient. When working with grayscale or color images, however, a

number of additional operations are oft en helpful. Several of the more useful operations

can be handled by the multi-purpose cvMorphologyEx() function.

void cvMorphologyEx(
 const CvArr* src,
 CvArr* dst,
 CvArr* temp,
 IplConvKernel* element,
 int operation,
 int iterations = 1
);

In addition to the arguments src, dst, element, and iterations, which we used with pre-

vious operators, cvMorphologyEx() has two new parameters. Th e fi rst is the temp array,

which is required for some of the operations (see Table 5-3). When required, this array

should be the same size as the source image. Th e second new argument—the really in-

teresting one—is operation, which selects the morphological operation that we will do.

Table 5-3. cvMorphologyEx() operation options

Value of operation Morphological operator Requires temp image?

CV_MOP_OPEN Opening No

CV_MOP_CLOSE Closing No

CV_MOP_GRADIENT Morphological gradient Always

CV_MOP_TOPHAT Top Hat For in-place only (src = dst)

CV_MOP_BLACKHAT Black Hat For in-place only (src = dst)

Opening and closing

Th e fi rst two operations in Table 5-3, opening and closing, are combinations of the erosion

and dilation operators. In the case of opening, we erode fi rst and then dilate (Figure 5-10).

* If the use of this strange integer vector strikes you as being incongruous with other OpenCV functions, you
are not alone. Th e origin of this syntax is the same as the origin of the IPL prefi x to this function—another
instance of archeological code relics.

05-R4886-AT1.indd 12005-R4886-AT1.indd 120 9/15/08 4:20:01 PM9/15/08 4:20:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Image Morphology | 121

Opening is oft en used to count regions in a binary image. For example, if we have

thresholded an image of cells on a microscope slide, we might use opening to separate

out cells that are near each other before counting the regions. In the case of closing, we

dilate fi rst and then erode (Figure 5-12). Closing is used in most of the more sophisti-

cated connected-component algorithms to reduce unwanted or noise-driven segments.

For connected components, usually an erosion or closing operation is performed fi rst to

eliminate elements that arise purely from noise and then an opening operation is used

to connect nearby large regions. (Notice that, although the end result of using open or

close is similar to using erode or dilate, these new operations tend to preserve the area of

connected regions more accurately.)

Both the opening and closing operations are approximately area-preserving: the most

prominent eff ect of closing is to eliminate lone outliers that are lower than their neigh-

bors whereas the eff ect of opening is to eliminate lone outliers that are higher than their

neighbors. Results of using the opening operator are shown in Figure 5-11, and of the

closing operator in Figure 5-13.

One last note on the opening and closing operators concerns how the iterations ar-

gument is interpreted. You might expect that asking for two iterations of closing

would yield something like dilate-erode-dilate-erode. It turns out that this would not

be particularly useful. What you really want (and what you get) is dilate-dilate-erode-

erode. In this way, not only the single outliers but also neighboring pairs of outliers

will disappear.

Morphological gradient

Our next available operator is the morphological gradient. For this one it is probably

easier to start with a formula and then fi gure out what it means:

gradient(src) = dilate(src)–erode(src)

Th e eff ect of this operation on a Boolean image would be simply to isolate perimeters of

existing blobs. Th e process is diagrammed in Figure 5-14, and the eff ect of this operator

on our test images is shown in Figure 5-15.

Figure 5-10. Morphological opening operation: the upward outliers are eliminated as a result

05-R4886-AT1.indd 12105-R4886-AT1.indd 121 9/15/08 4:20:01 PM9/15/08 4:20:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

122 | Chapter 5: Image Processing

With a grayscale image we see that the value of the operator is telling us something

about how fast the image brightness is changing; this is why the name “morphological

gradient” is justifi ed. Morphological gradient is oft en used when we want to isolate the

perimeters of bright regions so we can treat them as whole objects (or as whole parts of

objects). Th e complete perimeter of a region tends to be found because an expanded ver-

sion is subtracted from a contracted version of the region, leaving a complete perimeter

Figure 5-11. Results of morphological opening on an image: small bright regions are removed, and
the remaining bright regions are isolated but retain their size

Figure 5-12. Morphological closing operation: the downward outliers are eliminated as a result

05-R4886-AT1.indd 12205-R4886-AT1.indd 122 9/15/08 4:20:01 PM9/15/08 4:20:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Image Morphology | 123

edge. Th is diff ers from calculating a gradient, which is much less likely to work around

the full perimeter of an object.*

Top Hat and Black Hat

Th e last two operators are called Top Hat and Black Hat [Meyer78]. Th ese operators are

used to isolate patches that are, respectively, brighter or dimmer than their immedi-

ate neighbors. You would use these when trying to isolate parts of an object that ex-

hibit brightness changes relative only to the object to which they are attached. Th is oft en

occurs with microscope images of organisms or cells, for example. Both operations are

defi ned in terms of the more primitive operators, as follows:

 TopHat(src) = src–open(src)

BlackHat(src) = close(src)–src

As you can see, the Top Hat operator subtracts the opened form of A from A. Recall

that the eff ect of the open operation was to exaggerate small cracks or local drops. Th us,

* We will return to the topic of gradients when we introduce the Sobel and Scharr operators in the next
chapter.

Figure 5-13. Results of morphological closing on an image: bright regions are joined but retain their
basic size

05-R4886-AT1.indd 12305-R4886-AT1.indd 123 9/15/08 4:20:02 PM9/15/08 4:20:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

124 | Chapter 5: Image Processing

Figure 5-14. Morphological gradient applied to a grayscale image: as expected, the operator has its
highest values where the grayscale image is changing most rapidly

subtracting open(A) from A should reveal areas that are lighter then the surrounding

region of A, relative to the size of the kernel (see Figure 5-16); conversely, the Black Hat

operator reveals areas that are darker than the surrounding region of A (Figure 5-17).

Summary results for all the morphological operators discussed in this chapter are as-

sembled in Figure 5-18.*

Flood Fill
Flood fi ll [Heckbert00; Shaw04; Vandevenne04] is an extremely useful function that

is oft en used to mark or isolate portions of an image for further processing or analysis.

Flood fi ll can also be used to derive, from an input image, masks that can be used for

subsequent routines to speed or restrict processing to only those pixels indicated by the

mask. Th e function cvFloodFill() itself takes an optional mask that can be further used

to control where fi lling is done (e.g., when doing multiple fi lls of the same image).

In OpenCV, fl ood fi ll is a more general version of the sort of fi ll functionality which

you probably already associate with typical computer painting programs. For both, a

seed point is selected from an image and then all similar neighboring points are colored

with a uniform color. Th e diff erence here is that the neighboring pixels need not all be

* Both of these operations (Top Hat and Black Hat) make more sense in grayscale morphology, where the
structuring element is a matrix of real numbers (not just a binary mask) and the matrix is added to the cur-
rent pixel neighborhood before taking a minimum or maximum. Unfortunately, this is not yet implemented
in OpenCV.

05-R4886-AT1.indd 12405-R4886-AT1.indd 124 9/15/08 4:20:02 PM9/15/08 4:20:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Flood Fill | 125

identical in color.* Th e result of a fl ood fi ll operation will always be a single contiguous

region. Th e cvFloodFill() function will color a neighboring pixel if it is within a speci-

fi ed range (loDiff to upDiff) of either the current pixel or if (depending on the settings of

flags) the neighboring pixel is within a specifi ed range of the original seedPoint value.

Flood fi lling can also be constrained by an optional mask argument. Th e prototype for

the fl ood fi ll routine is:

void cvFloodFill(
 IplImage* img,
 CvPoint seedPoint,
 CvScalar newVal,
 CvScalar loDiff = cvScalarAll(0),
 CvScalar upDiff = cvScalarAll(0),
 CvConnectedComp* comp = NULL,
 int flags = 4,
 CvArr* mask = NULL
);

Th e parameter img is the input image, which can be 8-bit or fl oating-point and one-

channel or three-channel. We start the fl ood fi lling from seedPoint, and newVal is the

* Users of contemporary painting and drawing programs should note that most now employ a fi lling algo-
rithm very much like cvFloodFill().

Figure 5-15. Results of the morphological gradient operator: bright perimeter edges are identifi ed

05-R4886-AT1.indd 12505-R4886-AT1.indd 125 9/15/08 4:20:02 PM9/15/08 4:20:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

126 | Chapter 5: Image Processing

value to which colorized pixels are set. A pixel will be colorized if its intensity is not

less than a colorized neighbor’s intensity minus loDiff and not greater than the color-

ized neighbor’s intensity plus upDiff. If the flags argument includes CV_FLOODFILL_FIXED_
RANGE, then a pixel will be compared to the original seed point rather than to its neigh-

bors. If non-NULL, comp is a CvConnectedComp structure that will hold statistics about the

areas fi lled.* Th e flags argument (to be discussed shortly) is a little tricky; it controls

the connectivity of the fi ll, what the fi ll is relative to, whether we are fi lling only a mask,

and what values are used to fi ll the mask. Our fi rst example of fl ood fi ll is shown in

Figure 5-19.

Th e argument mask indicates a mask that can function both as input to cvFloodFill() (in

which case it constrains the regions that can be fi lled) and as output from cvFloodFill()
(in which case it will indicate the regions that actually were fi lled). If set to a non-NULL

value, then mask must be a one-channel, 8-bit image whose size is exactly two pixels

larger in width and height than the source image (this is to make processing easier and

faster for the internal algorithm). Pixel (x + 1, y + 1) in the mask image corresponds

to image pixel (x, y) in the source image. Note that cvFloodFill() will not fl ood across

* We will address the specifi cs of a “connected component” in the section “Image Pyramids”. For now, just
think of it as being similar to a mask that identifi es some subsection of an image.

Figure 5-16. Results of morphological Top Hat operation: bright local peaks are isolated

05-R4886-AT1.indd 12605-R4886-AT1.indd 126 9/15/08 4:20:03 PM9/15/08 4:20:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Flood Fill | 127

Figure 5-17. Results of morphological Black Hat operation: dark holes are isolated

Figure 5-18. Summary results for all morphology operators

nonzero pixels in the mask, so you should be careful to zero it before use if you don’t

want masking to block the fl ooding operation. Flood fi ll can be set to colorize either the

source image img or the mask image mask.

05-R4886-AT1.indd 12705-R4886-AT1.indd 127 9/15/08 4:20:04 PM9/15/08 4:20:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

128 | Chapter 5: Image Processing

If the fl ood-fi ll mask is set to be marked, then it is marked with the
values set in the middle bits (8–15) of the flags value (see text). If these
bits are not set then the mask is set to 1 as the default value. Don’t be
confused if you fi ll the mask and see nothing but black upon display;
the fi lled values (if the middle bits of the fl ag weren’t set) are 1s, so the
mask image needs to be rescaled if you want to display it visually.

It’s time to clarify the flags argument, which is tricky because it has three parts. Th e

low 8 bits (0–7) can be set to 4 or 8. Th is controls the connectivity considered by the fi ll-

ing algorithm. If set to 4, only horizontal and vertical neighbors to the current pixel are

considered in the fi lling process; if set to 8, fl ood fi ll will additionally include diagonal

neighbors. Th e high 8 bits (16–23) can be set with the fl ags CV_FLOODFILL_FIXED_RANGE

(fi ll relative to the seed point pixel value; otherwise, fi ll relative to the neighbor’s value),

and/or CV_FLOODFILL_MASK_ONLY (fi ll the mask location instead of the source image loca-

tion). Obviously, you must supply an appropriate mask if CV_FLOODFILL_MASK_ONLY is set.

Th e middle bits (8–15) of flags can be set to the value with which you want the mask

to be fi lled. If the middle bits of flags are 0s, the mask will be fi lled with 1s. All these

fl ags may be linked together via OR. For example, if you want an 8-way connectivity fi ll,

Figure 5-19. Results of fl ood fi ll (top image is fi lled with gray, bottom image with white) from the
dark circle located just off center in both images; in this case, the hiDiff and loDiff parameters were
each set to 7.0

05-R4886-AT1.indd 12805-R4886-AT1.indd 128 9/15/08 4:20:04 PM9/15/08 4:20:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Resize | 129

fi lling only a fi xed range, fi lling the mask not the image, and fi lling using a value of 47,

then the parameter to pass in would be:

flags = 8
 | CV_FLOODFILL_MASK_ONLY
 | CV_FLOODFILL_FIXED_RANGE
 | (47<<8);

Figure 5-20 shows fl ood fi ll in action on a sample image. Using CV_FLOODFILL_FIXED_RANGE

with a wide range resulted in most of the image being fi lled (starting at the center).

We should note that newVal, loDiff, and upDiff are prototyped as type CvScalar so they

can be set for three channels at once (i.e., to encompass the RGB colors specifi ed via

CV_RGB()). For example, lowDiff = CV_RGB(20,30,40) will set lowDiff thresholds of 20 for

red, 30 for green, and 40 for blue.

Resize
We oft en encounter an image of some size that we would like to convert to an image

of some other size. We may want to upsize (zoom in) or downsize (zoom out) the im-

age; we can accomplish either task by using cvResize(). Th is function will fi t the source

Figure 5-20. Results of fl ood fi ll (top image is fi lled with gray, bottom image with white) from the
dark circle located just off center in both images; in this case, fl ood fi ll was done with a fi xed range
and with a high and low diff erence of 25.0

05-R4886-AT1.indd 12905-R4886-AT1.indd 129 9/15/08 4:20:05 PM9/15/08 4:20:05 PM

www.it-ebooks.info

http://www.it-ebooks.info/

130 | Chapter 5: Image Processing

image exactly to the destination image size. If the ROI is set in the source image then

that ROI will be resized to fi t in the destination image. Likewise, if an ROI is set in the

destination image then the source will be resized to fi t into the ROI.

void cvResize(
 const CvArr* src,
 CvArr* dst,
 int interpolation = CV_INTER_LINEAR
);

Th e last argument is the interpolation method, which defaults to linear interpolation.

Th e other available options are shown in Table 5-4.

Table 5-4. cvResize() interpolation options

Interpolation Meaning

CV_INTER_NN Nearest neighbor

CV_INTER_LINEAR Bilinear

CV_INTER_AREA Pixel area re-sampling

CV_INTER_CUBIC Bicubic interpolation

In general, we would like the mapping from the source image to the resized destina-

tion image to be as smooth as possible. Th e argument interpolation controls exactly

how this will be handled. Interpolation arises when we are shrinking an image and a

pixel in the destination image falls in between pixels in the source image. It can also

occur when we are expanding an image and need to compute values of pixels that do

not directly correspond to any pixel in the source image. In either case, there are several

options for computing the values of such pixels. Th e easiest approach is to take the

resized pixel’s value from its closest pixel in the source image; this is the eff ect of choos-

ing the interpolation value CV_INTER_NN. Alternatively, we can linearly weight the 2-by-2

surrounding source pixel values according to how close they are to the destination pixel,

which is what CV_INTER_LINEAR does. We can also virtually place the new resized pixel over

the old pixels and then average the covered pixel values, as done with CV_INTER_AREA.*

Finally, we have the option of fi tting a cubic spline between the 4-by-4 surrounding pix-

els in the source image and then reading off the corresponding destination value from

the fi tted spline; this is the result of choosing the CV_INTER_CUBIC interpolation method.

Image Pyramids
Image pyramids [Adelson84] are heavily used in a wide variety of vision applications.

An image pyramid is a collection of images—all arising from a single original image—

that are successively downsampled until some desired stopping point is reached. (Of

course, this stopping point could be a single-pixel image!)

* At least that’s what happens when cvResize() shrinks an image. When it expands an image, CV_INTER_
AREA amounts to the same thing as CV_INTER_NN.

05-R4886-AT1.indd 13005-R4886-AT1.indd 130 9/15/08 4:20:05 PM9/15/08 4:20:05 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Image Pyramids | 131

Th ere are two kinds of image pyramids that arise oft en in the literature and in appli-

cation: the Gaussian [Rosenfeld80] and Laplacian [Burt83] pyramids [Adelson84]. Th e

Gaussian pyramid is used to downsample images, and the Laplacian pyramid (to be dis-

cussed shortly) is required when we want to reconstruct an upsampled image from an

image lower in the pyramid.

To produce layer (i+1) in the Gaussian pyramid (we denote this layer Gi+1) from layer Gi

of the pyramid, we fi rst convolve Gi with a Gaussian kernel and then remove every even-

numbered row and column. Of course, from this it follows immediately that each image

is exactly one-quarter the area of its predecessor. Iterating this process on the input im-

age G0 produces the entire pyramid. OpenCV provides us with a method for generating

each pyramid stage from its predecessor:

void cvPyrDown(
 IplImage* src,
 IplImage* dst,
 IplFilter filter = IPL_GAUSSIAN_5x5
);

Currently, the last argument filter supports only the single (default) option of a 5-by-5

Gaussian kernel.

Similarly, we can convert an existing image to an image that is twice as large in each

direction by the following analogous (but not inverse!) operation:

void cvPyrUp(
 IplImage* src,
 IplImage* dst,
 IplFilter filter = IPL_GAUSSIAN_5x5
);

In this case the image is fi rst upsized to twice the original in each dimension, with the

new (even) rows fi lled with 0s. Th ereaft er, a convolution is performed with the given

fi lter (actually, a fi lter twice as large in each dimension than that specifi ed*) to approxi-

mate the values of the “missing” pixels.

We noted previously that the operator PyrUp() is not the inverse of PyrDown(). Th is

should be evident because PyrDown() is an operator that loses information. In order to

restore the original (higher-resolution) image, we would require access to the informa-

tion that was discarded by the downsampling. Th is data forms the Laplacian pyramid.

Th e ith layer of the Laplacian pyramid is defi ned by the relation:

L G G
i i i
= − + ×UP()

1 5 5
G⊗

Here the operator UP() upsizes by mapping each pixel in location (x, y) in the original

image to pixel (2x + 1, 2y + 1) in the destination image; the ⊗ symbol denotes convolu-

tion; and G5×5 is a 5-by-5 Gaussian kernel. Of course, Gi – UP(Gi+1) ⊗ G5×5 is the defi nition

* Th is fi lter is also normalized to four, rather than to one. Th is is appropriate because the inserted rows have
0s in all of their pixels before the convolution.

05-R4886-AT1.indd 13105-R4886-AT1.indd 131 9/15/08 4:20:05 PM9/15/08 4:20:05 PM

www.it-ebooks.info

http://www.it-ebooks.info/

132 | Chapter 5: Image Processing

Th ere are many operations that can make extensive use of the Gaussian and Laplacian

pyramids, but a particularly important one is image segmentation (see Figure 5-22). In

this case, one builds an image pyramid and then associates to it a system of parent–child

relations between pixels at level Gi+1 and the corresponding reduced pixel at level Gi. In

this way, a fast initial segmentation can be done on the low-resolution images high in

the pyramid and then can be refi ned and further diff erentiated level by level.

Th is algorithm (due to B. Jaehne [Jaehne95; Antonisse82]) is implemented in OpenCV

as cvPyrSegmentation():

void cvPyrSegmentation(
 IplImage* src,
 IplImage* dst,

of the PyrUp() operator provided by OpenCv. Hence, we can use OpenCv to compute the

Laplacian operator directly as:

L G G
i i i
= − +PyrUp()

1

Th e Gaussian and Laplacian pyramids are shown diagrammatically in Figure 5-21,

which also shows the inverse process for recovering the original image from the sub-

images. Note how the Laplacian is really an approximation that uses the diff erence of

Gaussians, as revealed in the preceding equation and diagrammed in the fi gure.

Figure 5-21. Th e Gaussian pyramid and its inverse, the Laplacian pyramid

05-R4886-AT1.indd 13205-R4886-AT1.indd 132 9/15/08 4:20:06 PM9/15/08 4:20:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Image Pyramids | 133

 CvMemStorage* storage,
 CvSeq** comp,
 int level,
 double threshold1,
 double threshold2
);

As usual, src and dst are the source and destination images, which must both be 8-bit,

of the same size, and of the same number of channels (one or three). You might be

wondering, “What destination image?” Not an unreasonable question, actually. Th e

destination image dst is used as scratch space for the algorithm and also as a return

visualization of the segmentation. If you view this image, you will see that each segment

is colored in a single color (the color of some pixel in that segment). Because this image

is the algorithm’s scratch space, you cannot simply set it to NULL. Even if you do not want

the result, you must provide an image. One important word of warning about src and

dst: because all levels of the image pyramid must have integer sizes in both dimensions,

the starting images must be divisible by two as many times as there are levels in the

Figure 5-22. Pyramid segmentation with threshold1 set to 150 and threshold2 set to 30; the im-
ages on the right contain only a subsection of the images on the left because pyramid segmentation
requires images that are N-times divisible by 2, where N is the number of pyramid layers to be com-
puted (these are 512-by-512 areas from the original images)

05-R4886-AT1.indd 13305-R4886-AT1.indd 133 9/15/08 4:20:06 PM9/15/08 4:20:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

134 | Chapter 5: Image Processing

pyramid. For example, for a four-level pyramid, a height or width of 80 (2 × 2 × 2 × 5)

would be acceptable, but a value of 90 (2 × 3 × 3 × 5) would not.*

Th e pointer storage is for an OpenCV memory storage area. In Chapter 8 we will dis-

cuss such areas in more detail, but for now you should know that such a storage area is

allocated with a command like†

CvMemStorage* storage = cvCreateMemStorage();

Th e argument comp is a location for storing further information about the resulting seg-

mentation: a sequence of connected components is allocated from this memory storage.

Exactly how this works will be detailed in Chapter 8, but for convenience here we briefl y

summarize what you’ll need in the context of cvPyrSegmentation().

First of all, a sequence is essentially a list of structures of a particular kind. Given a

sequence, you can obtain the number of elements as well as a particular element if you

know both its type and its number in the sequence. Take a look at the Example 5-1

approach to accessing a sequence.

Example 5-1. Doing something with each element in the sequence of connected components returned
by cvPyrSegmentation()

void f(
 IplImage* src,
 IplImage* dst
) {
 CvMemStorage* storage = cvCreateMemStorage(0);
 CvSeq* comp = NULL;
 cvPyrSegmentation(src, dst, storage, &comp, 4, 200, 50);
 int n_comp = comp->total;
 for(int i=0; i<n_comp; i++) {
 CvConnectedComp* cc = (CvConnectedComp*) cvGetSeqElem(comp, i);
 do_something_with(cc);
 }
 cvReleaseMemStorage(&storage);
}

Th ere are several things you should notice in this example. First, observe the allocation

of a memory storage; this is where cvPyrSegmentation() will get the memory it needs

for the connected components it will have to create. Th en the pointer comp is allocated

as type CvSeq*. It is initialized to NULL because its current value means nothing. We will

pass to cvPyrSegmentation() a pointer to comp so that comp can be set to the location of

the sequence created by cvPyrSegmentation(). Once we have called the segmentation,

we can fi gure out how many elements there are in the sequence with the member ele-

ment total. Th ereaft er we can use the generic cvGetSeqElem() to obtain the ith element

of comp; however, because cvGetSeqElem() is generic and returns only a void pointer, we

must cast the return pointer to the appropriate type (in this case, CvConnectedComp*).

* Heed this warning! Otherwise, you will get a totally useless error message and probably waste hours trying
to fi gure out what’s going on.

† Actually, the current implementation of cvPyrSegmentation() is a bit incomplete in that it returns not the
computed segments but only the bounding rectangles (as CvSeq<CvConnectedComp>).

05-R4886-AT1.indd 13405-R4886-AT1.indd 134 9/15/08 4:20:07 PM9/15/08 4:20:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Threshold | 135

Finally, we need to know that a connected component is one of the basic structure types

in OpenCV. You can think of it as a way of describing a “blob” in an image. It has the

following defi nition:

typedef struct CvConnectedComponent {
 double area;
 CvScalar value;
 CvRect rect;
 CvSeq* contour;
};

Th e area is the area of the component. Th e value is the average color* over the area of

the component and rect is a bounding box for the component (defi ned in the coordi-

nates of the parent image). Th e fi nal element, contour, is a pointer to another sequence.

Th is sequence can be used to store a representation of the boundary of the component,

typically as a sequence of points (type CvPoint).

In the specifi c case of cvPyrSegmentation(), the contour member is not set. Th us, if you

want some specifi c representation of the component’s pixels then you will have to com-

pute it yourself. Th e method to use depends, of course, on the representation you have

in mind. Oft en you will want a Boolean mask with nonzero elements wherever the com-

ponent was located. You can easily generate this by using the rect portion of the con-

nected component as a mask and then using cvFloodFill() to select the desired pixels

inside of that rectangle.

Threshold
Frequently we have done many layers of processing steps and want either to make a

fi nal decision about the pixels in an image or to categorically reject those pixels below

or above some value while keeping the others. Th e OpenCV function cvThreshold() ac-

complishes these tasks (see survey [Sezgin04]). Th e basic idea is that an array is given,

along with a threshold, and then something happens to every element of the array de-

pending on whether it is below or above the threshold.

double cvThreshold(
 CvArr* src,
 CvArr* dst,
 double threshold,
 double max_value,
 int threshold_type
);

As shown in Table 5-5, each threshold type corresponds to a particular comparison op-

eration between the ith source pixel (srci) and the threshold (denoted in the table by T).

Depending on the relationship between the source pixel and the threshold, the destina-

tion pixel dsti may be set to 0, the srci, or the max_value (denoted in the table by M).

* Actually the meaning of value is context dependant and could be just about anything, but it is typically a
color associated with the component. In the case of cvPyrSegmentation(), value is the average color over
the segment.

05-R4886-AT1.indd 13505-R4886-AT1.indd 135 9/15/08 4:20:07 PM9/15/08 4:20:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

136 | Chapter 5: Image Processing

Figure 5-23. Results of varying the threshold type in cvTh reshold(). Th e horizontal line through each
chart represents a particular threshold level applied to the top chart and its eff ect for each of the fi ve
types of threshold operations below

Table 5-5. cvTh reshold() threshold_type options

Threshold type Operation

CV_THRESH_BINARY dst src ? : 0i i T M= >()

CV_THRESH_BINARY_INV dst src ? 0:i i T M= >()

CV_THRESH_TRUNC dst src ? : srci i iT M= >()

CV_THRESH_TOZERO_INV dst src ? 0: srci i iT= >()

CV_THRESH_TOZERO dst src ? src : 0i i iT= >()

Figure 5-23 should help to clarify the exact implications of each threshold type.

05-R4886-AT1.indd 13605-R4886-AT1.indd 136 9/15/08 4:20:07 PM9/15/08 4:20:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Threshold | 137

Let’s look at a simple example. In Example 5-2 we sum all three channels of an image

and then clip the result at 100.

Example 5-2. Example code making use of cvTh reshold()

#include <stdio.h>
#include <cv.h>
#include <highgui.h>
void sum_rgb(IplImage* src, IplImage* dst) {

 // Allocate individual image planes.
 IplImage* r = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
 IplImage* g = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
 IplImage* b = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);

 // Split image onto the color planes.
 cvSplit(src, r, g, b, NULL);

 // Temporary storage.
 IplImage* s = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);

 // Add equally weighted rgb values.
 cvAddWeighted(r, 1./3., g, 1./3., 0.0, s);
 cvAddWeighted(s, 2./3., b, 1./3., 0.0, s);

 // Truncate values above 100.
 cvThreshold(s, dst, 100, 100, CV_THRESH_TRUNC);

 cvReleaseImage(&r);
 cvReleaseImage(&g);
 cvReleaseImage(&b);
 cvReleaseImage(&s);
}

int main(int argc, char** argv)
{

 // Create a named window with the name of the file.
 cvNamedWindow(argv[1], 1);

 // Load the image from the given file name.
 IplImage* src = cvLoadImage(argv[1]);
 IplImage* dst = cvCreateImage(cvGetSize(src), src->depth, 1);
 sum_rgb(src, dst);

 // Show the image in the named window
 cvShowImage(argv[1], dst);

 // Idle until the user hits the “Esc” key.
 while(1) { if((cvWaitKey(10)&0x7f) == 27) break; }

 // Clean up and don’t be piggies
 cvDestroyWindow(argv[1]);

05-R4886-AT1.indd 13705-R4886-AT1.indd 137 9/15/08 4:20:08 PM9/15/08 4:20:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

138 | Chapter 5: Image Processing

 cvReleaseImage(&src);
 cvReleaseImage(&dst);

}

Some important ideas are shown here. One thing is that we don’t want to add into an

8-bit array because the higher bits will overfl ow. Instead, we use equally weighted ad-

dition of the three color channels (cvAddWeighted()); then the results are truncated to

saturate at the value of 100 for the return. Th e cvThreshold() function handles only 8-bit

or fl oating-point grayscale source images. Th e destination image must either match the

source image or be an 8-bit image. In fact, cvThreshold() also allows the source and des-

tination images to be the same image. Had we used a fl oating-point temporary image

s in Example 5-2, we could have substituted the code shown in Example 5-3. Note that

cvAcc() can accumulate 8-bit integer image types into a fl oating-point image; however,

cvADD() cannot add integer bytes into fl oats.

Example 5-3. Alternative method to combine and threshold image planes

IplImage* s = cvCreateImage(cvGetSize(src), IPL_DEPTH_32F, 1);
cvZero(s);
cvAcc(b,s);
cvAcc(g,s);
cvAcc(r,s);
cvThreshold(s, s, 100, 100, CV_THRESH_TRUNC);
cvConvertScale(s, dst, 1, 0);

Adaptive Threshold
Th ere is a modifi ed threshold technique in which the threshold level is itself variable. In

OpenCV, this method is implemented in the cvAdaptiveThreshold() [Jain86] function:

void cvAdaptiveThreshold(
 CvArr* src,
 CvArr* dst,
 double max_val,
 int adaptive_method = CV_ADAPTIVE_THRESH_MEAN_C
 int threshold_type = CV_THRESH_BINARY,
 int block_size = 3,
 double param1 = 5
);

cvAdaptiveThreshold() allows for two diff erent adaptive threshold types depending on

the settings of adaptive_method. In both cases the adaptive threshold T(x, y) is set on a

pixel-by-pixel basis by computing a weighted average of the b-by-b region around each

pixel location minus a constant, where b is given by block_size and the constant is given

by param1. If the method is set to CV_ADAPTIVE_THRESH_MEAN_C, then all pixels in the area

are weighted equally. If it is set to CV_ADAPTIVE_THRESH_GAUSSIAN_C, then the pixels in the

region around (x, y) are weighted according to a Gaussian function of their distance

from that center point.

Example 5-2. Example code making use of cvTh reshold() (continued)

05-R4886-AT1.indd 13805-R4886-AT1.indd 138 9/15/08 4:20:08 PM9/15/08 4:20:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Threshold | 139

Finally, the parameter threshold_type is the same as for cvThreshold() shown in

Table 5-5.

Th e adaptive threshold technique is useful when there are strong illumination or refl ec-

tance gradients that you need to threshold relative to the general intensity gradient. Th is

function handles only single-channel 8-bit or fl oating-point images, and it requires that

the source and destination images be distinct.

Source code for comparing cvAdaptiveThreshold() and cvThreshold() is shown in Exam-

ple 5-4. Figure 5-24 displays the result of processing an image that has a strong lighting

gradient across it. Th e lower-left portion of the fi gure shows the result of using a single

global threshold as in cvThreshold(); the lower-right portion shows the result of adaptive

local threshold using cvAdaptiveThreshold(). We get the whole checkerboard via adap-

tive threshold, a result that is impossible to achieve when using a single threshold. Note

the calling-convention comments at the top of the code in Example 5-4; the parameters

used for Figure 5-24 were:

./adaptThresh 15 1 1 71 15 ../Data/cal3-L.bmp

Figure 5-24. Binary threshold versus adaptive binary threshold: the input image (top) was turned
into a binary image using a global threshold (lower left) and an adaptive threshold (lower right); raw
image courtesy of Kurt Konolidge

05-R4886-AT1.indd 13905-R4886-AT1.indd 139 9/15/08 4:20:08 PM9/15/08 4:20:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

140 | Chapter 5: Image Processing

Example 5-4. Th reshold versus adaptive threshold

// Compare thresholding with adaptive thresholding
// CALL:
// ./adaptThreshold Threshold 1binary 1adaptivemean \
// blocksize offset filename
#include “cv.h”
#include “highgui.h”
#include “math.h”
IplImage *Igray=0, *It = 0, *Iat;
int main(int argc, char** argv)
{
 if(argc != 7){return -1; }

 //Command line
 double threshold = (double)atof(argv[1]);
 int threshold_type = atoi(argv[2]) ?
 CV_THRESH_BINARY : CV_THRESH_BINARY_INV;
 int adaptive_method = atoi(argv[3]) ?
 CV_ADAPTIVE_THRESH_MEAN_C : CV_ADAPTIVE_THRESH_GAUSSIAN_C;
 int block_size = atoi(argv[4]);
 double offset = (double)atof(argv[5]);

 //Read in gray image
 if((Igray = cvLoadImage(argv[6], CV_LOAD_IMAGE_GRAYSCALE)) == 0){
 return -1;}

 // Create the grayscale output images
 It = cvCreateImage(cvSize(Igray->width,Igray->height),
 IPL_DEPTH_8U, 1);
 Iat = cvCreateImage(cvSize(Igray->width,Igray->height),
 IPL_DEPTH_8U, 1);
 //Threshold
 cvThreshold(Igray,It,threshold,255,threshold_type);
 cvAdaptiveThreshold(Igray, Iat, 255, adaptive_method,
 threshold_type, block_size, offset);
 //PUT UP 2 WINDOWS
 cvNamedWindow(“Raw”,1);
 cvNamedWindow(“Threshold”,1);
 cvNamedWindow(“Adaptive Threshold”,1);

 //Show the results
 cvShowImage(“Raw”,Igray);
 cvShowImage(“Threshold”,It);
 cvShowImage(“Adaptive Threshold”,Iat);

 cvWaitKey(0);

 //Clean up
 cvReleaseImage(&Igray);
 cvReleaseImage(&It);
 cvReleaseImage(&Iat);
 cvDestroyWindow(“Raw”);
 cvDestroyWindow(“Threshold”);

05-R4886-AT1.indd 14005-R4886-AT1.indd 140 9/15/08 4:20:08 PM9/15/08 4:20:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 141

 cvDestroyWindow(“Adaptive Threshold”);
 return(0);
}

Exercises
Load an image with interesting textures. Smooth the image in several ways using 1.

cvSmooth() with smoothtype=CV_GAUSSIAN.

Use a symmetric 3-by-3, 5-by-5, 9-by-9 and 11-by-11 smoothing window size a.

and display the results.

Are the output results nearly the same by smoothing the image twice with a b.

5-by-5 Gaussian fi lter as when you smooth once with two 11-by-11 fi lters? Why

or why not?

Display the fi lter, creating a 100-by-100 single-channel image. Clear it and set the 2.

center pixel equal to 255.

Smooth this image with a 5-by-5 Gaussian fi lter and display the results. What a.

did you fi nd?

Do this again but now with a 9-by-9 Gaussian fi lter.b.

What does it look like if you start over and smooth the image twice with the c.

5-by-5 fi lter? Compare this with the 9-by-9 results. Are they nearly the same?

Why or why not?

Load an interesting image. Again, blur it with 3. cvSmooth() using a Gaussian fi lter.

Set a. param1=param2=9. Try several settings of param3 (e.g., 1, 4, and 6). Display the

results.

Th is time, set b. param1=param2=0 before setting param3 to 1, 4, and 6. Display the

results. Are they diff erent? Why?

Again use c. param1=param2=0 but now set param3=1 and param4=9. Smooth the pic-

ture and display the results.

Repeat part c but with d. param3=9 and param4=1. Display the results.

Now smooth the image once with the settings of part c and once with the set-e.

tings of part d. Display the results.

Compare the results in part e with smoothings that use f. param3=param4=9 and

param3=param4=0 (i.e., a 9-by-9 fi lter). Are the results the same? Why or why not?

Use a camera to take two pictures of the same scene while moving the camera as 4.

little as possible. Load these images into the computer as src1 and src1.

Take the absolute value of a. src1 minus src1 (subtract the images); call it diff12

and display. If this were done perfectly, diff12 would be black. Why isn’t it?

Example 5-4. Th reshold versus adaptive threshold (continued)

05-R4886-AT1.indd 14105-R4886-AT1.indd 141 9/15/08 4:20:09 PM9/15/08 4:20:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

142 | Chapter 5: Image Processing

Create b. cleandiff by using cvErode() and then cvDilate() on diff12. Display the

results.

Create c. dirtydiff by using cvDilate() and then cvErode() on diff12 and then

display.

Explain the diff erence between d. cleandiff and dirtydiff.

Take a picture of a scene. Th en, without moving the camera, put a coff ee cup in the 5.

scene and take a second picture. Load these images and convert both to 8-bit gray-

scale images.

Take the absolute value of their diff erence. Display the result, which should a.

look like a noisy mask of a coff ee mug.

Do a binary threshold of the resulting image using a level that preserves most b.

of the coff ee mug but removes some of the noise. Display the result. Th e “on”

values should be set to 255.

Do a c. CV_MOP_OPEN on the image to further clean up noise.

Create a clean mask from noise. Aft er completing exercise 5, continue by keeping 6.

only the largest remaining shape in the image. Set a pointer to the upper left of the

image and then traverse the image. When you fi nd a pixel of value 255 (“on”), store

the location and then fl ood fi ll it using a value of 100. Read the connected component

returned from fl ood fi ll and record the area of fi lled region. If there is another larger

region in the image, then fl ood fi ll the smaller region using a value of 0 and delete

its recorded area. If the new region is larger than the previous region, then fl ood fi ll

the previous region using the value 0 and delete its location. Finally, fi ll the remain-

ing largest region with 255. Display the results. We now have a single, solid mask for

the coff ee mug.

For this exercise, use the mask created in exercise 6 or create another mask of your 7.

own (perhaps by drawing a digital picture, or simply use a square). Load an outdoor

scene. Now use this mask with cvCopy(), to copy an image of a mug into the scene.

Create a low-variance random image (use a random number call such that the 8.

numbers don’t diff er by much more than 3 and most numbers are near 0). Load the

image into a drawing program such as PowerPoint and then draw a wheel of lines

meeting at a single point. Use bilateral fi ltering on the resulting image and explain

the results.

Load an image of a scene and convert it to grayscale.9.

Run the morphological Top Hat operation on your image and display the a.

results.

Convert the resulting image into an 8-bit mask.b.

Copy a grayscale value into the Top Hat pieces and display the results.c.

Load an image with many details.10.

05-R4886-AT1.indd 14205-R4886-AT1.indd 142 9/15/08 4:20:09 PM9/15/08 4:20:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 143

Use a. cvResize() to reduce the image by a factor of 2 in each dimension (hence

the image will be reduced by a factor of 4). Do this three times and display the

results.

Now take the original image and use b. cvPyrDown() to reduce it three times and

then display the results.

How are the two results diff erent? Why are the approaches diff erent?c.

Load an image of a scene. Use 11. cvPyrSegmentation() and display the results.

Load an image of an interesting or suffi ciently “rich” scene. Using 12. cvThreshold(),

set the threshold to 128. Use each setting type in Table 5-5 on the image and display

the results. You should familiarize yourself with thresholding functions because

they will prove quite useful.

Repeat the exercise but use a. cvAdaptiveThreshold() instead. Set param1=5.

Repeat part a using b. param1=0 and then param1=-5.

05-R4886-AT1.indd 14305-R4886-AT1.indd 143 9/15/08 4:20:09 PM9/15/08 4:20:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

144

CHAPTER 6

Image Transforms

Overview
In the previous chapter we covered a lot of diff erent things you could do with an image.

Th e majority of the operators presented thus far are used to enhance, modify, or other-

wise “process” one image into a similar but new image.

In this chapter we will look at image transforms, which are methods for changing an

image into an alternate representation of the data entirely. Perhaps the most common

example of a transform would be a something like a Fourier transform, in which the im-

age is converted to an alternate representation of the data in the original image. Th e re-

sult of this operation is still stored in an OpenCV “image” structure, but the individual

“pixels” in this new image represent spectral components of the original input rather

than the spatial components we are used to thinking about.

Th ere are a number of useful transforms that arise repeatedly in computer vision.

OpenCV provides complete implementations of some of the more common ones as well

as building blocks to help you implement your own image transforms.

Convolution
Convolution is the basis of many of the transformations that we discuss in this chapter.

In the abstract, this term means something we do to every part of an image. In this

sense, many of the operations we looked at in Chapter 5 can also be understood as spe-

cial cases of the more general process of convolution. What a particular convolution

“does” is determined by the form of the Convolution kernel being used. Th is kernel is

essentially just a fi xed size array of numerical coeffi cients along with an anchor point

in that array, which is typically located at the center. Th e size of the array* is called the

support of the kernel.

Figure 6-1 depicts a 3-by-3 convolution kernel with the anchor located at the center of

the array. Th e value of the convolution at a particular point is computed by fi rst placing

* For technical purists, the support of the kernel actually consists of only the nonzero portion of the kernel
array.

06-R4886-RC1.indd 14406-R4886-RC1.indd 144 9/15/08 4:21:12 PM9/15/08 4:21:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Convolution | 145

the kernel anchor on top of a pixel on the image with the rest of the kernel overlaying

the corresponding local pixels in the image. For each kernel point, we now have a value

for the kernel at that point and a value for the image at the corresponding image point.

We multiply these together and sum the result; this result is then placed in the resulting

image at the location corresponding to the location of the anchor in the input image.

Th is process is repeated for every point in the image by scanning the kernel over the

entire image.

We can, of course, express this procedure in the form of an equation. If we defi ne the

image to be I(x, y), the kernel to be G(i, j) (where 0 < i < Mi –1 and 0 < j < Mj –1), and the

anchor point to be located at (ai, aj) in the coordinates of the kernel, then the convolu-

tion H(x, y) is defi ned by the following expression:

H x y I x i a y j a G i j
i j

j

M

i

M ji

(,) (,) (,)= + − + −
=

−

=

−

∑
0

1

0

11

∑

Observe that the number of operations, at least at fi rst glance, seems to be the number

of pixels in the image multiplied by the number of pixels in the kernel.* Th is can be a lot

of computation and so is not something you want to do with some “for” loop and a lot of

pointer de-referencing. In situations like this, it is better to let OpenCV do the work for

you and take advantage of the optimizations already programmed into OpenCV. Th e

OpenCV way to do this is with cvFilter2D():

void cvFilter2D(
 const CvArr* src,
 CvArr* dst,
 const CvMat* kernel,

* We say “at fi rst glance” because it is also possible to perform convolutions in the frequency domain. In this
case, for an N-by-N image and an M-by-M kernel with N > M, the computational time will be proportional
to N2 log(N) and not to the N2M2 that is expected for computations in the spatial domain. Because the
frequency domain computation is independent of the size of the kernel, it is more effi cient for large kernels.
OpenCV automatically decides whether to do the convolution in the frequency domain based on the size of
the kernel.

Figure 6-1. A 3-by-3 kernel for a Sobel derivative; note that the anchor point is in the center of the
kernel

06-R4886-RC1.indd 14506-R4886-RC1.indd 145 9/15/08 4:21:13 PM9/15/08 4:21:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

146 | Chapter 6: Image Transforms

 CvPoint anchor = cvPoint(-1,-1)
);

Here we create a matrix of the appropriate size, fi ll it with the coeffi cients, and then

pass it together with the source and destination images into cvFilter2D(). We can also

optionally pass in a CvPoint to indicate the location of the center of the kernel, but the

default value (equal to cvPoint(-1,-1)) is interpreted as indicating the center of the ker-

nel. Th e kernel can be of even size if its anchor point is defi ned; otherwise, it should be

of odd size.

Th e src and dst images should be the same size. One might think that the src image

should be larger than the dst image in order to allow for the extra width and length

of the convolution kernel. But the sizes of the src and dst can be the same in OpenCV

because, by default, prior to convolution OpenCV creates virtual pixels via replication

past the border of the src image so that the border pixels in dst can be fi lled in. Th e rep-

lication is done as input(–dx, y) = input(0, y), input(w + dx, y) = input(w – 1, y), and so

forth. Th ere are some alternatives to this default behavior; we will discuss them in the

next section.

We remark that the coeffi cients of the convolution kernel should always be fl oating-

point numbers. Th is means that you should use CV_32FC1 when allocating that matrix.

Convolution Boundaries
One problem that naturally arises with convolutions is how to handle the boundaries.

For example, when using the convolution kernel just described, what happens when the

point being convolved is at the edge of the image? Most of OpenCV’s built-in functions

that make use of cvFilter2D() must handle this in one way or another. Similarly, when

doing your own convolutions, you will need to know how to deal with this effi ciently.

Th e solution comes in the form of the cvCopyMakeBorder() function, which copies a given

image onto another slightly larger image and then automatically pads the boundary in

one way or another:

void cvCopyMakeBorder(
 const CvArr* src,
 CvArr* dst,
 CvPoint offset,
 int bordertype,
 CvScalar value = cvScalarAll(0)
);

Th e offset argument tells cvCopyMakeBorder() where to place the copy of the original

image within the destination image. Typically, if the kernel is N-by-N (for odd N) then

you will want a boundary that is (N – 1)/2 wide on all sides or, equivalently, an image

that is N – 1 wider and taller than the original. In this case you would set the off set to

cvPoint((N-1)/2,(N-1)/2) so that the boundary would be even on all sides.*

* Of course, the case of N-by-N with N odd and the anchor located at the center is the simplest case. In gen-
eral, if the kernel is N-by-M and the anchor is located at (ax, ay), then the destination image will have to be
N – 1 pixels wider and M – 1 pixels taller than the source image. Th e off set will simply be (ax, ay).

06-R4886-RC1.indd 14606-R4886-RC1.indd 146 9/15/08 4:21:13 PM9/15/08 4:21:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Convolution | 147

Th e bordertype can be either IPL_BORDER_CONSTANT or IPL_BORDER_REPLICATE (see Figure 6-2).

In the fi rst case, the value argument will be interpreted as the value to which all pixels

in the boundary should be set. In the second case, the row or column at the very edge of

the original is replicated out to the edge of the larger image. Note that the border of the

test pattern image is somewhat subtle (examine the upper right image in Figure 6-2); in

the test pattern image, there’s a one-pixel-wide dark border except where the circle pat-

terns come near the border where it turns white. Th ere are two other border types de-

fi ned, IPL_BORDER_REFLECT and IPL_BORDER_WRAP, which are not implemented at this time

in OpenCV but may be supported in the future.

We mentioned previously that, when you make calls to OpenCV library functions that

employ convolution, those library functions call cvCopyMakeBorder() to get their work

done. In most cases the border type called is IPL_BORDER_REPLICATE, but sometimes you

will not want it to be done that way. Th is is another occasion where you might want to

use cvCopyMakeBorder(). You can create a slightly larger image with the border you want,

call whatever routine on that image, and then clip back out the part you were originally

interested in. Th is way, OpenCV’s automatic bordering will not aff ect the pixels you

care about.

Figure 6-2. Expanding the image border. Th e left column shows IPL_BORDER_CONSTANT where a
zero value is used to fi ll out the borders. Th e right column shows IPL_BORDER_REPLICATE where
the border pixels are replicated in the horizontal and vertical directions

06-R4886-RC1.indd 14706-R4886-RC1.indd 147 9/15/08 4:21:13 PM9/15/08 4:21:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

148 | Chapter 6: Image Transforms

Gradients and Sobel Derivatives
One of the most basic and important convolutions is the computation of derivatives (or

approximations to them). Th ere are many ways to do this, but only a few are well suited

to a given situation.

In general, the most common operator used to represent diff erentiation is the Sobel de-

rivative [Sobel68] operator (see Figures 6-3 and 6-4). Sobel operators exist for any order

of derivative as well as for mixed partial derivatives (e.g., ∂ ∂ ∂2/ x y).

cvSobel(
 const CvArr* src,
 CvArr* dst,
 int xorder,
 int yorder,
 int aperture_size = 3
);

Here, src and dst are your image input and output, and xorder and yorder are the orders

of the derivative. Typically you’ll use 0, 1, or at most 2; a 0 value indicates no derivative

Figure 6-3. Th e eff ect of the Sobel operator when used to approximate a fi rst derivative in the
x-dimension

06-R4886-RC1.indd 14806-R4886-RC1.indd 148 9/15/08 4:21:14 PM9/15/08 4:21:14 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Gradients and Sobel Derivatives | 149

in that direction.* Th e aperture_size parameter should be odd and is the width (and the

height) of the square fi lter. Currently, aperture_sizes of 1, 3, 5, and 7 are supported. If

src is 8-bit then the dst must be of depth IPL_DEPTH_16S to avoid overfl ow.

Sobel derivatives have the nice property that they can be defi ned for kernels of any

size, and those kernels can be constructed quickly and iteratively. Th e larger kernels

give a better approximation to the derivative because the smaller kernels are very sen-

sitive to noise.

To understand this more exactly, we must realize that a Sobel derivative is not really a

derivative at all. Th is is because the Sobel operator is defi ned on a discrete space. What

the Sobel operator actually represents is a fi t to a polynomial. Th at is, the Sobel deriva-

tive of second order in the x-direction is not really a second derivative; it is a local fi t to a

parabolic function. Th is explains why one might want to use a larger kernel: that larger

kernel is computing the fi t over a larger number of pixels.

* Either xorder or yorder must be nonzero.

Figure 6-4. Th e eff ect of the Sobel operator when used to approximate a fi rst derivative in the
y-dimension

06-R4886-RC1.indd 14906-R4886-RC1.indd 149 9/15/08 4:21:14 PM9/15/08 4:21:14 PM

www.it-ebooks.info

http://www.it-ebooks.info/

150 | Chapter 6: Image Transforms

Scharr Filter
In fact, there are many ways to approximate a derivative in the case of a discrete grid.

Th e downside of the approximation used for the Sobel operator is that it is less accurate

for small kernels. For large kernels, where more points are used in the approximation,

this problem is less signifi cant. Th is inaccuracy does not show up directly for the X and

Y fi lters used in cvSobel(), because they are exactly aligned with the x- and y-axes. Th e

diffi culty arises when you want to make image measurements that are approximations

of directional derivatives (i.e., direction of the image gradient by using the arctangent of

the y/x fi lter responses).

To put this in context, a concrete example of where you may want image measurements

of this kind would be in the process of collecting shape information from an object

by assembling a histogram of gradient angles around the object. Such a histogram is

the basis on which many common shape classifi ers are trained and operated. In this

case, inaccurate measures of gradient angle will decrease the recognition performance

of the classifi er.

For a 3-by-3 Sobel fi lter, the inaccuracies are more apparent the further the gradient angle

is from horizontal or vertical. OpenCV addresses this inaccuracy for small (but fast)

3-by-3 Sobel derivative fi lters by a somewhat obscure use of the special aperture_size

value CV_SCHARR in the cvSobel() function. Th e Scharr fi lter is just as fast but more ac-

curate than the Sobel fi lter, so it should always be used if you want to make image mea-

surements using a 3-by-3 fi lter. Th e fi lter coeffi cients for the Scharr fi lter are shown in

Figure 6-5 [Scharr00].

Laplace
Th e OpenCV Laplacian function (fi rst used in vision by Marr [Marr82]) implements a

discrete analog of the Laplacian operator:*

* Note that the Laplacian operator is completely distinct from the Laplacian pyramid of Chapter 5.

Figure 6-5. Th e 3-by-3 Scharr fi lter using fl ag CV_SHARR

06-R4886-RC1.indd 15006-R4886-RC1.indd 150 9/15/08 4:21:14 PM9/15/08 4:21:14 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Canny | 151

Laplace()f
f

x

f

y
≡
∂

∂
+
∂

∂

2

2

2

2

Because the Laplacian operator can be defi ned in terms of second derivatives, you might

well suppose that the discrete implementation works something like the second-order

Sobel derivative. Indeed it does, and in fact the OpenCV implementation of the Lapla-

cian operator uses the Sobel operators directly in its computation.

void cvLaplace(
 const CvArr* src,
 CvArr* dst,
 int apertureSize = 3
);

Th e cvLaplace() function takes the usual source and destination images as arguments as

well as an aperture size. Th e source can be either an 8-bit (unsigned) image or a 32-bit

(fl oating-point) image. Th e destination must be a 16-bit (signed) image or a 32-bit (fl oat-

ing-point) image. Th is aperture is precisely the same as the aperture appearing in the

Sobel derivatives and, in eff ect, gives the size of the region over which the pixels are

sampled in the computation of the second derivatives.

Th e Laplace operator can be used in a variety of contexts. A common application is to

detect “blobs.” Recall that the form of the Laplacian operator is a sum of second de-

rivatives along the x-axis and y-axis. Th is means that a single point or any small blob

(smaller than the aperture) that is surrounded by higher values will tend to maximize

this function. Conversely, a point or small blob that is surrounded by lower values will

tend to maximize the negative of this function.

With this in mind, the Laplace operator can also be used as a kind of edge detector. To

see how this is done, consider the fi rst derivative of a function, which will (of course)

be large wherever the function is changing rapidly. Equally important, it will grow rap-

idly as we approach an edge-like discontinuity and shrink rapidly as we move past the

discontinuity. Hence the derivative will be at a local maximum somewhere within this

range. Th erefore we can look to the 0s of the second derivative for locations of such local

maxima. Got that? Edges in the original image will be 0s of the Laplacian. Unfortu-

nately, both substantial and less meaningful edges will be 0s of the Laplacian, but this is

not a problem because we can simply fi lter out those pixels that also have larger values

of the fi rst (Sobel) derivative. Figure 6-6 shows an example of using a Laplacian on an

image together with details of the fi rst and second derivatives and their zero crossings.

Canny
Th e method just described for fi nding edges was further refi ned by J. Canny in 1986 into

what is now commonly called the Canny edge detector [Canny86]. One of the diff erences

between the Canny algorithm and the simpler, Laplace-based algorithm from the previ-

ous section is that, in the Canny algorithm, the fi rst derivatives are computed in x and y

and then combined into four directional derivatives. Th e points where these directional

derivatives are local maxima are then candidates for assembling into edges.

06-R4886-RC1.indd 15106-R4886-RC1.indd 151 9/15/08 4:21:15 PM9/15/08 4:21:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

152 | Chapter 6: Image Transforms

However, the most signifi cant new dimension to the Canny algorithm is that it tries to

assemble the individual edge candidate pixels into contours.* Th ese contours are formed

by applying an hysteresis threshold to the pixels. Th is means that there are two thresh-

olds, an upper and a lower. If a pixel has a gradient larger than the upper threshold,

then it is accepted as an edge pixel; if a pixel is below the lower threshold, it is rejected.

If the pixel’s gradient is between the thresholds, then it will be accepted only if it is

connected to a pixel that is above the high threshold. Canny recommended a ratio of

high:low threshold between 2:1 and 3:1. Figures 6-7 and 6-8 show the results of applying

cvCanny() to a test pattern and a photograph using high:low hysteresis threshold ratios

of 5:1 and 3:2, respectively.

void cvCanny(
 const CvArr* img,
 CvArr* edges,
 double lowThresh,
 double highThresh,
 int apertureSize = 3
);

* We’ll have much more to say about contours later. As you await those revelations, though, keep in mind that
the cvCanny() routine does not actually return objects of type CvContour; we will have to build those from
the output of cvCanny() if we want them by using cvFindContours(). Everything you ever wanted to know
about contours will be covered in Chapter 8.

Figure 6-6. Laplace transform (upper right) of the racecar image: zooming in on the tire (circled in
white) and considering only the x-dimension, we show a (qualitative) representation of the bright-
ness as well as the fi rst and second derivative (lower three cells); the 0s in the second derivative corre-
spond to edges, and the 0 corresponding to a large fi rst derivative is a strong edge

06-R4886-RC1.indd 15206-R4886-RC1.indd 152 9/15/08 4:21:15 PM9/15/08 4:21:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Hough Transforms | 153

Th e cvCanny() function expects an input image, which must be grayscale, and an output

image, which must also be grayscale (but which will actually be a Boolean image). Th e

next two arguments are the low and high thresholds, and the last argument is another

aperture. As usual, this is the aperture used by the Sobel derivative operators that are

called inside of the implementation of cvCanny().

Hough Transforms
Th e Hough transform* is a method for fi nding lines, circles, or other simple forms in an

image. Th e original Hough transform was a line transform, which is a relatively fast way

of searching a binary image for straight lines. Th e transform can be further generalized

to cases other than just simple lines.

Hough Line Transform
Th e basic theory of the Hough line transform is that any point in a binary image could

be part of some set of possible lines. If we parameterize each line by, for example, a

* Hough developed the transform for use in physics experiments [Hough59]; its use in vision was introduced
by Duda and Hart [Duda72].

Figure 6-7. Results of Canny edge detection for two diff erent images when the high and low thresh-
olds are set to 50 and 10, respectively

06-R4886-RC1.indd 15306-R4886-RC1.indd 153 9/15/08 4:21:15 PM9/15/08 4:21:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

154 | Chapter 6: Image Transforms

slope a and an intercept b, then a point in the original image is transformed to a locus

of points in the (a, b) plane corresponding to all of the lines passing through that point

(see Figure 6-9). If we convert every nonzero pixel in the input image into such a set of

points in the output image and sum over all such contributions, then lines that appear

in the input (i.e., (x, y) plane) image will appear as local maxima in the output (i.e.,

(a, b) plane) image. Because we are summing the contributions from each point, the

(a, b) plane is commonly called the accumulator plane.

It might occur to you that the slope-intercept form is not really the best way to repre-

sent all of the lines passing through a point (because of the considerably diff erent den-

sity of lines as a function of the slope, and the related fact that the interval of possible

slopes goes from –∞ to +∞). It is for this reason that the actual parameterization of the

transform image used in numerical computation is somewhat diff erent. Th e preferred

parameterization represents each line as a point in polar coordinates (ρ, θ), with the

implied line being the line passing through the indicated point but perpendicular to the

radial from the origin to that point (see Figure 6-10). Th e equation for such a line is:

ρ θ θ= +x ycos sin

Figure 6-8. Results of Canny edge detection for two diff erent images when the high and low thresh-
olds are set to 150 and 100, respectively

06-R4886-RC1.indd 15406-R4886-RC1.indd 154 9/15/08 4:21:15 PM9/15/08 4:21:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Hough Transforms | 155

Figure 6-9. Th e Hough line transform fi nds many lines in each image; some of the lines found are
expected, but others may not be

Figure 6-10. A point (x0, y0) in the image plane (panel a) implies many lines each parameterized by
a diff erent ρ and θ (panel b); these lines each imply points in the (ρ, θ) plane, which taken together
form a curve of characteristic shape (panel c)

06-R4886-RC1.indd 15506-R4886-RC1.indd 155 9/15/08 4:21:16 PM9/15/08 4:21:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

156 | Chapter 6: Image Transforms

Th e OpenCV Hough transform algorithm does not make this computation explicit

to the user. Instead, it simply returns the local maxima in the (ρ, θ) plane. However,

you will need to understand this process in order to understand the arguments to the

OpenCV Hough line transform function.

OpenCV supports two diff erent kinds of Hough line transform: the standard Hough

transform (SHT) [Duda72] and the progressive probabilistic Hough transform (PPHT).*

Th e SHT is the algorithm we just looked at. Th e PPHT is a variation of this algorithm

that, among other things, computes an extent for individual lines in addition to the

orientation (as shown in Figure 6-11). It is “probabilistic” because, rather than accu-

mulating every possible point in the accumulator plane, it accumulates only a fraction

of them. Th e idea is that if the peak is going to be high enough anyhow, then hitting it

only a fraction of the time will be enough to fi nd it; the result of this conjecture can be

a substantial reduction in computation time. Both of these algorithms are accessed with

the same OpenCV function, though the meanings of some of the arguments depend on

which method is being used.

CvSeq* cvHoughLines2(
 CvArr* image,
 void* line_storage,
 int method,
 double rho,
 double theta,
 int threshold,
 double param1 = 0,
 double param2 = 0
);

Th e fi rst argument is the input image. It must be an 8-bit image, but the input is treated

as binary information (i.e., all nonzero pixels are considered to be equivalent). Th e sec-

ond argument is a pointer to a place where the results can be stored, which can be either

a memory storage (see CvMemoryStorage in Chapter 8) or a plain N-by-1 matrix array (the

number of rows, N, will serve to limit the maximum number of lines returned). Th e

next argument, method, can be CV_HOUGH_STANDARD, CV_HOUGH_PROBABILISTIC, or CV_HOUGH_
MULTI_SCALE for (respectively) SHT, PPHT, or a multiscale variant of SHT.

Th e next two arguments, rho and theta, set the resolution desired for the lines (i.e., the

resolution of the accumulator plane). Th e units of rho are pixels and the units of theta

are radians; thus, the accumulator plane can be thought of as a two-dimensional his-

togram with cells of dimension rho pixels by theta radians. Th e threshold value is the

value in the accumulator plane that must be reached for the routine to report a line.

Th is last argument is a bit tricky in practice; it is not normalized, so you should expect

to scale it up with the image size for SHT. Remember that this argument is, in eff ect,

indicating the number of points (in the edge image) that must support the line for the

line to be returned.

* Th e “probablistic Hough transform” (PHT) was introduced by Kiryati, Eldar, and Bruckshtein in 1991
[Kiryati91]; the PPHT was introduced by Matas, Galambosy, and Kittler in 1999 [Matas00].

06-R4886-RC1.indd 15606-R4886-RC1.indd 156 9/15/08 4:21:16 PM9/15/08 4:21:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Hough Transforms | 157

Th e param1 and param2 arguments are not used by the SHT. For the PPHT, param1 sets

the minimum length of a line segment that will be returned, and param2 sets the sep-

aration between collinear segments required for the algorithm not to join them into

a single longer segment. For the multiscale HT, the two parameters are used to indi-

cate higher resolutions to which the parameters for the lines should be computed. Th e

multiscale HT fi rst computes the locations of the lines to the accuracy given by the rho

and theta parameters and then goes on to refi ne those results by a factor of param1 and

param2, respectively (i.e., the fi nal resolution in rho is rho divided by param1 and the fi nal

resolution in theta is theta divided by param2).

What the function returns depends on how it was called. If the line_storage value was

a matrix array, then the actual return value will be NULL. In this case, the matrix should

be of type CV_32FC2 if the SHT or multi-scale HT is being used and should be CV_32SC4 if

the PPHT is being used. In the fi rst two cases, the ρ- and θ-values for each line will be

placed in the two channels of the array. In the case of the PPHT, the four channels will

hold the x- and y-values of the start and endpoints of the returned segments. In all of

these cases, the number of rows in the array will be updated by cvHoughLines2() to cor-

rectly refl ect the number of lines returned.

Figure 6-11. Th e Canny edge detector (param1=50, param2=150) is run fi rst, with the results shown
in gray, and the progressive probabilistic Hough transform (param1=50, param2=10) is run next,
with the results overlayed in white; you can see that the strong lines are generally picked up by the
Hough transform

06-R4886-RC1.indd 15706-R4886-RC1.indd 157 9/15/08 4:21:16 PM9/15/08 4:21:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

158 | Chapter 6: Image Transforms

If the line_storage value was a pointer to a memory store,* then the return value will

be a pointer to a CvSeq sequence structure. In that case, you can get each line or line seg-

ment from the sequence with a command like

float* line = (float*) cvGetSeqElem(lines , i);

where lines is the return value from cvHoughLines2() and i is index of the line of inter-

est. In this case, line will be a pointer to the data for that line, with line[0] and line[1]

being the fl oating-point values ρ and θ (for SHT and MSHT) or CvPoint structures for

the endpoints of the segments (for PPHT).

Hough Circle Transform
Th e Hough circle transform [Kimme75] (see Figure 6-12) works in a manner roughly

analogous to the Hough line transforms just described. Th e reason it is only “roughly”

is that—if one were to try doing the exactly analogous thing—the accumulator plane

would have to be replaced with an accumulator volume with three dimensions: one for

x, one for y, and another for the circle radius r. Th is would mean far greater memory

requirements and much slower speed. Th e implementation of the circle transform

in OpenCV avoids this problem by using a somewhat more tricky method called the

Hough gradient method.

Th e Hough gradient method works as follows. First the image is passed through an edge

detection phase (in this case, cvCanny()). Next, for every nonzero point in the edge image,

the local gradient is considered (the gradient is computed by fi rst computing the fi rst-

order Sobel x- and y-derivatives via cvSobel()). Using this gradient, every point along

the line indicated by this slope—from a specifi ed minimum to a specifi ed maximum

distance—is incremented in the accumulator. At the same time, the location of every

one of these nonzero pixels in the edge image is noted. Th e candidate centers are then

selected from those points in this (two-dimensional) accumulator that are both above

some given threshold and larger than all of their immediate neighbors. Th ese candidate

centers are sorted in descending order of their accumulator values, so that the centers

with the most supporting pixels appear fi rst. Next, for each center, all of the nonzero

pixels (recall that this list was built earlier) are considered. Th ese pixels are sorted ac-

cording to their distance from the center. Working out from the smallest distances to

the maximum radius, a single radius is selected that is best supported by the nonzero

pixels. A center is kept if it has suffi cient support from the nonzero pixels in the edge

image and if it is a suffi cient distance from any previously selected center.

Th is implementation enables the algorithm to run much faster and, perhaps more im-

portantly, helps overcome the problem of the otherwise sparse population of a three-

dimensional accumulator, which would lead to a lot of noise and render the results

unstable. On the other hand, this algorithm has several shortcomings that you should

be aware of.

* We have not yet introduced the concept of a memory store or a sequence, but Chapter 8 is devoted to this
topic.

06-R4886-RC1.indd 15806-R4886-RC1.indd 158 9/15/08 4:21:17 PM9/15/08 4:21:17 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Hough Transforms | 159

First, the use of the Sobel derivatives to compute the local gradient—and the attendant

assumption that this can be considered equivalent to a local tangent—is not a numeri-

cally stable proposition. It might be true “most of the time,” but you should expect this

to generate some noise in the output.

Second, the entire set of nonzero pixels in the edge image is considered for every can-

didate center; hence, if you make the accumulator threshold too low, the algorithm will

take a long time to run. Th ird, because only one circle is selected for every center, if

there are concentric circles then you will get only one of them.

Finally, because centers are considered in ascending order of their associated accu-

mulator value and because new centers are not kept if they are too close to previously

accepted centers, there is a bias toward keeping the larger circles when multiple circles

are concentric or approximately concentric. (It is only a “bias” because of the noise

arising from the Sobel derivatives; in a smooth image at infi nite resolution, it would

be a certainty.)

With all of that in mind, let’s move on to the OpenCV routine that does all this for us:

CvSeq* cvHoughCircles(
 CvArr* image,

Figure 6-12. Th e Hough circle transform fi nds some of the circles in the test pattern and (correctly)
fi nds none in the photograph

06-R4886-RC1.indd 15906-R4886-RC1.indd 159 9/15/08 4:21:17 PM9/15/08 4:21:17 PM

www.it-ebooks.info

http://www.it-ebooks.info/

160 | Chapter 6: Image Transforms

 void* circle_storage,
 int method,
 double dp,
 double min_dist,
 double param1 = 100,
 double param2 = 300,
 int min_radius = 0,
 int max_radius = 0
);

Th e Hough circle transform function cvHoughCircles() has similar arguments to the

line transform. Th e input image is again an 8-bit image. One signifi cant diff erence be-

tween cvHoughCircles() and cvHoughLines2() is that the latter requires a binary image.

Th e cvHoughCircles() function will internally (automatically) call cvSobel()* for you, so

you can provide a more general grayscale image.

Th e circle_storage can be either an array or memory storage, depending on how you

would like the results returned. If an array is used, it should be a single column of type

CV_32FC3; the three channels will be used to encode the location of the circle and its

radius. If memory storage is used, then the circles will be made into an OpenCV se-

quence and a pointer to that sequence will be returned by cvHoughCircles(). (Given an

array pointer value for circle_storage, the return value of cvHoughCircles() is NULL.) Th e

method argument must always be set to CV_HOUGH_GRADIENT.

Th e parameter dp is the resolution of the accumulator image used. Th is parameter allows

us to create an accumulator of a lower resolution than the input image. (It makes sense

to do this because there is no reason to expect the circles that exist in the image to fall

naturally into the same number of categories as the width or height of the image itself.)

If dp is set to 1 then the resolutions will be the same; if set to a larger number (e.g., 2),

then the accumulator resolution will be smaller by that factor (in this case, half). Th e

value of dp cannot be less than 1.

Th e parameter min_dist is the minimum distance that must exist between two circles in

order for the algorithm to consider them distinct circles.

For the (currently required) case of the method being set to CV_HOUGH_GRADIENT, the next

two arguments, param1 and param2, are the edge (Canny) threshold and the accumula-

tor threshold, respectively. You may recall that the Canny edge detector actually takes

two diff erent thresholds itself. When cvCanny() is called internally, the fi rst (higher)

threshold is set to the value of param1 passed into cvHoughCircles(), and the second

(lower) threshold is set to exactly half that value. Th e parameter param2 is the one used

to threshold the accumulator and is exactly analogous to the threshold argument of

cvHoughLines().

Th e fi nal two parameters are the minimum and maximum radius of circles that can be

found. Th is means that these are the radii of circles for which the accumulator has a rep-

resentation. Example 6-1 shows an example program using cvHoughCircles().

* Th e function cvSobel(), not cvCanny(), is called internally. Th e reason is that cvHoughCircles() needs to
estimate the orientation of a gradient at each pixel, and this is diffi cult to do with binary edge map.

06-R4886-RC1.indd 16006-R4886-RC1.indd 160 9/15/08 4:21:17 PM9/15/08 4:21:17 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Hough Transforms | 161

Example 6-1. Using cvHoughCircles to return a sequence of circles found in a grayscale image

#include <cv.h>
#include <highgui.h>
#include <math.h>

int main(int argc, char** argv) {
 IplImage* image = cvLoadImage(
 argv[1],
 CV_LOAD_IMAGE_GRAYSCALE
);

 CvMemStorage* storage = cvCreateMemStorage(0);
 cvSmooth(image, image, CV_GAUSSIAN, 5, 5);
 CvSeq* results = cvHoughCircles(
 image,
 storage,
 CV_HOUGH_GRADIENT,
 2,
 image->width/10
);

 for(int i = 0; i < results->total; i++) {
 float* p = (float*) cvGetSeqElem(results, i);
 CvPoint pt = cvPoint(cvRound(p[0]), cvRound(p[1]));
 cvCircle(
 image,
 pt,
 cvRound(p[2]),
 CV_RGB(0xff,0xff,0xff)
);
 }
 cvNamedWindow(“cvHoughCircles”, 1);
 cvShowImage(“cvHoughCircles”, image);
 cvWaitKey(0);
}

It is worth refl ecting momentarily on the fact that, no matter what tricks we employ,

there is no getting around the requirement that circles be described by three degrees

of freedom (x, y, and r), in contrast to only two degrees of freedom (ρ and θ) for lines.

Th e result will invariably be that any circle-fi nding algorithm requires more memory

and computation time than the line-fi nding algorithms we looked at previously. With

this in mind, it’s a good idea to bound the radius parameter as tightly as circumstances

allow in order to keep these costs under control.* Th e Hough transform was extended

to arbitrary shapes by Ballard in 1981 [Ballard81] basically by considering objects as col-

lections of gradient edges.

* Although cvHoughCircles() catches centers of the circles quite well, it sometimes fails to fi nd the correct
radius. Th erefore, in an application where only a center must be found (or where some diff erent technique
can be used to fi nd the actual radius), the radius returned by cvHoughCircles() can be ignored.

06-R4886-RC1.indd 16106-R4886-RC1.indd 161 9/15/08 4:21:18 PM9/15/08 4:21:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

162 | Chapter 6: Image Transforms

Remap
Under the hood, many of the transformations to follow have a certain common element.

In particular, they will be taking pixels from one place in the image and mapping them

to another place. In this case, there will always be some smooth mapping, which will do

what we need, but it will not always be a one-to-one pixel correspondence.

We sometimes want to accomplish this interpolation programmatically; that is, we’d

like to apply some known algorithm that will determine the mapping. In other cases,

however, we’d like to do this mapping ourselves. Before diving into some methods that

will compute (and apply) these mappings for us, let’s take a moment to look at the func-

tion responsible for applying the mappings that these other methods rely upon. Th e

OpenCV function we want is called cvRemap():

void cvRemap(
 const CvArr* src,
 CvArr* dst,
 const CvArr* mapx,
 const CvArr* mapy,
 int flags = CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS,
 CvScalar fillval = cvScalarAll(0)
);

Th e fi rst two arguments of cvRemap() are the source and destination images, respec-

tively. Obviously, these should be of the same size and number of channels, but they

can have any data type. It is important to note that the two may not be the same image.*

Th e next two arguments, mapx and mapy, indicate where any particular pixel is to be re-

located. Th ese should be the same size as the source and destination images, but they

are single-channel and usually of data type float (IPL_DEPTH_32F). Noninteger mappings

are OK, and cvRemap() will do the interpolation calculations for you automatically. One

common use of cvRemap() is to rectify (correct distortions in) calibrated and stereo im-

ages. We will see functions in Chapters 11 and 12 that convert calculated camera distor-

tions and alignments into mapx and mapy parameters. Th e next argument contains fl ags

that tell cvRemap() exactly how that interpolation is to be done. Any one of the values

listed in Table 6-1 will work.

Table 6-1. cvWarpAffi ne() additional fl ags values

flags values Meaning

CV_INTER_NN Nearest neighbor

CV_INTER_LINEAR Bilinear (default)

CV_INTER_AREA Pixel area resampling

CV_INTER_CUBIC Bicubic interpolation

* A moment’s thought will make it clear why the most effi cient remapping strategy is incompatible with writ-
ing onto the source image. Aft er all, if you move pixel A to location B then, when you get to location B and
want to move it to location C, you will fi nd that you’ve already written over the original value of B with A!

06-R4886-RC1.indd 16206-R4886-RC1.indd 162 9/15/08 4:21:18 PM9/15/08 4:21:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stretch, Shrink, Warp, and Rotate | 163

Interpolation is an important issue here. Pixels in the source image sit on an integer grid;

for example, we can refer to a pixel at location (20, 17). When these integer locations

are mapped to a new image, there can be gaps—either because the integer source pixel

locations are mapped to fl oat locations in the destination image and must be rounded

to the nearest integer pixel location or because there are some locations to which no

pixels at all are mapped (think about doubling the image size by stretching it; then ev-

ery other destination pixel would be left blank). Th ese problems are generally referred

to as forward projection problems. To deal with such rounding problems and destina-

tion gaps, we actually solve the problem backwards: we step through each pixel of the

destination image and ask, “Which pixels in the source are needed to fi ll in this des-

tination pixel?” Th ese source pixels will almost always be on fractional pixel locations

so we must interpolate the source pixels to derive the correct value for our destination

value. Th e default method is bilinear interpolation, but you may choose other methods

(as shown in Table 6-1).

You may also add (using the OR operator) the fl ag CV_WARP_FILL_OUTLIERS, whose eff ect

is to fi ll pixels in the destination image that are not the destination of any pixel in the

input image with the value indicated by the fi nal argument fillval. In this way, if you

map all of your image to a circle in the center then the outside of that circle would auto-

matically be fi lled with black (or any other color that you fancy).

Stretch, Shrink, Warp, and Rotate
In this section we turn to geometric manipulations of images.* Such manipulations in-

clude stretching in various ways, which includes both uniform and nonuniform resizing

(the latter is known as warping). Th ere are many reasons to perform these operations:

for example, warping and rotating an image so that it can be superimposed on a wall in

an existing scene, or artifi cially enlarging a set of training images used for object recog-

nition.† Th e functions that can stretch, shrink, warp, and/or rotate an image are called

geometric transforms (for an early exposition, see [Semple79]). For planar areas, there

are two fl avors of geometric transforms: transforms that use a 2-by-3 matrix, which are

called affi ne transforms; and transforms based on a 3-by-3 matrix, which are called per-

spective transforms or homographies. You can think of the latter transformation as a

method for computing the way in which a plane in three dimensions is perceived by a

particular observer, who might not be looking straight on at that plane.

An affi ne transformation is any transformation that can be expressed in the form of a

matrix multiplication followed by a vector addition. In OpenCV the standard style of

representing such a transformation is as a 2-by-3 matrix. We defi ne:

* We will cover these transformations in detail here; we will return to them when we discuss (in Chapter 11)
how they can be used in the context of three-dimensional vision techniques.

† Th is activity might seem a bit dodgy; aft er all, wouldn’t it be better just to use a recognition method that’s
invariant to local affi ne distortions? Nonetheless, this method has a long history and still can be quite useful
in practice.

06-R4886-RC1.indd 16306-R4886-RC1.indd 163 9/15/08 4:21:18 PM9/15/08 4:21:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

164 | Chapter 6: Image Transforms

A B T X≡
⎡

⎣
⎢

⎤

⎦
⎥ ≡

⎡

⎣
⎢

⎤

⎦
⎥ ≡ ⎡⎣ ⎤⎦ ≡

a a

a a

b

b
A B

x00 01

10 11

0

1 yy

x

y
⎡

⎣
⎢

⎤

⎦
⎥ ′≡

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

X

1

It is easily seen that the eff ect of the affi ne transformation A · X + B is exactly equivalent

to extending the vector X into the vector X´ and simply left -multiplying X´ by T.

Affi ne transformations can be visualized as follows. Any parallelogram ABCD in a

plane can be mapped to any other parallelogram A'B'C'D' by some affi ne transforma-

tion. If the areas of these parallelograms are nonzero, then the implied affi ne transfor-

mation is defi ned uniquely by (three vertices of) the two parallelograms. If you like, you

can think of an affi ne transformation as drawing your image into a big rubber sheet and

then deforming the sheet by pushing or pulling* on the corners to make diff erent kinds

of parallelograms.

When we have multiple images that we know to be slightly diff erent views of the same

object, we might want to compute the actual transforms that relate the diff erent views.

In this case, affi ne transformations are oft en used to model the views because, having

fewer parameters, they are easier to solve for. Th e downside is that true perspective

distortions can only be modeled by a homography,† so affi ne transforms yield a repre-

sentation that cannot accommodate all possible relationships between the views. On the

other hand, for small changes in viewpoint the resulting distortion is affi ne, so in some

circumstances an affi ne transformation may be suffi cient.

Affi ne transforms can convert rectangles to parallelograms. Th ey can squash the shape

but must keep the sides parallel; they can rotate it and/or scale it. Perspective transfor-

mations off er more fl exibility; a perspective transform can turn a rectangle into a trap-

ezoid. Of course, since parallelograms are also trapezoids, affi ne transformations are a

subset of perspective transformations. Figure 6-13 shows examples of various affi ne and

perspective transformations.

Affine Transform
Th ere are two situations that arise when working with affi ne transformations. In the fi rst

case, we have an image (or a region of interest) we’d like to transform; in the second case,

we have a list of points for which we’d like to compute the result of a transformation.

Dense affine transformations

In the fi rst case, the obvious input and output formats are images, and the implicit

requirement is that the warping assumes the pixels are a dense representation of the

* One can even pull in such a manner as to invert the parallelogram.

† “Homography” is the mathematical term for mapping points on one surface to points on another. In this
sense it is a more general term than as used here. In the context of computer vision, homography almost
always refers to mapping between points on two image planes that correspond to the same location on
a planar object in the real world. It can be shown that such a mapping is representable by a single 3-by-3
orthogonal matrix (more on this in Chapter 11).

06-R4886-RC1.indd 16406-R4886-RC1.indd 164 9/15/08 4:21:18 PM9/15/08 4:21:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stretch, Shrink, Warp, and Rotate | 165

underlying image. Th is means that image warping must necessarily handle interpola-

tions so that the output images are smooth and look natural. Th e affi ne transformation

function provided by OpenCV for dense transformations is cvWarpAffine().

void cvWarpAffine(
 const CvArr* src,
 CvArr* dst,
 const CvMat* map_matrix,
 int flags = CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS,
 CvScalar fillval = cvScalarAll(0)
);

Here src and dst refer to an array or image, which can be either one or three channels

and of any type (provided they are the same type and size).* Th e map_matrix is the 2-by-3

matrix we introduced earlier that quantifi es the desired transformation. Th e next-to-

last argument, flags, controls the interpolation method as well as either or both of the

following additional options (as usual, combine with Boolean OR).

CV_WARP_FILL_OUTLIERS

Oft en, the transformed src image does not fi t neatly into the dst image—there are

pixels “mapped” there from the source fi le that don’t actually exist. If this fl ag is set,

then those missing values are fi lled with fillval (described previously).

CV_WARP_INVERSE_MAP

Th is fl ag is for convenience to allow inverse warping from dst to src instead of from

src to dst.

* Since rotating an image will usually make its bounding box larger, the result will be a clipped image. You
can circumvent this either by shrinking the image (as in the example code) or by copying the fi rst image to a
central ROI within a larger source image prior to transformation.

Figure 6-13. Affi ne and perspective transformations

06-R4886-RC1.indd 16506-R4886-RC1.indd 165 9/15/08 4:21:18 PM9/15/08 4:21:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

166 | Chapter 6: Image Transforms

cVWarpAffine performance

It is worth knowing that cvWarpAffine() involves substantial associated overhead.

An alternative is to use cvGetQuadrangleSubPix(). Th is function has fewer options but

several advantages. In particular, it has less overhead and can handle the special case

of when the source image is 8-bit and the destination image is a 32-bit fl oating-point

image. It will also handle multichannel images.

void cvGetQuadrangleSubPix(
 const CvArr* src,
 CvArr* dst,
 const CvMat* map_matrix
);

What cvGetQuadrangleSubPix() does is compute all the points in dst by mapping

them (with interpolation) from the points in src that were computed by applying the

affi ne transformation implied by multiplication by the 2-by-3 map_matrix. (Conver-

sion of the locations in dst to homogeneous coordinates for the multiplication is done

automatically.)

One idiosyncrasy of cvGetQuadrangleSubPix() is that there is an additional mapping ap-

plied by the function. In particular, the result points in dst are computed according to

the formula:

y bdst src ,(,) (x y a x a y b a x a= + + +00 01 0 10 11y + 1)′′ ′′ ′′ ′′

where:

M
a a b

a a b

x

y
map and≡

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =00 01 0

10 11 1

xx

y

− −

− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤(())

(())

width dst

height dst

1
2

1
2 ⎦⎦

⎥
⎥
⎥
⎥

′′
′′

Observe that the mapping from (x, y) to (x ,̋ y˝) has the eff ect that—even if the map-

ping M is an identity mapping—the points in the destination image at the center will

be taken from the source image at the origin. If cvGetQuadrangleSubPix() needs points

from outside the image, it uses replication to reconstruct those values.

Computing the affine map matrix

OpenCV provides two functions to help you generate the map_matrix. Th e fi rst is used

when you already have two images that you know to be related by an affi ne transforma-

tion or that you’d like to approximate in that way:

CvMat* cvGetAffineTransform(
 const CvPoint2D32f* pts_src,
 const CvPoint2D32f* pts_dst,
 CvMat* map_matrix
);

06-R4886-RC1.indd 16606-R4886-RC1.indd 166 9/15/08 4:21:19 PM9/15/08 4:21:19 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stretch, Shrink, Warp, and Rotate | 167

Here src and dst are arrays containing three two-dimensional (x, y) points, and the

map_matrix is the affi ne transform computed from those points.

Th e pts_src and pts_dst in cvGetAffineTransform() are just arrays of three points defi n-

ing two parallelograms. Th e simplest way to defi ne an affi ne transform is thus to set

pts_src to three* corners in the source image—for example, the upper and lower left

together with the upper right of the source image. Th e mapping from the source to

destination image is then entirely defi ned by specifying pts_dst, the locations to which

these three points will be mapped in that destination image. Once the mapping of these

three independent corners (which, in eff ect, specify a “representative” parallelogram) is

established, all the other points can be warped accordingly.

Example 6-2 shows some code that uses these functions. In the example we obtain the

cvWarpAffine() matrix parameters by fi rst constructing two three-component arrays of

points (the corners of our representative parallelogram) and then convert that to the

actual transformation matrix using cvGetAffineTransform(). We then do an affi ne warp

followed by a rotation of the image. For our array of representative points in the source

image, called srcTri[], we take the three points: (0,0), (0,height-1), and (width-1,0). We

then specify the locations to which these points will be mapped in the corresponding

array srcTri[].

Example 6-2. An affi ne transformation

// Usage: warp_affine <image>
//
#include <cv.h>
#include <highgui.h>

int main(int argc, char** argv)
{
 CvPoint2D32f srcTri[3], dstTri[3];
 CvMat* rot_mat = cvCreateMat(2,3,CV_32FC1);
 CvMat* warp_mat = cvCreateMat(2,3,CV_32FC1);
 IplImage *src, *dst;

 if(argc == 2 && ((src=cvLoadImage(argv[1],1)) != 0)) {

 dst = cvCloneImage(src);
 dst->origin = src->origin;
 cvZero(dst);

 // Compute warp matrix
 //
 srcTri[0].x = 0; //src Top left
 srcTri[0].y = 0;
 srcTri[1].x = src->width - 1; //src Top right
 srcTri[1].y = 0;
 srcTri[2].x = 0; //src Bottom left offset
 srcTri[2].y = src->height - 1;

* We need just three points because, for an affi ne transformation, we are only representing a parallelogram.
We will need four points to represent a general trapezoid when we address perspective transformations.

06-R4886-RC1.indd 16706-R4886-RC1.indd 167 9/15/08 4:21:19 PM9/15/08 4:21:19 PM

www.it-ebooks.info

http://www.it-ebooks.info/

168 | Chapter 6: Image Transforms

Example 6-2. An affi ne transformation (continued)

 dstTri[0].x = src->width*0.0; //dst Top left
 dstTri[0].y = src->height*0.33;
 dstTri[1].x = src->width*0.85; //dst Top right
 dstTri[1].y = src->height*0.25;
 dstTri[2].x = src->width*0.15; //dst Bottom left offset
 dstTri[2].y = src->height*0.7;

 cvGetAffineTransform(srcTri, dstTri, warp_mat);
 cvWarpAffine(src, dst, warp_mat);
 cvCopy(dst, src);

 // Compute rotation matrix
 //
 CvPoint2D32f center = cvPoint2D32f(
 src->width/2,
 src->height/2
);
 double angle = -50.0;
 double scale = 0.6;
 cv2DRotationMatrix(center, angle, scale, rot_mat);

 // Do the transformation
 //
 cvWarpAffine(src, dst, rot_mat);

 cvNamedWindow(“Affine_Transform”, 1);
 cvShowImage(“Affine_Transform”, dst);
 cvWaitKey();
 }
 cvReleaseImage(&dst);
 cvReleaseMat(&rot_mat);
 cvReleaseMat(&warp_mat);
 return 0;
 }
}

Th e second way to compute the map_matrix is to use cv2DRotationMatrix(), which com-

putes the map matrix for a rotation around some arbitrary point, combined with an op-

tional rescaling. Th is is just one possible kind of affi ne transformation, but it represents

an important subset that has an alternative (and more intuitive) representation that’s

easier to work with in your head:

CvMat* cv2DRotationMatrix(
 CvPoint2D32f center,
 double angle,
 double scale,
 CvMat* map_matrix
);

Th e fi rst argument, center, is the center point of the rotation. Th e next two arguments
give the magnitude of the rotation and the overall rescaling. Th e fi nal argument is the
output map_matrix, which (as always) is a 2-by-3 matrix of fl oating-point numbers).

06-R4886-RC1.indd 16806-R4886-RC1.indd 168 9/15/08 4:21:19 PM9/15/08 4:21:19 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stretch, Shrink, Warp, and Rotate | 169

If we defi ne e aα = ⋅scal nglecos() and e aβ = ⋅scal nglesin() then this function computes
the map_matrix to be:

()− +β α

α β

β α

α β()1

1

− −

−
⋅ ⋅

⋅
center center

center
x y

x ⋅⋅
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥center

y

You can combine these methods of setting the map_matrix to obtain, for example, an

image that is rotated, scaled, and warped.

Sparse affine transformations

We have explained that cvWarpAffine() is the right way to handle dense mappings.

For sparse mappings (i.e., mappings of lists of individual points), it is best to use

cvTransform():

void cvTransform(
 const CvArr* src,
 CvArr* dst,
 const CvMat* transmat,
 const CvMat* shiftvec = NULL
);

In general, src is an N-by-1 array with Ds channels, where N is the number of points to

be transformed and Ds is the dimension of those source points. Th e output array dst

must be the same size but may have a diff erent number of channels, Dd. Th e transforma-

tion matrix transmat is a Ds-by-Dd matrix that is then applied to every element of src, af-

ter which the results are placed into dst. Th e optional vector shiftvec, if non-NULL, must

be a Ds-by-1 array, which is added to each result before the result is placed in dst.

In our case of an affi ne transformation, there are two ways to use cvTransform() that

depend on how we’d like to represent our transformation. In the fi rst method, we de-

compose our transformation into the 2-by-2 part (which does rotation, scaling, and

warping) and the 2-by-1 part (which does the transformation). Here our input is an

N-by-1 array with two channels, transmat is our local homogeneous transformation,

and shiftvec contains any needed displacement. Th e second method is to use our usual

2-by-3 representation of the affi ne transformation. In this case the input array src is a

three-channel array within which we must set all third-channel entries to 1 (i.e., the

points must be supplied in homogeneous coordinates). Of course, the output array will

still be a two-channel array.

Perspective Transform
To gain the greater fl exibility off ered by perspective transforms (homographies), we

need a new function that will allow us to express this broader class of transformations.

First we remark that, even though a perspective projection is specifi ed completely by a

single matrix, the projection is not actually a linear transformation. Th is is because the

transformation requires division by the fi nal dimension (usually Z; see Chapter 11) and

thus loses a dimension in the process.

06-R4886-RC1.indd 16906-R4886-RC1.indd 169 9/15/08 4:21:19 PM9/15/08 4:21:19 PM

www.it-ebooks.info

http://www.it-ebooks.info/

170 | Chapter 6: Image Transforms

As with affi ne transformations, image operations (dense transformations) are handled

by diff erent functions than transformations on point sets (sparse transformations).

Dense perspective transform

Th e dense perspective transform uses an OpenCV function that is analogous to the one

provided for dense affi ne transformations. Specifi cally, cvWarpPerspective() has all of

the same arguments as cvWarpAffine() but with the small, but crucial, distinction that

the map matrix must now be 3-by-3.

void cvWarpPerspective(
 const CvArr* src,
 CvArr* dst,
 const CvMat* map_matrix,
 int flags = CV_INTER_LINEAR + CV_WARP_FILL_OUTLIERS,
 CvScalar fillval = cvScalarAll(0)
);

Th e fl ags are the same here as for the affi ne case.

Computing the perspective map matrix

As with the affi ne transformation, for fi lling the map_matrix in the preceding code we

have a convenience function that can compute the transformation matrix from a list of

point correspondences:

CvMat* cvGetPerspectiveTransform(
 const CvPoint2D32f* pts_src,
 const CvPoint2D32f* pts_dst,
 CvMat* map_matrix
);

Th e pts_src and pts_dst are now arrays of four (not three) points, so we can inde-

pendently control how the corners of (typically) a rectangle in pts_src are mapped to

(generally) some rhombus in pts_dst. Our transformation is completely defi ned by

the specifi ed destinations of the four source points. As mentioned earlier, for perspec-

tive transformations we must allocate a 3-by-3 array for map_matrix; see Example 6-3

for sample code. Other than the 3-by-3 matrix and the shift from three to four con-

trol points, the perspective transformation is otherwise exactly analogous to the affi ne

transformation we already introduced.

Example 6-3. Code for perspective transformation

// Usage: warp <image>
//
#include <cv.h>
#include <highgui.h>

int main(int argc, char** argv) {

 CvPoint2D32f srcQuad[4], dstQuad[4];
 CvMat* warp_matrix = cvCreateMat(3,3,CV_32FC1);
 IplImage *src, *dst;

06-R4886-RC1.indd 17006-R4886-RC1.indd 170 9/15/08 4:21:20 PM9/15/08 4:21:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stretch, Shrink, Warp, and Rotate | 171

Example 6-3. Code for perspective transformation (continued)

 if(argc == 2 && ((src=cvLoadImage(argv[1],1)) != 0)) {

 dst = cvCloneImage(src);
 dst->origin = src->origin;
 cvZero(dst);

 srcQuad[0].x = 0; //src Top left
 srcQuad[0].y = 0;
 srcQuad[1].x = src->width - 1; //src Top right
 srcQuad[1].y = 0;
 srcQuad[2].x = 0; //src Bottom left
 srcQuad[2].y = src->height - 1;
 srcQuad[3].x = src->width – 1; //src Bot right
 srcQuad[3].y = src->height - 1;

 dstQuad[0].x = src->width*0.05; //dst Top left
 dstQuad[0].y = src->height*0.33;
 dstQuad[1].x = src->width*0.9; //dst Top right
 dstQuad[1].y = src->height*0.25;
 dstQuad[2].x = src->width*0.2; //dst Bottom left
 dstQuad[2].y = src->height*0.7;
 dstQuad[3].x = src->width*0.8; //dst Bot right
 dstQuad[3].y = src->height*0.9;

 cvGetPerspectiveTransform(
 srcQuad,
 dstQuad,
 warp_matrix
);
 cvWarpPerspective(src, dst, warp_matrix);
 cvNamedWindow(“Perspective_Warp”, 1);
 cvShowImage(“Perspective_Warp”, dst);
 cvWaitKey();
 }
 cvReleaseImage(&dst);
 cvReleaseMat(&warp_matrix);
 return 0;
 }
}

Sparse perspective transformations

Th ere is a special function, cvPerspectiveTransform(), that performs perspective trans-

formations on lists of points; we cannot use cvTransform(), which is limited to linear op-

erations. As such, it cannot handle perspective transforms because they require division

by the third coordinate of the homogeneous representation (x = f ∗ X/Z, y = f ∗ Y/Z). Th e

special function cvPerspectiveTransform() takes care of this for us.

void cvPerspectiveTransform(
 const CvArr* src,
 CvArr* dst,
 const CvMat* mat
);

06-R4886-RC1.indd 17106-R4886-RC1.indd 171 9/15/08 4:21:20 PM9/15/08 4:21:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

172 | Chapter 6: Image Transforms

As usual, the src and dst arguments are (respectively) the array of source points to be

transformed and the array of destination points; these arrays should be of three-channel,

fl oating-point type. Th e matrix mat can be either a 3-by-3 or a 4-by-4 matrix. If it is

3-by-3 then the projection is from two dimensions to two; if the matrix is 4-by-4, then

the projection is from four dimensions to three.

In the current context we are transforming a set of points in an image to another set of

points in an image, which sounds like a mapping from two dimensions to two dimen-

sions. But this is not exactly correct, because the perspective transformation is actually

mapping points on a two-dimensional plane embedded in a three-dimensional space

back down to a (diff erent) two-dimensional subspace. Th ink of this as being just what

a camera does (we will return to this topic in greater detail when discussing cameras

in later chapters). Th e camera takes points in three dimensions and maps them to the

two dimensions of the camera imager. Th is is essentially what is meant when the source

points are taken to be in “homogeneous coordinates”. We are adding an additional

dimension to those points by introducing the Z dimension and then setting all of the

Z values to 1. Th e projective transformation is then projecting back out of that space

onto the two-dimensional space of our output. Th is is a rather long-winded way of ex-

plaining why, when mapping points in one image to points in another, you will need a

3-by-3 matrix.

Output of the code in Example 6-3 is shown in Figure 6-14 for affi ne and perspective

transformations. Compare this with the diagrams of Figure 6-13 to see how this works

with real images. In Figure 6-14, we transformed the whole image. Th is isn’t necessary;

we could have used the src_pts to defi ne a smaller (or larger!) region in the source im-

age to be transformed. We could also have used ROIs in the source or destination image

in order to limit the transformation.

CartToPolar and PolarToCart
Th e functions cvCartToPolar() and cvPolarToCart() are employed by more complex rou-

tines such as cvLogPolar() (described later) but are also useful in their own right. Th ese

functions map numbers back and forth between a Cartesian (x, y) space and a polar or

radial (r, θ) space (i.e., from Cartesian to polar coordinates and vice versa). Th e function

formats are as follows:

void cvCartToPolar(
 const CvArr* x,
 const CvArr* y,
 CvArr* magnitude,
 CvArr* angle = NULL,
 int angle_in_degrees = 0
);
void cvPolarToCart(
 const CvArr* magnitude,
 const CvArr* angle,
 CvArr* x,
 CvArr* y,

06-R4886-RC1.indd 17206-R4886-RC1.indd 172 9/15/08 4:21:20 PM9/15/08 4:21:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

CartToPolar and PolarToCart | 173

 int angle_in_degrees = 0
);

In each of these functions, the fi rst two two-dimensional arrays or images are the input

and the second two are the outputs. If an output pointer is set to NULL then it will not

be computed. Th e requirements on these arrays are that they be fl oat or doubles and

matching (size, number of channels, and type). Th e last parameter specifi es whether we

are working with angles in degrees (0, 360) or in radians (0, 2π).

For an example of where you might use this function, suppose you have already taken the

x- and y-derivatives of an image, either by using cvSobel() or by using convolution func-

tions via cvDFT() or cvFilter2D(). If you stored the x-derivatives in an image dx_img and

the y-derivatives in dy_img, you could now create an edge-angle recognition histogram.

Th at is, you can collect all the angles provided the magnitude or strength of the edge pixel

Figure 6-14. Perspective and affi ne mapping of an image

06-R4886-RC1.indd 17306-R4886-RC1.indd 173 9/15/08 4:21:20 PM9/15/08 4:21:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

174 | Chapter 6: Image Transforms

is above a certain threshold. To calculate this, we create two destination images of the

same type (integer or float) as the derivative images and call them img_mag and img_an-
gle. If you want the result to be given in degrees, then you can use the function cvCartTo
Polar(dx_img, dy_img, img_mag, img_angle, 1). We would then fi ll the histogram

from img_angle as long as the corresponding “pixel” in img_mag is above the threshold.

LogPolar
For two-dimensional images, the log-polar transform [Schwartz80] is a change

from Cartesian to polar coordinates: (,)x y rei↔ θ , where r x y= +2 2 and

exp() exp(arctan())i i y xθ = ⋅ . To separate out the polar coordinates into a (ρ, θ) space that

is relative to some center point (xc, yc), we take the log so that ρ = − + −log () ()()x x y y
c c

2 2

and θ = − −arctan(() ())y y x x
c c

. For image purposes—when we need to “fi t” the inter-

esting stuff into the available image memory—we typically apply a scaling factor m to ρ.

Figure 6-15 shows a square object on the left and its encoding in log-polar space.

Th e next question is, of course, “Why bother?” Th e log-polar transform takes its in-

spiration from the human visual system. Your eye has a small but dense center of

photoreceptors in its center (the fovea), and the density of receptors fall off rapidly (ex-

ponentially) from there. Try staring at a spot on the wall and holding your fi nger at

arm’s length in your line of sight. Th en, keep staring at the spot and move your fi nger

slowly away; note how the detail rapidly decreases as the image of your fi nger moves

away from your fovea. Th is structure also has certain nice mathematical properties (be-

yond the scope of this book) that concern preserving the angles of line intersections.

More important for us is that the log-polar transform can be used to create two-

dimensional invariant representations of object views by shift ing the transformed im-

age’s center of mass to a fi xed point in the log-polar plane; see Figure 6-16. On the left are

Figure 6-15. Th e log-polar transform maps (x, y) into (log(r),θ); here, a square is displayed in the
log-polar coordinate system

06-R4886-RC1.indd 17406-R4886-RC1.indd 174 9/15/08 4:21:21 PM9/15/08 4:21:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

LogPolar | 175

three shapes that we want to recognize as “square”. Th e problem is, they look very diff er-

ent. One is much larger than the others and another is rotated. Th e log-polar transform

appears on the right in Figure 6-16. Observe that size diff erences in the (x, y) plane are

converted to shift s along the log(r) axis of the log-polar plane and that the rotation diff er-

ences are converted to shift s along the θ-axis in the log-polar plane. If we take the trans-

formed center of each transformed square in the log-polar plane and then recenter that

point to a certain fi xed position, then all the squares will show up identically in the log-

polar plane. Th is yields a type of invariance to two-dimensional rotation and scaling.*

Th e OpenCV function for a log-polar transform is cvLogPolar():

void cvLogPolar(
 const CvArr* src,
 CvArr* dst,
 CvPoint2D32f center,
 double m,
 int flags = CV_INTER_LINEAR | CV_WARP_FILL_OUTLIERS
);

Th e src and dst are one- or three-channel color or grayscale images. Th e parameter

center is the center point (xc, yc) of the log-polar transform; m is the scale factor, which

* In Chapter 13 we’ll learn about recognition. For now simply note that it wouldn’t be a good idea to derive a
log-polar transform for a whole object because such transforms are quite sensitive to the exact location of
their center points. What is more likely to work for object recognition is to detect a collection of key points
(such as corners or blob locations) around an object, truncate the extent of such views, and then use the
centers of those key points as log-polar centers. Th ese local log-polar transforms could then be used to cre-
ate local features that are (partially) scale- and rotation-invariant and that can be associated with a visual
object.

Figure 6-16. Log-polar transform of rotated and scaled squares: size goes to a shift on the log(r) axis
and rotation to a shift on the θ-axis

06-R4886-RC1.indd 17506-R4886-RC1.indd 175 9/15/08 4:21:22 PM9/15/08 4:21:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

176 | Chapter 6: Image Transforms

should be set so that the features of interest dominate the available image area. Th e flags

parameter allows for diff erent interpolation methods. Th e interpolation methods are the

same set of standard interpolations available in OpenCV (Table 6-1). Th e interpolation

methods can be combined with either or both of the fl ags CV_WARP_FILL_OUTLIERS (to fi ll

points that would otherwise be undefi ned) or CV_WARP_INVERSE_MAP (to compute the re-

verse mapping from log-polar to Cartesian coordinates).

Sample log-polar coding is given in Example 6-4, which demonstrates the forward and

backward (inverse) log-polar transform. Th e results on a photographic image are shown

in Figure 6-17.

Example 6-4. Log-polar transform example

// logPolar.cpp : Defines the entry point for the console application.
//
#include <cv.h>
#include <highgui.h>

int main(int argc, char** argv) {
 IplImage* src;
 double M;
 if(argc == 3 && ((src=cvLoadImage(argv[1],1)) != 0)) {
 M = atof(argv[2]);
 IplImage* dst = cvCreateImage(cvGetSize(src), 8, 3);
 IplImage* src2 = cvCreateImage(cvGetSize(src), 8, 3);
 cvLogPolar(
 src,
 dst,
 cvPoint2D32f(src->width/4,src->height/2),
 M,
 CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS

Figure 6-17. Log-polar example on an elk with transform centered at the white circle on the left ; the
output is on the right

06-R4886-RC1.indd 17606-R4886-RC1.indd 176 9/15/08 4:21:22 PM9/15/08 4:21:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Discrete Fourier Transform (DFT) | 177

Example 6-4. Log-polar transform example (continued)

);
 cvLogPolar(
 dst,
 src2,
 cvPoint2D32f(src->width/4, src->height/2),
 M,
 CV_INTER_LINEAR | CV_WARP_INVERSE_MAP
);
 cvNamedWindow(“log-polar”, 1);
 cvShowImage(“log-polar”, dst);
 cvNamedWindow(“inverse log-polar”, 1);
 cvShowImage(“inverse log-polar”, src2);
 cvWaitKey();
 }
 return 0;
}

Discrete Fourier Transform (DFT)
For any set of values that are indexed by a discrete (integer) parameter, is it possible to

defi ne a discrete Fourier transform (DFT)* in a manner analogous to the Fourier trans-

form of a continuous function. For N complex numbers x x
N0 1, ,… − , the one-dimensional

DFT is defi ned by the following formula (where i = −1):

p ,f x
i

N
kn k N

k n

n

N

= −⎛
⎝⎜

⎞
⎠⎟

= −
=

−

∑ ex ,...,2 0 1
0

1 π

A similar transform can be defi ned for a two-dimensional array of numbers (of course

higher-dimensional analogues exist also):

f x
i

N
k n

i

N
k n

k k n n

x

x x

y

y yx y x y

= −
⎛

⎝⎜
⎞

⎠⎟
−exp exp2 2π π⎛⎛

⎝
⎜

⎞

⎠
⎟

=

−

=

−

∑∑
n

N

n

N

y

y

x

x

0

1

0

1

In general, one might expect that the computation of the N diff erent terms fk would

require O(N 2) operations. In fact, there are a number of fast Fourier transform (FFT) al-

gorithms capable of computing these values in O(N log N) time. Th e OpenCV function

cvDFT() implements one such FFT algorithm. Th e function cvDFT() can compute FFTs

for one- and two-dimensional arrays of inputs. In the latter case, the two-dimensional

transform can be computed or, if desired, only the one-dimensional transforms of each

individual row can be computed (this operation is much faster than calling cvDFT()

many separate times).

* Joseph Fourier [Fourier] was the fi rst to fi nd that some functions can be decomposed into an infi nite series
of other functions, and doing so became a fi eld known as Fourier analysis. Some key text on methods of
decomposing functions into their Fourier series are Morse for physics [Morse53] and Papoulis in general
[Papoulis62]. Th e fast Fourier transform was invented by Cooley and Tukeye in 1965 [Cooley65] though
Carl Gauss worked out the key steps as early as 1805 [Johnson84]. Early use in computer vision is described
by Ballard and Brown [Ballard82].

06-R4886-RC1.indd 17706-R4886-RC1.indd 177 9/15/08 4:21:23 PM9/15/08 4:21:23 PM

www.it-ebooks.info

http://www.it-ebooks.info/

178 | Chapter 6: Image Transforms

void cvDFT(
 const CvArr* src,
 CvArr* dst,
 int flags,
 int nonzero_rows = 0
);

Th e input and the output arrays must be fl oating-point types and may be single- or

double-channel arrays. In the single-channel case, the entries are assumed to be real

numbers and the output will be packed in a special space-saving format (inherited from

the same older IPL library as the IplImage structure). If the source and channel are two-

channel matrices or images, then the two channels will be interpreted as the real and

imaginary components of the input data. In this case, there will be no special packing of

the results, and some space will be wasted with a lot of 0s in both the input and output

arrays.*

Th e special packing of result values that is used with single-channel output is as

follows.

For a one-dimensional array:

Re Y0 Re Y1 Im Y1 Re Y2 Im Y2
… Re Y(N/2–1) Im Y(N/2–1) Re Y(N/2)

For a two-dimensional array:

It is worth taking a moment to look closely at the indices on these arrays. Th e issue here

is that certain values are guaranteed to be 0 (more accurately, certain values of fk are

guaranteed to be real). It should also be noted that the last row listed in the table will be

present only if Ny is even and that the last column will be present only if Nx is even. (In the

case of the 2D array being treated as Ny 1D arrays rather than a full 2D transform, all of

the result rows will be analogous to the single row listed for the output of the 1D array).

* When using this method, you must be sure to explicitly set the imaginary components to 0 in the two-
channel representation. An easy way to do this is to create a matrix full of 0s using cvZero() for the
imaginary part and then to call cvMerge() with a real-valued matrix to form a temporary complex array on
which to run cvDFT() (possibly in-place). Th is procedure will result in full-size, unpacked, complex matrix
of the spectrum.

Re Y00 Re Y01 Im Y01 Re Y02 Im Y02
… Re Y0(Nx/2–1) Im Y0(Nx/2–1) Re Y0(Nx/2)

Re Y10 Re Y11 Im Y11 Re Y12 Im Y12
… Re Y1(Nx/2–1) Im Y1(Nx/2–1) Re Y1(Nx/2)

Re Y20 Re Y21 Im Y21 Re Y22 Im Y22
… Re Y2(Nx/2–1) Im Y2(Nx/2–1) Re Y2(Nx/2)

… … … … … … … … …
Re Y(Ny/2–1)0 Re Y(Ny–3)1 Im Y(Ny–3)1 Re Y(Ny–3)2 Im Y(Ny–3)2

… Re Y(Ny–3)(Nx/2–1) Im Y(Ny–3)(Nx/2–1) Re Y(Ny–3)(Nx/2)

Im Y(Ny/2–1)0 Re Y(Ny–2)1 Im Y(Ny–2)1 Re Y(Ny–2)2 Im Y(Ny–2)2
… Re Y(Ny–2)(Nx/2–1) Im Y(Ny–2)(Nx/2–1) Re Y(Ny–2)(Nx/2)

Re Y(Ny/2)0 Re Y(Ny–1)1 Im Y(Ny–1)1 Re Y(Ny–1)2 Im Y(Ny–1)2
… Re Y(Ny–1)(Nx/2–1) Im Y(Ny–1)(Nx/2–1) Re Y(Ny–1)(Nx/2)

06-R4886-RC1.indd 17806-R4886-RC1.indd 178 9/15/08 4:21:23 PM9/15/08 4:21:23 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Discrete Fourier Transform (DFT) | 179

Th e third argument, called flags, indicates exactly what operation is to be done. Th e

transformation we started with is known as a forward transform and is selected with the

fl ag CV_DXT_FORWARD. Th e inverse transform* is defi ned in exactly the same way except

for a change of sign in the exponential and a scale factor. To perform the inverse trans-

form without the scale factor, use the fl ag CV_DXT_INVERSE. Th e fl ag for the scale factor is

CV_DXT_SCALE, and this results in all of the output being scaled by a factor of 1/N (or 1/Nx Ny

for a 2D transform). Th is scaling is necessary if the sequential application of the forward

transform and the inverse transform is to bring us back to where we started. Because one

oft en wants to combine CV_DXT_INVERSE with CV_DXT_SCALE, there are several shorthand

notations for this kind of operation. In addition to just combining the two operations

with OR, you can use CV_DXT_INV_SCALE (or CV_DXT_INVERSE_SCALE if you’re not into that

brevity thing). Th e last fl ag you may want to have handy is CV_DXT_ROWS, which allows

you to tell cvDFT() to treat a two-dimensional array as a collection of one-dimensional

arrays that should each be transformed separately as if they were Ny distinct vectors of

length Nx. Th is signifi cantly reduces overhead when doing many transformations at a

time (especially when using Intel’s optimized IPP libraries). By using CV_DXT_ROWS it is

also possible to implement three-dimensional (and higher) DFT.

In order to understand the last argument, nonzero_rows, we must digress for a moment.

In general, DFT algorithms will strongly prefer vectors of some lengths over others or

arrays of some sizes over others. In most DFT algorithms, the preferred sizes are pow-

ers of 2 (i.e., 2n for some integer n). In the case of the algorithm used by OpenCV, the

preference is that the vector lengths, or array dimensions, be 2p3q5r, for some integers

p, q, and r. Hence the usual procedure is to create a somewhat larger array (for which

purpose there is a handy utility function, cvGetOptimalDFTSize(), which takes the length

of your vector and returns the fi rst equal or larger appropriate number size) and then

use cvGetSubRect() to copy your array into the somewhat roomier zero-padded array.

Despite the need for this padding, it is possible to indicate to cvDFT() that you really do

not care about the transform of those rows that you had to add down below your actual

data (or, if you are doing an inverse transform, which rows in the result you do not care

about). In either case, you can use nonzero_rows to indicate how many rows can be safely

ignored. Th is will provide some savings in computation time.

Spectrum Multiplication
In many applications that involve computing DFTs, one must also compute the per-

element multiplication of two spectra. Because such results are typically packed in their

special high-density format and are usually complex numbers, it would be tedious to

unpack them and handle the multiplication via the “usual” matrix operations. Fortu-

nately, OpenCV provides the handy cvMulSpectrums() routine, which performs exactly

this function as well as a few other handy things.

* With the inverse transform, the input is packed in the special format described previously. Th is makes sense
because, if we fi rst called the forward DFT and then ran the inverse DFT on the results, we would expect to
wind up with the original data—that is, of course, if we remember to use the CV_DXT_SCALE fl ag!

06-R4886-RC1.indd 17906-R4886-RC1.indd 179 9/15/08 4:21:24 PM9/15/08 4:21:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

180 | Chapter 6: Image Transforms

void cvMulSpectrums(
 const CvArr* src1,
 const CvArr* src2,
 CvArr* dst,
 int flags
);

Note that the fi rst two arguments are the usual input arrays, though in this case they are

spectra from calls to cvDFT(). Th e third argument must be a pointer to an array—of the

same type and size as the fi rst two—that will be used for the results. Th e fi nal argument,

flags, tells cvMulSpectrums() exactly what you want done. In particular, it may be set to 0

(CV_DXT_FORWARD) for implementing the above pair multiplication or set to CV_DXT_MUL_CONJ

if the element from the fi rst array is to be multiplied by the complex conjugate of the

corresponding element of the second array. Th e fl ags may also be combined with CV_
DXT_ROWS in the two-dimensional case if each array row 0 is to be treated as a separate

spectrum (remember, if you created the spectrum arrays with CV_DXT_ROWS then the data

packing is slightly diff erent than if you created them without that function, so you must

be consistent in the way you call cvMulSpectrums).

Convolution and DFT
It is possible to greatly increase the speed of a convolution by using DFT via the convo-

lution theorem [Titchmarsh26] that relates convolution in the spatial domain to multi-

plication in the Fourier domain [Morse53; Bracewell65; Arfk en85].* To accomplish this,

one fi rst computes the Fourier transform of the image and then the Fourier transform

of the convolution fi lter. Once this is done, the convolution can be performed in the

transform space in linear time with respect to the number of pixels in the image. It is

worthwhile to look at the source code for computing such a convolution, as it also will

provide us with many good examples of using cvDFT(). Th e code is shown in Example

6-5, which is taken directly from the OpenCV reference.

Example 6-5. Use of cvDFT() to accelerate the computation of convolutions

// Use DFT to accelerate the convolution of array A by kernel B.
// Place the result in array V.
//
void speedy_conv olution(
 const CvMat* A, // Size: M1xN1
 const CvMat* B, // Size: M2xN2
 CvMat* C // Size:(A->rows+B->rows-1)x(A->cols+B->cols-1)
) {

 int dft_M = cvGetOptimalDFTSize(A->rows+B->rows-1);
 int dft_N = cvGetOptimalDFTSize(A->cols+B->cols-1);

 CvMat* dft_A = cvCreateMat(dft_M, dft_N, A->type);
 CvMat* dft_B = cvCreateMat(dft_M, dft_N, B->type);
 CvMat tmp;

* Recall that OpenCV’s DFT algorithm implements the FFT whenever the data size makes the FFT faster.

06-R4886-RC1.indd 18006-R4886-RC1.indd 180 9/15/08 4:21:24 PM9/15/08 4:21:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Discrete Fourier Transform (DFT) | 181

Example 6-5. Use of cvDFT() to accelerate the computation of convolutions (continued)

 // copy A to dft_A and pad dft_A with zeros
 //
 cvGetSubRect(dft_A, &tmp, cvRect(0,0,A->cols,A->rows));
 cvCopy(A, &tmp);
 cvGetSubRect(
 dft_A,
 &tmp,
 cvRect(A->cols, 0, dft_A->cols-A->cols, A->rows)
);
 cvZero(&tmp);

 // no need to pad bottom part of dft_A with zeros because of
 // use nonzero_rows parameter in cvDFT() call below
 //
 cvDFT(dft_A, dft_A, CV_DXT_FORWARD, A->rows);

 // repeat the same with the second array
 //
 cvGetSubRect(dft_B, &tmp, cvRect(0,0,B->cols,B->rows));
 cvCopy(B, &tmp);
 cvGetSubRect(
 dft_B,
 &tmp,
 cvRect(B->cols, 0, dft_B->cols-B->cols, B->rows)
);
 cvZero(&tmp);

 // no need to pad bottom part of dft_B with zeros because of
 // use nonzero_rows parameter in cvDFT() call below
 //
 cvDFT(dft_B, dft_B, CV_DXT_FORWARD, B->rows);

 // or CV_DXT_MUL_CONJ to get correlation rather than convolution
 //
 cvMulSpectrums(dft_A, dft_B, dft_A, 0);

 // calculate only the top part
 //
 cvDFT(dft_A, dft_A, CV_DXT_INV_SCALE, C->rows);
 cvGetSubRect(dft_A, &tmp, cvRect(0,0,conv->cols,C->rows));

 cvCopy(&tmp, C);

 cvReleaseMat(dft_A);
 cvReleaseMat(dft_B);
}

In Example 6-5 we can see that the input arrays are fi rst created and then initialized.

Next, two new arrays are created whose dimensions are optimal for the DFT algorithm.

Th e original arrays are copied into these new arrays and then the transforms are com-

puted. Finally, the spectra are multiplied together and the inverse transform is applied

06-R4886-RC1.indd 18106-R4886-RC1.indd 181 9/15/08 4:21:24 PM9/15/08 4:21:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

182 | Chapter 6: Image Transforms

to the product. Th e transforms are the slowest* part of this operation; an N-by-N im-

age takes O(N 2 log N) time and so the entire process is also completed in that time

(assuming that N > M for an M-by-M convolution kernel). Th is time is much faster than

O(N2M 2), the non-DFT convolution time required by the more naïve method.

Discrete Cosine Transform (DCT)
For real-valued data it is oft en suffi cient to compute what is, in eff ect, only half of the

discrete Fourier transform. Th e discrete cosine transform (DCT) [Ahmed74; Jain77] is

defi ned analogously to the full DFT by the following formula:

c n N
n

N

x
k

n

N

n
= =

=⎧

⎨
⎪⎪

⎩
⎪
⎪

⋅ ⋅ −
=

−

∑
1 0

20

1 if

else
cos (π 22 1k n

N

+⎛
⎝⎜

⎞
⎠⎟

)

Observe that, by convention, the normalization factor is applied to both the cosine trans-

form and its inverse. Of course, there is a similar transform for higher dimensions.

Th e basic ideas of the DFT apply also to the DCT, but now all the coeffi cients are real-

valued. Astute readers might object that the cosine transform is being applied to a vec-

tor that is not a manifestly even function. However, with cvDCT() the algorithm simply

treats the vector as if it were extended to negative indices in a mirrored manner.

Th e actual OpenCV call is:

void cvDCT(
 const CvArr* src,
 CvArr* dst,
 int flags
);

Th e cvDCT() function expects arguments like those for cvDFT() except that, because the

results are real-valued, there is no need for any special packing of the result array (or of

the input array in the case of an inverse transform). Th e flags argument can be set to

CV_DXT_FORWARD or CV_DXT_INVERSE, and either may be combined with CV_DXT_ROWS with

the same eff ect as with cvDFT(). Because of the diff erent normalization convention, both

the forward and inverse cosine transforms always contain their respective contribution

to the overall normalization of the transform; hence CV_DXT_SCALE plays no role in cvDCT.

Integral Images
OpenCV allows you to calculate an integral image easily with the appropriately named

cvIntegral() function. An integral image [Viola04] is a data structure that allows rapid

* By “slowest” we mean “asymptotically slowest”—in other words, that this portion of the algorithm takes the
most time for very large N. Th is is an important distinction. In practice, as we saw in the earlier section on
convolutions, it is not always optimal to pay the overhead for conversion to Fourier space. In general, when
convolving with a small kernel it will not be worth the trouble to make this transformation.

06-R4886-RC1.indd 18206-R4886-RC1.indd 182 9/15/08 4:21:24 PM9/15/08 4:21:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Integral Images | 183

summing of subregions. Such summations are useful in many applications; a notable

one is the computation of Haar wavelets, which are used in some face recognition and

similar algorithms.

void cvIntegral(
 const CvArr* image,
 CvArr* sum,
 CvArr* sqsum = NULL,
 CvArr* tilted_sum = NULL
);

Th e arguments to cvIntegral() are the original image as well as pointers to destination

images for the results. Th e argument sum is required; the others, sqsum and tilted_sum,

may be provided if desired. (Actually, the arguments need not be images; they could

be matrices, but in practice, they are usually images.) When the input image is 8-bit

unsigned, the sum or tilted_sum may be 32-bit integer or fl oating-point arrays. For all

other cases, the sum or tilted_sum must be fl oating-point valued (either 32- or 64-bit).

Th e result “images” must always be fl oating-point. If the input image is of size W-by-H,

then the output images must be of size (W + 1)-by-(H + 1).*

An integral image sum has the form:

sum image(,) (,)X Y x y
y Yx X

=
≤≤
∑∑

Th e optional sqsum image is the sum of squares:

sum image(,) ((,))X Y x y
y Yx X

=
≤≤
∑∑ 2

and the tilted_sum is like the sum except that it is for the image rotated by 45 degrees:

tilt_sum image
abs

(,) (,)
()

X Y x y
x X yy Y

=
− ≤≤
∑∑

Using these integral images, one may calculate sums, means, and standard deviations

over arbitrary upright or “tilted” rectangular regions of the image. As a simple exam-

ple, to sum over a simple rectangular region described by the corner points (x1, y1) and

(x2, y2), where x2 > x1 and y2 > y1, we’d compute:

[(,)]

[(,)

image

sum su

x y

x y

y y yx x x 1 21 2

2 2

≤ ≤≤ ≤
∑∑

= − mm sum sum(,) (,) (,)]x y x y x y1 1 2 2 1 1 1 1 1 1− − − + − −

In this way, it is possible to do fast blurring, approximate gradients, compute means and

standard deviations, and perform fast block correlations even for variable window sizes.

* Th is is because we need to put in a buff er of zero values along the x-axis and y-axis in order to make
computation effi cient.

06-R4886-RC1.indd 18306-R4886-RC1.indd 183 9/15/08 4:21:24 PM9/15/08 4:21:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

184 | Chapter 6: Image Transforms

Th e last term is subtracted off because this value is double-counted when adding the sec-

ond and third terms. You can verify that this works by testing some values in Figure 6-19.

When using the integral image to compute a region, we can see by Figure 6-19 that, in

order to compute the central rectangular area bounded by the 20s in the original image,

we’d calculate 398 – 9 – 10 + 1 = 380. Th us, a rectangle of any size can be computed us-

ing four measurements (resulting in O(1) computational complexity).

To make this all a little more clear, consider the 7-by-5 image shown in Figure 6-18; the

region is shown as a bar chart in which the height associated with the pixels represents

the brightness of those pixel values. Th e same information is shown in Figure 6-19, nu-

merically on the left and in integral form on the right. Integral images (I') are computed

by going across rows, proceeding row by row using the previously computed integral

image values together with the current raw image (I) pixel value I(x, y) to calculate the

next integral image value as follows:

′ = + ′ − + ′ − − ′ −I x y I x y I x y I x y I x y(,) (,) (,) (,) (,1 1 1 −−1)

Figure 6-18. Simple 7-by-5 image shown as a bar chart with x, y, and height equal to pixel value

06-R4886-RC1.indd 18406-R4886-RC1.indd 184 9/15/08 4:21:25 PM9/15/08 4:21:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Distance Transform | 185

Distance Transform
Th e distance transform of an image is defi ned as a new image in which every output

pixel is set to a value equal to the distance to the nearest zero pixel in the input image.

It should be immediately obvious that the typical input to a distance transform should

be some kind of edge image. In most applications the input to the distance transform is

an output of an edge detector such as the Canny edge detector that has been inverted (so

that the edges have value zero and the non-edges are nonzero).

In practice, the distance transform is carried out by using a mask that is typically a 3-by-3

or 5-by-5 array. Each point in the array defi nes the “distance” to be associated with a

point in that particular position relative to the center of the mask. Larger distances are

built up (and thus approximated) as sequences of “moves” defi ned by the entries in the

mask. Th is means that using a larger mask will yield more accurate distances.

Depending on the desired distance metric, the appropriate mask is automatically se-

lected from a set known to OpenCV. It is also possible to tell OpenCV to compute “ex-

act” distances according to some formula appropriate to the selected metric, but of

course this is much slower.

Th e distance metric can be any of several diff erent types, including the classic L2 (Car-

tesian) distance metric; see Table 6-2 for a listing. In addition to these you may defi ne a

custom metric and associate it with your own custom mask.

Table 6-2. Possible values for distance_type argument to cvDistTransform()

Value of distance_type Metric

CV_DIST_L2 ρ()r
r=

2

2

CV_DIST_L1 ρ()r r=

CV_DIST_L12 ρ()r
r= + −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 1
2

1
2

CV_DIST_FAIR ⎥ ρ() log , .r C
r
C

r
C

C= − +
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
=2 1 1 3998

Figure 6-19. Th e 7-by-5 image of Figure 6-18 shown numerically at left (with the origin assumed to
be the upper-left) and converted to an integral image at right

06-R4886-RC1.indd 18506-R4886-RC1.indd 185 9/15/08 4:21:25 PM9/15/08 4:21:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

186 | Chapter 6: Image Transforms

Value of distance_type Metric

CV_DIST_WELSCH 1 2ρ() exp ,r
C r

C
C= − −

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
2 2

2
..9846

CV_DIST_USER User-defi ned distance

When calling the OpenCV distance transform function, the output image should be a

32-bit fl oating-point image (i.e., IPL_DEPTH_32F).

Void cvDistTransform(
 const CvArr* src,
 CvArr* dst,
 int distance_type = CV_DIST_L2,
 int mask_size = 3,
 const float* kernel = NULL,
 CvArr* labels = NULL
);

Th ere are several optional parameters when calling cvDistTransform(). Th e fi rst is

distance_type, which indicates the distance metric to be used. Th e available values for

this argument are defi ned in Borgefors (1986) [Borgefors86].

Aft er the distance type is the mask_size, which may be 3 (choose CV_DIST_MASK_3) or 5

(choose CV_DIST_MASK_5); alternatively, distance computations can be made without a

kernel* (choose CV_DIST_MASK_PRECISE). Th e kernel argument to cvDistanceTransform() is

the distance mask to be used in the case of custom metric. Th ese kernels are constructed

according to the method of Gunilla Borgefors, two examples of which are shown in Fig-

ure 6-20. Th e last argument, labels, indicates that associations should be made between

individual points and the nearest connected component consisting of zero pixels. When

labels is non-NULL, it must be a pointer to an array of integer values the same size as the

input and output images. When the function returns, this image can be read to deter-

mine which object was closest to the particular pixel under consideration. Figure 6-21

shows the outputs of distance transforms on a test pattern and a photographic image.

Histogram Equalization
Cameras and image sensors must usually deal not only with the contrast in a scene but

also with the image sensors’ exposure to the resulting light in that scene. In a standard

camera, the shutter and lens aperture settings juggle between exposing the sensors to

too much or too little light. Oft en the range of contrasts is too much for the sensors to

deal with; hence there is a trade-off between capturing the dark areas (e.g., shadows),

which requires a longer exposure time, and the bright areas, which require shorter ex-

posure to avoid saturating “whiteouts.”

* Th e exact method comes from Pedro F. Felzenszwalb and Daniel P. Huttenlocher [Felzenszwalb63].

Table 6-2. Possible values for distance_type argument to cvDistTransform() (continued)

06-R4886-RC1.indd 18606-R4886-RC1.indd 186 9/15/08 4:21:26 PM9/15/08 4:21:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Histogram Equalization | 187

Figure 6-20. Two custom distance transform masks

Figure 6-21. First a Canny edge detector was run with param1=100 and param2=200; then the
distance transform was run with the output scaled by a factor of 5 to increase visibility

06-R4886-RC1.indd 18706-R4886-RC1.indd 187 9/15/08 4:21:26 PM9/15/08 4:21:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

188 | Chapter 6: Image Transforms

Aft er the picture has been taken, there’s nothing we can do about what the sensor re-

corded; however, we can still take what’s there and try to expand the dynamic range

of the image. Th e most commonly used technique for this is histogram equalization.*†

In Figure 6-22 we can see that the image on the left is poor because there’s not much

variation of the range of values. Th is is evident from the histogram of its intensity values

on the right. Because we are dealing with an 8-bit image, its intensity values can range

from 0 to 255, but the histogram shows that the actual intensity values are all clustered

near the middle of the available range. Histogram equalization is a method for stretch-

ing this range out.

Th e underlying math behind histogram equalization involves mapping one distribution

(the given histogram of intensity values) to another distribution (a wider and, ideally,

uniform distribution of intensity values). Th at is, we want to spread out the y-values

of the original distribution as evenly as possible in the new distribution. It turns out

that there is a good answer to the problem of spreading out distribution values: the re-

mapping function should be the cumulative distribution function. An example of the

cumulative density function is shown in Figure 6-23 for the somewhat idealized case of

a distribution that was originally pure Gaussian. However, cumulative density can be

applied to any distribution; it is just the running sum of the original distribution from

its negative to its positive bounds.

We may use the cumulative distribution function to remap the original distribution as

an equally spread distribution (see Figure 6-24) simply by looking up each y-value in

the original distribution and seeing where it should go in the equalized distribution.

* If you are wondering why histogram equalization is not in the chapter on histograms (Chapter 7), the rea-
son is that histogram equalization makes no explicit use of any histogram data types. Although histograms
are used internally, the function (from the user’s perspective) requires no histograms at all.

† Histogram equalization is an old mathematical technique; its use in image processing is described in vari-
ous textbooks [Jain86; Russ02; Acharya05], conference papers [Schwarz78], and even in biological vision
[Laughlin81].

Figure 6-22. Th e image on the left has poor contrast, as is confi rmed by the histogram of its
intensity values on the right

06-R4886-RC1.indd 18806-R4886-RC1.indd 188 9/15/08 4:21:27 PM9/15/08 4:21:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Histogram Equalization | 189

For continuous distributions the result will be an exact equalization, but for digitized/

discrete distributions the results may be far from uniform.

Applying this equalization process to Figure 6-22 yields the equalized intensity distri-

bution histogram and resulting image in Figure 6-25. Th is whole process is wrapped up

in one neat function:

Figure 6-23. Result of cumulative distribution function (left) on a Gaussian distribution (right)

Figure 6-24. Using the cumulative density function to equalize a Gaussian distribution

06-R4886-RC1.indd 18906-R4886-RC1.indd 189 9/15/08 4:21:27 PM9/15/08 4:21:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

190 | Chapter 6: Image Transforms

In cvEqualizeHist(), the source and destination must be single-channel, 8-bit images of

the same size. For color images you will have to separate the channels and process them

one by one.

Exercises
Use 1. cvFilter2D() to create a fi lter that detects only 60 degree lines in an image. Dis-

play the results on a suffi ciently interesting image scene.

Separable kernels. Create a 3-by-3 Gaussian kernel using rows [(1/16, 2/16, 1/16), 2.

(2/16, 4/16, 2/16), (1/16, 2/16, 1/16)] and with anchor point in the middle.

Run this kernel on an image and display the results.a.

Now create two one-dimensional kernels with anchors in the center: one going b.

“across” (1/4, 2/4, 1/4), and one going down (1/4, 2/4, 1/4). Load the same origi-

nal image and use cvFilter2D() to convolve the image twice, once with the fi rst

1D kernel and once with the second 1D kernel. Describe the results.

Describe the order of complexity (number of operations) for the kernel in part c.

a and for the kernels in part b. Th e diff erence is the advantage of being able to

use separable kernels and the entire Gaussian class of fi lters—or any linearly

decomposable fi lter that is separable, since convolution is a linear operation.

Can you make a separable kernel from the fi lter shown in Figure 6-5? If so, show 3.

what it looks like.

In a drawing program such as PowerPoint, draw a series of concentric circles form-4.

ing a bull’s-eye.

void cvEqualizeHist(
 const CvArr* src,
 CvArr* dst
);

Figure 6-25. Histogram equalized results: the spectrum has been spread out

06-R4886-RC1.indd 19006-R4886-RC1.indd 190 9/15/08 4:21:27 PM9/15/08 4:21:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 191

Make a series of lines going into the bull’s-eye. Save the image.a.

Using a 3-by-3 aperture size, take and display the fi rst-order b. x- and y-derivatives

of your picture. Th en increase the aperture size to 5-by-5, 9-by-9, and 13-by-13.

Describe the results.

Create a new image that is just a 45 degree line, white on black. For a given series of 5.

aperture sizes, we will take the image’s fi rst-order x-derivative (dx) and fi rst-order

y-derivative (dy). We will then take measurements of this line as follows. Th e (dx)

and (dy) images constitute the gradient of the input image. Th e magnitude at location

(i, j) is mag(,) (,) (,)i j dx i j dy i j= +2 2 and the angle is θ(,) arctan((,) (,))i j dy i j dx i j= .

Scan across the image and fi nd places where the magnitude is at or near maximum.

Record the angle at these places. Average the angles and report that as the measured

line angle.

Do this for a 3-by-3 aperture Sobel fi lter.a.

Do this for a 5-by-5 fi lter.b.

Do this for a 9-by-9 fi lter.c.

Do the results change? If so, why?d.

Find and load a picture of a face where the face is frontal, has eyes open, and takes 6.

up most or all of the image area. Write code to fi nd the pupils of the eyes.

A Laplacian “likes” a bright central point surrounded by dark. Pupils
are just the opposite. Invert and convolve with a suffi ciently large
Laplacian.

In this exercise we learn to experiment with parameters by setting good 7. lowThresh

and highThresh values in cvCanny(). Load an image with suitably interesting

line structures. We’ll use three diff erent high:low threshold settings of 1.5:1, 2.75:1,

and 4:1.

Report what you see with a high setting of less than 50.a.

Report what you see with high settings between 50 and 100.b.

Report what you see with high settings between 100 and 150.c.

Report what you see with high settings between 150 and 200.d.

Report what you see with high settings between 200 and 250.e.

Summarize your results and explain what happens as best you can.f.

Load an image containing clear lines and circles such as a side view of a bicycle. Use 8.

the Hough line and Hough circle calls and see how they respond to your image.

Can you think of a way to use the Hough transform to identify any kind of shape 9.

with a distinct perimeter? Explain how.

Look at the diagrams of how the log-polar function transforms a square into a wavy 10.

line.

06-R4886-RC1.indd 19106-R4886-RC1.indd 191 9/15/08 4:21:28 PM9/15/08 4:21:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

192 | Chapter 6: Image Transforms

Draw the log-polar results if the log-polar center point were sitting on one of a.

the corners of the square.

What would a circle look like in a log-polar transform if the center point were b.

inside the circle and close to the edge?

Draw what the transform would look like if the center point were sitting just c.

outside of the circle.

A log-polar transform takes shapes of diff erent rotations and sizes into a space 11.

where these correspond to shift s in the θ-axis and log(r) axis. Th e Fourier trans-

form is translation invariant. How can we use these facts to force shapes of diff erent

sizes and rotations to automatically give equivalent representations in the log-polar

domain?

Draw separate pictures of large, small, large rotated, and small rotated squares. 12.

Take the log-polar transform of these each separately. Code up a two-dimensional

shift er that takes the center point in the resulting log-polar domain and shift s the

shapes to be as identical as possible.

Take the Fourier transform of a small Gaussian distribution and the Fourier trans-13.

form of an image. Multiply them and take the inverse Fourier transform of the re-

sults. What have you achieved? As the fi lters get bigger, you will fi nd that working

in the Fourier space is much faster than in the normal space.

Load an interesting image, convert it to grayscale, and then take an integral image 14.

of it. Now fi nd vertical and horizontal edges in the image by using the properties of

an integral image.

Use long skinny rectangles; subtract and add them in place.

Explain how you could use the distance transform to automatically align a known 15.

shape with a test shape when the scale is known and held fi xed. How would this be

done over multiple scales?

Practice histogram equalization on images that you load in, and report the results.16.

Load an image, take a perspective transform, and then rotate it. Can this transform 17.

be done in one step?

06-R4886-RC1.indd 19206-R4886-RC1.indd 192 9/15/08 4:21:28 PM9/15/08 4:21:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

193

CHAPTER 7

Histograms and Matching

In the course of analyzing images, objects, and video information, we frequently want

to represent what we are looking at as a histogram. Histograms can be used to represent

such diverse things as the color distribution of an object, an edge gradient template of

an object [Freeman95], and the distribution of probabilities representing our current

hypothesis about an object’s location. Figure 7-1 shows the use of histograms for rapid

gesture recognition. Edge gradients were collected from “up”, “right”, “left ”, “stop” and

“OK” hand gestures. A webcam was then set up to watch a person who used these ges-

tures to control web videos. In each frame, color interest regions were detected from

the incoming video; then edge gradient directions were computed around these interest

regions, and these directions were collected into orientation bins within a histogram.

Th e histograms were then matched against the gesture models to recognize the gesture.

Th e vertical bars in Figure 7-1 show the match levels of the diff erent gestures. Th e gray

horizontal line represents the threshold for acceptance of the “winning” vertical bar

corresponding to a gesture model.

Histograms fi nd uses in many computer vision applications. Histograms are used to

detect scene transitions in videos by marking when the edge and color statistics mark-

edly change from frame to frame. Th ey are used to identify interest points in images by

assigning each interest point a “tag” consisting of histograms of nearby features. His-

tograms of edges, colors, corners, and so on form a general feature type that is passed

to classifi ers for object recognition. Sequences of color or edge histograms are used to

identify whether videos have been copied on the web, and the list goes on. Histograms

are one of the classic tools of computer vision.

Histograms are simply collected counts of the underlying data organized into a set of

predefi ned bins. Th ey can be populated by counts of features computed from the data,

such as gradient magnitudes and directions, color, or just about any other characteristic.

In any case, they are used to obtain a statistical picture of the underlying distribution

of data. Th e histogram usually has fewer dimensions than the source data. Figure 7-2

depicts a typical situation. Th e fi gure shows a two-dimensional distribution of points

(upper left); we impose a grid (upper right) and count the data points in each grid cell,

yielding a one-dimensional histogram (lower right). Because the raw data points can

07-R4886-AT1.indd 19307-R4886-AT1.indd 193 9/15/08 4:21:51 PM9/15/08 4:21:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

194 | Chapter 7: Histograms and Matching

represent just about anything, the histogram is a handy way of representing whatever it

is that you have learned from your image.

Histograms that represent continuous distributions do so by implicitly averaging the

number of points in each grid cell.* Th is is where problems can arise, as shown in Fig-

ure 7-3. If the grid is too wide (upper left), then there is too much averaging and we lose

the structure of the distribution. If the grid is too narrow (upper right), then there is not

enough averaging to represent the distribution accurately and we get small, “spiky” cells.

OpenCV has a data type for representing histograms. Th e histogram data structure is

capable of representing histograms in one or many dimensions, and it contains all the

data necessary to track bins of both uniform and nonuniform sizes. And, as you might

expect, it comes equipped with a variety of useful functions which will allow us to easily

perform common operations on our histograms.

* Th is is also true of histograms representing information that falls naturally into discrete groups when the
histogram uses fewer bins than the natural description would suggest or require. An example of this is rep-
resenting 8-bit intensity values in a 10-bin histogram: each bin would then combine the points associated
with approximately 25 diff erent intensities, (erroneously) treating them all as equivalent.

Figure 7-1. Local histograms of gradient orientations are used to fi nd the hand and its gesture; here
the “winning” gesture (longest vertical bar) is a correct recognition of “L” (move left)

07-R4886-AT1.indd 19407-R4886-AT1.indd 194 9/15/08 4:21:51 PM9/15/08 4:21:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Histogram Data Structure | 195

Basic Histogram Data Structure
Let’s start out by looking directly at the CvHistogram data structure.

typedef struct CvHistogram
{
 int type;
 CvArr* bins;
 float thresh[CV_MAX_DIM][2]; // for uniform histograms
 float** thresh2; // for nonuniform histograms
 CvMatND mat; // embedded matrix header
 // for array histograms
}
CvHistogram;

Th is defi nition is deceptively simple, because much of the internal data of the histogram

is stored inside of the CvMatND structure. We create new histograms with the following

routine:

CvHistogram* cvCreateHist(
 int dims,
 int* sizes,
 int type,
 float** ranges = NULL,
 int uniform = 1
);

Figure 7-2. Typical histogram example: starting with a cloud of points (upper left), a counting grid is
imposed (upper right) that yields a one-dimensional histogram of point counts (lower right)

07-R4886-AT1.indd 19507-R4886-AT1.indd 195 9/15/08 4:21:52 PM9/15/08 4:21:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

196 | Chapter 7: Histograms and Matching

Th e argument dims indicates how many dimensions we want the histogram to have. Th e

sizes argument must be an array of integers whose length is equal to dims. Each integer

in this array indicates how many bins are to be assigned to the corresponding dimension.

Th e type can be either CV_HIST_ARRAY, which is used for multidimensional histograms to

be stored using the dense multidimensional matrix structure (i.e., CvMatND), or CV_HIST_
SPARSE* if the data is to be stored using the sparse matrix representation (CvSparseMat). Th e

argument ranges can have one of two forms. For a uniform histogram, ranges is an array

of fl oating-point value pairs,† where the number of value pairs is equal to the number of

dimensions. For a nonuniform histogram, the pairs used by the uniform histogram are

replaced by arrays containing the values by which the nonuniform bins are separated.

If there are N bins, then there will be N + 1 entries in each of these subarrays. Each ar-

ray of values starts with the bottom edge of the lowest bin and ends with the top edge

of the highest bin.‡ Th e Boolean argument uniform indicates if the histogram is to have

* For you old timers, the value CV_HIST_TREE is still supported, but it is identical to CV_HIST_SPARSE.

† Th ese “pairs” are just C-arrays with only two entries.

‡ To clarify: in the case of a uniform histogram, if the lower and upper ranges are set to 0 and 10, respectively,
and if there are two bins, then the bins will be assigned to the respective intervals [0, 5) and [5, 10]. In the case
of a nonuniform histogram, if the size dimension i is 4 and if the corresponding ranges are set to (0, 2, 4, 9, 10),
then the resulting bins will be assigned to the following (nonuniform) intervals: [0, 2), [2,4), [4, 9), and [9, 10].

Figure 7-3. A histogram’s accuracy depends on its grid size: a grid that is too wide yields too much
spatial averaging in the histogram counts (left); a grid that is too small yields “spiky” and singleton
results from too little averaging (right)

07-R4886-AT1.indd 19607-R4886-AT1.indd 196 9/15/08 4:21:52 PM9/15/08 4:21:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Histogram Data Structure | 197

uniform bins and thus how the ranges value is interpreted;* if set to a nonzero value, the

bins are uniform. It is possible to set ranges to NULL, in which case the ranges are simply

“unknown” (they can be set later using the specialized function cvSetHistBinRanges()).
Clearly, you had better set the value of ranges before you start using the histogram.

void cvSetHistBinRanges(
 CvHistogram* hist,
 float** ranges,
 int uniform = 1
);

Th e arguments to cvSetHistRanges() are exactly the same as the corresponding argu-

ments for cvCreateHist(). Once you are done with a histogram, you can clear it (i.e.,

reset all of the bins to 0) if you plan to reuse it or you can de-allocate it with the usual

release-type function.

void cvClearHist(
 CvHistogram* hist
);
void cvReleaseHist(
 CvHistogram** hist
);

As usual, the release function is called with a pointer to the histogram pointer you

obtained from the create function. Th e histogram pointer is set to NULL once the histo-

gram is de-allocated.

Another useful function helps create a histogram from data we already have lying

around:

CvHistogram* cvMakeHistHeaderForArray(
 int dims,
 int* sizes,
 CvHistogram* hist,
 float* data,
 float** ranges = NULL,
 int uniform = 1
);

In this case, hist is a pointer to a CvHistogram data structure and data is a pointer to

an area of size sizes[0]*sizes[1]*...*sizes[dims-1] for storing the histogram bins. Notice

that data is a pointer to float because the internal data representation for the histogram

is always of type float. Th e return value is just the same as the hist value we passed in.

Unlike the cvCreateHist() routine, there is no type argument. All histograms created by

cvMakeHistHeaderForArray() are dense histograms. One last point before we move on:

since you (presumably) allocated the data storage area for the histogram bins yourself,

there is no reason to call cvReleaseHist() on your CvHistogram structure. You will have

to clean up the header structure (if you did not allocate it on the stack) and, of course,

clean up your data as well; but since these are “your” variables, you are assumed to be

taking care of this in your own way.

* Have no fear that this argument is type int, because the only meaningful distinction is between zero and
nonzero.

07-R4886-AT1.indd 19707-R4886-AT1.indd 197 9/15/08 4:21:53 PM9/15/08 4:21:53 PM

www.it-ebooks.info

http://www.it-ebooks.info/

198 | Chapter 7: Histograms and Matching

Accessing Histograms
Th ere are several ways to access a histogram’s data. Th e most straightforward method is

to use OpenCV’s accessor functions.

double cvQueryHistValue_1D(
 CvHistogram* hist,
 int idx0
);
double cvQueryHistValue_2D(
 CvHistogram* hist,
 int idx0,
 int idx1
);
double cvQueryHistValue_3D(
 CvHistogram* hist,
 int idx0,
 int idx1,
 int idx2
);
double cvQueryHistValue_nD(
 CvHistogram* hist,
 int* idxN
);

Each of these functions returns a fl oating-point number for the value in the appropriate

bin. Similarly, you can set (or get) histogram bin values with the functions that return a

pointer to a bin (not to a bin’s value):

float* cvGetHistValue_1D(
 CvHistogram* hist,
 int idx0
);
float* cvGetHistValue_2D(
 CvHistogram* hist,
 int idx0,
 int idx1
);
float* cvGetHistValue_3D(
 CvHistogram* hist,
 int idx0,
 int idx1,
 int idx2
);
float* cvGetHistValue_nD(
 CvHistogram* hist,
 int* idxN
);

Th ese functions look a lot like the cvGetReal*D and cvPtr*D families of functions, and

in fact they are pretty much the same thing. Inside of these calls are essentially those

same matrix accessors called with the matrix hist->bins passed on to them. Similarly,

the functions for sparse histograms inherit the behavior of the corresponding sparse

matrix functions. If you attempt to access a nonexistent bin using a GetHist*() function

07-R4886-AT1.indd 19807-R4886-AT1.indd 198 9/15/08 4:21:53 PM9/15/08 4:21:53 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Manipulations with Histograms | 199

in a sparse histogram, then that bin is automatically created and its value set to 0. Note

that QueryHist*() functions do not create missing bins.

Th is leads us to the more general topic of accessing the histogram. In many cases, for

dense histograms we will want to access the bins member of the histogram directly. Of

course, we might do this just as part of data access. For example, we might want to access

all of the elements in a dense histogram sequentially, or we might want to access bins di-

rectly for performance reasons, in which case we might use hist->mat.data.fl (again, for

dense histograms). Other reasons for accessing histograms include fi nding how many

dimensions it has or what regions are represented by its individual bins. For this infor-

mation we can use the following tricks to access either the actual data in the CvHistogram

structure or the information imbedded in the CvMatND structure known as mat.

int n_dimension = histogram->mat.dims;
int dim_i_nbins = histogram->mat.dim[i].size;

// uniform histograms
int dim_i_bin_lower_bound = histogram->thresh[i][0];
int dim_i_bin_upper_bound = histogram->thresh[i][1];

// nonuniform histograms
int dim_i_bin_j_lower_bound = histogram->thresh2[i][j];
int dim_j_bin_j_upper_bound = histogram->thresh2[i][j+1];

As you can see, there’s a lot going on inside the histogram data structure.

Basic Manipulations with Histograms
Now that we have this great data structure, we will naturally want to do some fun stuff

with it. First let’s hit some of the basics that will be used over and over; then we’ll move

on to some more complicated features that are used for more specialized tasks.

When dealing with a histogram, we typically just want to accumulate information into

its various bins. Once we have done this, however, it is oft en desirable to work with the

histogram in normalized form, so that individual bins will then represent the fraction of

the total number of events assigned to the entire histogram:

cvNormalizeHist(CvHistogram* hist, double factor);

Here hist is your histogram and factor is the number to which you would like to nor-

malize the histogram (which will usually be 1). If you are following closely then you

may have noticed that the argument factor is a double although the internal data type

of CvHistogram() is always float—further evidence that OpenCV is a work in progress!

Th e next handy function is the threshold function:

cvThreshHist(CvHistogram* hist, double factor);

Th e argument factor is the cutoff for the threshold. Th e result of thresholding a his-

togram is that all bins whose value is below the threshold factor are set to 0. Recall-

ing the image thresholding function cvThreshold(), we might say that the histogram

thresholding function is analogous to calling the image threshold function with the ar-

gument threshold_type set to CV_THRESH_TOZERO. Unfortunately, there are no convenient

07-R4886-AT1.indd 19907-R4886-AT1.indd 199 9/15/08 4:21:53 PM9/15/08 4:21:53 PM

www.it-ebooks.info

http://www.it-ebooks.info/

200 | Chapter 7: Histograms and Matching

histogram thresholding functions that provide operations analogous to the other thresh-

old types. In practice, however, cvThreshHist() is the one you’ll probably want because

with real data we oft en end up with some bins that contain just a few data points. Such

bins are mostly noise and thus should usually be zeroed out.

Another useful function is cvCopyHist(), which (as you might guess) copies the informa-

tion from one histogram into another.

void cvCopyHist(const CvHistogram* src, CvHistogram** dst);

Th is function can be used in two ways. If the destination histogram *dst is a histogram

of the same size as src, then both the data and the bin ranges from src will be copied

into *dst. Th e other way of using cvCopyHist() is to set *dst to NULL. In this case, a new

histogram will be allocated that has the same size as src and then the data and bin

ranges will be copied (this is analogous to the image function cvCloneImage()). It is to

allow this kind of cloning that the second argument dst is a pointer to a pointer to a

histogram—unlike the src, which is just a pointer to a histogram. If *dst is NULL when

cvCopyHist() is called, then *dst will be set to the pointer to the newly allocated histo-

gram when the function returns.

Proceeding on our tour of useful histogram functions, our next new friend is cvGetMinMax
HistValue(), which reports the minimal and maximal values found in the histogram.

void cvGetMinMaxHistValue(
 const CvHistogram* hist,
 float* min_value,
 float* max_value,
 int* min_idx = NULL,
 int* max_idx = NULL
);

Th us, given a histogram hist, cvGetMinMaxHistValue() will compute its largest and small-

est values. When the function returns, *min_value and *max_value will be set to those re-

spective values. If you don’t need one (or both) of these results, then you may set the cor-

responding argument to NULL. Th e next two arguments are optional; if you leave them set

to their default value (NULL), they will do nothing. However, if they are non-NULL pointers

to int then the integer values indicated will be fi lled with the location index of the mini-

mal and maximal values. In the case of multi-dimensional histograms, the arguments

min_idx and max_idx (if not NULL) are assumed to point to an array of integers whose

length is equal to the dimensionality of the histogram. If more than one bin in the histo-

gram has the same minimal (or maximal) value, then the bin that will be returned is the

one with the smallest index (in lexicographic order for multidimensional histograms).

Aft er collecting data in a histogram, we oft en use cvGetMinMaxHistValue() to fi nd the

minimum value and then “threshold away” bins with values near this minimum using

cvThreshHist() before fi nally normalizing the histogram via cvNormalizeHist().

Last, but certainly not least, is the automatic computation of histograms from images.

Th e function cvCalcHist() performs this crucial task:

void cvCalcHist(
 IplImage** image,

07-R4886-AT1.indd 20007-R4886-AT1.indd 200 9/15/08 4:21:54 PM9/15/08 4:21:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Manipulations with Histograms | 201

 CvHistogram* hist,
 int accumulate = 0,
 const CvArr* mask = NULL
);

Th e fi rst argument, image, is a pointer to an array of IplImage* pointers.* Th is allows us

to pass in many image planes. In the case of a multi-channel image (e.g., HSV or RGB)

we will have to cvSplit() (see Chapter 3 or Chapter 5) that image into planes before call-

ing cvCalcHist(). Admittedly that’s a bit of a pain, but consider that frequently you’ll

also want to pass in multiple image planes that contain diff erent fi ltered versions of an

image—for example, a plane of gradients or the U- and V-planes of YUV. Th en what

a mess it would be when you tried to pass in several images with various numbers of

channels (and you can be sure that someone, somewhere, would want just some of those

channels in those images!). To avoid this confusion, all images passed to cvCalcHist()

are assumed (read “required”) to be single-channel images. When the histogram is pop-

ulated, the bins will be identifi ed by the tuples formed across these multiple images. Th e

argument hist must be a histogram of the appropriate dimensionality (i.e., of dimen-

sion equal to the number of image planes passed in through image). Th e last two argu-

ments are optional. Th e accumulate argument, if nonzero, indicates that the histogram

hist should not be cleared before the images are read; note that accumulation allows

cvCalcHist() to be called multiple times in a data collection loop. Th e fi nal argument,

mask, is the usual optional Boolean mask; if non-NULL, only pixels corresponding to non-

zero entries in the mask image will be included in the computed histogram.

Comparing Two Histograms
Yet another indispensable tool for working with histograms, fi rst introduced by Swain

and Ballard [Swain91] and further generalized by Schiele and Crowley [Schiele96], is the

ability to compare two histograms in terms of some specifi c criteria for similarity. Th e

function cvCompareHist() does just this.

double cvCompareHist(
 const CvHistogram* hist1,
 const CvHistogram* hist2,
 int method
);

Th e fi rst two arguments are the histograms to be compared, which should be of the

same size. Th e third argument is where we select our desired distance metric. Th e four

available options are as follows.

Correlation (method = CV_COMP_CORREL)

d H H
H i H i

H i H

i
correl

(,)
() ()

()
1 2

1 2

1

2

2

2
=

′ ′

′ ′

⋅
⋅

∑

ii
i∑ ()

* Actually, you could also use CvMat* matrix pointers here.

07-R4886-AT1.indd 20107-R4886-AT1.indd 201 9/15/08 4:21:54 PM9/15/08 4:21:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

202 | Chapter 7: Histograms and Matching

where ′ = − ()∑H i H i N H j
k k kj
() () (/) ()1 and N equals the number of bins in the

histogram.

For correlation, a high score represents a better match than a low score. A perfect

match is 1 and a maximal mismatch is –1; a value of 0 indicates no correlation (random

association).

Chi-square (method = CV_COMP_CHISQR)

d H H
H i H i

H i Hchi-square
(,)

(() ())

() (1 2
1 2

2

1 2

=
−
+ iii)

∑

For chi-square,* a low score represents a better match than a high score. A perfect match

is 0 and a total mismatch is unbounded (depending on the size of the histogram).

Intersection (method = CV_COMP_INTERSECT)

d H H H i H i
i

intersection (,) min((), ())1 2 1 2= ∑

For histogram intersection, high scores indicate good matches and low scores indicate

bad matches. If both histograms are normalized to 1, then a perfect match is 1 and a

total mismatch is 0.

Bhattacharyya distance (method = CV_COMP_BHATTACHARYYA)

d H H
H i H i

H i H
Bhattacharyya

(,)
() ()

()
1 2

1 2

1

1= − ⋅
⋅ 22

()i
ii

i ∑∑
∑

For Bhattacharyya matching [Bhattacharyya43], low scores indicate good matches and

high scores indicate bad matches. A perfect match is 0 and a total mismatch is a 1.

With CV_COMP_BHATTACHARYYA, a special factor in the code is used to normalize the input

histograms. In general, however, you should normalize histograms before comparing

them because concepts like histogram intersection make little sense (even if allowed)

without normalization.

Th e simple case depicted in Figure 7-4 should clarify matters. In fact, this is about the

simplest case that could be imagined: a one-dimensional histogram with only two bins.

Th e model histogram has a 1.0 value in the left bin and a 0.0 value in the right bin. Th e

last three rows show the comparison histograms and the values generated for them by

the various metrics (the EMD metric will be explained shortly).

* Th e chi-square test was invented by Karl Pearson [Pearson] who founded the fi eld of mathematical statistics.

07-R4886-AT1.indd 20207-R4886-AT1.indd 202 9/15/08 4:21:54 PM9/15/08 4:21:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Manipulations with Histograms | 203

Figure 7-4 provides a quick reference for the behavior of diff erent matching types, but

there is something disconcerting here, too. If histogram bins shift by just one slot—as

with the chart’s fi rst and third comparison histograms—then all these matching methods

(except EMD) yield a maximal mismatch even though these two histograms have a

similar “shape”. Th e rightmost column in Figure 7-4 reports values returned by EMD,

a type of distance measure. In comparing the third to the model histogram, the EMD

measure quantifi es the situation precisely: the third histogram has moved to the right

by one unit. We shall explore this measure further in the “Earth Mover’s Distance” sec-

tion to follow.

In the authors’ experience, intersection works well for quick-and-dirty matching and

chi-square or Bhattacharyya work best for slower but more accurate matches. Th e EMD

measure gives the most intuitive matches but is much slower.

Histogram Usage Examples
It’s probably time for some helpful examples. Th e program in Example 7-1 (adapted

from the OpenCV code bundle) shows how we can use some of the functions just dis-

cussed. Th is program computes a hue-saturation histogram from an incoming image

and then draws that histogram as an illuminated grid.

Example 7-1. Histogram computation and display

#include <cv.h>
#include <highgui.h>

int main(int argc, char** argv) {

Figure 7-4. Histogram matching measures

07-R4886-AT1.indd 20307-R4886-AT1.indd 203 9/15/08 4:21:55 PM9/15/08 4:21:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

204 | Chapter 7: Histograms and Matching

Example 7-1. Histogram computation and display (continued)

 IplImage* src;

 if(argc == 2 && (src=cvLoadImage(argv[1], 1))!= 0) {

 // Compute the HSV image and decompose it into separate planes.
 //
 IplImage* hsv = cvCreateImage(cvGetSize(src), 8, 3);
 cvCvtColor(src, hsv, CV_BGR2HSV);

 IplImage* h_plane = cvCreateImage(cvGetSize(src), 8, 1);
 IplImage* s_plane = cvCreateImage(cvGetSize(src), 8, 1);
 IplImage* v_plane = cvCreateImage(cvGetSize(src), 8, 1);
 IplImage* planes[] = { h_plane, s_plane };
 cvCvtPixToPlane(hsv, h_plane, s_plane, v_plane, 0);

 // Build the histogram and compute its contents.
 //
 int h_bins = 30, s_bins = 32;
 CvHistogram* hist;
 {
 int hist_size[] = { h_bins, s_bins };
 float h_ranges[] = { 0, 180 }; // hue is [0,180]
 float s_ranges[] = { 0, 255 };
 float* ranges[] = { h_ranges, s_ranges };
 hist = cvCreateHist(
 2,
 hist_size,
 CV_HIST_ARRAY,
 ranges,
 1
);
 }
 cvCalcHist(planes, hist, 0, 0); //Compute histogram
 cvNormalizeHist(hist[i], 1.0); //Normalize it

 // Create an image to use to visualize our histogram.
 //
 int scale = 10;
 IplImage* hist_img = cvCreateImage(
 cvSize(h_bins * scale, s_bins * scale),
 8,
 3
);
 cvZero(hist_img);

 // populate our visualization with little gray squares.
 //
 float max_value = 0;
 cvGetMinMaxHistValue(hist, 0, &max_value, 0, 0);

 for(int h = 0; h < h_bins; h++) {
 for(int s = 0; s < s_bins; s++) {

07-R4886-AT1.indd 20407-R4886-AT1.indd 204 9/15/08 4:21:55 PM9/15/08 4:21:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Manipulations with Histograms | 205

Example 7-1. Histogram computation and display (continued)

 float bin_val = cvQueryHistValue_2D(hist, h, s);
 int intensity = cvRound(bin_val * 255 / max_value);
 cvRectangle(
 hist_img,
 cvPoint(h*scale, s*scale),
 cvPoint((h+1)*scale - 1, (s+1)*scale - 1),
 CV_RGB(intensity,intensity,intensity),
 CV_FILLED
);
 }
 }

 cvNamedWindow(“Source”, 1);
 cvShowImage(“Source”, src);

 cvNamedWindow(“H-S Histogram”, 1);
 cvShowImage(“H-S Histogram”, hist_img);

 cvWaitKey(0);
 }
}

In this example we have spent a fair amount of time preparing the arguments for

cvCalcHist(), which is not uncommon. We also chose to normalize the colors in the

visualization rather than normalizing the histogram itself, although the reverse

order might be better for some applications. In this case it gave us an excuse to call

cvGetMinMaxHistValue(), which was reason enough not to reverse the order.

Let’s look at a more practical example: color histograms taken from a human hand un-

der various lighting conditions. Th e left column of Figure 7-5 shows images of a hand in

an indoor environment, a shaded outdoor environment, and a sunlit outdoor environ-

ment. In the middle column are the blue, green, and red (BGR) histograms correspond-

ing to the observed fl esh tone of the hand. In the right column are the corresponding

HSV histograms, where the vertical axis is V (value), the radius is S (saturation) and

the angle is H (hue). Notice that indoors is darkest, outdoors in the shade brighter, and

outdoors in the sun brightest. Observe also that the colors shift around somewhat as a

result of the changing color of the illuminating light.

As a test of histogram comparison, we could take a portion of one palm (e.g., the top half

of the indoor palm), and compare the histogram representation of the colors in that im-

age either with the histogram representation of the colors in the remainder of that image

or with the histogram representations of the other two hand images. Flesh tones are of-

ten easier to pick out aft er conversion to an HSV color space. It turns out that restricting

ourselves to the hue and saturation planes is not only suffi cient but also helps with rec-

ognition of fl esh tones across ethnic groups. Th e matching results for our experiment are

shown in Table 7-1, which confi rms that lighting can cause severe mismatches in color.

Sometimes normalized BGR works better than HSV in the context of lighting changes.

07-R4886-AT1.indd 20507-R4886-AT1.indd 205 9/15/08 4:21:55 PM9/15/08 4:21:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

206 | Chapter 7: Histograms and Matching

Table 7-1. Histogram comparison, via four matching methods, of palm-fl esh colors in upper half of
indoor palm with listed variant palm-fl esh color

Comparison CORREL CHISQR INTERSECT BHATTACHARYYA

 Indoor lower half 0.96 0.14 0.82 0.2

 Outdoor shade 0.09 1.57 0.13 0.8

 Outdoor sun –0.0 1.98 0.01 0.99

Some More Complicated Stuff
Everything we’ve discussed so far was reasonably basic. Each of the functions provided

for a relatively obvious need. Collectively, they form a good foundation for much of what

you might want to do with histograms in the context of computer vision (and probably

in other contexts as well). At this point we want to look at some more complicated rou-

tines available within OpenCV that are extremely useful in certain applications. Th ese

routines include a more sophisticated method of comparing two histograms as well as

Figure 7-5. Histogram of fl esh colors under indoor (upper left), shaded outdoor (middle left), and
outdoor (lower left) lighting conditions; the middle and right-hand columns display the associated
BGR and HSV histograms, respectively

07-R4886-AT1.indd 20607-R4886-AT1.indd 206 9/15/08 4:21:55 PM9/15/08 4:21:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Some More Complicated Stuff | 207

tools for computing and/or visualizing which portions of an image contribute to a given

portion of a histogram.

Earth Mover’s Distance
Lighting changes can cause shift s in color values (see Figure 7-5), although such shift s

tend not to change the shape of the histogram of color values, but shift the color value

locations and thus cause the histogram-matching schemes we’ve learned about to fail. If

instead of a histogram match measure we used a histogram distance measure, then we

could still match like histograms to like histograms even when the second histogram

has shift ed its been by looking for small distance measures. Earth mover’s distance

(EMD) [Rubner00] is such a metric; it essentially measures how much work it would

take to “shovel” one histogram shape into another, including moving part (or all) of the

histogram to a new location. It works in any number of dimensions.

Return again to Figure 7-4; we see the “earthshoveling” nature of EMD’s distance mea-

sure in the rightmost column. An exact match is a distance of 0. Half a match is half a

“shovel full”, the amount it would take to spread half of the left histogram into the next

slot. Finally, moving the entire histogram one step to the right would require an en-

tire unit of distance (i.e., to change the model histogram into the “totally mismatched”

histogram).

Th e EMD algorithm itself is quite general; it allows users to set their own distance met-

ric or their own cost-of-moving matrix. One can record where the histogram “material”

fl owed from one histogram to another, and one can employ nonlinear distance met-

rics derived from prior information about the data. Th e EMD function in OpenCV is

cvCalcEMD2():

float cvCalcEMD2(
 const CvArr* signature1,
 const CvArr* signature2,
 int distance_type,
 CvDistanceFunction distance_func = NULL,
 const CvArr* cost_matrix = NULL,
 CvArr* flow = NULL,
 float* lower_bound = NULL,
 void* userdata = NULL
);

Th e cvCalcEMD2() function has enough parameters to make one dizzy. Th is may seem

rather complex for such an intuitive function, but the complexity stems from all the

subtle confi gurable dimensions of the algorithm.* Fortunately, the function can be used

in its more basic and intuitive form and without most of the arguments (note all the

“=NULL” defaults in the preceding code). Example 7-2 shows the simplifi ed version.

* If you want all of the gory details, we recommend that you read the 1989 paper by S. Peleg, M. Werman,
and H. Rom, “A Unifi ed Approach to the Change of Resolution: Space and Gray-Level,” and then take a
look at the relevant entries in the OpenCV user manual that are included in the release …\opencv\docs\ref\
opencvref_cv.htm.

07-R4886-AT1.indd 20707-R4886-AT1.indd 207 9/15/08 4:21:55 PM9/15/08 4:21:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

208 | Chapter 7: Histograms and Matching

Example 7-2. Simple EMD interface

float cvCalcEMD2(
 const CvArr* signature1,
 const CvArr* signature2,
 int distance_type
);

Th e parameter distance_type for the simpler version of cvCalcEMD2() is either Manhat-

tan distance (CV_DIST_L1) or Euclidean distance (CV_DIST_L2). Although we’re applying the

EMD to histograms, the interface prefers that we talk to it in terms of signatures for the

fi rst two array parameters.

Th ese signature arrays are always of type float and consist of rows containing the his-

togram bin count followed by its coordinates. For the one-dimensional histogram of

Figure 7-4, the signatures (listed array rows) for the left hand column of histograms

(skipping the model) would be as follows: top, [1, 0; 0, 1]; middle, [0.5, 0; 0.5, 1]; bottom,

[0, 0; 1, 1]. If we had a bin in a three-dimensional histogram with a bin count of 537 at

(x, y, z) index (7, 43, 11), then the signature row for that bin would be [537, 7; 43, 11]. Th is

is how we perform the necessary step of converting histograms into signatures.

As an example, suppose we have two histograms, hist1 and hist2, that we want to con-

vert to two signatures, sig1 and sig2. Just to make things more diffi cult, let’s suppose

that these are two-dimensional histograms (as in the preceding code examples) of di-

mension h_bins by s_bins. Example 7-3 shows how to convert these two histograms into

two signatures.

Example 7-3. Creating signatures from histograms for EMD

//Convert histograms into signatures for EMD matching
//assume we already have 2D histograms hist1 and hist2
//that are both of dimension h_bins by s_bins (though for EMD,
// histograms don’t have to match in size).
//
CvMat* sig1,sig2;
int numrows = h_bins*s_bins;

//Create matrices to store the signature in
//
sig1 = cvCreateMat(numrows, 3, CV_32FC1); //1 count + 2 coords = 3
sig2 = cvCreateMat(numrows, 3, CV_32FC1); //sigs are of type float.

//Fill signatures for the two histograms
//
for(int h = 0; h < h_bins; h++) {
 for(int s = 0; s < s_bins; s++) {
 float bin_val = cvQueryHistValue_2D(hist1, h, s);
 cvSet2D(sig1,h*s_bins + s,0,cvScalar(bin_val)); //bin value
 cvSet2D(sig1,h*s_bins + s,1,cvScalar(h)); //Coord 1
 cvSet2D(sig1,h*s_bins + s,2,cvScalar(s)); //Coord 2

07-R4886-AT1.indd 20807-R4886-AT1.indd 208 9/15/08 4:21:56 PM9/15/08 4:21:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Some More Complicated Stuff | 209

Example 7-3. Creating signatures from histograms for EMD (continued)

 bin_val = cvQueryHistValue_2D(hist2, h, s);
 cvSet2D(sig2,h*s_bins + s,0,cvScalar(bin_val)); //bin value
 cvSet2D(sig2,h*s_bins + s,1,cvScalar(h)); //Coord 1
 cvSet2D(sig2,h*s_bins + s,2,cvScalar(s)); //Coord 2
 }
}

Notice in this example* that the function cvSet2D() takes a CvScalar() array to set its

value even though each entry in this particular matrix is a single fl oat. We use the inline

convenience macro cvScalar() to accomplish this task. Once we have our histograms

converted into signatures, we are ready to get the distance measure. Choosing to mea-

sure by Euclidean distance, we now add the code of Example 7-4.

Example 7-4. Using EMD to measure the similarity between distributions

// Do EMD AND REPORT
//
float emd = cvCalcEMD2(sig1,sig2,CV_DIST_L2);
printf(“%f; ”,emd);

Back Projection
Back projection is a way of recording how well the pixels (for cvCalcBackProject()) or

patches of pixels (for cvCalcBackProjectPatch()) fi t the distribution of pixels in a histo-

gram model. For example, if we have a histogram of fl esh color then we can use back

projection to fi nd fl esh color areas in an image. Th e function call for doing this kind of

lookup is:

void cvCalcBackProject(
 IplImage** image,
 CvArr* back_project,
 const CvHistogram* hist
);

We have already seen the array of single channel images IplImage** image in the func-

tion cvCalcHist() (see the section “Basic Manipulations with Histograms”). Th e number

of images in this array is exactly the same—and in the same order—as used to construct

the histogram model hist. Example 7-1 showed how to convert an image into single-

channel planes and then make an array of them. Th e image or array back_project is a

single-channel 8-bit or fl oating-point image of the same size as the input images in the

array. Th e values in back_project are set to the values in the associated bin in hist. If the

histogram is normalized, then this value can be associated with a conditional probabil-

ity value (i.e., the probability that a pixel in image is a member of the type characterized

* Using cvSetReal2D() or cvmSet() would have been more compact and effi cient here, but the example is
clearer this way and the extra overhead is small compared to the actual distance calculation in EMD.

07-R4886-AT1.indd 20907-R4886-AT1.indd 209 9/15/08 4:21:56 PM9/15/08 4:21:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

210 | Chapter 7: Histograms and Matching

by the histogram in hist).* In Figure 7-6, we use a fl esh-color histogram to derive a

probability of fl esh image.

* Specifi cally, in the case of our fl esh-tone H-S histogram, if C is the color of the pixel and F is the prob-
ability that a pixel is fl esh, then this probability map gives us p(C|F), the probability of drawing that color
if the pixel actually is fl esh. Th is is not quite the same as p(F|C), the probability that the pixel is fl esh given
its color. However, these two probabilities are related by Bayes’ theorem [Bayes1763] and so, if we know
the overall probability of encountering a fl esh-colored object in a scene as well as the total probability of
encountering of the range of fl esh colors, then we can compute p(F|C) from p(C|F). Specifi cally, Bayes’
theorem establishes the following relation:

p F C
p F

p C
p C F(|)

()

()
(|)=

Figure 7-6. Back projection of histogram values onto each pixel based on its color: the HSV fl esh-
color histogram (upper left) is used to convert the hand image (upper right) into the fl esh-color
probability image (lower right); the lower left panel is the histogram of the hand image

07-R4886-AT1.indd 21007-R4886-AT1.indd 210 9/15/08 4:21:56 PM9/15/08 4:21:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Some More Complicated Stuff | 211

When back_project is a byte image rather than a fl oat image, you
should either not normalize the histogram or else scale it up before use.
Th e reason is that the highest possible value in a normalized histogram
is 1, so anything less than that will be rounded down to 0 in the 8-bit im-
age. You might also need to scale back_project in order to see the values
with your eyes, depending on how high the values are in your histogram.

Patch-based back projection

We can use the basic back-projection method to model whether or not a particular pixel

is likely to be a member of a particular object type (when that object type was modeled

by a histogram). Th is is not exactly the same as computing the probability of the pres-

ence of a particular object. An alternative method would be to consider subregions of an

image and the feature (e.g., color) histogram of that subregion and to ask whether the

histogram of features for the subregion matches the model histogram; we could then

associate with each such subregion a probability that the modeled object is, in fact, pres-

ent in that subregion.

Th us, just as cvCalcBackProject() allows us to compute if a pixel might be part of a

known object, cvCalcBackProjectPatch() allows us to compute if a patch might contain

a known object. Th e cvCalcBackProjectPatch() function uses a sliding window over the

entire input image, as shown in Figure 7-7. At each location in the input array of images,

all the pixels in the patch are used to set one pixel in the destination image correspond-

ing to the center of the patch. Th is is important because many properties of images such

as textures cannot be determined at the level of individual pixels, but instead arise from

groups of pixels.

For simplicity in these examples, we’ve been sampling color to create our histogram

models. Th us in Figure 7-6 the whole hand “lights up” because pixels there match the

fl esh color histogram model well. Using patches, we can detect statistical properties that

occur over local regions, such as the variations in local intensity that make up a tex-

ture on up to the confi guration of properties that make up a whole object. Using local

patches, there are two ways one might consider applying cvCalcBackProjectPatch(): as a

region detector when the sampling window is smaller than the object and as an object

detector when the sampling window is the size of the object. Figure 7-8 shows the use

of cvCalcBackProjectPatch() as a region detector. We start with a histogram model of

palm-fl esh color and a small window is moved over the image such that each pixel in

the back projection image records the probability of palm-fl esh at that pixel given all the

pixels in the surrounding window in the original image. In Figure 7-8 the hand is much

larger than the scanning window and the palm region is preferentially detected. Figure

7-9 starts with a histogram model collected from blue mugs. In contrast to Figure 7-8

where regions were detected, Figure 7-9 shows how cvCalcBackProjectPatch() can be

used as an object detector. When the window size is roughly the same size as the objects

we are hoping to fi nd in an image, the whole object “lights up” in the back projection

07-R4886-AT1.indd 21107-R4886-AT1.indd 211 9/15/08 4:21:56 PM9/15/08 4:21:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

212 | Chapter 7: Histograms and Matching

image. Finding peaks in the back projection image then corresponds to fi nding the lo-

cation of objects (in Figure 7-9, a mug) that we are looking for.

Th e function provided by OpenCV for back projection by patches is:

void cvCalcBackProjectPatch(
 IplImage** images,
 CvArr* dst,
 CvSize patch_size,
 CvHistogram* hist,
 int method,
 float factor
);

Here we have the same array of single-channel images that was used to create the histo-

gram using cvCalcHist(). However, the destination image dst is diff erent: it can only be

a single-channel, fl oating-point image with size (images[0][0].width – patch_size.x + 1,
images[0][0].height – patch_size.y + 1). Th e explanation for this size (see Figure 7-7)

is that the center pixel in the patch is used to set the corresponding location in dst,

so we lose half a patch dimension along the edges of the image on every side. Th e pa-

rameter patch_size is exactly what you would expect (the size of the patch) and may be

set using the convenience macro cvSize(width, height). We are already familiar with

the histogram parameter; as with cvCalcBackProject(), this is the model histogram to

which individual windows will be compared. Th e parameter for comparison method

takes as arguments exactly the same method types as used in cvCompareHist() (see the

Figure 7-7. Back projection: a sliding patch over the input image planes is used to set the correspond-
ing pixel (at the center of the patch) in the destination image; for normalized histogram models, the
resulting image can be interpreted as a probability map indicating the possible presence of the object
(this fi gure is taken from the OpenCV reference manual)

07-R4886-AT1.indd 21207-R4886-AT1.indd 212 9/15/08 4:21:57 PM9/15/08 4:21:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Some More Complicated Stuff | 213

“Comparing Two Histograms” section).* Th e fi nal parameter, factor, is the normalization

level; this parameter is the same as discussed previously in connection with cvNor-
malizeHist(). You can set it to 1 or, as a visualization aid, to some larger number. Be-

cause of this fl exibility, you are always free to normalize your hist model before using

cvCalcBackProjectPatch().

A fi nal question comes up: Once we have a probability of object image, how do we

use that image to fi nd the object that we are searching for? For search, we can use the

cvMinMaxLoc() discussed in Chapter 3. Th e maximum location (assuming you smooth

a bit fi rst) is the most likely location of the object in an image. Th is leads us to a slight

digression, template matching.

* You must be careful when choosing a method, because some indicate best match with a return value of 1
and others with a value of 0.

Figure 7-8. Back projection used for histogram object model of fl esh tone where the window (small
white box in upper right frame) is much smaller than the hand; here, the histogram model was of
palm-color distribution and the peak locations tend to be at the center of the hand

07-R4886-AT1.indd 21307-R4886-AT1.indd 213 9/15/08 4:21:57 PM9/15/08 4:21:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

214 | Chapter 7: Histograms and Matching

Template Matching
Template matching via cvMatchTemplate() is not based on histograms; rather, the func-

tion matches an actual image patch against an input image by “sliding” the patch over

the input image using one of the matching methods described in this section.

If, as in Figure 7-10, we have an image patch containing a face, then we can slide that

face over an input image looking for strong matches that would indicate another face is

present. Th e function call is similar to that of cvCalcBackProjectPatch():

void cvMatchTemplate(
 const CvArr* image,
 const CvArr* templ,
 CvArr* result,
 int method
);

Instead of the array of input image planes that we saw in cvCalcBackProjectPatch(),

here we have a single 8-bit or fl oating-point plane or color image as input. Th e match-

ing model in templ is just a patch from a similar image containing the object for which

Figure 7-9. Using cvCalcBackProjectPatch() to locate an object (here, a coff ee cup) whose size ap-
proximately matches the patch size (white box in upper right panel): the sought object is modeled by
a hue-saturation histogram (upper left), which can be compared with an HS histogram for the image
as a whole (lower left); the result of cvCalcBackProjectPatch() (lower right) is that the object is easily
picked out from the scene by virtue of its color

07-R4886-AT1.indd 21407-R4886-AT1.indd 214 9/15/08 4:21:57 PM9/15/08 4:21:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Some More Complicated Stuff | 215

you are searching. Th e output object image will be put in the result image, which is a

single-channel byte or fl oating-point image of size (images->width – patch_size.x + 1,
rimages->height – patch_size.y + 1), as we saw previously in cvCalcBackProjectPatch().

Th e matching method is somewhat more complex, as we now explain. We use I to denote

the input image, T the template, and R the result.

Square difference matching method (method = CV_TM_SQDIFF)

Th ese methods match the squared diff erence, so a perfect match will be 0 and bad

matches will be large:

R x y T x y I x x y y
x y

sq_diff (,) [(,) (,)]
,

= ′ ′ − + ′ + ′
′ ′

2∑∑

Correlation matching methods (method = CV_TM_CCORR)

Th ese methods multiplicatively match the template against the image, so a perfect match

will be large and bad matches will be small or 0.

R x y T x y I x x y y
x y

ccorr (,) [(,) (,)]
,

= ′ ′ + ′ + ′⋅
′ ′
∑ 2

Figure 7-10. cvMatchTemplate() sweeps a template image patch across another image looking for
matches

07-R4886-AT1.indd 21507-R4886-AT1.indd 215 9/15/08 4:21:57 PM9/15/08 4:21:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

216 | Chapter 7: Histograms and Matching

Correlation coefficient matching methods (method = CV_TM_CCOEFF)

Th ese methods match a template relative to its mean against the image relative to its

mean, so a perfect match will be 1 and a perfect mismatch will be –1; a value of 0 simply

means that there is no correlation (random alignments).

R x y T x y I x x y y
x

ccoeff (,) [(,) (,)]
,

= ′ ′ ′ ′ + ′ + ′⋅
′ ′

2

yy

∑

′ ′ ′ = ′ ′ −
′′ ′′⋅ ∑

T x y T x y
w h T x y

(,) (,)
() (,)

′′ ′′x y,

1

′ + ′ + ′ = + ′ + ′ −
+ ′′ +⋅

I x x y y I x x y y
w h I x x y

(,) (,)
() (,

1
′′′∑ y)

′′ ′′x y,

Normalized methods

For each of the three methods just described, there are also normalized versions fi rst

developed by Galton [Galton] as described by Rodgers [Rodgers88]. Th e normalized

methods are useful because, as mentioned previously, they can help reduce the eff ects

of lighting diff erences between the template and the image. In each case, the normaliza-

tion coeffi cient is the same:

∑ ∑2 2) (,) ⋅ +Z x y T x y I x x y x
x y x y

(, (,)
, ,

= ′ ′ ′ + ′
′ ′ ′ ′

Th e values for method that give the normalized computations are listed in Table 7-2.

Table 7-2. Values of the method parameter for normalized template matching

Value of method parameter Computed result

CV_TM_SQDIFF_NORMED R x y
R x y

Z x ysq_diff_normed

sq_diff(,)
(,)

(,)
=

CV_TM_CCORR_NORMED R x y
R x y
Z x yccor_normed
ccor(,)

(,)

(,)
=

CV_TM_CCOEFF_NORMED R x y
R x y
Z x yccoeff_normed

ccoeff(,)
(,)

(,)
=

As usual, we obtain more accurate matches (at the cost of more computations) as we

move from simpler measures (square diff erence) to the more sophisticated ones (corre-

lation coeffi cient). It’s best to do some test trials of all these settings and then choose the

one that best trades off accuracy for speed in your application.

07-R4886-AT1.indd 21607-R4886-AT1.indd 216 9/15/08 4:21:58 PM9/15/08 4:21:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Some More Complicated Stuff | 217

Again, be careful when interpreting your results. Th e square-diff erence
methods show best matches with a minimum, whereas the correlation
and correlation-coeffi cient methods show best matches at maximum
points.

As in the case of cvCalcBackProjectPatch(), once we use cvMatchTemplate() to obtain a

matching result image we can then use cvMinMaxLoc() to fi nd the location of the best

match. Again, we want to ensure there’s an area of good match around that point in

order to avoid random template alignments that just happen to work well. A good

match should have good matches nearby, because slight misalignments of the template

shouldn’t vary the results too much for real matches. Looking for the best matching

“hill” can be done by slightly smoothing the result image before seeking the maximum

(for correlation or correlation-coeffi cient) or minimum (for square-diff erence) match-

ing methods. Th e morphological operators can also be helpful in this context.

Example 7-5 should give you a good idea of how the diff erent template matching tech-

niques behave. Th is program fi rst reads in a template and image to be matched and then

performs the matching via the methods we’ve discussed here.

Example 7-5. Template matching

// Template matching.
// Usage: matchTemplate image template
//
#include <cv.h>
#include <cxcore.h>
#include <highgui.h>
#include <stdio.h>
int main(int argc, char** argv) {
 IplImage *src, *templ,*ftmp[6]; //ftmp will hold results
 int i;
 if(argc == 3){
 //Read in the source image to be searched:
 if((src=cvLoadImage(argv[1], 1))== 0) {
 printf(“Error on reading src image %s\n”,argv[i]);
 return(-1);
 }
 //Read in the template to be used for matching:
 if((templ=cvLoadImage(argv[2], 1))== 0) {
 printf(“Error on reading template %s\n”,argv[2]);
 return(-1);
 }
 //ALLOCATE OUTPUT IMAGES:
 int iwidth = src->width - templ->width + 1;
 int iheight = src->height - templ->height + 1;
 for(i=0; i<6; ++i){
 ftmp[i] = cvCreateImage(
 cvSize(iwidth,iheight),32,1);
 }
 //DO THE MATCHING OF THE TEMPLATE WITH THE IMAGE:

07-R4886-AT1.indd 21707-R4886-AT1.indd 217 9/15/08 4:21:59 PM9/15/08 4:21:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

218 | Chapter 7: Histograms and Matching

Example 7-5. Template matching (continued)

 for(i=0; i<6; ++i){
 cvMatchTemplate(src, templ, ftmp[i], i);
 cvNormalize(ftmp[i],ftmp[i],1,0,CV_MINMAX)*;
 }
 //DISPLAY
 cvNamedWindow(“Template”, 0);
 cvShowImage(“Template”, templ);
 cvNamedWindow(“Image”, 0);
 cvShowImage(“Image”, src);
 cvNamedWindow(“SQDIFF”, 0);
 cvShowImage(“SQDIFF”, ftmp[0]);
 cvNamedWindow(“SQDIFF_NORMED”, 0);
 cvShowImage(“SQDIFF_NORMED”, ftmp[1]);
 cvNamedWindow(“CCORR”, 0);
 cvShowImage(“CCORR”, ftmp[2]);
 cvNamedWindow(“CCORR_NORMED”, 0);
 cvShowImage(“CCORR_NORMED”, ftmp[3]);
 cvNamedWindow(“CCOEFF”, 0);
 cvShowImage(“CCOEFF”, ftmp[4]);
 cvNamedWindow(“CCOEFF_NORMED”, 0);
 cvShowImage(“CCOEFF_NORMED”, ftmp[5]);
 //LET USER VIEW RESULTS:
 cvWaitKey(0);
 }
 else { printf(“Call should be: ”
 “matchTemplate image template \n”);}
}

Note the use of cvNormalize() in this code, which allows us to display the results in a

consistent way (recall that some of the matching methods can return negative-valued

results. We use the CV_MINMAX fl ag when normalizing; this tells the function to shift and

scale the fl oating-point images so that all returned values are between 0 and 1. Fig ure

7-11 shows the results of sweeping the face template over the source image (shown in

Figure 7-10) using each of cvMatchTemplate()’s available matching methods. In outdoor

imagery especially, it’s almost always better to use one of the normalized methods.

Among those, correlation coeffi cient gives the most clearly delineated match—but, as

expected, at a greater computational cost. For a specifi c application, such as automatic

parts inspection or tracking features in a video, you should try all the methods and fi nd

the speed and accuracy trade-off that best serves your needs.

* You can oft en get more pronounced match results by raising the matches to a power (e.g., cvPow(ftmp[i],
ftmp[i], 5);). In the case of a result which is normalized between 0.0 and 1.0, then you can immediately
see that a good match of 0.99 taken to the fi ft h power is not much reduced (0.995=0.95) while a poorer score
of 0.20 is reduced substantially (0.505=0.03).

07-R4886-AT1.indd 21807-R4886-AT1.indd 218 9/15/08 4:21:59 PM9/15/08 4:21:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 219

Exercises
Generate 1,000 random numbers 1. ri between 0 and 1. Decide on a bin size and then

take a histogram of 1/ri.

Are there similar numbers of entries (i.e., within a factor of ±10) in each histo-a.

gram bin?

Propose a way of dealing with distributions that are highly nonlinear so that b.

each bin has, within a factor of 10, the same amount of data.

Take three images of a hand in each of the three lighting conditions discussed in 2.

the text. Use cvCalcHist() to make an RGB histogram of the fl esh color of one of the

hands photographed indoors.

Try using just a few large bins (e.g., 2 per dimension), a medium number of bins a.

(16 per dimension) and many bins (256 per dimension). Th en run a matching

routine (using all histogram matching methods) against the other indoor light-

ing images of hands. Describe what you fi nd.

Now add 8 and then 32 bins per dimension and try matching across lighting b.

conditions (train on indoor, test on outdoor). Describe the results.

As in exercise 2, gather RGB histograms of hand fl esh color. Take one of the in-3.

door histogram samples as your model and measure EMD (earth mover’s distance)

against the second indoor histogram and against the fi rst outdoor shaded and fi rst

outdoor sunlit histograms. Use these measurements to set a distance threshold.

Figure 7-11. Match results of six matching methods for the template search depicted in Figure 7-10:
the best match for square diff erence is 0 and for the other methods it’s the maximum point; thus,
matches are indicated by dark areas in the left column and by bright spots in the other two columns

07-R4886-AT1.indd 21907-R4886-AT1.indd 219 9/15/08 4:21:59 PM9/15/08 4:21:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

220 | Chapter 7: Histograms and Matching

Using this EMD threshold, see how well you detect the fl esh histogram of the a.

third indoor histogram, the second outdoor shaded, and the second outdoor

sunlit histograms. Report your results.

Take histograms of randomly chosen nonfl esh background patches to see how b.

well your EMD discriminates. Can it reject the background while matching the

true fl esh histograms?

Using your collection of hand images, design a histogram that can determine un-4.

der which of the three lighting conditions a given image was captured. Toward this

end, you should create features—perhaps sampling from parts of the whole scene,

sampling brightness values, and/or sampling relative brightness (e.g., from top to

bottom patches in the frame) or gradients from center to edges.

Assemble three histograms of fl esh models from each of our three lighting 5.

conditions.

Use the fi rst histograms from indoor, outdoor shaded, and outdoor sunlit as a.

your models. Test each one of these against the second images in each respec-

tive class to see how well the fl esh-matching score works. Report matches.

Use the “scene detector” you devised in part a, to create a “switching histo-b.

gram” model. First use the scene detector to determine which histogram model

to use: indoor, outdoor shaded, or outdoor sunlit. Th en use the corresponding

fl esh model to accept or reject the second fl esh patch under all three condi-

tions. How well does this switching model work?

Create a fl esh-region interest (or “attention”) detector.6.

Just indoors for now, use several samples of hand and face fl esh to create an a.

RGB histogram.

Use b. cvCalcBackProject() to fi nd areas of fl esh.

Use c. cvErode() from Chapter 5 to clean up noise and then cvFloodFill() (from

the same chapter) to fi nd large areas of fl esh in an image. Th ese are your “atten-

tion” regions.

Try some hand-gesture recognition. Photograph a hand about 2 feet from the cam-7.

era, create some (nonmoving) hand gestures: thumb up, thumb left , thumb right.

Using your attention detector from exercise 6, take image gradients in the area a.

of detected fl esh around the hand and create a histogram model for each of the

three gestures. Also create a histogram of the face (if there’s a face in the image)

so that you’ll have a (nongesture) model of that large fl esh region. You might

also take histograms of some similar but nongesture hand positions, just so

they won’t be confused with the actual gestures.

Test for recognition using a webcam: use the fl esh interest regions to fi nd “po-b.

tential hands”; take gradients in each fl esh region; use histogram matching

07-R4886-AT1.indd 22007-R4886-AT1.indd 220 9/15/08 4:21:59 PM9/15/08 4:21:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 221

above a threshold to detect the gesture. If two models are above threshold, take

the better match as the winner.

Move your hand 1–2 feet further back and see if the gradient histogram can c.

still recognize the gestures. Report.

Repeat exercise 7 but with EMD for the matching. What happens to EMD as you 8.

move your hand back?

With the same images as before but with captured image patches instead of his-9.

tograms of the fl esh around the hand, use cvMatchTemplate() instead of histogram

matching. What happens to template matching when you move your hand back-

wards so that its size is smaller in the image?

07-R4886-AT1.indd 22107-R4886-AT1.indd 221 9/15/08 4:22:00 PM9/15/08 4:22:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

222

CHAPTER 8

Contours

Although algorithms like the Canny edge detector can be used to fi nd the edge pixels

that separate diff erent segments in an image, they do not tell you anything about those

edges as entities in themselves. Th e next step is to be able to assemble those edge pix-

els into contours. By now you have probably come to expect that there is a convenient

function in OpenCV that will do exactly this for you, and indeed there is: cvFindCon-
tours(). We will start out this chapter with some basics that we will need in order to use

this function. Specifi cally, we will introduce memory storages, which are how OpenCV

functions gain access to memory when they need to construct new objects dynamically;

then we will learn some basics about sequences, which are the objects used to represent

contours generally. With those concepts in hand, we will get into contour fi nding in

some detail. Th ereaft er we will move on to the many things we can do with contours

aft er they’ve been computed.

Memory Storage
OpenCV uses an entity called a memory storage as its method of handling memory al-

location for dynamic objects. Memory storages are linked lists of memory blocks that

allow for fast allocation and de-allocation of continuous sets of blocks. OpenCV func-

tions that require the ability to allocate memory as part of their normal functionality

will require access to a memory storage from which to get the memory they require

(typically this includes any function whose output is of variable size).

Memory storages are handled with the following four routines:

CvMemStorage* cvCreateMemStorage(
 int block_size = 0
);
void cvReleaseMemStorage(
 CvMemStorage** storage
);
void cvClearMemStorage(
 CvMemStorage* storage
);
void* cvMemStorageAlloc(
 CvMemStorage* storage,

08-R4886-AT1.indd 22208-R4886-AT1.indd 222 9/15/08 4:22:21 PM9/15/08 4:22:21 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Sequences | 223

 size_t size
);

To create a memory storage, the function cvCreateMemStorage() is used. Th is function

takes as an argument a block size, which gives the size of memory blocks inside the

store. If this argument is set to 0 then the default block size (64kB) will be used. Th e

function returns a pointer to a new memory store.

Th e cvReleaseMemStorage() function takes a pointer to a valid memory storage and then

de-allocates the storage. Th is is essentially equivalent to the OpenCV de-allocations of

images, matrices, and other structures.

You can empty a memory storage by calling cvClearMemStorage(), which also takes a

pointer to a valid storage. You must be aware of an important feature of this function:

it is the only way to release (and thereaft er reuse) memory allocated to a memory stor-

age. Th is might not seem like much, but there will be other routines that delete objects

inside of memory storages (we will introduce one of these momentarily) but do not re-

turn the memory they were using. In short, only cvClearMemStorage() (and, of course,

cvReleaseMemStorage()) recycle the storage memory.* Deletion of any dynamic structure

(CvSeq, CvSet, etc.) never returns any memory back to storage (although the structures

are able to reuse some memory once taken from the storage for their own data).

You can also allocate your own continuous blocks from a memory store—in a man-

ner analogous to the way malloc() allocates memory from the heap—with the func-

tion cvMemStorageAlloc(). In this case you simply provide a pointer to the storage and

the number of bytes you need. Th e return is a pointer of type void* (again, similar to

malloc()).

Sequences
One kind of object that can be stored inside a memory storage is a sequence. Sequences

are themselves linked lists of other structures. OpenCV can make sequences out of

many diff erent kinds of objects. In this sense you can think of the sequence as some-

thing similar to the generic container classes (or container class templates) that exist in

various other programming languages. Th e sequence construct in OpenCV is actually

a deque, so it is very fast for random access and for additions and deletions from either

end but a little slow for adding and deleting objects in the middle.

Th e sequence structure itself (see Example 8-1) has some important elements that you

should be aware of. Th e fi rst, and one you will use oft en, is total. Th is is the total num-

ber of points or objects in the sequence. Th e next four important elements are point-

ers to other sequences: h_prev, h_next, v_prev, and v_next. Th ese four pointers are part

of what are called CV_TREE_NODE_FIELDS; they are used not to indicate elements inside of

the sequence but rather to connect diff erent sequences to one another. Other objects

in the OpenCV universe also contain these tree node fi elds. Any such objects can be

* Actually, one other function, called cvRestoreMemStoragePos(), can restore memory to the storage. But
this function is primarily for the library’s internal use and is beyond the scope of this book.

08-R4886-AT1.indd 22308-R4886-AT1.indd 223 9/15/08 4:22:22 PM9/15/08 4:22:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

224 | Chapter 8: Contours

assembled, by means of these pointers, into more complicated superstructures such as

lists, trees, or other graphs. Th e variables h_prev and h_next can be used alone to create a

simple linked list. Th e other two, v_prev and v_next, can be used to create more complex

topologies that relate nodes to one another. It is by means of these four pointers that

cvFindContours() will be able to represent all of the contours it fi nds in the form of rich

structures such as contour trees.

Example 8-1. Internal organization of CvSeq sequence structure

typedef struct CvSeq {
 int flags; // miscellaneous flags
 int header_size; // size of sequence header
 CvSeq* h_prev; // previous sequence
 CvSeq* h_next; // next sequence
 CvSeq* v_prev; // 2nd previous sequence
 CvSeq* v_next // 2nd next sequence
 int total; // total number of elements
 int elem_size; // size of sequence element in byte
 char* block_max; // maximal bound of the last block
 char* ptr; // current write pointer
 int delta_elems; // how many elements allocated
 // when the sequence grows
 CvMemStorage* storage; // where the sequence is stored
 CvSeqBlock* free_blocks; // free blocks list
 CvSeqBlock* first; // pointer to the first sequence block
}

Creating a Sequence
As we have alluded to already, sequences can be returned from various OpenCV func-

tions. In addition to this, you can, of course, create sequences yourself. Like many ob-

jects in OpenCV, there is an allocator function that will create a sequence for you and

return a pointer to the resulting data structure. Th is function is called cvCreateSeq().

CvSeq* cvCreateSeq(
 int seq_flags,
 int header_size,
 int elem_size,
 CvMemStorage* storage
);

Th is function requires some additional fl ags, which will further specify exactly what

sort of sequence we are creating. In addition it needs to be told the size of the sequence

header itself (which will always be sizeof(CvSeq)*) and the size of the objects that the se-

quence will contain. Finally, a memory storage is needed from which the sequence can

allocate memory when new elements are added to the sequence.

* Obviously, there must be some other value to which you can set this argument or it would not exist. Th is ar-
gument is needed because sometimes we want to extend the CvSeq “class”. To extend CvSeq, you create your
own struct using the CV_SEQUENCE_FIELDS() macro in the structure defi nition of the new type; note that,
when using an extended structure, the size of that structure must be passed. Th is is a pretty esoteric activity
in which only serious gurus are likely to participate.

08-R4886-AT1.indd 22408-R4886-AT1.indd 224 9/15/08 4:22:22 PM9/15/08 4:22:22 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Sequences | 225

Th ese flags are of three diff erent categories and can be combined using the bitwise OR

operator. Th e fi rst category determines the type of objects* from which the sequence is

to be constructed. Many of these types might look a bit alien to you, and some are pri-

marily for internal use by other OpenCV functions. Also, some of the fl ags are mean-

ingful only for certain kinds of sequences (e.g., CV_SEQ_FLAG_CLOSED is meaningful only

for sequences that in some way represent a polygon).

CV_SEQ_ELTYPE_POINT

(x,y)

CV_SEQ_ELTYPE_CODE

Freeman code: 0..7

CV_SEQ_ELTYPE_POINT

Pointer to a point: &(x,y)

CV_SEQ_ELTYPE_INDEX

Integer index of a point: #(x,y)

CV_SEQ_ELTYPE_GRAPH_EDGE

&next_o,&next_d,&vtx_o,&vtx_d

CV_SEQ_ELTYPE_GRAPH_VERTEX

fi rst_edge, &(x,y)

CV_SEQ_ELTYPE_TRIAN_ATR

Vertex of the binary tree

CV_SEQ_ELTYPE_CONNECTED_COMP

Connected component

CV_SEQ_ELTYPE_POINT3D

(x,y,z)

Th e second category indicates the nature of the sequence, which can be any of the

following.

CV_SEQ_KIND_SET

A set of objects

CV_SEQ_KIND_CURVE

A curve defi ned by the objects

CV_SEQ_KIND_BIN_TREE

A binary tree of the objects

* Th e types in this fi rst listing are used only rarely. To create a sequence whose elements are tuples of num-
bers, use CV_32SC2, CV_32FC4, etc. To create a sequence of elements of your own type, simply pass 0 and
specify the correct elem_size.

08-R4886-AT1.indd 22508-R4886-AT1.indd 225 9/15/08 4:22:23 PM9/15/08 4:22:23 PM

www.it-ebooks.info

http://www.it-ebooks.info/

226 | Chapter 8: Contours

CV_SEQ_KIND_GRAPH

A graph with the objects as nodes

Th e third category consists of additional feature fl ags that indicate some other property

of the sequence.

CV_SEQ_FLAG_CLOSED

Sequence is closed (polygons)

CV_SEQ_FLAG_SIMPLE

Sequence is simple (polygons)

CV_SEQ_FLAG_CONVEX

Sequence is convex (polygons)

CV_SEQ_FLAG_HOLE

Sequence is a hole (polygons)

Deleting a Sequence
void cvClearSeq(
 CvSeq* seq
);

When you want to delete a sequence, you can use cvClearSeq(), a routine that clears all

elements of the sequence. However, this function does not return allocated blocks in the

memory store either to the store or to the system; the memory allocated by the sequence

can be reused only by the same sequence. If you want to retrieve that memory for some

other purpose, you must clear the memory store via cvClearMemStore().

Direct Access to Sequence Elements
Oft en you will fi nd yourself wanting to directly access a particular member of a se-

quence. Th ough there are several ways to do this, the most direct way—and the correct

way to access a randomly chosen element (as opposed to one that you happen to know is

at the ends)—is to use cvGetSeqElem().

char* cvGetSeqElem(seq, index)

More oft en than not, you will have to cast the return pointer to whatever type you know

the sequence to be. Here is an example usage of cvGetSeqElem() to print the elements in

a sequence of points (such as might be returned by cvFindContours(), which we will get

to shortly):

for(int i=0; i<seq->total; ++i) {
 CvPoint* p = (CvPoint*)cvGetSeqElem (seq, i);
 printf(“(%d,%d)\n”, p->x, p->y);
}

You can also check to see where a particular element is located in a sequence. Th e func-

tion cvSeqElemIdx() does this for you:

08-R4886-AT1.indd 22608-R4886-AT1.indd 226 9/15/08 4:22:23 PM9/15/08 4:22:23 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Sequences | 227

int cvSeqElemIdx(
 const CvSeq* seq,
 const void* element,
 CvSeqBlock** block = NULL
);

Th is check takes a bit of time, so it is not a particularly effi cient thing to do (the time for

the search is proportional to the size of the sequence). Note that cvSeqElemIdx() takes

as arguments a pointer to your sequence and a pointer to the element for which you

are searching.* Optionally, you may also supply a pointer to a sequence memory block

pointer. If this is non-NULL, then the location of the block in which the sequence element

was found will be returned.

Slices, Copying, and Moving Data
Sequences are copied with cvCloneSeq(), which does a deep copy of a sequence and cre-

ates another entirely separate sequence structure.

CvSeq* cvCloneSeq(
 const CvSeq* seq,
 CvMemStorage* storage = NULL
)

Th is routine is actually just a wrapper for the somewhat more general routine cvSeq
Slice(). Th is latter routine can pull out just a subsection of an array; it can also do either

a deep copy or just build a new header to create an alternate “view” on the same data

elements.

CvSeq* cvSeqSlice(
 const CvSeq* seq,
 CvSlice slice,
 CvMemStorage* storage = NULL,
 int copy_data = 0
);

You will notice that the argument slice to cvSeqSlice() is of type CvSlice. A slice can be

defi ned using either the convenience function cvSlice(a,b) or the macro CV_WHOLE_SEQ.

In the former case, only those elements starting at a and continuing through b are in-

cluded in the copy (b may also be set to CV_WHOLE_SEQ_END_INDEX to indicate the end of

the array). Th e argument copy_data is how we decide if we want a “deep” copy (i.e., if we

want the data elements themselves to be copied and for those new copies to be the ele-

ments of the new sequence).

Slices can be used to specify elements to remove from a sequence using cvSeqRemoveSlice()

or to insert into a sequence using cvSeqInsertSlice().

void cvSeqRemoveSlice(
 CvSeq* seq,
 CvSlice slice
);

* Actually, it would be more accurate to say that cvSeqElemIdx() takes the pointer being searched for. Th is is
because cvSeqElemIdx() is not searching for an element in the sequence that is equal to *element; rather, it
is searching for the element that is at the location given by element.

08-R4886-AT1.indd 22708-R4886-AT1.indd 227 9/15/08 4:22:23 PM9/15/08 4:22:23 PM

www.it-ebooks.info

http://www.it-ebooks.info/

228 | Chapter 8: Contours

void cvSeqInsertSlice(
 CvSeq* seq,
 int before_index,
 const CvArr* from_arr
);

With the introduction of a comparison function, it is also possible to sort or search a

(sorted) sequence. Th e comparison function must have the following prototype:

typedef int (*CvCmpFunc)(const void* a, const void* b, void* userdata);

Here a and b are pointers to elements of the type being sorted, and userdata is just a

pointer to any additional data structure that the caller doing the sorting or searching

can provide at the time of execution. Th e comparison function should return -1 if a is

greater than b, +1 if a is less than b, and 0 if a and b are equal.

With such a comparison function defi ned, a sequence can be sorted by cvSeqSort(). Th e

sequence can also be searched for an element (or for a pointer to an element) elem using

cvSeqSearch(). Th is searching is done in order O(log n) time if the sequence is already

sorted (is_sorted=1). If the sequence is unsorted, then the comparison function is not

needed and the search will take O(n) time. On completion, the search will set *elem_idx

to the index of the found element (if it was found at all) and return a pointer to that ele-

ment. If the element was not found, then NULL is returned.

void cvSeqSort(
 CvSeq* seq,
 CvCmpFunc func,
 void* userdata = NULL
);
char* cvSeqSearch(
 CvSeq* seq,
 const void* elem,
 CvCmpFunc func,
 int is_sorted,
 int* elem_idx,
 void* userdata = NULL
);

A sequence can be inverted (reversed) in a single call with the function cvSeqInvert().

Th is function does not change the data in any way, but it reorganizes the sequence so

that the elements appear in the opposite order.

void cvSeqInvert(
 CvSeq* seq
);

OpenCV also supports a method of partitioning a sequence* based on a user-supplied

criterion via the function cvSeqPartition(). Th is partitioning uses the same sort of com-

parison function as described previously but with the expectation that the function will

return a nonzero value if the two arguments are equal and zero if they are not (i.e., the

opposite convention as is used for searching and sorting).

* For more on partitioning, see Hastie, Tibshirani, and Friedman [Hastie01].

08-R4886-AT1.indd 22808-R4886-AT1.indd 228 9/15/08 4:22:23 PM9/15/08 4:22:23 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Sequences | 229

int cvSeqPartition(
 const CvSeq* seq,
 CvMemStorage* storage,
 CvSeq** labels,
 CvCmpFunc is_equal,
 void* userdata
);

Th e partitioning requires a memory storage so that it can allocate memory to express

the output of the partitioning. Th e argument labels should be a pointer to a sequence

pointer. When cvSeqPartition() returns, the result will be that labels will now indicate

a sequence of integers that have a one-to-one correspondence with the elements of the

partitioned sequence seq. Th e values of these integers will be, starting at 0 and incre-

menting from there, the “names” of the partitions that the points in seq were to be as-

signed. Th e pointer userdata is the usual pointer that is just transparently passed to the

comparison function.

In Figure 8-1, a group of 100 points are randomly distributed on 100-by-100 canvas.

Th en cvSeqPartition() is called on these points, where the comparison function is based

on Euclidean distance. Th e comparison function is set to return true (1) if the distance

is less than or equal to 5 and to return false (0) otherwise. Th e resulting clusters are la-

beled with their integer ordinal from labels.

Using a Sequence As a Stack
As stated earlier, a sequence in OpenCV is really a linked list. Th is means, among other

things, that it can be accessed effi ciently from either end. As a result, it is natural to use

a sequence of this kind as a stack when circumstances call for one. Th e following six

functions, when used in conjunction with the CvSeq structure, implement the behavior

required to use the sequence as a stack (more properly, a deque, because these functions

allow access to both ends of the list).

char* cvSeqPush(
 CvSeq* seq,
 void* element = NULL
);
char* cvSeqPushFront(
 CvSeq* seq,
 void* element = NULL
);
void cvSeqPop(
 CvSeq* seq,
 void* element = NULL
);
void cvSeqPopFront(
 CvSeq* seq,
 void* element = NULL
);
void cvSeqPushMulti(
 CvSeq* seq,
 void* elements,
 int count,

08-R4886-AT1.indd 22908-R4886-AT1.indd 229 9/15/08 4:22:23 PM9/15/08 4:22:23 PM

www.it-ebooks.info

http://www.it-ebooks.info/

230 | Chapter 8: Contours

 int in_front = 0
);
void cvSeqPopMulti(
 CvSeq* seq,
 void* elements,
 int count,
 int in_front = 0
);

Th e primary modes of accessing the sequence are cvSeqPush(), cvSeqPushFront(),

cvSeqPop(), and cvSeqPopFront(). Because these routines act on the ends of the sequence,

all of them operate in O(l) time (i.e., independent of the size of the sequence). Th e Push

functions return an argument to the element pushed into the sequence, and the Pop

functions will optionally save the popped element if a pointer is provided to a location

where the object can be copied. Th e cvSeqPushMulti() and cvSeqPopMulti() variants will

push or pop several items at a time. Both take a separate argument to distinguish the

front from the back; you can set in_front to either CV_FRONT (1) or to CV_BACK (0) and so

determine from where you’ll be pushing or popping.

Figure 8-1. A sequence of 100 points on a 100-by-100 canvas, partitioned by distance D ≤ 5

08-R4886-AT1.indd 23008-R4886-AT1.indd 230 9/15/08 4:22:23 PM9/15/08 4:22:23 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Sequences | 231

Inserting and Removing Elements
char* cvSeqInsert(
 CvSeq* seq,
 int before_index,
 void* element = NULL
);
void cvSeqRemove(
 CvSeq* seq,
 int index
);

Objects can be inserted into and removed from the middle of a sequence by using

cvSeqInsert() and cvSeqRemove(), respectively, but remember that these are not very fast.

On average, they take time proportional to the total size of the sequence.

Sequence Block Size
One function whose purpose may not be obvious at fi rst glance is cvSetSeqBlockSize().

Th is routine takes as arguments a sequence and a new block size, which is the size of

blocks that will be allocated out of the memory store when new elements are needed

in the sequence. By making this size big you are less likely to fragment your sequence

across disconnected memory blocks; by making it small you are less likely to waste

memory. Th e default value is 1,000 bytes, but this can be changed at any time.*

void cvSetSeqBlockSize(
 CvSeq* seq,
 Int delta_elems
);

Sequence Readers and Sequence Writers
When you are working with sequences and you want the highest performance, there are

some special methods for accessing and modifying them that (although they require a

bit of special care to use) will let you do what you want to do with a minimum of over-

head. Th ese functions make use of special structures to keep track of the state of what

they are doing; this allows many actions to be done in sequence and the necessary fi nal

bookkeeping to be done only aft er the last action.

For writing, this control structure is called CvSeqWriter. Th e writer is initialized with the

function cvStartWriteSeq() and is “closed” with cvEndWriteSeq(). While the sequence

writing is “open”, new elements can be added to the sequence with the macro CV_WRITE_
SEQ(). Notice that the writing is done with a macro and not a function call, which saves

even the overhead of entering and exiting that code. Using the writer is faster than us-

ing cvSeqPush(); however, not all the sequence headers are updated immediately by this

macro, so the added element will be essentially invisible until you are done writing.

It will become visible when the structure is completely updated by cvEndWriteSeq().

* Eff ective with the beta 5 version of OpenCV, this size is automatically increased if the sequence becomes
big; hence you’ll not need to worry about it under normal circumstances.

08-R4886-AT1.indd 23108-R4886-AT1.indd 231 9/15/08 4:22:24 PM9/15/08 4:22:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

232 | Chapter 8: Contours

If necessary, the structure can be brought up-to-date (without actually closing the

writer) by calling cvFlushSeqWriter().

void cvStartWriteSeq(
 int seq_flags,
 int header_size,
 int elem_size,
 CvMemStorage* storage,
 CvSeqWriter* writer
);
void cvStartAppendToSeq(
 CvSeq* seq,
 CvSeqWriter* writer
);
CvSeq* cvEndWriteSeq(
 CvSeqWriter* writer
);
void cvFlushSeqWriter(
 CvSeqWriter* writer
);

CV_WRITE_SEQ_ELEM(elem, writer)
CV_WRITE_SEQ_ELEM_VAR(elem_ptr, writer)

Th e arguments to these functions are largely self-explanatory. Th e seq_flags, header_
size, and elem_size arguments to cvStartWriteSeq() are identical to the corresponding

arguments to cvCreateSeq(). Th e function cvStartAppendToSeq() initializes the writer to

begin adding new elements to the end of the existing sequence seq. Th e macro CV_WRITE_
SEQ_ELEM() requires the element to be written (e.g., a CvPoint) and a pointer to the writer;

a new element is added to the sequence and the element elem is copied into that new

element.

Putting these all together into a simple example, we will create a writer and append a

hundred random points drawn from a 320-by-240 rectangle to the new sequence.

CvSeqWriter writer;
cvStartWriteSeq(CV_32SC2, sizeof(CvSeq), sizeof(CvPoint), storage, &writer);
for(i = 0; i < 100; i++)
{
 CvPoint pt; pt.x = rand()%320; pt.y = rand()%240;
 CV_WRITE_SEQ_ELEM(pt, writer);
}
CvSeq* seq = cvEndWriteSeq(&writer);

For reading, there is a similar set of functions and a few more associated macros.

void cvStartReadSeq(
 const CvSeq* seq,
 CvSeqReader* reader,
 int reverse = 0
);
int cvGetSeqReaderPos(
 CvSeqReader* reader
);
void cvSetSeqReaderPos(
 CvSeqReader* reader,

08-R4886-AT1.indd 23208-R4886-AT1.indd 232 9/15/08 4:22:24 PM9/15/08 4:22:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Sequences | 233

 int index,
 int is_relative = 0
);

CV_NEXT_SEQ_ELEM(elem_size, reader)
CV_PREV_SEQ_ELEM(elem_size, reader)
CV_READ_SEQ_ELEM(elem, reader)
CV_REV_READ_SEQ_ELEM(elem, reader)

Th e structure CvSeqReader, which is analogous to CvSeqWriter, is initialized with

the function cvStartReadSeq(). Th e argument reverse allows for the sequence to be

read either in “normal” order (reverse=0) or backwards (reverse=1). Th e function

cvGetSeqReaderPos() returns an integer indicating the current location of the reader in

the sequence. Finally, cvSetSeqReaderPos() allows the reader to “seek” to an arbitrary

location in the sequence. If the argument is_relative is nonzero, then the index will be

interpreted as a relative off set to the current reader position. In this case, the index may

be positive or negative.

Th e two macros CV_NEXT_SEQ_ELEM() and CV_PREV_SEQ_ELEM() simply move the reader for-

ward or backward one step in the sequence. Th ey do no error checking and thus cannot

help you if you unintentionally step off the end of the sequence. Th e macros CV_READ_
SEQ_ELEM() and CV_REV_READ_SEQ_ELEM() are used to read from the sequence. Th ey will

both copy the “current” element at which the reader is pointed onto the variable elem

and then step the reader one step (forward or backward, respectively). Th ese latter two

macros expect just the name of the variable to be copied to; the address of that variable

will be computed inside of the macro.

Sequences and Arrays
You may oft en fi nd yourself wanting to convert a sequence, usually full of points, into

an array.

void* cvCvtSeqToArray(
 const CvSeq* seq,
 void* elements,
 CvSlice slice = CV_WHOLE_SEQ
);
CvSeq* cvMakeSeqHeaderForArray(
 int seq_type,
 int header_size,
 int elem_size,
 void* elements,
 int total,
 CvSeq* seq,
 CvSeqBlock* block
);

Th e function cvCvtSeqToArray() copies the content of the sequence into a continuous

memory array. Th is means that if you have a sequence of 20 elements of type CvPoint

then the function will require a pointer, elements, to enough space for 40 integers. Th e

third (optional) argument is slice, which can be either an object of type CvSlice or the

08-R4886-AT1.indd 23308-R4886-AT1.indd 233 9/15/08 4:22:24 PM9/15/08 4:22:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

234 | Chapter 8: Contours

macro CV_WHOLE_SEQ (the latter is the default value). If CV_WHOLE_SEQ is selected, then the

entire sequence is copied.

Th e opposite functionality to cvCvtSeqToArray() is implemented by cvMakeSeqHeaderFor
Array(). In this case, you can build a sequence from an existing array of data. Th e func-

tion’s fi rst few arguments are identical to those of cvCreateSeq(). In addition to requiring

the data (elements) to copy in and the number (total) of data items, you must provide a

sequence header (seq) and a sequence memory block structure (block). Sequences created

in this way are not exactly the same as sequences created by other methods. In particular,

you will not be able to subsequently alter the data in the created sequence.

Contour Finding
We are fi nally ready to start talking about contours. To start with, we should defi ne ex-

actly what a contour is. A contour is a list of points that represent, in one way or an-

other, a curve in an image. Th is representation can be diff erent depending on the cir-

cumstance at hand. Th ere are many ways to represent a curve. Contours are represented

in OpenCV by sequences in which every entry in the sequence encodes information

about the location of the next point on the curve. We will dig into the details of such

sequences in a moment, but for now just keep in mind that a contour is represented in

OpenCV by a CvSeq sequence that is, one way or another, a sequence of points.

Th e function cvFindContours() computes contours from binary images. It can take im-

ages created by cvCanny(), which have edge pixels in them, or images created by func-

tions like cvThreshold() or cvAdaptiveThreshold(), in which the edges are implicit as

boundaries between positive and negative regions.*

Before getting to the function prototype, it is worth taking a moment to understand ex-

actly what a contour is. Along the way, we will encounter the concept of a contour tree,

which is important for understanding how cvFindContours() (retrieval methods derive

from Suzuki [Suzuki85]) will communicate its results to us.

Take a moment to look at Figure 8-2, which depicts the functionality of cvFindContours().

Th e upper part of the fi gure shows a test image containing a number of white regions

(labeled A through E) on a dark background.† Th e lower portion of the fi gure depicts

the same image along with the contours that will be located by cvFindContours(). Th ose

contours are labeled cX or hX, where “c” stands for “contour”, “h” stands for “hole”, and

“X” is some number. Some of those contours are dashed lines; they represent exterior

boundaries of the white regions (i.e., nonzero regions). OpenCV and cvFindContours()

distinguish between these exterior boundaries and the dotted lines, which you may

think of either as interior boundaries or as the exterior boundaries of holes (i.e., zero

regions).

* Th ere are some subtle diff erences between passing edge images and binary images to cvFindContours(); we
will discuss those shortly.

† For clarity, the dark areas are depicted as gray in the fi gure, so simply imagine that this image is thresh-
olded such that the gray areas are set to black before passing to cvFindContours().

08-R4886-AT1.indd 23408-R4886-AT1.indd 234 9/15/08 4:22:24 PM9/15/08 4:22:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Contour Finding | 235

Th e concept of containment here is important in many applications. For this reason,

OpenCV can be asked to assemble the found contours into a contour tree* that encodes

the containment relationships in its structure. A contour tree corresponding to this test

image would have the contour called c0 at the root node, with the holes h00 and h01 as

its children. Th ose would in turn have as children the contours that they directly con-

tain, and so on.

It is interesting to note the consequences of using cvFindContours() on
an image generated by cvCanny() or a similar edge detector relative to
what happens with a binary image such as the test image shown in Fig-
ure 8-1. Deep down, cvFindContours() does not really know anything
about edge images. Th is means that, to cvFindContours(), an “edge” is
just a very thin “white” area. As a result, for every exterior contour there
will be a hole contour that almost exactly coincides with it. Th is hole is
actually just inside of the exterior boundary. You can think of it as the
white-to-black transition that marks the interior edge of the edge.

* Contour trees fi rst appeared in Reeb [Reeb46] and were further developed by [Bajaj97], [Kreveld97], [Pas-
cucci02], and [Carr04].

Figure 8-2. A test image (above) passed to cvFindContours() (below): the found contours may be
either of two types, exterior “contours” (dashed lines) or “holes” (dotted lines)

08-R4886-AT1.indd 23508-R4886-AT1.indd 235 9/15/08 4:22:24 PM9/15/08 4:22:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

236 | Chapter 8: Contours

Now it’s time to look at the cvFindContours() function itself: to clarify exactly how we

tell it what we want and how we interpret its response.

int cvFindContours(
 IplImage* img,
 CvMemStorage* storage,
 CvSeq** firstContour,
 int headerSize = sizeof(CvContour),
 CvContourRetrievalMode mode = CV_RETR_LIST,
 CvChainApproxMethod method = CV_CHAIN_APPROX_SIMPLE
);

Th e fi rst argument is the input image; this image should be an 8-bit single-channel im-

age and will be interpreted as binary (i.e., as if all nonzero pixels are equivalent to one

another). When it runs, cvFindContours() will actually use this image as scratch space

for computation, so if you need that image for anything later you should make a copy

and pass that to cvFindContours(). Th e next argument, storage, indicates a place where

cvFindContours() can fi nd memory in which to record the contours. Th is storage area

should have been allocated with cvCreateMemStorage(), which we covered earlier in

the chapter. Next is firstContour, which is a pointer to a CvSeq*. Th e function cvFind
Contours() will allocate this pointer for you, so you shouldn’t allocate it yourself. In-

stead, just pass in a pointer to that pointer so that it can be set by the function. No al-

location/de-allocation (new/delete or malloc/free) is needed. It is at this location (i.e.,

firstContour) that you will fi nd a pointer to the head of the constructed contour tree.

Th e return value of cvFindContours() is the total number of contours found.

CvSeq* firstContour = NULL;
cvFindContours(…, &firstContour, …);

Th e headerSize is just telling cvFindContours() more about the objects that it will be

allocating; it can be set to sizeof(CvContour) or to sizeof(CvChain) (the latter is used

when the approximation method is set to CV_CHAIN_CODE).† Finally, we have the mode and

method, which (respectively) further clarify exactly what is to be computed and how it is

to be computed.

Th e mode variable can be set to any of four options: CV_RETR_EXTERNAL, CV_RETR_LIST, CV_
RETR_CCOMP, or CV_RETR_TREE. Th e value of mode indicates to cvFindContours() exactly what

contours we would like found and how we would like the result presented to us. In par-

ticular, the manner in which the tree node variables (h_prev, h_next, v_prev, and v_next)

are used to “hook up” the found contours is determined by the value of mode. In Figure

8-3, the resulting topologies are shown for all four possible values of mode. In every case,

the structures can be thought of as “levels” which are related by the “horizontal” links

(h_next and h_prev), and those levels are separated from one another by the “vertical”

links (v_next and v_prev).

* As we will see momentarily, contour trees are just one way that cvFindContours() can organize the con-
tours it fi nds. In any case, they will be organized using the CV_TREE_NODE_FIELDS elements of the contours
that we introduced when we fi rst started talking about sequences.

† In fact, headerSize can be an arbitrary number equal to or greater than the values listed.

08-R4886-AT1.indd 23608-R4886-AT1.indd 236 9/15/08 4:22:25 PM9/15/08 4:22:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Contour Finding | 237

CV_RETR_EXTERNAL

Retrieves only the extreme outer contours. In Figure 8-2, there is only one exterior

contour, so Figure 8-3 indicates the fi rst contour points to that outermost sequence

and that there are no further connections.

CV_RETR_LIST

Retrieves all the contours and puts them in the list. Figure 8-3 depicts the list re-

sulting from the test image in Figure 8-2. In this case, eight contours are found and

they are all connected to one another by h_prev and h_next (v_prev and v_next are

not used here.)

CV_RETR_CCOMP

Retrieves all the contours and organizes them into a two-level hierarchy, where the

top-level boundaries are external boundaries of the components and the second-

level boundaries are boundaries of the holes. Referring to Figure 8-3, we can see

that there are fi ve exterior boundaries, of which three contain holes. Th e holes are

connected to their corresponding exterior boundaries by v_next and v_prev. Th e

outermost boundary c0 contains two holes. Because v_next can contain only one

value, the node can only have one child. All of the holes inside of c0 are connected

to one another by the h_prev and h_next pointers.

CV_RETR_TREE

Retrieves all the contours and reconstructs the full hierarchy of nested contours. In

our example (Figures 8-2 and 8-3), this means that the root node is the outermost

contour c0. Below c0 is the hole h00, which is connected to the other hole h01 at the

same level. Each of those holes in turn has children (the contours c000 and c010,

respectively), which are connected to their parents by vertical links. Th is continues

down to the most-interior contours in the image, which become the leaf nodes in

the tree.

Th e next fi ve values pertain to the method (i.e., how the contours are approximated).

Figure 8-3. Th e way in which the tree node variables are used to “hook up” all of the contours located
by cvFindContours()

08-R4886-AT1.indd 23708-R4886-AT1.indd 237 9/15/08 4:22:25 PM9/15/08 4:22:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

238 | Chapter 8: Contours

CV_CHAIN_CODE

Outputs contours in the Freeman chain code;* all other methods output polygons

(sequences of vertices).†

CV_CHAIN_APPROX_NONE

Translates all the points from the chain code into points.

CV_CHAIN_APPROX_SIMPLE

Compresses horizontal, vertical, and diagonal segments, leaving only their ending

points.

CV_CHAIN_APPROX_TC89_L1 or CV_CHAIN_APPROX_TC89_KCOS

Applies one of the fl avors of the Teh-Chin chain approximation algorithm.

CV_LINK_RUNS

Completely diff erent algorithm (from those listed above) that links horizontal seg-

ments of 1s; the only retrieval mode allowed by this method is CV_RETR_LIST.

Contours Are Sequences
As you can see, there is a lot to sequences and contours. Th e good news is that, for

our current purpose, we need only a small amount of what’s available. When

cvFindContours() is called, it will give us a bunch of sequences. Th ese sequences are all

of one specifi c type; as we saw, which particular type depends on the arguments passed

to cvFindContours(). Recall that the default mode is CV_RETR_LIST and the default method

is CV_CHAIN_APPROX_SIMPLE.

Th ese sequences are sequences of points; more precisely, they are contours—the actual

topic of this chapter. Th e key thing to remember about contours is that they are just

a special case of sequences.‡ In particular, they are sequences of points representing

some kind of curve in (image) space. Such a chain of points comes up oft en enough that

we might expect special functions to help us manipulate them. Here is a list of these

functions.

int cvFindContours(
 CvArr* image,
 CvMemStorage* storage,
 CvSeq** first_contour,
 int header_size = sizeof(CvContour),
 int mode = CV_RETR_LIST,
 int method = CV_CHAIN_APPROX_SIMPLE,

* Freeman chain codes will be discussed in the section entitled “Contours Are Sequences”.

† Here “vertices” means points of type CvPoint. Th e sequences created by cvFindContours() are the same
as those created with cvCreateSeq() with the fl ag CV_SEQ_ELTYPE_POINT. (Th at function and fl ag will be
described in detail later in this chapter.)

‡ OK, there’s a little more to it than this, but we did not want to be sidetracked by technicalities and so will
clarify in this footnote. Th e type CvContour is not identical to CvSeq. In the way such things are handled in
OpenCV, CvContour is, in eff ect, derived from CvSeq. Th e CvContour type has a few extra data members,
including a color and a CvRect for stashing its bounding box.

08-R4886-AT1.indd 23808-R4886-AT1.indd 238 9/15/08 4:22:25 PM9/15/08 4:22:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Contour Finding | 239

 CvPoint offset = cvPoint(0,0)
);
CvContourScanner cvStartFindContours(
 CvArr* image,
 CvMemStorage* storage,
 int header_size = sizeof(CvContour),
 int mode = CV_RETR_LIST,
 int method = CV_CHAIN_APPROX_SIMPLE,
 CvPoint offset = cvPoint(0,0)
);
CvSeq* cvFindNextContour(
 CvContourScanner scanner
);
void cvSubstituteContour(
 CvContourScanner scanner,
 CvSeq* new_contour
);
CvSeq* cvEndFindContour(
 CvContourScanner* scanner
);
CvSeq* cvApproxChains(
 CvSeq* src_seq,
 CvMemStorage* storage,
 int method = CV_CHAIN_APPROX_SIMPLE,
 double parameter = 0,
 int minimal_perimeter = 0,
 int recursive = 0
);

First is the cvFindContours() function, which we encountered earlier. Th e second func-

tion, cvStartFindContours(), is closely related to cvFindContours() except that it is used

when you want the contours one at a time rather than all packed up into a higher-level

structure (in the manner of cvFindContours()). A call to cvStartFindContours() returns a

CvSequenceScanner. Th e scanner contains some simple state information about what has

and what has not been read out.* You can then call cvFindNextContour() on the scanner

to successively retrieve all of the contours found. A NULL return means that no more

contours are left .

cvSubstituteContour() allows the contour to which a scanner is currently pointing to

be replaced by some other contour. A useful characteristic of this function is that, if

the new_contour argument is set to NULL, then the current contour will be deleted from

the chain or tree to which the scanner is pointing (and the appropriate updates will be

made to the internals of the aff ected sequence, so there will be no pointers to nonexis-

tent objects).

Finally, cvEndFindContour() ends the scanning and sets the scanner to a “done” state.

Note that the sequence the scanner was scanning is not deleted; in fact, the return value

of cvEndFindContour() is a pointer to the fi rst element in the sequence.

* It is important not to confuse a CvSequenceScanner with the similarly named CvSeqReader. Th e latter is
for reading the elements in a sequence, whereas the former is used to read from what is, in eff ect, a list of
sequences.

08-R4886-AT1.indd 23908-R4886-AT1.indd 239 9/15/08 4:22:25 PM9/15/08 4:22:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

240 | Chapter 8: Contours

Th e fi nal function is cvApproxChains(). Th is function converts Freeman chains to po-

lygonal representations (precisely or with some approximation). We will discuss cvAp-
proxPoly() in detail later in this chapter (see the section “Polygon Approximations”).

Freeman Chain Codes
Normally, the contours created by cvFindContours() are sequences of vertices (i.e.,

points). An alternative representation can be generated by setting the method to

CV_CHAIN_CODE. In this case, the resulting contours are stored internally as Freeman chains

[Freeman67] (Figure 8-4). With a Freeman chain, a polygon is represented as a sequence

of steps in one of eight directions; each step is designated by an integer from 0 to 7. Free-

man chains have useful applications in recognition and other contexts. When working

with Freeman chains, you can read out their contents via two “helper” functions:

void cvStartReadChainPoints(
 CvChain* chain,
 CvChainPtReader* reader
);
CvPoint cvReadChainPoint(
 CvChainPtReader* reader
);

Th e fi rst function takes a chain as its argument and the second function is a chain reader.

Th e CvChain structure is a form of CvSeq.* Just as CvContourScanner iterates through dif-

ferent contours, CvChainPtReader iterates through a single contour represented by a

chain. In this respect, CvChainPtReader is similar to the more general CvSeqReader, and

* You may recall a previous mention of “extensions” of the CvSeq structure; CvChain is such an extension. It is
defi ned using the CV_SEQUENCE_FIELDS() macro and has one extra element in it, a CvPoint representing the
origin. You can think of CvChain as being “derived from” CvSeq. In this sense, even though the return type
of cvApproxChains() is indicated as CvSeq*, it is really a pointer to a chain and is not a normal sequence.

Figure 8-4. Panel a, Freeman chain moves are numbered 0–7; panel b, contour converted to a Free-
man chain-code representation starting from the back bumper

08-R4886-AT1.indd 24008-R4886-AT1.indd 240 9/15/08 4:22:26 PM9/15/08 4:22:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Contour Finding | 241

cvStartReadChainPoints plays the role of cvStartReadSeq. As you might expect, CvChain-
PtReader returns NULL when there’s nothing left to read.

Drawing Contours
One of our most basic tasks is drawing a contour on the screen. For this we have

cvDrawContours():

void cvDrawContours(
 CvArr* img,
 CvSeq* contour,
 CvScalar external_color,
 CvScalar hole_color,
 int max_level,
 int thickness = 1,
 int line_type = 8,
 CvPoint offset = cvPoint(0,0)
);

Th e fi rst argument is simple: it is the image on which to draw the contours. Th e next ar-

gument, contour, is not quite as simple as it looks. In particular, it is really treated as the

root node of a contour tree. Other arguments (primarily max_level) will determine what

is to be done with the rest of the tree. Th e next argument is pretty straightforward: the

color with which to draw the contour. But what about hole_color? Recall that OpenCV

distinguishes between contours that are exterior contours and those that are hole con-

tours (the dashed and dotted lines, respectively, in Figure 8-2). When drawing either a

single contour or all contours in a tree, any contour that is marked as a “hole” will be

drawn in this alternative color.

Th e max_level tells cvDrawContours() how to handle any contours that might be at-

tached to contour by means of the node tree variables. Th is argument can be set to in-

dicate the maximum depth to traverse in the drawing. Th us, max_level=0 means that all

the contours on the same level as the input level (more exactly, the input contour and

the contours next to it) are drawn, max_level=1 means that all the contours on the same

level as the input and their children are drawn, and so forth. If the contours in ques-

tion were produced by cvFindContours() using either CV_RETR_CCOMP or CV_RETR_TREE

mode, then the additional idiom of negative values for max_level is also supported. In

this case, max_level=-1 is interpreted to mean that only the input contour will be drawn,

max_level=-2 means that the input contour and its direct children will the drawn, and so

on. Th e sample code in …/opencv/samples/c/contours.c illustrates this point.

Th e parameters thickness and line_type have their usual meanings.* Finally, we can

give an offset to the draw routine so that the contour will be drawn elsewhere than at

the absolute coordinates by which it was defi ned. Th is feature is particularly useful when

the contour has already been converted to center-of-mass or other local coordinates.

* In particular, thickness=-1 (aka CV_FILLED) is useful for converting the contour tree (or an individual
contour) back to the black-and-white image from which it was extracted. Th is feature, together with the
offset parameter, can be used to do some quite complex things with contours: intersect and merge con-
tours, test points quickly against the contours, perform morphological operations (erode/dilate), etc.

08-R4886-AT1.indd 24108-R4886-AT1.indd 241 9/15/08 4:22:26 PM9/15/08 4:22:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

242 | Chapter 8: Contours

More specifi cally, offset would be helpful if we ran cvFindContours() one or more times

in diff erent image subregions (ROIs) and thereaft er wanted to display all the results

within the original large image. Conversely, we could use offset if we’d extracted a con-

tour from a large image and then wanted to form a small mask for this contour.

A Contour Example
Our Example 8-2 is drawn from the OpenCV package. Here we create a window with an

image in it. A trackbar sets a simple threshold, and the contours in the thresholded im-

age are drawn. Th e image is updated whenever the trackbar is adjusted.

Example 8-2. Finding contours based on a trackbar’s location; the contours are updated whenever
the trackbar is moved

#include <cv.h>
#include <highgui.h>

IplImage* g_image = NULL;
IplImage* g_gray = NULL;
int g_thresh = 100;
CvMemStorage* g_storage = NULL;

void on_trackbar(int) {
 if(g_storage==NULL) {
 g_gray = cvCreateImage(cvGetSize(g_image), 8, 1);
 g_storage = cvCreateMemStorage(0);
 } else {
 cvClearMemStorage(g_storage);
 }
 CvSeq* contours = 0;
 cvCvtColor(g_image, g_gray, CV_BGR2GRAY);
 cvThreshold(g_gray, g_gray, g_thresh, 255, CV_THRESH_BINARY);
 cvFindContours(g_gray, g_storage, &contours);
 cvZero(g_gray);
 if(contours)
 cvDrawContours(
 g_gray,
 contours,
 cvScalarAll(255),
 cvScalarAll(255),
 100
);
 cvShowImage(“Contours”, g_gray);
}

int main(int argc, char** argv)
{
 if(argc != 2 || !(g_image = cvLoadImage(argv[1])))
 return -1;
 cvNamedWindow(“Contours”, 1);
 cvCreateTrackbar(
 “Threshold”,
 “Contours”,
 &g_thresh,

08-R4886-AT1.indd 24208-R4886-AT1.indd 242 9/15/08 4:22:26 PM9/15/08 4:22:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Another Contour Example | 243

Example 8-2. Finding contours based on a trackbar’s location; the contours are updated whenever
the trackbar is moved (continued)

 255,
 on_trackbar
);
 on_trackbar(0);
 cvWaitKey();
 return 0;
}

Here, everything of interest to us is happening inside of the function on_trackbar(). If

the global variable g_storage is still at its (NULL) initial value, then cvCreateMemStorage(0)

creates the memory storage and g_gray is initialized to a blank image the same size

as g_image but with only a single channel. If g_storage is non-NULL, then we’ve been

here before and thus need only empty the storage so it can be reused. On the next line,

a CvSeq* pointer is created; it is used to point to the sequence that we will create via

cvFindContours().

Next, the image g_image is converted to grayscale and thresholded such that only those

pixels brighter than g_thresh are retained as nonzero. Th e cvFindContours() function

is then called on this thresholded image. If any contours were found (i.e., if contours is

non-NULL), then cvDrawContours() is called and the contours are drawn (in white) onto

the grayscale image. Finally, that image is displayed and the structures we allocated at

the beginning of the callback are released.

Another Contour Example
In this example, we fi nd contours on an input image and then proceed to draw them

one by one. Th is is a good example to play with yourself and see what eff ects result from

changing either the contour fi nding mode (CV_RETR_LIST in the code) or the max_depth

that is used to draw the contours (0 in the code). If you set max_depth to a larger number,

notice that the example code steps through the contours returned by cvFindContours()

by means of h_next. Th us, for some topologies (CV_RETR_TREE, CV_RETR_CCOMP, etc.), you

may see the same contour more than once as you step through. See Example 8-3.

Example 8-3. Finding and drawing contours on an input image

int main(int argc, char* argv[]) {

 cvNamedWindow(argv[0], 1);

 IplImage* img_8uc1 = cvLoadImage(argv[1], CV_LOAD_IMAGE_GRAYSCALE);
 IplImage* img_edge = cvCreateImage(cvGetSize(img_8uc1), 8, 1);
 IplImage* img_8uc3 = cvCreateImage(cvGetSize(img_8uc1), 8, 3);

 cvThreshold(img_8uc1, img_edge, 128, 255, CV_THRESH_BINARY);

 CvMemStorage* storage = cvCreateMemStorage();
 CvSeq* first_contour = NULL;

08-R4886-AT1.indd 24308-R4886-AT1.indd 243 9/15/08 4:22:26 PM9/15/08 4:22:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

244 | Chapter 8: Contours

Example 8-3. Finding and drawing contours on an input image (continued)

 int Nc = cvFindContours(
 img_edge,
 storage,
 &first_contour,
 sizeof(CvContour),
 CV_RETR_LIST // Try all four values and see what happens
);

 int n=0;
 printf(“Total Contours Detected: %d\n”, Nc);
 for(CvSeq* c=first_contour; c!=NULL; c=c->h_next) {
 cvCvtColor(img_8uc1, img_8uc3, CV_GRAY2BGR);
 cvDrawContours(
 img_8uc3,
 c,
 CVX_RED,
 CVX_BLUE,
 0, // Try different values of max_level, and see what happens
 2,
 8
);
 printf(“Contour #%d\n”, n);
 cvShowImage(argv[0], img_8uc3);
 printf(“ %d elements:\n”, c->total);
 for(int i=0; i<c->total; ++i) {
 CvPoint* p = CV_GET_SEQ_ELEM(CvPoint, c, i);
 printf(“ (%d,%d)\n”, p->x, p->y);
 }
 cvWaitKey(0);
 n++;
 }

 printf(“Finished all contours.\n”);
 cvCvtColor(img_8uc1, img_8uc3, CV_GRAY2BGR);
 cvShowImage(argv[0], img_8uc3);
 cvWaitKey(0);

 cvDestroyWindow(argv[0]);

 cvReleaseImage(&img_8uc1);
 cvReleaseImage(&img_8uc3);
 cvReleaseImage(&img_edge);

 return 0;
}

More to Do with Contours
When analyzing an image, there are many diff erent things we might want to do with

contours. Aft er all, most contours are—or are candidates to be—things that we are inter-

ested in identifying or manipulating. Th e various relevant tasks include characterizing

08-R4886-AT1.indd 24408-R4886-AT1.indd 244 9/15/08 4:22:26 PM9/15/08 4:22:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

More to Do with Contours | 245

the contours in various ways, simplifying or approximating them, matching them to

templates, and so on.

In this section we will examine some of these common tasks and visit the various func-

tions built into OpenCV that will either do these things for us or at least make it easier

for us to perform our own tasks.

Polygon Approximations
If we are drawing a contour or are engaged in shape analysis, it is common to approxi-

mate a contour representing a polygon with another contour having fewer vertices.

Th ere are many diff erent ways to do this; OpenCV off ers an implementation of one of

them.* Th e routine cvApproxPoly() is an implementation of this algorithm that will act

on a sequence of contours:

CvSeq* cvApproxPoly(
 const void* src_seq,
 int header_size,
 CvMemStorage* storage,
 int method,
 double parameter,
 int recursive = 0
);

We can pass a list or a tree sequence containing contours to cvApproxPoly(), which will

then act on all of the contained contours. Th e return value of cvApproxPoly() is actually

just the fi rst contour, but you can move to the others by using the h_next (and v_next, as

appropriate) elements of the returned sequence.

Because cvApproxPoly() needs to create the objects that it will return a pointer to,

it requires the usual CvMemStorage* pointer and header size (which, as usual, is set to

sizeof(CvContour)).

Th e method argument is always set to CV_POLY_APPROX_DP (though other algorithms could

be selected if they become available). Th e next two arguments are specifi c to the method

(of which, for now, there is but one). Th e parameter argument is the precision parameter

for the algorithm. To understand how this parameter works, we must take a moment to

review the actual algorithm.† Th e last argument indicates whether the algorithm should

(as mentioned previously) be applied to every contour that can be reached via the h_next

and v_next pointers. If this argument is 0, then only the contour directly pointed to by

src_seq will be approximated.

So here is the promised explanation of how the algorithm works. In Figure 8-5, start-

ing with a contour (panel b), the algorithm begins by picking two extremal points and

connecting them with a line (panel c). Th en the original polygon is searched to fi nd the

point farthest from the line just drawn, and that point is added to the approximation.

* For afi cionados, the method used by OpenCV is the Douglas-Peucker (DP) approximation [Douglas73].
Other popular methods are the Rosenfeld-Johnson [Rosenfeld73] and Teh-Chin [Teh89] algorithms.

† If that’s too much trouble, then just set this parameter to a small fraction of the total curve length.

08-R4886-AT1.indd 24508-R4886-AT1.indd 245 9/15/08 4:22:27 PM9/15/08 4:22:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

246 | Chapter 8: Contours

Th e process is iterated (panel d), adding the next most distant point to the accumulated

approximation, until all of the points are less than the distance indicated by the precision

parameter (panel f). Th is means that good candidates for the parameter are some frac-

tion of the contour’s length, or of the length of its bounding box, or a similar measure of

the contour’s overall size.

Closely related to the approximation just described is the process of fi nding dominant

points. A dominant point is defi ned as a point that has more information about the curve

than do other points. Dominant points are used in many of the same contexts as poly-

gon approximations. Th e routine cvFindDominantPoints() implements what is known as

the IPAN* [Chetverikov99] algorithm.

CvSeq* cvFindDominantPoints(
 CvSeq* contour,
 CvMemStorage* storage,
 int method = CV_DOMINANT_IPAN,
 double parameter1 = 0,
 double parameter2 = 0,
 double parameter3 = 0,
 double parameter4 = 0
);

In essence, the IPAN algorithm works by scanning along the contour and trying to

construct triangles on the interior of the curve using the available vertices. Th at tri-

angle is characterized by its size and the opening angle (see Figure 8-6). Th e points with

large opening angles are retained provided that their angles are smaller than a specifi ed

global threshold and smaller than their neighbors.

* For “Image and Pattern Analysis Group,” Hungarian Academy of Sciences. Th e algorithm is oft en referred
to as “IPAN99” because it was fi rst published in 1999.

Figure 8-5. Visualization of the DP algorithm used by cvApproxPoly(): the original image (a) is ap-
proximated by a contour (b) and then, starting from the fi rst two maximally separated vertices (c),
the additional vertices are iteratively selected from that contour (d)–(f)

08-R4886-AT1.indd 24608-R4886-AT1.indd 246 9/15/08 4:22:27 PM9/15/08 4:22:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

More to Do with Contours | 247

Th e routine cvFindDominantPoints() takes the usual CvSeq* and CvMemStorage* argu-

ments. It also requires a method, which (as with cvApproxPoly()) can take only one argu-

ment at this time: CV_DOMINANT_IPAN.

Th e next four arguments are: a minimal distance dmin, a maximal distance dmax, a neigh-

borhood distance dn, and a maximum angle θmax. As shown in Figure 8-6, the algorithm

fi rst constructs all triangles for which rpa and rpb fall between dmin and dmax and for which

θab < θmax. Th is is followed by a second pass in which only those points p with the small-

est associated value of θab in the neighborhood dn are retained (the value of dn should

never exceed dmax). Typical values for dmin, dmax, dn, and θmax are 7, 9, 9, and 150 (the last

argument is an angle and is measured in degrees).

Summary Characteristics
Another task that one oft en faces with contours is computing their various summary

characteristics. Th ese might include length or some other form of size measure of the

overall contour. Other useful characteristics are the contour moments, which can be

used to summarize the gross shape characteristics of a contour (we will address these in

the next section).

Length

Th e subroutine cvContourPerimeter() will take a contour and return its length. In fact,

this function is actually a macro for the somewhat more general cvArcLength().

double cvArcLength(
 const void* curve,
 CvSlice slice = CV_WHOLE_SEQ,
 int is_closed = -1
);
#define cvContourPerimeter(contour) \
 cvArcLength(contour, CV_WHOLE_SEQ, 1)

Th e fi rst argument of cvArcLength() is the contour itself, whose form may be either a

sequence of points (CvContour* or CvSeq*) or an n-by-2 array of points. Next are the slice

Figure 8-6. Th e IPAN algorithm uses triangle abp to characterize point p

08-R4886-AT1.indd 24708-R4886-AT1.indd 247 9/15/08 4:22:27 PM9/15/08 4:22:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

248 | Chapter 8: Contours

argument and a Boolean indicating whether the contour should be treated as closed

(i.e., whether the last point should be treated as connected to the fi rst). Th e slice argu-

ment allows us to select only some subset of the points in the curve.*

Closely related to cvArcLegth() is cvContourArea(), which (as its name suggests) com-

putes the area of a contour. It takes the contour as an argument and the same slice argu-

ment as cvArcLength().

double cvContourArea(
 const CvArr* contour,
 CvSlice slice = CV_WHOLE_SEQ
);

Bounding boxes

Of course the length and area are simple characterizations of a contour. Th e next level of

detail might be to summarize them with a bounding box or bounding circle or ellipse.

Th ere are two ways to do the former, and there is a single method for doing each of the

latter.

CvRect cvBoundingRect(
 CvArr* points,
 int update = 0
);
CvBox2D cvMinAreaRect2(
 const CvArr* points,
 CvMemStorage* storage = NULL
);

Th e simplest technique is to call cvBoundingRect(); it will return a CvRect that bounds

the contour. Th e points used for the fi rst argument can be either a contour (CvContour*)

or an n-by-1, two-channel matrix (CvMat*) containing the points in the sequence. To un-

derstand the second argument, update, we must harken back to footnote 8. Remember

that CvContour is not exactly the same as CvSeq; it does everything CvSeq does but also a

little bit more. One of those CvContour extras is a CvRect member for referring to its own

bounding box. If you call cvBoundingRect() with update set to 0 then you will just get the

contents of that data member; but if you call with update set to 1, the bounding box will

be computed (and the associated data member will also be updated).

One problem with the bounding rectangle from cvBoundingRect() is that it is a CvRect

and so can only represent a rectangle whose sides are oriented horizontally and verti-

cally. In contrast, the routine cvMinAreaRect2() returns the minimal rectangle that will

bound your contour, and this rectangle may be inclined relative to the vertical; see Fig-

ure 8-7. Th e arguments are otherwise similar to cvBoundingRect(). Th e OpenCV data

type CvBox2D is just what is needed to represent such a rectangle.

* Almost always, the default value CV_WHOLE_SEQ is used. Th e structure CvSlice contains only two elements:
start_index and end_index. You can create your own slice to put here using the helper constructor func-
tion cvSlice(int start, int end). Note that CV_WHOLE_SEQ is just shorthand for a slice starting at 0
and ending at some very large number.

08-R4886-AT1.indd 24808-R4886-AT1.indd 248 9/15/08 4:22:27 PM9/15/08 4:22:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

More to Do with Contours | 249

typedef struct CvBox2D {
 CvPoint2D32f center;
 CvSize2D32f size;
 float angle;
} CvBox2D;

Enclosing circles and ellipses

Next we have cvMinEnclosingCircle().* Th is routine works pretty much the same as the

bounding box routines, with the same fl exibility of being able to set points to be either a

sequence or an array of two-dimensional points.

int cvMinEnclosingCircle(
 const CvArr* points,
 CvPoint2D32f* center,
 float* radius
);

Th ere is no special structure in OpenCV for representing circles, so we need to pass

in pointers for a center point and a fl oating-point variable radius that can be used by

cvMinEnclosingCircle() to report the results of its computations.

As with the minimal enclosing circle, OpenCV also provides a method for fi tting an el-

lipse to a set of points:

CvBox2D cvFitEllipse2(
 const CvArr* points
);

* For more information on the inner workings of these fi tting techniques, see Fitzgibbon and Fisher [Fitzgib-
bon95] and Zhang [Zhang96].

Figure 8-7. CvRect can represent only upright rectangles, but CvBox2D can handle rectangles of any
inclination

08-R4886-AT1.indd 24908-R4886-AT1.indd 249 9/15/08 4:22:28 PM9/15/08 4:22:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

250 | Chapter 8: Contours

Th e subtle diff erence between cvMinEnclosingCircle() and cvFitEllipse2() is that the

former simply computes the smallest circle that completely encloses the given contour,

whereas the latter uses a fi tting function and returns the ellipse that is the best approxi-

mation to the contour. Th is means that not all points in the contour will be enclosed in

the ellipse returned by cvFitEllipse2(). Th e fi tting is done using a least-squares fi tness

function.

Th e results of the fi t are returned in a CvBox2D structure. Th e indicated box exactly en-

closes the ellipse. See Figure 8-8.

Geometry
When dealing with bounding boxes and other summary representations of polygon

contours, it is oft en desirable to perform such simple geometrical checks as polygon

overlap or a fast overlap check between bounding boxes. OpenCV provides a small but

handy set of routines for this sort of geometrical checking.

CvRect cvMaxRect(
 const CvRect* rect1,
 const CvRect* rect2
);
void cvBoxPoints(
 CvBox2D box,
 CvPoint2D32f pt[4]
);
CvSeq* cvPointSeqFromMat(
 int seq_kind,
 const CvArr* mat,
 CvContour* contour_header,
 CvSeqBlock* block
);
double cvPointPolygonTest(
 const CvArr* contour,
 CvPoint2D32f pt,
 int measure_dist
);

Figure 8-8. Ten-point contour with the minimal enclosing circle superimposed (a) and with the best-
fi tting ellipsoid (b); a box (c) is used by OpenCV to represent that ellipsoid

08-R4886-AT1.indd 25008-R4886-AT1.indd 250 9/15/08 4:22:28 PM9/15/08 4:22:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matching Contours | 251

Th e fi rst of these functions, cvMaxRect(), computes a new rectangle from two input rect-

angles. Th e new rectangle is the smallest rectangle that will bound both inputs.

Next, the utility function cvBoxPoints() simply computes the points at the corners of a

CvBox2D structure. You could do this yourself with a bit of trigonometry, but you would

soon grow tired of that. Th is function does this simple pencil pushing for you.

Th e second utility function, cvPointSeqFromMat(), generates a sequence structure from a

matrix. Th is is useful when you want to use a contour function that does not also take

matrix arguments. Th e input to cvPointSeqFromMat() fi rst requires you to indicate what

sort of sequence you would like. Th e variable seq_kind may be set to any of the follow-

ing: zero (0), indicating just a point set; CV_SEQ_KIND_CURVE, indicating that the sequence

is a curve; or CV_SEQ_KIND_CURVE | CV_SEQ_FLAG_CLOSED, indicating that the sequence is

a closed curve. Next you pass in the array of points, which should be an n-by-1 array

of points. Th e points should be of type CV_32SC2 or CV_32FC2 (i.e., they should be single-

column, two-channel arrays). Th e next two arguments are pointers to values that will be

computed by cvPointSeqFromMat(), and contour_header is a contour structure that you

should already have created but whose internals will be fi lled by the function call. Th is

is similarly the case for block, which will also be fi lled for you.* Finally the return value

is a CvSeq* pointer, which actually points to the very contour structure you passed in

yourself. Th is is a convenience, because you will generally need the sequence address

when calling the sequence-oriented functions that motivated you to perform this con-

version in the fi rst place.

Th e last geometrical tool-kit function to be presented here is cvPointPolygonTest(), a

function that allows you to test whether a point is inside a polygon (indicated by a se-

quence). In particular, if the argument measure_dist is nonzero then the function re-

turns the distance to the nearest contour edge; that distance is 0 if the point is inside the

contour and positive if the point is outside. If the measure_dist argument is 0 then the

return values are simply + 1, – 1, or 0 depending on whether the point is inside, outside,

or on an edge (or vertex), respectively. Th e contour itself can be either a sequence or an

n-by-1 two-channel matrix of points.

Matching Contours
Now that we have a pretty good idea of what a contour is and of how to work with con-

tours as objects in OpenCV, we would like to take a moment to understand how to use

them for some practical purposes. Th e most common task associated with contours is

matching them in some way with one another. We may have two computed contours

that we’d like to compare or a computed contour and some abstract template with which

we’d like to compare our contour. We will discuss both of these cases.

* You will probably never use block. It exists because no actual memory is copied when you call cvPoint
SeqFromMat(); instead, a “virtual” memory block is created that actually points to the matrix you yourself
provided. Th e variable block is used to create a reference to that memory of the kind expected by internal
sequence or contour calculations.

08-R4886-AT1.indd 25108-R4886-AT1.indd 251 9/15/08 4:22:28 PM9/15/08 4:22:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

252 | Chapter 8: Contours

Moments
One of the simplest ways to compare two contours is to compute contour moments. Th is

is a good time for a short digression into precisely what a moment is. Loosely speaking,

a moment is a gross characteristic of the contour computed by integrating (or summing,

if you like) over all of the pixels of the contour. In general, we defi ne the (p, q) moment

of a contour as

m I x y x y
p q

p q

i

n

,
(,)=

=
∑

1

Here p is the x-order and q is the y-order, whereby order means the power to which the

corresponding component is taken in the sum just displayed. Th e summation is over

all of the pixels of the contour boundary (denoted by n in the equation). It then follows

immediately that if p and q are both equal to 0, then the m00 moment is actually just the

length in pixels of the contour.*

Th e function that computes these moments for us is

void cvContoursMoments(
 CvSeq* contour,
 CvMoments* moments
)

Th e fi rst argument is the contour we are interested in and the second is a pointer to a

structure that we must allocate to hold the return data. Th e CvMoments structure is de-

fi ned as follows:

typedef struct CvMoments {

 // spatial moments
 double m00, m10, m01, m20, m11, m02, m30, m21, m12, m03;

 // central moments
 double mu20, mu11, mu02, mu30, mu21, mu12, mu03;

 // m00 != 0 ? 1/sqrt(m00) : 0
 double inv_sqrt_m00;

} CvMoments;

Th e cvContoursMoments() function uses only the m00, m01, . . ., m03 elements; the elements

with names mu00, . . . are used by other routines.

When working with the CvMoments structure, there is a friendly helper function that

will return any particular moment out of the structure:

* Mathematical purists might object that m00 should be not the contour’s length but rather its area. But be-
cause we are looking here at a contour and not a fi lled polygon, the length and the area are actually the same
in a discrete pixel space (at least for the relevant distance measure in our pixel space). Th ere are also func-
tions for computing moments of IplImage images; in that case, m00 would actually be the area of nonzero
pixels.

08-R4886-AT1.indd 25208-R4886-AT1.indd 252 9/15/08 4:22:28 PM9/15/08 4:22:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matching Contours | 253

double cvGetSpatialMoment(
 CvMoments* moments,
 Int x_order,
 int y_order
);

A single call to cvContoursMoments() will instigate computation of all the moments

through third order (i.e., m30 and m03 will be computed, as will m21 and m12, but m22 will

not be).

More About Moments
Th e moment computation just described gives some rudimentary characteristics of a

contour that can be used to compare two contours. However, the moments resulting

from that computation are not the best parameters for such comparisons in most practi-

cal cases. In particular, one would oft en like to use normalized moments (so that objects

of the same shape but dissimilar sizes give similar values). Similarly, the simple mo-

ments of the previous section depend on the coordinate system chosen, which means

that objects are not matched correctly if they are rotated.

OpenCV provides routines to compute normalized moments as well as Hu invariant

moments [Hu62]. Th e CvMoments structure can be computed either with cvMoments or

with cvContourMoments. Moreover, cvContourMoments is now just an alias for cvMoments.

A useful trick is to use cvDrawContours() to “paint” an image of the contour and then

call one of the moment functions on the resulting drawing. Th is allows you to control

whether or not the contour is fi lled.

Here are the four functions at your disposal:

void cvMoments(
 const CvArr* image,
 CvMoments* moments,
 int isBinary = 0
)
double cvGetCentralMoment(
 CvMoments* moments,
 int x_order,
 int y_order
)
double cvGetNormalizedCentralMoment(
 CvMoments* moments,
 int x_order,
 int y_order
);
void cvGetHuMoments(
 CvMoments* moments,
 CvHuMoments* HuMoments
);

Th e fi rst function is essentially analogous to cvContoursMoments() except that it takes

an image (instead of a contour) and has one extra argument. Th at extra argument, if set

to CV_TRUE, tells cvMoments() to treat all pixels as either 1 or 0, where 1 is assigned to any

08-R4886-AT1.indd 25308-R4886-AT1.indd 253 9/15/08 4:22:29 PM9/15/08 4:22:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

254 | Chapter 8: Contours

pixel with a nonzero value. When this function is called, all of the moments—including

the central moments (see next paragraph)—are computed at once.

A central moment is basically the same as the moments just described except that the

values of x and y used in the formulas are displaced by the mean values:

μ
p q

p q

i

n

I x y x x y y
,

(,)() ()= − −
=
∑ avg avg

0

where x m m
avg

=
10 00

/ and y m m
avg

=
01 00

/ .

Th e normalized moments are the same as the central moments except that they are all

divided by an appropriate power of m00:*

η
μ

p q

p q

p qm
,

,

()/
= + +

00

2 1

Finally, the Hu invariant moments are linear combinations of the central moments. Th e

idea here is that, by combining the diff erent normalized central moments, it is possible

to create invariant functions representing diff erent aspects of the image in a way that is

invariant to scale, rotation, and (for all but the one called h1) refl ection.

Th e cvGetHuMoments() function computes the Hu moments from the central moments.

For the sake of completeness, we show here the actual defi nitions of the Hu moments:

h

h

h

1 20 02

2 20 02

2

11

2

3 30 12

2

4

3

= +

= − +

= −

η η
η η η
η η

()

() ++ −

= + + +

=

()

() ()

(

3
21 03

2

4 30 12

2

21 03

2

5 3

η η
η η η η
η

h

h
00 12 30 12 30 12

2

21 03

23 3− + + − +

+

η η η η η η η)()(() ())

(33 3
21 03 21 03 30 12

2

21 03

2η η η η η η η η− + + − +)()(() ())

hh
6 20 02 30 12

2

21 03

2

11
4= − + − + +()(() ()) (η η η η η η η η

330 12 21 03

7 21 03 21 03
3 3

+ +

= − +

η η η
η η η η η

)()

()()((h
330 12

2

21 03

2

30 12 21 03
3 3

+ − +

− − +

η η η
η η η η

) ())

()()((() ())η η η η
30 12

2

21 03

2+ − +

Looking at Figure 8-9 and Table 8-1, we can gain a sense of how the Hu moments be-

have. Observe fi rst that the moments tend to be smaller as we move to higher orders.

Th is should be no surprise in that, by their defi nition, higher Hu moments have more

* Here, “appropriate” means that the moment is scaled by some power of m00 such that the resulting normal-
ized moment is independent of the overall scale of the object. In the same sense that an average is the sum of
N numbers divided by N, the higher-order moments also require a corresponding normalization factor.

08-R4886-AT1.indd 25408-R4886-AT1.indd 254 9/15/08 4:22:29 PM9/15/08 4:22:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matching Contours | 255

powers of various normalized factors. Since each of those factors is less than 1, the prod-

ucts of more and more of them will tend to be smaller numbers.

Figure 8-9. Images of fi ve simple characters; looking at their Hu moments yields some intuition
concerning their behavior

Table 8-1. Values of the Hu moments for the fi ve simple characters of Figure 8-9

Other factors of particular interest are that the “I”, which is symmetric under 180 de-

gree rotations and refl ection, has a value of exactly 0 for h3 through h7; and that the

“O”, which has similar symmetries, has all nonzero moments. We leave it to the reader

to look at the fi gures, compare the various moments, and so build a basic intuition for

what those moments represent.

Matching with Hu Moments
double cvMatchShapes(
 const void* object1,
 const void* object2,
 int method,
 double parameter = 0
);

Naturally, with Hu moments we’d like to compare two objects and determine whether

they are similar. Of course, there are many possible defi nitions of “similar”. To make

this process somewhat easier, the OpenCV function cvMatchShapes() allows us to simply

provide two objects and have their moments computed and compared according to a

criterion that we provide.

Th ese objects can be either grayscale images or contours. If you provide images,

cvMatchShapes() will compute the moments for you before proceeding with the com-

parison. Th e method used in cvMatchShapes() is one of the three listed in Table 8-2.

h1 h2 h3 h4 h5 h6 h7

A 2.837e−1 1.961e−3 1.484e−2 2.265e−4 −4.152e−7 1.003e−5 −7.941e−9

I 4.578e−1 1.820e−1 0.000 0.000 0.000 0.000 0.000

O 3.791e−1 2.623e−4 4.501e−7 5.858e−7 1.529e−13 7.775e−9 −2.591e−13

M 2.465e−1 4.775e−4 7.263e−5 2.617e−6 −3.607e−11 −5.718e−8 −7.218e−24

F 3.186e−1 2.914e−2 9.397e−3 8.221e−4 3.872e−8 2.019e−5 2.285e−6

08-R4886-AT1.indd 25508-R4886-AT1.indd 255 9/15/08 4:22:29 PM9/15/08 4:22:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

256 | Chapter 8: Contours

Table 8-2. Matching methods used by cvMatchShapes()

Value of method cvMatchShapes() return value

CV_CONTOURS_MATCH_I1 I A B
m mi

A
i
B

i
1

1

7 1 1
(,)= −

=
∑

CV_CONTOURS_MATCH_I2 I A B m mi
A

i
B

i
2

1

7

(,)= −
=

∑

CV_CONTOURS_MATCH_I3 I A B
m m

m
i
A

i
B

i
A

i
3

1

7

(,)=
−

=
∑

In the table, m
i

A and m
i

B are defi ned as:

()

()m h= ⋅ h

m h h

i

A

i

A

i

A

i

B

i

B

i

B= ⋅
sign

sign

log

log

where h
i

A and h
i

B are the Hu moments of A and B, respectively.

Each of the three defi ned constants in Table 8-2 has a diff erent meaning in terms of

how the comparison metric is computed. Th is metric determines the value ultimately

returned by cvMatchShapes(). Th e fi nal parameter argument is not currently used, so we

can safely leave it at the default value of 0.

Hierarchical Matching
We’d oft en like to match two contours and come up with a similarity measure that takes

into account the entire structure of the contours being matched. Methods using sum-

mary parameters (such as moments) are fairly quick, but there is only so much informa-

tion they can capture.

For a more accurate measure of similarity, it will be useful fi rst to consider a structure

known as a contour tree. Contour trees should not be confused with the hierarchical

representations of contours that are returned by such functions as cvFindContours(). In-

stead, they are hierarchical representations of the shape of one particular contour.

Understanding a contour tree will be easier if we fi rst understand how it is constructed.

Constructing a contour tree from a contour works from bottom (leaf nodes) to top (the

root node). Th e process begins by searching the perimeter of the shape for triangular

protrusions or indentations (every point on the contour that is not exactly collinear

with its neighbors). Each such triangle is replaced with the line connecting its two

nonadjacent points on the curve;thus, in eff ect the triangle is either cut off (e.g., triangle

D in Figure 8-10), or fi lled in (triangle C). Each such alteration reduces the contour’s

number of vertices by 1 and creates a new node in the tree. If such a triangle has origi-

nal edges on two of its sides, then it is a leaf in the resulting tree; if one of its sides is

08-R4886-AT1.indd 25608-R4886-AT1.indd 256 9/15/08 4:22:30 PM9/15/08 4:22:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matching Contours | 257

part of an existing triangle, then it is a parent of that triangle. Iteration of this process

ultimately reduces the shape to a quadrangle, which is then cut in half; both resulting

triangles are children of the root node.

Th e resulting binary tree (Figure 8-11) ultimately encodes the shape information about

the original contour. Each node is annotated with information about the triangle to

which it is associated (information such as the size of the triangle and whether it was

created by cutting off or fi lling in).

Once these trees are constructed, they can be used to eff ectively compare two contours.*

Th is process begins by attempting to defi ne correspondences between nodes in the two

trees and then comparing the characteristics of the corresponding nodes. Th e end result

is a similarity measure between the two trees.

In practice, we need to understand very little about this process. OpenCV provides us

with routines to generate contour trees automatically from normal CvContour objects

and to convert them back; it also provides the method for comparing the two trees. Un-

fortunately, the constructed trees are not quite robust (i.e., minor changes in the contour

may change the resultant tree signifi cantly). Also, the initial triangle (root of the tree)

is chosen somewhat arbitrarily. Th us, to obtain a better representation requires that we

fi rst apply cvApproxPoly() and then align the contour (perform a cyclic shift) such that

the initial triangle is pretty much rotation-independent.

CvContourTree* cvCreateContourTree(
 const CvSeq* contour,
 CvMemStorage* storage,
 double threshold

* Some early work in hierarchical matching of contours is described in [Mokhtarian86] and [Neveu86] and to
3D in [Mokhtarian88].

Figure 8-10. Constructing a contour tree: in the fi rst round, the contour around the car produces leaf
nodes A, B, C, and D; in the second round, X and Y are produced (X is the parent of A and B, and Y
is the parent of C and D)

08-R4886-AT1.indd 25708-R4886-AT1.indd 257 9/15/08 4:22:30 PM9/15/08 4:22:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

258 | Chapter 8: Contours

);
CvSeq* cvContourFromContourTree(
 const CvContourTree* tree,
 CvMemStorage* storage,
 CvTermCriteria criteria
);
double cvMatchContourTrees(
 const CvContourTree* tree1,
 const CvContourTree* tree2,
 int method,
 double threshold
);

Th is code references CvTermCriteria(), the details of which are given in Chapter 9. For

now, you can simply construct a structure using cvTermCriteria() with the following (or

similar) defaults:

CvTermCriteria termcrit = cvTermCriteria(
 CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 5, 1)
);

Contour Convexity and Convexity Defects
Another useful way of comprehending the shape of an object or contour is to compute

a convex hull for the object and then compute its convexity defects [Homma85]. Th e

shapes of many complex objects are well characterized by such defects.

Figure 8-12 illustrates the concept of a convexity defect using an image of a human

hand. Th e convex hull is pictured as a dark line around the hand, and the regions la-

beled A through H are each “defects” relative to that hull. As you can see, these convex-

ity defects off er a means of characterizing not only the hand itself but also the state of

the hand.

Figure 8-11. A binary tree representation that might correspond to a contour like that of Figure 8-10

08-R4886-AT1.indd 25808-R4886-AT1.indd 258 9/15/08 4:22:31 PM9/15/08 4:22:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matching Contours | 259

#define CV_CLOCKWISE 1
#define CV_COUNTER_CLOCKWISE 2
CvSeq* cvConvexHull2(
 const CvArr* input,
 void* hull_storage = NULL,
 int orientation = CV_CLOCKWISE,
 int return_points = 0
);
int cvCheckContourConvexity(
 const CvArr* contour
);
CvSeq* cvConvexityDefects(
 const CvArr* contour,
 const CvArr* convexhull,
 CvMemStorage* storage = NULL
);

Th ere are three important OpenCV methods that relate to complex hulls and convexity

defects. Th e fi rst simply computes the hull of a contour that we have already identifi ed,

and the second allows us to check whether an identifi ed contour is already convex. Th e

third computes convexity defects in a contour for which the convex hull is known.

Th e cvConvexHull2() routine takes an array of points as its fi rst argument. Th is

array is typically a matrix with two columns and n rows (i.e., n-by-2), or it can be a

contour. Th e points should be 32-bit integers (CV_32SC1) or fl oating-point numbers

(CV_32FC1). Th e next argument is the now familiar pointer to a memory storage where

space for the result can be allocated. Th e next argument can be either CV_CLOCKWISE or

Figure 8-12. Convexity defects: the dark contour line is a convex hull around the hand; the gridded
regions (A–H) are convexity defects in the hand contour relative to the convex hull

08-R4886-AT1.indd 25908-R4886-AT1.indd 259 9/15/08 4:22:31 PM9/15/08 4:22:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

260 | Chapter 8: Contours

CV_COUNTERCLOCKWISE, which will determine the orientation of the points when they are

returned by the routine. Th e fi nal argument, returnPoints, can be either zero (0) or one

(1). If set to 1 then the points themselves will be stored in the return array. If it is set to 0,

then only indices* will be stored in the return array, indices that refer to the entries in

the original array passed to cvConvexHull2().

At this point the astute reader might ask: “If the hull_storage argument is a memory

storage, then why is it prototyped as void*?” Good question. Th e reason is because, in

many cases, it is more useful to have the points of the hull returned in the form of an

array rather than a sequence. With this in mind, there is another possibility for the

hull_storage argument, which is to pass in a CvMat* pointer to a matrix. In this case,

the matrix should be one-dimensional and have the same number of entries as there are

input points. When cvConvexHull2() is called, it will actually modify the header for the

matrix so that the correct number of columns are indicated.†

Sometimes we already have the contour but do not know if it is convex. In this case we

can call cvCheckContourConvexity(). Th is test is simple and fast,‡ but it will not work

correctly if the contour passed contains self-intersections.

Th e third routine, cvConvexityDefects(), actually computes the defects and returns a

sequence of the defects. In order to do this, cvConvexityDefects() requires the contour

itself, the convex hull, and a memory storage from which to get the memory needed to

allocate the result sequence. Th e fi rst two arguments are CvArr* and are the same form

as the input argument to cvConvexHull2().

typedef struct CvConvexityDefect {
 // point of the contour where the defect begins
 CvPoint* start;
 // point of the contour where the defect ends
 CvPoint* end;
 // point within the defect farthest from the convex hull
 CvPoint* depth_point;
 // distance between the farthest point and the convex hull
 float depth;
} CvConvexityDefect;

Th e cvConvexityDefects() routine returns a sequence of CvConvexityDefect structures

containing some simple parameters that can be used to characterize the defects. Th e start

and end members are points on the hull at which the defect begins and ends. Th e depth_
point indicates the point on the defect that is the farthest from the edge of the hull from

which the defect is a defl ection. Th e fi nal parameter, depth, is the distance between the

farthest point and the hull edge.

* If the input is CvSeq* or CvContour* then what will be stored are pointers to the points.

† You should know that the memory allocated for the data part of the matrix is not re-allocated in any way,
so don’t expect a rebate on your memory. In any case, since these are C-arrays, the correct memory will be
de-allocated when the matrix itself is released.

‡ It actually runs in O(N) time, which is only marginally faster than the O(N log N) time required to con-
struct a convex hull.

08-R4886-AT1.indd 26008-R4886-AT1.indd 260 9/15/08 4:22:31 PM9/15/08 4:22:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Matching Contours | 261

Pairwise Geometrical Histograms
Earlier we briefl y visited the Freeman chain codes (FCCs). Recall that a Freeman chain

is a representation of a polygon in terms of a sequence of “moves”, where each move is

of a fi xed length and in a particular direction. However, we did not linger on why one

might actually want to use such a representation.

Th ere are many uses for Freeman chains, but the most popular one is worth a longer

look because the idea underlies the pairwise geometrical histogram (PGH).*

Th e PGH is actually a generalization or extension of what is known as a chain code his-

togram (CCH). Th e CCH is a histogram made by counting the number of each kind of

step in the Freeman chain code representation of a contour. Th is histogram has a num-

ber of nice properties. Most notably, rotations of the object by 45 degree increments be-

come cyclic transformations on the histogram (see Figure 8-13). Th is provides a method

of shape recognition that is not aff ected by such rotations.

* OpenCV implements the method of Iivarinen, Peura, Särelä, and Visa [Iivarinen97].

Figure 8-13. Freeman chain code representations of a contour (top) and their associated chain code
histograms (bottom); when the original contour (panel a) is rotated 45 degrees clockwise (panel b),
the resulting chain code histogram is the same as the original except shift ed to the right by one unit

08-R4886-AT1.indd 26108-R4886-AT1.indd 261 9/15/08 4:22:31 PM9/15/08 4:22:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

262 | Chapter 8: Contours

Th e PGH is constructed as follows (see Figure 8-14). Each of the edges of the polygon is

successively chosen to be the “base edge”. Th en each of the other edges is considered rela-

tive to that base edge and three values are computed: dmin, dmax, and θ. Th e dmin value is the

smallest distance between the two edges, dmax is the largest, and θ is the angle between

them. Th e PGH is a two-dimensional histogram whose dimensions are the angle and the

distance. In particular: for every edge pair, there is a bin corresponding to (dmin, θ) and a bin

corresponding to (dmax, θ). For each such pair of edges, those two bins are incremented—

as are all bins for intermediate values of d (i.e., values between dmin and dmax).

Th e utility of the PGH is similar to that of the FCC. One important diff erence is that

the discriminating power of the PGH is higher, so it is more useful when attempting to

solve complex problems involving a greater number of shapes to be recognized and/or a

greater variability of background noise. Th e function used to compute the PGH is

void cvCalcPGH(
 const CvSeq* contour,
 CvHistogram* hist
);

Here contour can contain integer point coordinates; of course, hist must be two-

dimensional.

Exercises
Neglecting image noise, does the IPAN algorithm return the same “dominant 1.

points” as we zoom in on an object? As we rotate the object?

Give the reasons for your answer.a.

Try it! Use PowerPoint or a similar program to draw an “interesting” white b.

shape on a black background. Turn it into an image and save. Resize the object

Figure 8-14. Pairwise geometric histogram: every two edge segments of the enclosing polygon have
an angle and a minimum and maximum distance (panel a); these numbers are encoded into a
two-dimensional histogram (panel b), which is rotation-invariant and can be matched against other
objects

08-R4886-AT1.indd 26208-R4886-AT1.indd 262 9/15/08 4:22:32 PM9/15/08 4:22:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 263

several times, saving each time, and reposition it via several diff erent rotations.

Read it in to OpenCV, turn it into grayscale, threshold, and fi nd the contour.

Th en use cvFindDominantPoints() to fi nd the dominant points of the rotated

and scaled versions of the object. Are the same points found or not?

Finding the extremal points (i.e., the two points that are farthest apart) in a closed 2.

contour of N points can be accomplished by comparing the distance of each point

to every other point.

What is the complexity of such an algorithm?a.

Explain how you can do this faster.b.

Create a circular image queue using 3. CvSeq functions.

What is the maximal closed contour length that could fi t into a 4-by-4 image? What 4.

is its contour area?

Using PowerPoint or a similar program, draw a white circle of radius 20 on a black 5.

background (the circle’s circumference will thus be 2 π 20 ≈ 126.7. Save your draw-

ing as an image.

Read the image in, turn it into grayscale, threshold, and fi nd the contour. What a.

is the contour length? Is it the same (within rounding) or diff erent from the

calculated length?

Using 126.7 as a base length of the contour, run b. cvApproxPoly() using as param-

eters the following fractions of the base length: 90, 66, 33, 10. Find the contour

length and draw the results.

Using the circle drawn in exercise 5, explore the results of 6. cvFindDominantPoints()
as follows.

Vary the a. dmin and dmax distances and draw the results.

Th en vary the neighborhood distance and describe the resulting changes.b.

Finally, vary the maximal angle threshold and describe the results.c.

Subpixel corner fi nding. Create a white-on-black corner in PowerPoint (or similar 7.

drawing program) such that the corner sits on exact integer coordinates. Save this

as an image and load into OpenCV.

Find and print out the exact coordinates of the corner.a.

Alter the original image: delete the actual corner by drawing a small black cir-b.

cle over its intersection. Save and load this image, and fi nd the subpixel loca-

tion of this corner. Is it the same? Why or why not?

Suppose we are building a bottle detector and wish to create a “bottle” feature. We 8.

have many images of bottles that are easy to segment and fi nd the contours of, but

the bottles are rotated and come in various sizes. We can draw the contours and

then fi nd the Hu moments to yield an invariant bottle-feature vector. So far, so

08-R4886-AT1.indd 26308-R4886-AT1.indd 263 9/15/08 4:22:32 PM9/15/08 4:22:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

264 | Chapter 8: Contours

good—but should we draw fi lled-in contours or just line contours? Explain your

answer.

When using 9. cvMoments() to extract bottle contour moments in exercise 8, how

should we set isBinary? Explain your answer.

Take the letter shapes used in the discussion of Hu moments. Produce variant im-10.

ages of the shapes by rotating to several diff erent angles, scaling larger and smaller,

and combining these transformations. Describe which Hu features respond to rota-

tion, which to scale, and which to both.

Make a shape in PowerPoint (or another drawing program) and save it as an image. 11.

Make a scaled, a rotated, and a rotated and scaled version of the object and then

store these as images. Compare them using cvMatchContourTrees() and cvConvexity
Defects(). Which is better for matching the shape? Why?

08-R4886-AT1.indd 26408-R4886-AT1.indd 264 9/15/08 4:22:32 PM9/15/08 4:22:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

265

CHAPTER 9

Image Parts and Segmentation

Parts and Segments
Th is chapter focuses on how to isolate objects or parts of objects from the rest of the

image. Th e reasons for doing this should be obvious. In video security, for example, the

camera mostly looks out on the same boring background, which really isn’t of interest.

What is of interest is when people or vehicles enter the scene, or when something is left

in the scene that wasn’t there before. We want to isolate those events and to be able to

ignore the endless hours when nothing is changing.

Beyond separating foreground objects from the rest of the image, there are many situa-

tions where we want to separate out parts of objects, such as isolating just the face or the

hands of a person. We might also want to preprocess an image into meaningful super

pixels, which are segments of an image that contain things like limbs, hair, face, torso,

tree leaves, lake, path, lawn and so on. Using super pixels saves on computation; for

example, when running an object classifi er over the image, we only need search a box

around each super pixel. We might only track the motion of these larger patches and not

every point inside.

We saw several image segmentation algorithms when we discussed image processing

in Chapter 5. Th e routines covered in that chapter included image morphology, fl ood

fi ll, threshold, and pyramid segmentation. Th is chapter examines other algorithms that

deal with fi nding, fi lling and isolating objects and object parts in an image. We start

with separating foreground objects from learned background scenes. Th ese background

modeling functions are not built-in OpenCV functions; rather, they are examples of

how we can leverage OpenCV functions to implement more complex algorithms.

Background Subtraction
Because of its simplicity and because camera locations are fi xed in many contexts, back-

ground subtraction (aka background diff erencing) is probably the most fundamental im-

age processing operation for video security applications. Toyama, Krumm, Brumitt, and

Meyers give a good overview and comparison of many techniques [Toyama99]. In order

to perform background subtraction, we fi rst must “learn” a model of the background.

09-R4886-RC1.indd 26509-R4886-RC1.indd 265 9/15/08 4:22:55 PM9/15/08 4:22:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

266 | Chapter 9: Image Parts and Segmentation

Once learned, this background model is compared against the current image and then

the known background parts are subtracted away. Th e objects left aft er subtraction are

presumably new foreground objects.

Of course “background” is an ill-defi ned concept that varies by application. For ex-

ample, if you are watching a highway, perhaps average traffi c fl ow should be consid-

ered background. Normally, background is considered to be any static or periodically

moving parts of a scene that remain static or periodic over the period of interest. Th e

whole ensemble may have time-varying components, such as trees waving in morning

and evening wind but standing still at noon. Two common but substantially distinct

environment categories that are likely to be encountered are indoor and outdoor scenes.

We are interested in tools that will help us in both of these environments. First we will

discuss the weaknesses of typical background models and then will move on to dis-

cuss higher-level scene models. Next we present a quick method that is mostly good for

indoor static background scenes whose lighting doesn’t change much. We will follow

this by a “codebook” method that is slightly slower but can work in both outdoor and

indoor scenes; it allows for periodic movements (such as trees waving in the wind) and

for lighting to change slowly or periodically. Th is method is also tolerant to learning

the background even when there are occasional foreground objects moving by. We’ll

top this off by another discussion of connected components (fi rst seen in Chapter 5) in

the context of cleaning up foreground object detection. Finally, we’ll compare the quick

background method against the codebook background method.

Weaknesses of Background Subtraction
Although the background modeling methods mentioned here work fairly well for sim-

ple scenes, they suff er from an assumption that is oft en violated: that all the pixels are

independent. Th e methods we describe learn a model for the variations a pixel experi-

ences without considering neighboring pixels. In order to take surrounding pixels into

account, we could learn a multipart model, a simple example of which would be an

extension of our basic independent pixel model to include a rudimentary sense of the

brightness of neighboring pixels. In this case, we use the brightness of neighboring pix-

els to distinguish when neighboring pixel values are relatively bright or dim. We then

learn eff ectively two models for the individual pixel: one for when the surrounding pix-

els are bright and one for when the surrounding pixels are dim. In this way, we have a

model that takes into account the surrounding context. But this comes at the cost of

twice as much memory use and more computation, since we now need diff erent values

for when the surrounding pixels are bright or dim. We also need twice as much data to

fi ll out this two-state model. We can generalize the idea of “high” and “low” contexts

to a multidimensional histogram of single and surrounding pixel intensities as well as

make it even more complex by doing all this over a few time steps. Of course, this richer

model over space and time would require still more memory, more collected data sam-

ples, and more computational resources.

Because of these extra costs, the more complex models are usually avoided. We can

oft en more effi ciently invest our resources in cleaning up the false positive pixels that

09-R4886-RC1.indd 26609-R4886-RC1.indd 266 9/15/08 4:22:55 PM9/15/08 4:22:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Background Subtraction | 267

result when the independent pixel assumption is violated. Th e cleanup takes the form

of image processing operations (cvErode(), cvDilate(), and cvFloodFill(), mostly) that

eliminate stray patches of pixels. We’ve discussed these routines previously (Chapter 5)

in the context of fi nding large and compact* connected components within noisy data.

We will employ connected components again in this chapter and so, for now, will re-

strict our discussion to approaches that assume pixels vary independently.

Scene Modeling
How do we defi ne background and foreground? If we’re watching a parking lot and a

car comes in to park, then this car is a new foreground object. But should it stay fore-

ground forever? How about a trash can that was moved? It will show up as foreground

in two places: the place it was moved to and the “hole” it was moved from. How do we

tell the diff erence? And again, how long should the trash can (and its hole) remain fore-

ground? If we are modeling a dark room and suddenly someone turns on a light, should

the whole room become foreground? To answer these questions, we need a higher-level

“scene” model, in which we defi ne multiple levels between foreground and background

states, and a timing-based method of slowly relegating unmoving foreground patches to

background patches. We will also have to detect and create a new model when there is a

global change in a scene.

In general, a scene model might contain multiple layers, from “new foreground” to older

foreground on down to background. Th ere might also be some motion detection so that,

when an object is moved, we can identify both its “positive” aspect (its new location)

and its “negative” aspect (its old location, the “hole”).

In this way, a new foreground object would be put in the “new foreground” object level

and marked as a positive object or a hole. In areas where there was no foreground ob-

ject, we could continue updating our background model. If a foreground object does not

move for a given time, it is demoted to “older foreground,” where its pixel statistics are

provisionally learned until its learned model joins the learned background model.

For global change detection such as turning on a light in a room, we might use global

frame diff erencing. For example, if many pixels change at once then we could classify it as

a global rather than local change and then switch to using a model for the new situation.

A Slice of Pixels
Before we go on to modeling pixel changes, let’s get an idea of what pixels in an image

can look like over time. Consider a camera looking out a window to a scene of a tree

blowing in the wind. Figure 9-1 shows what the pixels in a given line segment of the

image look like over 60 frames. We wish to model these kinds of fl uctuations. Before do-

ing so, however, we make a small digression to discuss how we sampled this line because

it’s a generally useful trick for creating features and for debugging.

* Here we are using mathematician’s defi nition of “compact,” which has nothing to do with size.

09-R4886-RC1.indd 26709-R4886-RC1.indd 267 9/15/08 4:22:56 PM9/15/08 4:22:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

268 | Chapter 9: Image Parts and Segmentation

OpenCV has functions that make it easy to sample an arbitrary line of pixels. Th e line

sampling functions are cvInitLineIterator() and CV_NEXT_LINE_POINT(). Th e function

prototype for cvInitLineIterator() is:

int cvInitLineIterator(
 const CvArr* image,
 CvPoint pt1,
 CvPoint pt2,
 CvLineIterator* line_iterator,
 int connectivity = 8,
 int left_to_right = 0
);

Th e input image may be of any type or number of channels. Points pt1 and pt2 are the

ends of the line segment. Th e iterator line_iterator just steps through, pointing to the

pixels along the line between the points. In the case of multichannel images, each call

to CV_NEXT_LINE_POINT() moves the line_iterator to the next pixel. All the channels

are available at once as line_iterator.ptr[0], line_iterator.ptr[1], and so forth. Th e

connectivity can be 4 (the line can step right, left , up, or down) or 8 (the line can ad-

ditionally step along the diagonals). Finally if left_to_right is set to 0 (false), then line_
iterator scans from pt1 to pt2; otherwise, it will go from the left most to the rightmost

point.* Th e cvInitLineIterator() function returns the number of points that will be

* Th e left_to_right fl ag was introduced because a discrete line drawn from pt1 to pt2 does not always
match the line from pt2 to pt1. Th erefore, setting this fl ag gives the user a consistent rasterization regard-
less of the pt1, pt2 order.

Figure 9-1. Fluctuations of a line of pixels in a scene of a tree moving in the wind over 60 frames:
some dark areas (upper left) are quite stable, whereas moving branches (upper center) can vary
widely

09-R4886-RC1.indd 26809-R4886-RC1.indd 268 9/15/08 4:22:56 PM9/15/08 4:22:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Background Subtraction | 269

iterated over for that line. A companion macro, CV_NEXT_LINE_POINT(line_iterator), steps

the iterator from one pixel to another.

Let’s take a second to look at how this method can be used to extract some data from

a fi le (Example 9-1). Th en we can re-examine Figure 9-1 in terms of the resulting data

from that movie fi le.

Example 9-1. Reading out the RGB values of all pixels in one row of a video and accumulating those
values into three separate fi les

// STORE TO DISK A LINE SEGMENT OF BGR PIXELS FROM pt1 to pt2.
//
CvCapture* capture = cvCreateFileCapture(argv[1]);
int max_buffer;
IplImage* rawImage;
int r[10000],g[10000],b[10000];
CvLineIterator iterator;

FILE *fptrb = fopen(“blines.csv”,“w”); // Store the data here
FILE *fptrg = fopen(“glines.csv”,“w”); // for each color channel
FILE *fptrr = fopen(“rlines.csv”,“w”);

// MAIN PROCESSING LOOP:
//
for(;;){
 if(!cvGrabFrame(capture))
 break;
 rawImage = cvRetrieveFrame(capture);
 max_buffer = cvInitLineIterator(rawImage,pt1,pt2,&iterator,8,0);
 for(int j=0; j<max_buffer; j++){

 fprintf(fptrb,“%d,”, iterator.ptr[0]); //Write blue value
 fprintf(fptrg,“%d,”, iterator.ptr[1]); //green
 fprintf(fptrr,“%d,”, iterator.ptr[2]); //red

 iterator.ptr[2] = 255; //Mark this sample in red

 CV_NEXT_LINE_POINT(iterator); //Step to the next pixel
 }
 // OUTPUT THE DATA IN ROWS:
 //
 fprintf(fptrb,“/n”);fprintf(fptrg,“/n”);fprintf(fptrr,“/n”);
}
// CLEAN UP:
//
fclose(fptrb); fclose(fptrg); fclose(fptrr);
cvReleaseCapture(&capture);

We could have made the line sampling even easier, as follows:

int cvSampleLine(
 const CvArr* image,
 CvPoint pt1,
 CvPoint pt2,

09-R4886-RC1.indd 26909-R4886-RC1.indd 269 9/15/08 4:22:56 PM9/15/08 4:22:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

270 | Chapter 9: Image Parts and Segmentation

 void* buffer,
 int connectivity = 8
);

Th is function simply wraps the function cvInitLineIterator() together with the macro

CV_NEXT_LINE_POINT(line_iterator) from before. It samples from pt1 to pt2; then you pass

it a pointer to a buffer of the right type and of length Nchannels × max(|pt2x – pt2x| + 1,

|pt2y – pt2y| + 1). Just like the line iterator, cvSampleLine() steps through each channel

of each pixel in a multichannel image before moving to the next pixel. Th e function re-

turns the number of actual elements it fi lled in the buffer.

We are now ready to move on to some methods for modeling the kinds of pixel fl uctua-

tions seen in Figure 9-1. As we move from simple to increasingly complex models, we

shall restrict our attention to those models that will run in real time and within reason-

able memory constraints.

Frame Differencing
Th e very simplest background subtraction method is to subtract one frame from another

(possibly several frames later) and then label any diff erence that is “big enough” the

foreground. Th is process tends to catch the edges of moving objects. For simplicity, let’s

say we have three single-channel images: frameTime1, frameTime2, and frame Foreground.

Th e image frameTime1 is fi lled with an older grayscale image, and frameTime2 is fi lled

with the current grayscale image. We could then use the following code to detect the

magnitude (absolute value) of foreground diff erences in frameForeground:

cvAbsDiff(
 frameTime1,
 frameTime2,
 frameForeground
);

Because pixel values always exhibit noise and fl uctuations, we should ignore (set to 0)

small diff erences (say, less than 15), and mark the rest as big diff erences (set to 255):

cvThreshold(
 frameForeground,
 frameForeground,
 15,
 255,
 CV_THRESH_BINARY
);

Th e image frameForeground then marks candidate foreground objects as 255 and back-

ground pixels as 0. We need to clean up small noise areas as discussed earlier; we might

do this with cvErode() or by using connected components. For color images, we could use

the same code for each color channel and then combine the channels with cvOr(). Th is

method is much too simple for most applications other than merely indicating regions of

motion. For a more eff ective background model we need to keep some statistics about the

means and average diff erences of pixels in the scene. You can look ahead to the section

entitled “A quick test” to see examples of frame diff erencing in Figures 9-5 and 9-6.

09-R4886-RC1.indd 27009-R4886-RC1.indd 270 9/15/08 4:22:56 PM9/15/08 4:22:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Background Subtraction | 271

Averaging Background Method
Th e averaging method basically learns the average and standard deviation (or simi-

larly, but computationally faster, the average diff erence) of each pixel as its model of the

background.

Consider the pixel line from Figure 9-1. Instead of plotting one sequence of values

for each frame (as we did in that fi gure), we can represent the variations of each pixel

throughout the video in terms of an average and average diff erences (Figure 9-2). In the

same video, a foreground object (which is, in fact, a hand) passes in front of the camera.

Th at foreground object is not nearly as bright as the sky and tree in the background. Th e

brightness of the hand is also shown in the fi gure.

Th e averaging method makes use of four OpenCV routines: cvAcc(), to accumulate im-

ages over time; cvAbsDiff(), to accumulate frame-to-frame image diff erences over time;

cvInRange(), to segment the image (once a background model has been learned) into

foreground and background regions; and cvOr(), to compile segmentations from diff er-

ent color channels into a single mask image. Because this is a rather long code example,

we will break it into pieces and discuss each piece in turn.

First, we create pointers for the various scratch and statistics-keeping images we will

need along the way. It will prove helpful to sort these pointers according to the type of

images they will later hold.

//Global storage
//
//Float, 3-channel images
//
IplImage *IavgF,*IdiffF, *IprevF, *IhiF, *IlowF;

Figure 9-2. Data from Figure 9-1 presented in terms of average diff erences: an object (a hand) that
passes in front of the camera is somewhat darker, and the brightness of that object is refl ected in the
graph

09-R4886-RC1.indd 27109-R4886-RC1.indd 271 9/15/08 4:22:57 PM9/15/08 4:22:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

272 | Chapter 9: Image Parts and Segmentation

IplImage *Iscratch,*Iscratch2;

//Float, 1-channel images
//
IplImage *Igray1,*Igray2, *Igray3;
IplImage *Ilow1, *Ilow2, *Ilow3;
IplImage *Ihi1, *Ihi2, *Ihi3;

// Byte, 1-channel image
//
IplImage *Imaskt;

//Counts number of images learned for averaging later.
//
float Icount;

Next we create a single call to allocate all the necessary intermediate images. For con-

venience we pass in a single image (from our video) that can be used as a reference for

sizing the intermediate images.

// I is just a sample image for allocation purposes
// (passed in for sizing)
//
void AllocateImages(IplImage* I){

 CvSize sz = cvGetSize(I);

 IavgF = cvCreateImage(sz, IPL_DEPTH_32F, 3);
 IdiffF = cvCreateImage(sz, IPL_DEPTH_32F, 3);
 IprevF = cvCreateImage(sz, IPL_DEPTH_32F, 3);
 IhiF = cvCreateImage(sz, IPL_DEPTH_32F, 3);
 IlowF = cvCreateImage(sz, IPL_DEPTH_32F, 3);
 Ilow1 = cvCreateImage(sz, IPL_DEPTH_32F, 1);
 Ilow2 = cvCreateImage(sz, IPL_DEPTH_32F, 1);
 Ilow3 = cvCreateImage(sz, IPL_DEPTH_32F, 1);
 Ihi1 = cvCreateImage(sz, IPL_DEPTH_32F, 1);
 Ihi2 = cvCreateImage(sz, IPL_DEPTH_32F, 1);
 Ihi3 = cvCreateImage(sz, IPL_DEPTH_32F, 1);
 cvZero(IavgF);
 cvZero(IdiffF);
 cvZero(IprevF);
 cvZero(IhiF);
 cvZero(IlowF);
 Icount = 0.00001; //Protect against divide by zero

 Iscratch = cvCreateImage(sz, IPL_DEPTH_32F, 3);
 Iscratch2 = cvCreateImage(sz, IPL_DEPTH_32F, 3);
 Igray1 = cvCreateImage(sz, IPL_DEPTH_32F, 1);
 Igray2 = cvCreateImage(sz, IPL_DEPTH_32F, 1);
 Igray3 = cvCreateImage(sz, IPL_DEPTH_32F, 1);
 Imaskt = cvCreateImage(sz, IPL_DEPTH_8U, 1);
 cvZero(Iscratch);
 cvZero(Iscratch2);
}

09-R4886-RC1.indd 27209-R4886-RC1.indd 272 9/15/08 4:22:57 PM9/15/08 4:22:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Background Subtraction | 273

In the next piece of code, we learn the accumulated background image and the accu-

mulated absolute value of frame-to-frame image diff erences (a computationally quicker

proxy* for learning the standard deviation of the image pixels). Th is is typically called

for 30 to 1,000 frames, sometimes taking just a few frames from each second or some-

times taking all available frames. Th e routine will be called with a three-color channel

image of depth 8 bits.

// Learn the background statistics for one more frame
// I is a color sample of the background, 3-channel, 8u
//
void accumulateBackground(IplImage *I){

 static int first = 1; // nb. Not thread safe
 cvCvtScale(I, Iscratch, 1, 0); // convert to float
 if(!first){
 cvAcc(Iscratch, IavgF);
 cvAbsDiff(Iscratch, IprevF, Iscratch2);
 cvAcc(Iscratch2, IdiffF);
 Icount += 1.0;
 }
 first = 0;
 cvCopy(Iscratch, IprevF);

}

We fi rst use cvCvtScale() to turn the raw background 8-bit-per-channel, three-color-

channel image into a fl oating-point three-channel image. We then accumulate the raw

fl oating-point images into IavgF. Next, we calculate the frame-to-frame absolute dif-

ference image using cvAbsDiff() and accumulate that into image IdiffF. Each time we

accumulate these images, we increment the image count Icount, a global, to use for av-

eraging later.

Once we have accumulated enough frames, we convert them into a statistical model of

the background. Th at is, we compute the means and deviation measures (the average

absolute diff erences) of each pixel:

void createModelsfromStats() {

 cvConvertScale(IavgF, IavgF,(double)(1.0/Icount));
 cvConvertScale(IdiffF, IdiffF,(double)(1.0/Icount));

 //Make sure diff is always something
 //
 cvAddS(IdiffF, cvScalar(1.0, 1.0, 1.0), IdiffF);
 setHighThreshold(7.0);
 setLowThreshold(6.0);
}

* Notice our use of the word “proxy.” Average diff erence is not mathematically equivalent to standard
deviation, but in this context it is close enough to yield results of similar quality. Th e advantage of average
diff erence is that it is slightly faster to compute than standard deviation. With only a tiny modifi cation of
the code example you can use standard deviations instead and compare the quality of the fi nal results for
yourself; we’ll discuss this more explicitly later in this section.

09-R4886-RC1.indd 27309-R4886-RC1.indd 273 9/15/08 4:22:57 PM9/15/08 4:22:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

274 | Chapter 9: Image Parts and Segmentation

In this code, cvConvertScale() calculates the average raw and absolute diff erence images

by dividing by the number of input images accumulated. As a precaution, we ensure

that the average diff erence image is at least 1; we’ll need to scale this factor when calcu-

lating a foreground-background threshold and would like to avoid the degenerate case

in which these two thresholds could become equal.

Both setHighThreshold() and setLowThreshold() are utility functions that set a threshold

based on the frame-to-frame average absolute diff erences. Th e call setHighThreshold(7.0)

fi xes a threshold such that any value that is 7 times the average frame-to-frame abso-

lute diff erence above the average value for that pixel is considered foreground; likewise,

setLowThreshold(6.0) sets a threshold bound that is 6 times the average frame-to-frame

absolute diff erence below the average value for that pixel. Within this range around the

pixel’s average value, objects are considered to be background. Th ese threshold func-

tions are:

void setHighThreshold(float scale)
{
 cvConvertScale(IdiffF, Iscratch, scale);
 cvAdd(Iscratch, IavgF, IhiF);
 cvSplit(IhiF, Ihi1, Ihi2, Ihi3, 0);
}

void setLowThreshold(float scale)
{
 cvConvertScale(IdiffF, Iscratch, scale);
 cvSub(IavgF, Iscratch, IlowF);
 cvSplit(IlowF, Ilow1, Ilow2, Ilow3, 0);
}

Again, in setLowThreshold() and setHighThreshold() we use cvConvertScale() to multi-

ply the values prior to adding or subtracting these ranges relative to IavgF. Th is action

sets the IhiF and IlowF range for each channel in the image via cvSplit().

Once we have our background model, complete with high and low thresholds, we use

it to segment the image into foreground (things not “explained” by the background im-

age) and the background (anything that fi ts within the high and low thresholds of our

background model). Segmentation is done by calling:

// Create a binary: 0,255 mask where 255 means foreground pixel
// I Input image, 3-channel, 8u
// Imask Mask image to be created, 1-channel 8u
//
void backgroundDiff(
 IplImage *I,
 IplImage *Imask
) {
 cvCvtScale(I,Iscratch,1,0); // To float;
 cvSplit(Iscratch, Igray1,Igray2,Igray3, 0);

 //Channel 1
 //
 cvInRange(Igray1,Ilow1,Ihi1,Imask);

09-R4886-RC1.indd 27409-R4886-RC1.indd 274 9/15/08 4:22:57 PM9/15/08 4:22:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Background Subtraction | 275

 //Channel 2
 //
 cvInRange(Igray2,Ilow2,Ihi2,Imaskt);
 cvOr(Imask,Imaskt,Imask);

 //Channel 3
 //
 cvInRange(Igray3,Ilow3,Ihi3,Imaskt);
 cvOr(Imask,Imaskt,Imask)

 //Finally, invert the results
 //
 cvSubRS(Imask, 255, Imask);
}

Th is function fi rst converts the input image I (the image to be segmented) into a fl oat-

ing-point image by calling cvCvtScale(). We then convert the three-channel image into

separate one-channel image planes using cvSplit(). Th ese color channel planes are then

checked to see if they are within the high and low range of the average background

pixel via the cvInRange() function, which sets the grayscale 8-bit depth image Imaskt to

max (255) when it’s in range and to 0 otherwise. For each color channel we logically OR

the segmentation results into a mask image Imask, since strong diff erences in any color

channel are considered evidence of a foreground pixel here. Finally, we invert Imask us-

ing cvSubRS(), because foreground should be the values out of range, not in range. Th e

mask image is the output result.

For completeness, we need to release the image memory once we’re fi nished using the

background model:

void DeallocateImages()
{
 cvReleaseImage(&IavgF);
 cvReleaseImage(&IdiffF);
 cvReleaseImage(&IprevF);
 cvReleaseImage(&IhiF);
 cvReleaseImage(&IlowF);
 cvReleaseImage(&Ilow1);
 cvReleaseImage(&Ilow2);
 cvReleaseImage(&Ilow3);
 cvReleaseImage(&Ihi1);
 cvReleaseImage(&Ihi2);
 cvReleaseImage(&Ihi3);
 cvReleaseImage(&Iscratch);
 cvReleaseImage(&Iscratch2);
 cvReleaseImage(&Igray1);
 cvReleaseImage(&Igray2);
 cvReleaseImage(&Igray3);
 cvReleaseImage(&Imaskt);
}

We’ve just seen a simple method of learning background scenes and segmenting fore-

ground objects. It will work well only with scenes that do not contain moving background

components (like a waving curtain or waving trees). It also assumes that the lighting

09-R4886-RC1.indd 27509-R4886-RC1.indd 275 9/15/08 4:22:57 PM9/15/08 4:22:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

276 | Chapter 9: Image Parts and Segmentation

remains fairly constant (as in indoor static scenes). You can look ahead to Figure 9-5

to check the performance of this averaging method.

Accumulating means, variances, and covariances

Th e averaging background method just described made use of one accumulation func-

tion, cvAcc(). It is one of a group of helper functions for accumulating sums of images,

squared images, multiplied images, or average images from which we can compute basic

statistics (means, variances, covariances) for all or part of a scene. In this section, we’ll

look at the other functions in this group.

Th e images in any given function must all have the same width and height. In each

function, the input images named image, image1, or image2 can be one- or three-

channel byte (8-bit) or fl oating-point (32F) image arrays. Th e output accumulation im-

ages named sum, sqsum, or acc can be either single-precision (32F) or double-precision

(64F) arrays. In the accumulation functions, the mask image (if present) restricts pro-

cessing to only those locations where the mask pixels are nonzero.

Finding the mean. To compute a mean value for each pixel across a large set of images, the

easiest method is to add them all up using cvAcc() and then divide by the total number

of images to obtain the mean.

void cvAcc(
 const Cvrr* image,
 CvArr* sum,
 const CvArr* mask = NULL
);

An alternative that is oft en useful is to use a running average.

void cvRunningAvg(
 const CvArr* image,
 CvArr* acc,
 double alpha,
 const CvArr* mask = NULL
);

Th e running average is given by the following formula:

α αacc acc image if mask(,) () (,) (,) (x y x y x y= − ⋅ + ⋅1 xx y,) ≠ 0

For a constant value of α, running averages are not equivalent to the result of summing

with cvAcc(). To see this, simply consider adding three numbers (2, 3, and 4) with α set

to 0.5. If we were to accumulate them with cvAcc(), then the sum would be 9 and the

average 3. If we were to accumulate them with cvRunningAverage(), the fi rst sum would

give 0.5 × 2 + 0.5 × 3 = 2.5 and then adding the third term would give 0.5 × 2.5 + 0.5 ×

4 = 3.25. Th e reason the second number is larger is that the most recent contributions

are given more weight than those from farther in the past. Such a running average is

thus also called a tracker. Th e parameter α essentially sets the amount of time necessary

for the infl uence of a previous frame to fade.

09-R4886-RC1.indd 27609-R4886-RC1.indd 276 9/15/08 4:22:57 PM9/15/08 4:22:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Background Subtraction | 277

Finding the variance. We can also accumulate squared images, which will allow us to com-

pute quickly the variance of individual pixels.

void cvSquareAcc(
 const CvArr* image,
 CvArr* sqsum,
 const CvArr* mask = NULL
);

You may recall from your last class in statistics that the variance of a fi nite population is

defi ned by the formula:

σ 2 2

0

11= −
=

−

∑
N

x x
i

i

N

()

where x– is the mean of x for all N samples. Th e problem with this formula is that it

entails making one pass through the images to compute x– and then a second pass to

compute σ 2. A little algebra should allow you to convince yourself that the following

formula will work just as well:

σ 2 2

0

1

0

1
2

1 1=
⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟=

−

=

−

∑ ∑
N

x
N

x
i

i

N

i
i

N

Using this form, we can accumulate both the pixel values and their squares in a single

pass. Th en, the variance of a single pixel is just the average of the square minus the

square of the average.

Finding the covariance. We can also see how images vary over time by selecting a specifi c lag

and then multiplying the current image by the image from the past that corresponds to

the given lag. Th e function cvMultiplyAcc() will perform a pixelwise multiplication of

the two images and then add the result to the “running total” in acc:

void cvMultiplyAcc(
 const CvArr* image1,
 const CvArr* image2,
 CvArr* acc,
 const CvArr* mask = NULL
);

For covariance, there is a formula analogous to the one we just gave for variance. Th is

formula is also a single-pass formula in that it has been manipulated algebraically from

the standard form so as not to require two trips through the list of images:

Cov(,) ()x y
N

x y
N

x
i i

i

N

i
i

N

=
⎛
⎝⎜

⎞
⎠⎟

−
⎛

=

−

=

−

∑ ∑1 1

0

1

0

1

⎝⎝⎜
⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟=

−

∑1

0

1

N
y
j

j

N

In our context, x is the image at time t and y is the image at time t – d, where d is

the lag.

09-R4886-RC1.indd 27709-R4886-RC1.indd 277 9/15/08 4:22:58 PM9/15/08 4:22:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

278 | Chapter 9: Image Parts and Segmentation

We can use the accumulation functions described here to create a variety of statistics-

based background models. Th e literature is full of variations on the basic model used as

our example. You will probably fi nd that, in your own applications, you will tend to extend

this simplest model into slightly more specialized versions. A common enhancement, for

example, is for the thresholds to be adaptive to some observed global state changes.

Advanced Background Method
Many background scenes contain complicated moving objects such as trees waving in the

wind, fans turning, curtains fl uttering, et cetera. Oft en such scenes also contain varying

lighting, such as clouds passing by or doors and windows letting in diff erent light.

A nice method to deal with this would be to fi t a time-series model to each pixel or

group of pixels. Th is kind of model deals with the temporal fl uctuations well, but its

disadvantage is the need for a great deal of memory [Toyama99]. If we use 2 seconds

of previous input at 30 Hz, this means we need 60 samples for each pixel. Th e resulting

model for each pixel would then encode what it had learned in the form of 60 diff er-

ent adapted weights. Oft en we’d need to gather background statistics for much longer

than 2 seconds, which means that such methods are typically impractical on present-

day hardware.

To get fairly close to the performance of adaptive fi ltering, we take inspiration from

the techniques of video compression and attempt to form a codebook* to represent sig-

nifi cant states in the background.† Th e simplest way to do this would be to compare a

new value observed for a pixel with prior observed values. If the value is close to a prior

value, then it is modeled as a perturbation on that color. If it is not close, then it can seed

a new group of colors to be associated with that pixel. Th e result could be envisioned as

a bunch of blobs fl oating in RGB space, each blob representing a separate volume con-

sidered likely to be background.

In practice, the choice of RGB is not particularly optimal. It is almost always better to

use a color space whose axis is aligned with brightness, such as the YUV color space.

(YUV is the most common choice, but spaces such as HSV, where V is essentially bright-

ness, would work as well.) Th e reason for this is that, empirically, most of the variation

in background tends to be along the brightness axis, not the color axis.

Th e next detail is how to model the “blobs.” We have essentially the same choices as

before with our simpler model. We could, for example, choose to model the blobs as

Gaussian clusters with a mean and a covariance. It turns out that the simplest case, in

* Th e method OpenCV implements is derived from Kim, Chalidabhongse, Harwood, and Davis [Kim05], but
rather than learning-oriented tubes in RGB space, for speed, the authors use axis-aligned boxes in YUV
space. Fast methods for cleaning up the resulting background image can be found in Martins [Martins99].

† Th ere is a large literature for background modeling and segmentation. OpenCV’s implementation is
intended to be fast and robust enough that you can use it to collect foreground objects mainly for the pur-
poses of collecting data sets to train classifi ers on. Recent work in background subtraction allows arbitrary
camera motion [Farin04; Colombari07] and dynamic background models using the mean-shift algorithm
[Liu07].

09-R4886-RC1.indd 27809-R4886-RC1.indd 278 9/15/08 4:22:58 PM9/15/08 4:22:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Background Subtraction | 279

In the case of our background model, we will learn a codebook of boxes that cover three

dimensions: the three channels that make up our image at each pixel. Figure 9-4 visu-

alizes the (intensity dimension of the) codebooks for six diff erent pixels learned from

which the “blobs” are simply boxes with a learned extent in each of the three axes of our

color space, works out quite well. It is the simplest in terms of memory required and in

terms of the computational cost of determining whether a newly observed pixel is inside

any of the learned boxes.

Let’s explain what a codebook is by using a simple example (Figure 9-3). A codebook

is made up of boxes that grow to cover the common values seen over time. Th e upper

panel of Figure 9-3 shows a waveform over time. In the lower panel, boxes form to cover

a new value and then slowly grow to cover nearby values. If a value is too far away, then

a new box forms to cover it and likewise grows slowly toward new values.

Figure 9-3. Codebooks are just “boxes” delimiting intensity values: a box is formed to cover a new
value and slowly grows to cover nearby values; if values are too far away then a new box is formed
(see text)

09-R4886-RC1.indd 27909-R4886-RC1.indd 279 9/15/08 4:22:58 PM9/15/08 4:22:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

280 | Chapter 9: Image Parts and Segmentation

the data in Figure 9-1.* Th is codebook method can deal with pixels that change levels

dramatically (e.g., pixels in a windblown tree, which might alternately be one of many

colors of leaves, or the blue sky beyond that tree). With this more precise method of

modeling, we can detect a foreground object that has values between the pixel values.

Compare this with Figure 9-2, where the averaging method cannot distinguish the hand

value (shown as a dotted line) from the pixel fl uctuations. Peeking ahead to the next

section, we see the better performance of the codebook method versus the averaging

method shown later in Figure 9-7.

In the codebook method of learning a background model, each box is defi ned by two

thresholds (max and min) over each of the three color axes. Th ese box boundary thresh-

olds will expand (max getting larger, min getting smaller) if new background samples fall

within a learning threshold (learnHigh and learnLow) above max or below min, respec-

tively. If new background samples fall outside of the box and its learning thresholds,

then a new box will be started. In the background diff erence mode there are acceptance

thresholds maxMod and minMod; using these threshold values, we say that if a pixel is “close

enough” to a max or a min box boundary then we count it as if it were inside the box. A

second runtime threshold allows for adjusting the model to specifi c conditions.

A situation we will not cover is a pan-tilt camera surveying a large
scene. When working with a large scene, it is necessary to stitch
together learned models indexed by the pan and tilt angles.

* In this case we have chosen several pixels at random from the scan line to avoid excessive clutter. Of course,
there is actually a codebook for every pixel.

Figure 9-4. Intensity portion of learned codebook entries for fl uctuations of six chosen pixels (shown
as vertical boxes): codebook boxes accommodate pixels that take on multiple discrete values and so
can better model discontinuous distributions; thus they can detect a foreground hand (value at dot-
ted line) whose average value is between the values that background pixels can assume. In this case
the codebooks are one dimensional and only represent variations in intensity

09-R4886-RC1.indd 28009-R4886-RC1.indd 280 9/15/08 4:22:59 PM9/15/08 4:22:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Background Subtraction | 281

Structures

It’s time to look at all of this in more detail, so let’s create an implementation of the

codebook algorithm. First, we need our codebook structure, which will simply point to

a bunch of boxes in YUV space:

typedef struct code_book {
 code_element **cb;
 int numEntries;
 int t; //count every access
} codeBook;

We track how many codebook entries we have in numEntries. Th e variable t counts the

number of points we’ve accumulated since the start or the last clear operation. Here’s

how the actual codebook elements are described:

#define CHANNELS 3
typedef struct ce {
 uchar learnHigh[CHANNELS]; //High side threshold for learning
 uchar learnLow[CHANNELS]; //Low side threshold for learning
 uchar max[CHANNELS]; //High side of box boundary
 uchar min[CHANNELS]; //Low side of box boundary
 int t_last_update; //Allow us to kill stale entries
 int stale; //max negative run (longest period of inactivity)
} code_element;

Each codebook entry consumes four bytes per channel plus two integers, or CHANNELS �

4 + 4 + 4 bytes (20 bytes when we use three channels). We may set CHANNELS to any

positive number equal to or less than the number of color channels in an image, but it

is usually set to either 1 (“Y”, or brightness only) or 3 (YUV, HSV). In this structure,

for each channel, max and min are the boundaries of the codebook box. Th e parameters

learnHigh[] and learnLow[] are the thresholds that trigger generation of a new code ele-

ment. Specifi cally, a new code element will be generated if a new pixel is encountered

whose values do not lie between min – learnLow and max + learnHigh in each of the

channels. Th e time to last update (t_last_update) and stale are used to enable the dele-

tion of seldom-used codebook entries created during learning. Now we can proceed to

investigate the functions that use this structure to learn dynamic backgrounds.

Learning the background

We will have one codeBook of code_elements for each pixel. We will need an array of

such codebooks that is equal in length to the number of pixels in the images we’ll be

learning. For each pixel, update_codebook() is called for as many images as are suffi cient

to capture the relevant changes in the background. Learning may be updated periodi-

cally throughout, and clear_stale_entries() can be used to learn the background in the

presence of (small numbers of) moving foreground objects. Th is is possible because the

seldom-used “stale” entries induced by a moving foreground will be deleted. Th e inter-

face to update_codebook() is as follows.

//
// int update_codebook(uchar *p, codeBook &c, unsigned cbBounds)
// Updates the codebook entry with a new data point

09-R4886-RC1.indd 28109-R4886-RC1.indd 281 9/15/08 4:22:59 PM9/15/08 4:22:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

282 | Chapter 9: Image Parts and Segmentation

//
// p Pointer to a YUV pixel
// c Codebook for this pixel
// cbBounds Learning bounds for codebook (Rule of thumb: 10)
// numChannels Number of color channels we’re learning
//
// NOTES:
// cvBounds must be of length equal to numChannels
//
// RETURN
// codebook index
//
int update_codebook(
 uchar* p,
 codeBook& c,
 unsigned* cbBounds,
 int numChannels
){
 unsigned int high[3],low[3];
 for(n=0; n<numChannels; n++)
 {
 high[n] = *(p+n)+*(cbBounds+n);
 if(high[n] > 255) high[n] = 255;
 low[n] = *(p+n)-*(cbBounds+n);
 if(low[n] < 0) low[n] = 0;
 }
 int matchChannel;

 // SEE IF THIS FITS AN EXISTING CODEWORD
 //
 for(int i=0; i<c.numEntries; i++){
 matchChannel = 0;
 for(n=0; n<numChannels; n++){
 if((c.cb[i]->learnLow[n] <= *(p+n)) &&
 //Found an entry for this channel
 (*(p+n) <= c.cb[i]->learnHigh[n]))
 {
 matchChannel++;
 }
 }
 if(matchChannel == numChannels) //If an entry was found
 {
 c.cb[i]->t_last_update = c.t;
 //adjust this codeword for the first channel
 for(n=0; n<numChannels; n++){
 if(c.cb[i]->max[n] < *(p+n))
 {
 c.cb[i]->max[n] = *(p+n);
 }
 else if(c.cb[i]->min[n] > *(p+n))
 {
 c.cb[i]->min[n] = *(p+n);
 }
 }
 break;

09-R4886-RC1.indd 28209-R4886-RC1.indd 282 9/15/08 4:22:59 PM9/15/08 4:22:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Background Subtraction | 283

 }
 }
. . . continued below

Th is function grows or adds a codebook entry when the pixel p falls outside the existing

codebook boxes. Boxes grow when the pixel is within cbBounds of an existing box. If a

pixel is outside the cbBounds distance from a box, a new codebook box is created. Th e

routine fi rst sets high and low levels to be used later. It then goes through each codebook

entry to check whether the pixel value *p is inside the learning bounds of the codebook

“box”. If the pixel is within the learning bounds for all channels, then the appropriate

max or min level is adjusted to include this pixel and the time of last update is set to the

current timed count c.t. Next, the update_codebook() routine keeps statistics on how

oft en each codebook entry is hit:

. . . continued from above

 // OVERHEAD TO TRACK POTENTIAL STALE ENTRIES
 //
 for(int s=0; s<c.numEntries; s++){

 // Track which codebook entries are going stale:
 //
 int negRun = c.t - c.cb[s]->t_last_update;
 if(c.cb[s]->stale < negRun) c.cb[s]->stale = negRun;

 }

. . . continued below

Here, the variable stale contains the largest negative runtime (i.e., the longest span of

time during which that code was not accessed by the data). Tracking stale entries al-

lows us to delete codebooks that were formed from noise or moving foreground objects

and hence tend to become stale over time. In the next stage of learning the background,

update_codebook() adds a new codebook if needed:

. . . continued from above

 // ENTER A NEW CODEWORD IF NEEDED
 //
 if(i == c.numEntries) //if no existing codeword found, make one
 {
 code_element **foo = new code_element* [c.numEntries+1];
 for(int ii=0; ii<c.numEntries; ii++) {
 foo[ii] = c.cb[ii];
 }
 foo[c.numEntries] = new code_element;
 if(c.numEntries) delete [] c.cb;
 c.cb = foo;
 for(n=0; n<numChannels; n++) {
 c.cb[c.numEntries]->learnHigh[n] = high[n];
 c.cb[c.numEntries]->learnLow[n] = low[n];
 c.cb[c.numEntries]->max[n] = *(p+n);
 c.cb[c.numEntries]->min[n] = *(p+n);
 }

09-R4886-RC1.indd 28309-R4886-RC1.indd 283 9/15/08 4:23:00 PM9/15/08 4:23:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

284 | Chapter 9: Image Parts and Segmentation

 c.cb[c.numEntries]->t_last_update = c.t;
 c.cb[c.numEntries]->stale = 0;
 c.numEntries += 1;
 }

. . . continued below

Finally, update_codebook() slowly adjusts (by adding 1) the learnHigh and learnLow

learning boundaries if pixels were found outside of the box thresholds but still within

the high and low bounds:

. . . continued from above

 // SLOWLY ADJUST LEARNING BOUNDS
 //
 for(n=0; n<numChannels; n++)
 {
 if(c.cb[i]->learnHigh[n] < high[n]) c.cb[i]->learnHigh[n] += 1;
 if(c.cb[i]->learnLow[n] > low[n]) c.cb[i]->learnLow[n] -= 1;
 }
 return(i);
}

Th e routine concludes by returning the index of the modifi ed codebook. We’ve now

seen how codebooks are learned. In order to learn in the presence of moving foreground

objects and to avoid learning codes for spurious noise, we need a way to delete entries

that were accessed only rarely during learning.

Learning with moving foreground objects

Th e following routine, clear_stale_entries(), allows us to learn the background even if

there are moving foreground objects.

///
//int clear_stale_entries(codeBook &c)
// During learning, after you’ve learned for some period of time,
// periodically call this to clear out stale codebook entries
//
// c Codebook to clean up
//
// Return
// number of entries cleared
//
int clear_stale_entries(codeBook &c){
 int staleThresh = c.t>>1;
 int *keep = new int [c.numEntries];
 int keepCnt = 0;
 // SEE WHICH CODEBOOK ENTRIES ARE TOO STALE
 //
 for(int i=0; i<c.numEntries; i++){
 if(c.cb[i]->stale > staleThresh)
 keep[i] = 0; //Mark for destruction
 else
 {
 keep[i] = 1; //Mark to keep
 keepCnt += 1;

09-R4886-RC1.indd 28409-R4886-RC1.indd 284 9/15/08 4:23:00 PM9/15/08 4:23:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Background Subtraction | 285

 }
 }
 // KEEP ONLY THE GOOD
 //
 c.t = 0; //Full reset on stale tracking
 code_element **foo = new code_element* [keepCnt];
 int k=0;
 for(int ii=0; ii<c.numEntries; ii++){
 if(keep[ii])
 {
 foo[k] = c.cb[ii];
 //We have to refresh these entries for next clearStale
 foo[k]->t_last_update = 0;
 k++;
 }
 }
 // CLEAN UP
 //
 delete [] keep;
 delete [] c.cb;
 c.cb = foo;
 int numCleared = c.numEntries - keepCnt;
 c.numEntries = keepCnt;
 return(numCleared);
}

Th e routine begins by defi ning the parameter staleThresh, which is hardcoded (by a rule

of thumb) to be half the total running time count, c.t. Th is means that, during back-

ground learning, if codebook entry i is not accessed for a period of time equal to half

the total learning time, then i is marked for deletion (keep[i] = 0). Th e vector keep[] is

allocated so that we can mark each codebook entry; hence it is c.numEntries long. Th e

variable keepCnt counts how many entries we will keep. Aft er recording which codebook

entries to keep, we create a new pointer, foo, to a vector of code_element pointers that is

keepCnt long, and then the nonstale entries are copied into it. Finally, we delete the old

pointer to the codebook vector and replace it with the new, nonstale vector.

Background differencing: Finding foreground objects

We’ve seen how to create a background codebook model and how to clear it of seldom-

used entries. Next we turn to background_diff(), where we use the learned model to seg-

ment foreground pixels from the previously learned background:

//
// uchar background_diff(uchar *p, codeBook &c,
// int minMod, int maxMod)
// Given a pixel and a codebook, determine if the pixel is
// covered by the codebook
//
// p Pixel pointer (YUV interleaved)
// c Codebook reference
// numChannels Number of channels we are testing
// maxMod Add this (possibly negative) number onto

09-R4886-RC1.indd 28509-R4886-RC1.indd 285 9/15/08 4:23:00 PM9/15/08 4:23:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

286 | Chapter 9: Image Parts and Segmentation

// max level when determining if new pixel is foreground
// minMod Subract this (possibly negative) number from
// min level when determining if new pixel is foreground
//
// NOTES:
// minMod and maxMod must have length numChannels,
// e.g. 3 channels => minMod[3], maxMod[3]. There is one min and
// one max threshold per channel.
//
// Return
// 0 => background, 255 => foreground
//
uchar background_diff(
 uchar* p,
 codeBook& c,
 int numChannels,
 int* minMod,
 int* maxMod
) {
 int matchChannel;

 // SEE IF THIS FITS AN EXISTING CODEWORD
 //
 for(int i=0; i<c.numEntries; i++) {
 matchChannel = 0;
 for(int n=0; n<numChannels; n++) {
 if((c.cb[i]->min[n] - minMod[n] <= *(p+n)) &&
 (*(p+n) <= c.cb[i]->max[n] + maxMod[n])) {
 matchChannel++; //Found an entry for this channel
 } else {
 break;
 }
 }
 if(matchChannel == numChannels) {
 break; //Found an entry that matched all channels
 }
 }
 if(i >= c.numEntries) return(255);
 return(0);
}

Th e background diff erencing function has an inner loop similar to the learning routine

update_codebook, except here we look within the learned max and min bounds plus an

off set threshold, maxMod and minMod, of each codebook box. If the pixel is within the box

plus maxMod on the high side or minus minMod on the low side for each channel, then the

matchChannel count is incremented. When matchChannel equals the number of channels,

we’ve searched each dimension and know that we have a match. If the pixel is within

a learned box, 255 is returned (a positive detection of foreground); otherwise, 0 is re-

turned (background).

Th e three functions update_codebook(), clear_stale_entries(), and background_diff()

constitute a codebook method of segmenting foreground from learned background.

09-R4886-RC1.indd 28609-R4886-RC1.indd 286 9/15/08 4:23:00 PM9/15/08 4:23:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Background Subtraction | 287

Using the codebook background model

To use the codebook background segmentation technique, typically we take the follow-

ing steps.

Learn a basic model of the background over a few seconds or minutes using 1.

update_codebook().

Clean out stale entries with 2. clear_stale_entries().

Adjust the thresholds 3. minMod and maxMod to best segment the known foreground.

Maintain a higher-level scene model (as discussed previously).4.

Use the learned model to segment the foreground from the background via 5.

background_diff().

Periodically update the learned background pixels.6.

At a much slower frequency, periodically clean out stale codebook entries with 7.

clear_stale_entries().

A few more thoughts on codebook models

In general, the codebook method works quite well across a wide number of conditions,

and it is relatively quick to train and to run. It doesn’t deal well with varying patterns of

light—such as morning, noon, and evening sunshine—or with someone turning lights

on or off indoors. Th is type of global variability can be taken into account by using sev-

eral diff erent codebook models, one for each condition, and then allowing the condition

to control which model is active.

Connected Components for Foreground Cleanup
Before comparing the averaging method to the codebook method, we should pause to

discuss ways to clean up the raw segmented image using connected-components analysis.

Th is form of analysis takes in a noisy input mask image; it then uses the morphologi-

cal operation open to shrink areas of small noise to 0 followed by the morphological

operation close to rebuild the area of surviving components that was lost in opening.

Th ereaft er, we can fi nd the “large enough” contours of the surviving segments and can

optionally proceed to take statistics of all such segments. We can then retrieve either the

largest contour or all contours of size above some threshold. In the routine that follows,

we implement most of the functions that you could want in connected components:

Whether to approximate the surviving component contours by polygons or by con-•

vex hulls

Setting how large a component contour must be in order not to be deleted•

Setting the maximum number of component contours to return•

Optionally returning the bounding boxes of the surviving component contours•

Optionally returning the centers of the surviving component contours•

09-R4886-RC1.indd 28709-R4886-RC1.indd 287 9/15/08 4:23:00 PM9/15/08 4:23:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

288 | Chapter 9: Image Parts and Segmentation

Th e connected components header that implements these operations is as follows.

///
// void find_connected_components(IplImage *mask, int poly1_hull0,
// float perimScale, int *num,
// CvRect *bbs, CvPoint *centers)
// This cleans up the foreground segmentation mask derived from calls
// to backgroundDiff
//
// mask Is a grayscale (8-bit depth) “raw” mask image that
// will be cleaned up
//
// OPTIONAL PARAMETERS:
// poly1_hull0 If set, approximate connected component by
// (DEFAULT) polygon, or else convex hull (0)
// perimScale Len = image (width+height)/perimScale. If contour
// len < this, delete that contour (DEFAULT: 4)
// num Maximum number of rectangles and/or centers to
// return; on return, will contain number filled
// (DEFAULT: NULL)
// bbs Pointer to bounding box rectangle vector of
// length num. (DEFAULT SETTING: NULL)
// centers Pointer to contour centers vector of length
// num (DEFAULT: NULL)
//
void find_connected_components(
 IplImage* mask,
 int poly1_hull0 = 1,
 float perimScale = 4,
 int* num = NULL,
 CvRect* bbs = NULL,
 CvPoint* centers = NULL
);

Th e function body is listed below. First we declare memory storage for the connected

components contour. We then do morphological opening and closing in order to clear

out small pixel noise, aft er which we rebuild the eroded areas that survive the erosion

of the opening operation. Th e routine takes two additional parameters, which here are

hardcoded via #define. Th e defi ned values work well, and you are unlikely to want to

change them. Th ese additional parameters control how simple the boundary of a fore-

ground region should be (higher numbers are more simple) and how many iterations

the morphological operators should perform; the higher the number of iterations, the

more erosion takes place in opening before dilation in closing.* More erosion eliminates

larger regions of blotchy noise at the cost of eroding the boundaries of larger regions.

Again, the parameters used in this sample code work well, but there’s no harm in ex-

perimenting with them if you like.

// For connected components:
// Approx.threshold - the bigger it is, the simpler is the boundary
//

* Observe that the value CVCLOSE_ITR is actually dependent on the resolution. For images of extremely high
resolution, leaving this value set to 1 is not likely to yield satisfactory results.

09-R4886-RC1.indd 28809-R4886-RC1.indd 288 9/15/08 4:23:00 PM9/15/08 4:23:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Background Subtraction | 289

#define CVCONTOUR_APPROX_LEVEL 2

// How many iterations of erosion and/or dilation there should be
//
#define CVCLOSE_ITR 1

We now discuss the connected-component algorithm itself. Th e fi rst part of the routine

performs the morphological open and closing operations:

void find_connected_components(
 IplImage *mask,
 int poly1_hull0,
 float perimScale,
 int *num,
 CvRect *bbs,
 CvPoint *centers
) {

 static CvMemStorage* mem_storage = NULL;
 static CvSeq* contours = NULL;

 //CLEAN UP RAW MASK
 //
 cvMorphologyEx(mask, mask, 0, 0, CV_MOP_OPEN, CVCLOSE_ITR);
 cvMorphologyEx(mask, mask, 0, 0, CV_MOP_CLOSE, CVCLOSE_ITR);

Now that the noise has been removed from the mask, we fi nd all contours:

 //FIND CONTOURS AROUND ONLY BIGGER REGIONS
 //
 if(mem_storage==NULL) {
 mem_storage = cvCreateMemStorage(0);
 } else {
 cvClearMemStorage(mem_storage);
 }

 CvContourScanner scanner = cvStartFindContours(
 mask,
 mem_storage,
 sizeof(CvContour),
 CV_RETR_EXTERNAL,
 CV_CHAIN_APPROX_SIMPLE
);

Next, we toss out contours that are too small and approximate the rest with polygons or

convex hulls (whose complexity has already been set by CVCONTOUR_APPROX_LEVEL):

 CvSeq* c;
 int numCont = 0;
 while((c = cvFindNextContour(scanner)) != NULL) {

 double len = cvContourPerimeter(c);

 // calculate perimeter len threshold:
 //
 double q = (mask->height + mask->width)/perimScale;

 //Get rid of blob if its perimeter is too small:

09-R4886-RC1.indd 28909-R4886-RC1.indd 289 9/15/08 4:23:01 PM9/15/08 4:23:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

290 | Chapter 9: Image Parts and Segmentation

 //
 if(len < q) {
 cvSubstituteContour(scanner, NULL);
 } else {

 // Smooth its edges if its large enough
 //
 CvSeq* c_new;
 if(poly1_hull0) {

 // Polygonal approximation
 //
 c_new = cvApproxPoly(
 c,
 sizeof(CvContour),
 mem_storage,
 CV_POLY_APPROX_DP,
 CVCONTOUR_APPROX_LEVEL,
 0
);

 } else {

 // Convex Hull of the segmentation
 //
 c_new = cvConvexHull2(
 c,
 mem_storage,
 CV_CLOCKWISE,
 1
);
 }
 cvSubstituteContour(scanner, c_new);
 numCont++;
 }
 }
 contours = cvEndFindContours(&scanner);

In the preceding code, CV_POLY_APPROX_DP causes the Douglas-Peucker approximation al-

gorithm to be used, and CV_CLOCKWISE is the default direction of the convex hull contour.

All this processing yields a list of contours. Before drawing the contours back into the

mask, we defi ne some simple colors to draw:

 // Just some convenience variables
 const CvScalar CVX_WHITE = CV_RGB(0xff,0xff,0xff)
 const CvScalar CVX_BLACK = CV_RGB(0x00,0x00,0x00)

We use these defi nitions in the following code, where we fi rst zero out the mask and then

draw the clean contours back into the mask. We also check whether the user wanted to

collect statistics on the contours (bounding boxes and centers):

 // PAINT THE FOUND REGIONS BACK INTO THE IMAGE
 //
 cvZero(mask);
 IplImage *maskTemp;

09-R4886-RC1.indd 29009-R4886-RC1.indd 290 9/15/08 4:23:01 PM9/15/08 4:23:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Background Subtraction | 291

 // CALC CENTER OF MASS AND/OR BOUNDING RECTANGLES
 //
 if(num != NULL) {

 //User wants to collect statistics
 //
 int N = *num, numFilled = 0, i=0;
 CvMoments moments;
 double M00, M01, M10;
 maskTemp = cvCloneImage(mask);
 for(i=0, c=contours; c != NULL; c = c->h_next,i++) {

 if(i < N) {
 // Only process up to *num of them
 //
 cvDrawContours(
 maskTemp,
 c,
 CVX_WHITE,
 CVX_WHITE,
 -1,
 CV_FILLED,
 8
);

 // Find the center of each contour
 //
 if(centers != NULL) {

 cvMoments(maskTemp,&moments,1);
 M00 = cvGetSpatialMoment(&moments,0,0);
 M10 = cvGetSpatialMoment(&moments,1,0);
 M01 = cvGetSpatialMoment(&moments,0,1);
 centers[i].x = (int)(M10/M00);
 centers[i].y = (int)(M01/M00);
 }

 //Bounding rectangles around blobs
 //
 if(bbs != NULL) {
 bbs[i] = cvBoundingRect(c);
 }
 cvZero(maskTemp);
 numFilled++;
 }
 // Draw filled contours into mask
 //
 cvDrawContours(
 mask,
 c,
 CVX_WHITE,
 CVX_WHITE,
 -1,
 CV_FILLED,

09-R4886-RC1.indd 29109-R4886-RC1.indd 291 9/15/08 4:23:01 PM9/15/08 4:23:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

292 | Chapter 9: Image Parts and Segmentation

 8
);
 } //end looping over contours
 *num = numFilled;
 cvReleaseImage(&maskTemp);
 }

If the user doesn’t need the bounding boxes and centers of the resulting regions in the

mask, we just draw back into the mask those cleaned-up contours representing large

enough connected components of the background.

 // ELSE JUST DRAW PROCESSED CONTOURS INTO THE MASK
 //
 else {
 // The user doesn’t want statistics, just draw the contours
 //
 for(c=contours; c != NULL; c = c->h_next) {
 cvDrawContours(
 mask,
 c,
 CVX_WHITE,
 CVX_BLACK,
 -1,
 CV_FILLED,
 8
);
 }
}

Th at concludes a useful routine for creating clean masks out of noisy raw masks. Now

let’s look at a short comparison of the background subtraction methods.

A quick test

We start with an example to see how this really works in an actual video. Let’s stick

with our video of the tree outside of the window. Recall (Figure 9-1) that at some point

a hand passes through the scene. One might expect that we could fi nd this hand rela-

tively easily with a technique such as frame diff erencing (discussed previously in its own

section). Th e basic idea of frame diff erencing was to subtract the current frame from a

“lagged” frame and then threshold the diff erence.

Sequential frames in a video tend to be quite similar. Hence one might expect that, if

we take a simple diff erence of the original frame and the lagged frame, we’ll not see too

much unless there is some foreground object moving through the scene.* But what does

“not see too much” mean in this context? Really, it means “just noise.” Of course, in

practice the problem is sorting out that noise from the signal when a foreground object

does come along.

* In the context of frame diff erencing, an object is identifi ed as “foreground” mainly by its velocity. Th is is
reasonable in scenes that are generally static or in which foreground objects are expected to be much closer
to the camera than background objects (and thus appear to move faster by virtue of the projective geometry
of cameras).

09-R4886-RC1.indd 29209-R4886-RC1.indd 292 9/15/08 4:23:01 PM9/15/08 4:23:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Background Subtraction | 293

To understand this noise a little better, we will fi rst look at a pair of frames from the

video in which there is no foreground object—just the background and the result-

ing noise. Figure 9-5 shows a typical frame from the video (upper left) and the previ-

ous frame (upper right). Th e fi gure also shows the results of frame diff erencing with a

threshold value of 15 (lower left). You can see substantial noise from the moving leaves

of the tree. Nevertheless, the method of connected components is able to clean up this

scattered noise quite well* (lower right). Th is is not surprising, because there is no rea-

son to expect much spatial correlation in this noise and so its signal is characterized by

a large number of very small regions.

Now consider the situation in which a foreground object (our ubiquitous hand) passes

through the view of the imager. Figure 9-6 shows two frames that are similar to those

in Figure 9-5 except that now the hand is moving across from left to right. As before,

the current frame (upper left) and the previous frame (upper right) are shown along

* Th e size threshold for the connected components has been tuned to give zero response in these empty
frames. Th e real question then is whether or not the foreground object of interest (the hand) survives prun-
ing at this size threshold. We will see (Figure 9-6) that it does so nicely.

Figure 9-5. Frame diff erencing: a tree is waving in the background in the current (upper left) and
previous (upper right) frame images; the diff erence image (lower left) is completely cleaned up (lower
right) by the connected-components method

09-R4886-RC1.indd 29309-R4886-RC1.indd 293 9/15/08 4:23:01 PM9/15/08 4:23:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

294 | Chapter 9: Image Parts and Segmentation

with the response to frame diff erencing (lower left) and the fairly good results of the

connected-component cleanup (lower right).

We can also clearly see one of the defi ciencies of frame diff erencing: it cannot distin-

guish between the region from where the object moved (the “hole”) and where the ob-

ject is now. Furthermore, in the overlap region there is oft en a gap because “fl esh minus

fl esh” is 0 (or at least below threshold).

Th us we see that using connected components for cleanup is a powerful technique for

rejecting noise in background subtraction. As a bonus, we were also able to glimpse

some of the strengths and weaknesses of frame diff erencing.

Comparing Background Methods
We have discussed two background modeling techniques in this chapter: the average

distance method and the codebook method. You might be wondering which method is

Figure 9-6. Frame diff erence method of detecting a hand, which is moving left to right as the fore-
ground object (upper two panels); the diff erence image (lower left) shows the “hole” (where the hand
used to be) toward the left and its leading edge toward the right, and the connected-component im-
age (lower right) shows the cleaned-up diff erence

09-R4886-RC1.indd 29409-R4886-RC1.indd 294 9/15/08 4:23:01 PM9/15/08 4:23:01 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Watershed Algorithm | 295

better, or, at least, when you can get away with using the easy one. In these situations, it’s

always best to just do a straight bake off * between the available methods.

We will continue with the same tree video that we’ve been discussing all chapter. In addi-

tion to the moving tree, this fi lm has a lot of glare coming off a building to the right and

off portions of the inside wall on the left . It is a fairly challenging background to model.

In Figure 9-7 we compare the average diff erence method at top against the codebook

method at bottom; on the left are the raw foreground images and on the right are the

cleaned-up connected components. You can see that the average diff erence method

leaves behind a sloppier mask and breaks the hand into two components. Th is is not so

surprising; in Figure 9-2, we saw that using the average diff erence from the mean as a

background model oft en included pixel values associated with the hand value (shown as

a dotted line in that fi gure). Compare this with Figure 9-4, where codebooks can more

accurately model the fl uctuations of the leaves and branches and so more precisely iden-

tify foreground hand pixels (dotted line) from background pixels. Figure 9-7 confi rms

not only that the background model yields less noise but also that connected compo-

nents can generate a fairly accurate object outline.

Watershed Algorithm
In many practical contexts, we would like to segment an image but do not have the

benefi t of a separate background image. One technique that is oft en eff ective in this

context is the watershed algorithm [Meyer92]. Th is algorithm converts lines in an im-

age into “mountains” and uniform regions into “valleys” that can be used to help seg-

ment objects. Th e watershed algorithm fi rst takes the gradient of the intensity image;

this has the eff ect of forming valleys or basins (the low points) where there is no texture

and of forming mountains or ranges (high ridges corresponding to edges) where there

are dominant lines in the image. It then successively fl oods basins starting from user-

specifi ed (or algorithm-specifi ed) points until these regions meet. Regions that merge

across the marks so generated are segmented as belonging together as the image “fi lls

up”. In this way, the basins connected to the marker point become “owned” by that

marker. We then segment the image into the corresponding marked regions.

More specifi cally, the watershed algorithm allows a user (or another algorithm!) to mark

parts of an object or background that are known to be part of the object or background.

Th e user or algorithm can draw a simple line that eff ectively tells the watershed algo-

rithm to “group points like these together”. Th e watershed algorithm then segments the

image by allowing marked regions to “own” the edge-defi ned valleys in the gradient im-

age that are connected with the segments. Figure 9-8 clarifi es this process.

Th e function specifi cation of the watershed segmentation algorithm is:

void cvWatershed(
 const CvArr* image,

* For the uninitiated, “bake off ” is actually a bona fi de term used to describe any challenge or comparison of
multiple algorithms on a predetermined data set.

09-R4886-RC1.indd 29509-R4886-RC1.indd 295 9/15/08 4:23:02 PM9/15/08 4:23:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

296 | Chapter 9: Image Parts and Segmentation

Figure 9-8. Watershed algorithm: aft er a user has marked objects that belong together (left panel),
the algorithm then merges the marked area into segments (right panel)

Figure 9-7. With the averaging method (top row), the connected-components cleanup knocks out the
fi ngers (upper right); the codebook method (bottom row) does much better at segmentation and cre-
ates a clean connected-component mask (lower right)

09-R4886-RC1.indd 29609-R4886-RC1.indd 296 9/15/08 4:23:02 PM9/15/08 4:23:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Image Repair by Inpainting | 297

Inpainting works provided the damaged area is not too “thick” and enough of the origi-

nal texture and color remains around the boundaries of the damage. Figure 9-10 shows

what happens when the damaged area is too large.

Th e prototype for cvInpaint() is

void cvInpaint(
 const CvArr* src,
 const CvArr* mask,
 CvArr* dst,
 double inpaintRadius,
 int flags
);

 CvArr* markers
);

Here, image is an 8-bit color (three-channel) image and markers is a single-channel inte-

ger (IPL_DEPTH_32S) image of the same (x, y) dimensions; the value of markers is 0 except

where the user (or an algorithm) has indicated by using positive numbers that some

regions belong together. For example, in the left panel of Figure 9-8, the orange might

have been marked with a “1”, the lemon with a “2”, the lime with “3”, the upper back-

ground with “4” and so on. Th is produces the segmentation you see in the same fi gure

on the right.

Image Repair by Inpainting
Images are oft en corrupted by noise. Th ere may be dust or water spots on the lens,

scratches on the older images, or parts of an image that were vandalized. Inpainting

[Telea04] is a method for removing such damage by taking the color and texture at the

border of the damaged area and propagating and mixing it inside the damaged area. See

Figure 9-9 for an application that involves the removal of writing from an image.

Figure 9-9. Inpainting: an image damaged by overwritten text (left panel) is restored by inpainting
(right panel)

09-R4886-RC1.indd 29709-R4886-RC1.indd 297 9/15/08 4:23:02 PM9/15/08 4:23:02 PM

www.it-ebooks.info

http://www.it-ebooks.info/

298 | Chapter 9: Image Parts and Segmentation

Here src is an 8-bit single-channel grayscale image or a three-channel color image to be

repaired, and mask is an 8-bit single-channel image of the same size as src in which the

damaged areas (e.g., the writing seen in the left panel of Figure 9-9) have been marked

by nonzero pixels; all other pixels are set to 0 in mask. Th e output image will be written

to dst, which must be the same size and number of channels as src. Th e inpaintRadius

is the area around each inpainted pixel that will be factored into the resulting output

color of that pixel. As in Figure 9-10, interior pixels within a thick enough inpainted re-

gion may take their color entirely from other inpainted pixels closer to the boundaries.

Almost always, one uses a small radius such as 3 because too large a radius will result in

a noticeable blur. Finally, the flags parameter allows you to experiment with two diff er-

ent methods of inpainting: CV_INPAINT_NS (Navier-Stokes method), and CV_INPAINT_TELEA

(A. Telea’s method).

Mean-Shift Segmentation
In Chapter 5 we introduced the function cvPyrSegmentation(). Pyramid segmenta-

tion uses a color merge (over a scale that depends on the similarity of the colors to one

another) in order to segment images. Th is approach is based on minimizing the total

energy in the image; here energy is defi ned by a link strength, which is further defi ned

by color similarity. In this section we introduce cvPyrMeanShiftFiltering(), a similar

algorithm that is based on mean-shift clustering over color [Comaniciu99]. We’ll see the

details of the mean-shift algorithm cvMeanShift() in Chapter 10, when we discuss track-

ing and motion. For now, what we need to know is that mean shift fi nds the peak of a

color-spatial (or other feature) distribution over time. Here, mean-shift segmentation

fi nds the peaks of color distributions over space. Th e common theme is that both the

Figure 9-10. Inpainting cannot magically restore textures that are completely removed: the navel of
the orange has been completely blotted out (left panel); inpainting fi lls it back in with mostly orange-
like texture (right panel)

09-R4886-RC1.indd 29809-R4886-RC1.indd 298 9/15/08 4:23:03 PM9/15/08 4:23:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Mean-Shift Segmentation | 299

motion tracking and the color segmentation algorithms rely on the ability of mean shift

to fi nd the modes (peaks) of a distribution.

Given a set of multidimensional data points whose dimensions are (x, y, blue, green,

red), mean shift can fi nd the highest density “clumps” of data in this space by scanning

a window over the space. Notice, however, that the spatial variables (x, y) can have very

diff erent ranges from the color magnitude ranges (blue, green, red). Th erefore, mean

shift needs to allow for diff erent window radii in diff erent dimensions. In this case we

should have one radius for the spatial variables (spatialRadius) and one radius for the

color magnitudes (colorRadius). As mean-shift windows move, all the points traversed

by the windows that converge at a peak in the data become connected or “owned” by

that peak. Th is ownership, radiating out from the densest peaks, forms the segmenta-

tion of the image. Th e segmentation is actually done over a scale pyramid (cvPyrUp(),

cvPyrDown()), as described in Chapter 5, so that color clusters at a high level in the pyr-

amid (shrunken image) have their boundaries refi ned at lower pyramid levels in the

pyramid. Th e function call for cvPyrMeanShiftFiltering() looks like this:

void cvPyrMeanShiftFiltering(
 const CvArr* src,
 CvArr* dst,
 double spatialRadius,
 double colorRadius,
 int max_level = 1,
 CvTermCriteria termcrit = cvTermCriteria(
 CV_TERMCRIT_ITER | CV_TERMCRIT_EPS,
 5,
 1
)
);

In cvPyrMeanShiftFiltering() we have an input image src and an output image dst.

Both must be 8-bit, three-channel color images of the same width and height. Th e

spatialRadius and colorRadius defi ne how the mean-shift algorithm averages color and

space together to form a segmentation. For a 640-by-480 color image, it works well to

set spatialRadius equal to 2 and colorRadius equal to 40. Th e next parameter of this

algorithm is max_level, which describes how many levels of scale pyramid you want

used for segmentation. A max_level of 2 or 3 works well for a 640-by-480 color image.

Th e fi nal parameter is CvTermCriteria, which we saw in Chapter 8. CvTermCriteria is

used for all iterative algorithms in OpenCV. Th e mean-shift segmentation function

comes with good defaults if you just want to leave this parameter blank. Otherwise,

cvTermCriteria has the following constructor:

cvTermCriteria(
 int type; // CV_TERMCRIT_ITER, CV_TERMCRIT_EPS,
 int max_iter,
 double epsilon
);

Typically we use the cvTermCriteria() function to generate the CvTermCriteria structure

that we need. Th e fi rst argument is either CV_TERMCRIT_ITER or CV_TERMCRIT_EPS, which

09-R4886-RC1.indd 29909-R4886-RC1.indd 299 9/15/08 4:23:03 PM9/15/08 4:23:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

300 | Chapter 9: Image Parts and Segmentation

Delaunay Triangulation, Voronoi Tesselation
Delaunay triangulation is a technique invented in 1934 [Delaunay34] for connecting

points in a space into triangular groups such that the minimum angle of all the angles

in the triangulation is a maximum. Th is means that Delaunay triangulation tries to

avoid long skinny triangles when triangulating points. See Figure 9-12 to get the gist of

triangulation, which is done in such a way that any circle that is fi t to the points at the

vertices of any given triangle contains no other vertices. Th is is called the circum-circle

property (panel c in the fi gure).

For computational effi ciency, the Delaunay algorithm invents a far-away outer bounding

triangle from which the algorithm starts. Figure 9-12(b) represents the fi ctitious outer

triangle by faint lines going out to its vertex. Figure 9-12(c) shows some examples of the

circum-circle property, including one of the circles linking two outer points of the real

data to one of the vertices of the fi ctitious external triangle.

tells the algorithm that we want to terminate either aft er some fi xed number of itera-

tions or when the convergence metric reaches some small value (respectively). Th e next

two arguments set the values at which one, the other, or both of these criteria should

terminate the algorithm. Th e reason we have both options is because we can set the type

to CV_TERMCRIT_ITER | CV_TERMCRIT_EPS to stop when either limit is reached. Th e param-

eter max_iter limits the number of iterations if CV_TERMCRIT_ITER is set, whereas epsilon

sets the error limit if CV_TERMCRIT_EPS is set. Of course the exact meaning of epsilon de-

pends on the algorithm.

Figure 9-11 shows an example of mean-shift segmentation using the following values:

cvPyrMeanShiftFiltering(src, dst, 20, 40, 2);

Figure 9-11. Mean-shift segmentation over scale using cvPyrMeanShift Filtering() with parameters
max_level=2, spatialRadius=20, and colorRadius=40; similar areas now have similar values and so
can be treated as super pixels, which can speed up subsequent processing signifi cantly

09-R4886-RC1.indd 30009-R4886-RC1.indd 300 9/15/08 4:23:03 PM9/15/08 4:23:03 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Delaunay Triangulation, Voronoi Tesselation | 301

Th ere are now many algorithms to compute Delaunay triangulation; some are very

effi cient but with diffi cult internal details. Th e gist of one of the more simple algorithms

is as follows:

Add the external triangle and start at one of its vertices (this yields a defi nitive outer 1.

starting point).

Add an internal point; then search over all the triangles’ circum-circles containing 2.

that point and remove those triangulations.

Re-triangulate the graph, including the new point in the circum-circles of the just 3.

removed triangulations.

Return to step 2 until there are no more points to add.4.

Th e order of complexity of this algorithm is O(n2) in the number of data points. Th e best

algorithms are (on average) as low as O(n log log n).

Great—but what is it good for? For one thing, remember that this algorithm started

with a fi ctitious outer triangle and so all the real outside points are actually connected

to two of that triangle’s vertices. Now recall the circum-circle property: circles that are

fi t through any two of the real outside points and to an external fi ctitious vertex contain

no other inside points. Th is means that a computer may directly look up exactly which

real points form the outside of a set of points by looking at which points are connected

to the three outer fi ctitious vertices. In other words, we can fi nd the convex hull of a set

of points almost instantly aft er a Delaunay triangulation has been done.

We can also fi nd who “owns” the space between points, that is, which coordinates are

nearest neighbors to each of the Delaunay vertex points. Th us, using Delaunay trian-

gulation of the original points, you can immediately fi nd the nearest neighbor to a new

Figure 9-12. Delaunay triangulation: (a) set of points; (b) Delaunay triangulation of the point set
with trailers to the outer bounding triangle; (c) example circles showing the circum-circle property

09-R4886-RC1.indd 30109-R4886-RC1.indd 301 9/15/08 4:23:04 PM9/15/08 4:23:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

302 | Chapter 9: Image Parts and Segmentation

If you’re familiar with 3D computer graphics, you may recognize that Delaunay trian-

gulation is oft en the basis for representing 3D shapes. If we render an object in three

dimensions, we can create a 2D view of that object by its image projection and then use

the 2D Delaunay triangulation to analyze and identify this object and/or compare it

with a real object. Delaunay triangulation is thus a bridge between computer vision and

computer graphics. However, one defi ciency of OpenCV (soon to be rectifi ed, we hope;

see Chapter 14) is that OpenCV performs Delaunay triangulation only in two dimen-

sions. If we could triangulate point clouds in three dimensions—say, from stereo vision

(see Chapter 11)—then we could move seamlessly between 3D computer graphics and

computer vision. Nevertheless, 2D Delaunay triangulation is oft en used in computer

vision to register the spatial arrangement of features on an object or a scene for motion

tracking, object recognition, or matching views between two diff erent cameras (as in

deriving depth from stereo images). Figure 9-14 shows a tracking and recognition ap-

plication of Delaunay triangulation [Gokturk01; Gokturk02] wherein key facial feature

points are spatially arranged according to their triangulation.

Now that we’ve established the potential usefulness of Delaunay triangulation once given

a set of points, how do we derive the triangulation? OpenCV ships with example code

for this in the .../opencv/samples/c/delaunay.c fi le. OpenCV refers to Delaunay triangula-

tion as a Delaunay subdivision, whose critical and reusable pieces we discuss next.

point. Such a partition is called a Voronoi tessellation (see Figure 9-13). Th is tessella-

tion is the dual image of the Delaunay triangulation, because the Delaunay lines defi ne

the distance between existing points and so the Voronoi lines “know” where they must

intersect the Delaunay lines in order to keep equal distance between points. Th ese two

methods, calculating the convex hull and nearest neighbor, are important basic opera-

tions for clustering and classifying points and point sets.

Figure 9-13. Voronoi tessellation, whereby all points within a given Voronoi cell are closer to their
Delaunay point than to any other Delaunay point: (a) the Delaunay triangulation in bold with the
corresponding Voronoi tessellation in fi ne lines; (b) the Voronoi cells around each Delaunay point

09-R4886-RC1.indd 30209-R4886-RC1.indd 302 9/15/08 4:23:04 PM9/15/08 4:23:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Delaunay Triangulation, Voronoi Tesselation | 303

Creating a Delaunay or Voronoi Subdivision
First we’ll need some place to store the Delaunay subdivision in memory. We’ll also

need an outer bounding box (remember, to speed computations, the algorithm works

with a fi ctitious outer triangle positioned outside a rectangular bounding box). To set

this up, suppose the points must be inside a 600-by-600 image:

// STORAGE AND STRUCTURE FOR DELAUNAY SUBDIVISION
//
CvRect rect = { 0, 0, 600, 600 }; //Our outer bounding box
CvMemStorage* storage; //Storage for the Delaunay subdivsion
storage = cvCreateMemStorage(0); //Initialize the storage
CvSubdiv2D* subdiv; //The subdivision itself
subdiv = init_delaunay(storage, rect); //See this function below

Th e code calls init_delaunay(), which is not an OpenCV function but rather a conve-

nient packaging of a few OpenCV routines:

//INITIALIZATION CONVENIENCE FUNCTION FOR DELAUNAY SUBDIVISION
//
CvSubdiv2D* init_delaunay(
 CvMemStorage* storage,
 CvRect rect

Figure 9-14. Delaunay points can be used in tracking objects; here, a face is tracked using points that
are signifi cant in expressions so that emotions may be detected

09-R4886-RC1.indd 30309-R4886-RC1.indd 303 9/15/08 4:23:04 PM9/15/08 4:23:04 PM

www.it-ebooks.info

http://www.it-ebooks.info/

304 | Chapter 9: Image Parts and Segmentation

) {
 CvSubdiv2D* subdiv;
 subdiv = cvCreateSubdiv2D(
 CV_SEQ_KIND_SUBDIV2D,
 sizeof(*subdiv),
 sizeof(CvSubdiv2DPoint),
 sizeof(CvQuadEdge2D),
 storage
);
 cvInitSubdivDelaunay2D(subdiv, rect); //rect sets the bounds
 return subdiv;
}

Next we’ll need to know how to insert points. Th ese points must be of type fl oat, 32f:

CvPoint2D32f fp; //This is our point holder

for(i = 0; i < as_many_points_as_you_want; i++) {

 // However you want to set points
 //
 fp = your_32f_point_list[i];

 cvSubdivDelaunay2DInsert(subdiv, fp);
}

You can convert integer points to 32f points using the convenience macro

cvPoint2D32f(double x, double y) or cvPointTo32f(CvPoint point) located in cxtypes.h.

Now that we can enter points to obtain a Delaunay triangulation, we set and clear the

associated Voronoi tessellation with the following two commands:

cvCalcSubdivVoronoi2D(subdiv); // Fill out Voronoi data in subdiv
cvClearSubdivVoronoi2D(subdiv); // Clear the Voronoi from subdiv

In both functions, subdiv is of type CvSubdiv2D*. We can now create Delaunay subdi-

visions of two-dimensional point sets and then add and clear Voronoi tessellations to

them. But how do we get at the good stuff inside these structures? We can do this by

stepping from edge to point or from edge to edge in subdiv; see Figure 9-15 for the ba-

sic maneuvers starting from a given edge and its point of origin. We next fi nd the fi rst

edges or points in the subdivision in one of two diff erent ways: (1) by using an external

point to locate an edge or a vertex; or (2) by stepping through a sequence of points or

edges. We’ll fi rst describe how to step around edges and points in the graph and then

how to step through the graph.

Navigating Delaunay Subdivisions
Figure 9-15 combines two data structures that we’ll use to move around on a subdivi-

sion graph. Th e structure cvQuadEdge2D contains a set of two Delaunay and two Voronoi

points and their associated edges (assuming the Voronoi points and edges have been

calculated with a prior call to cvCalcSubdivVoronoi2D()); see Figure 9-16. Th e structure

CvSubdiv2DPoint contains the Delaunay edge with its associated vertex point, as shown

in Figure 9-17. Th e quad-edge structure is defi ned in the code following the fi gure.

09-R4886-RC1.indd 30409-R4886-RC1.indd 304 9/15/08 4:23:05 PM9/15/08 4:23:05 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Delaunay Triangulation, Voronoi Tesselation | 305

// Edges themselves are encoded in long integers. The lower two bits
// are its index (0..3) and upper bits are the quad-edge pointer.
//
typedef long CvSubdiv2DEdge;

// quad-edge structure fields:
//
#define CV_QUADEDGE2D_FIELDS() /
 int flags; /
 struct CvSubdiv2DPoint* pt[4]; /
 CvSubdiv2DEdge next[4];

typedef struct CvQuadEdge2D {
 CV_QUADEDGE2D_FIELDS()
} CvQuadEdge2D;

Th e Delaunay subdivision point and the associated edge structure is given by:

#define CV_SUBDIV2D_POINT_FIELDS() /
 int flags; /
 CvSubdiv2DEdge first; //*The edge “e” in the figures.*/
 CvPoint2D32f pt;

Figure 9-15. Edges relative to a given edge, labeled “e”, and its vertex point (marked by a square)

09-R4886-RC1.indd 30509-R4886-RC1.indd 305 9/15/08 4:23:05 PM9/15/08 4:23:05 PM

www.it-ebooks.info

http://www.it-ebooks.info/

306 | Chapter 9: Image Parts and Segmentation

#define CV_SUBDIV2D_VIRTUAL_POINT_FLAG (1 << 30)

typedef struct CvSubdiv2DPoint
{
 CV_SUBDIV2D_POINT_FIELDS()
}
CvSubdiv2DPoint;

With these structures in mind, we can now examine the diff erent ways of moving

around.

Walking on edges

As indicated by Figure 9-16, we can step around quad edges by using

CvSubdiv2DEdge cvSubdiv2DRotateEdge(
 CvSubdiv2DEdge edge,
 int type
);

Figure 9-16. Quad edges that may be accessed by cvSubdiv2DRotateEdge() include the Delaunay
edge and its reverse (along with their associated vertex points) as well as the related Voronoi edges
and points

09-R4886-RC1.indd 30609-R4886-RC1.indd 306 9/15/08 4:23:05 PM9/15/08 4:23:05 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Delaunay Triangulation, Voronoi Tesselation | 307

Given an edge, we can get to the next edge by using the type parameter, which takes one

of the following arguments:

0• , the input edge (e in the fi gure if e is the input edge)

1• , the rotated edge (eRot)

2• , the reversed edge (reversed e)

3• , the reversed rotated edge (reversed eRot)

Referencing Figure 9-17, we can also get around the Delaunay graph using

CvSubdiv2DEdge cvSubdiv2DGetEdge(
 CvSubdiv2DEdge edge,
 CvNextEdgeType type
);
#define cvSubdiv2DNextEdge(edge) /
 cvSubdiv2DGetEdge(/
 edge, /
 CV_NEXT_AROUND_ORG /
)

Figure 9-17. A CvSubdiv2DPoint vertex and its associated edge e along with other associated edges
that may be accessed via cvSubdiv2DGetEdge()

09-R4886-RC1.indd 30709-R4886-RC1.indd 307 9/15/08 4:23:05 PM9/15/08 4:23:05 PM

www.it-ebooks.info

http://www.it-ebooks.info/

308 | Chapter 9: Image Parts and Segmentation

Here type specifi es one of the following moves:

CV_NEXT_AROUND_ORG

Next around the edge origin (eOnext in Figure 9-17 if e is the input edge)

CV_NEXT_AROUND_DST

Next around the edge vertex (eDnext)

CV_PREV_AROUND_ORG

Previous around the edge origin (reversed eRnext)

CV_PREV_AROUND_DST
Previous around the edge destination (reversed eLnext)

CV_NEXT_AROUND_LEFT
Next around the left facet (eLnext)

CV_NEXT_AROUND_RIGHT
Next around the right facet (eRnext)

CV_PREV_AROUND_LEFT
Previous around the left facet (reversed eOnext)

CV_PREV_AROUND_RIGHT
Previous around the right facet (reversed eDnext)

Note that, given an edge associated with a vertex, we can use the convenience macro

cvSubdiv2DNextEdge(edge) to fi nd all other edges from that vertex. Th is is helpful for

fi nding things like the convex hull starting from the vertices of the (fi ctitious) outer

bounding triangle.

Th e other important movement types are CV_NEXT_AROUND_LEFT and CV_NEXT_AROUND_
RIGHT. We can use these to step around a Delaunay triangle if we’re on a Delaunay edge

or to step around a Voronoi cell if we’re on a Voronoi edge.

Points from edges

We’ll also need to know how to retrieve the actual points from Delaunay or Voronoi

vertices. Each Delaunay or Voronoi edge has two points associated with it: org, its origin

point, and dst, its destination point. You may easily obtain these points by using

CvSubdiv2DPoint* cvSubdiv2DEdgeOrg(CvSubdiv2DEdge edge);
CvSubdiv2DPoint* cvSubdiv2DEdgeDst(CvSubdiv2DEdge edge);

Here are methods to convert CvSubdiv2DPoint to more familiar forms:

CvSubdiv2DPoint ptSub; //Subdivision vertex point
CvPoint2D32f pt32f = ptSub->pt; // to 32f point
CvPoint pt = cvPointFrom32f(pt32f); // to an integer point

We now know what the subdivision structures look like and how to walk around its

points and edges. Let’s return to the two methods for getting the fi rst edges or points

from the Delaunay/Voronoi subdivision.

09-R4886-RC1.indd 30809-R4886-RC1.indd 308 9/15/08 4:23:05 PM9/15/08 4:23:05 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Delaunay Triangulation, Voronoi Tesselation | 309

Method 1: Use an external point to locate an edge or vertex

Th e fi rst method is to start with an arbitrary point and then locate that point in the sub-

division. Th is need not be a point that has already been triangulated; it can be any point.

Th e function cvSubdiv2DLocate() fi lls in one edge and vertex (if desired) of the triangle

or Voronoi facet into which that point fell.

CvSubdiv2DPointLocation cvSubdiv2DLocate(
 CvSubdiv2D* subdiv,
 CvPoint2D32f pt,
 CvSubdiv2DEdge* edge,
 CvSubdiv2DPoint** vertex = NULL
);

Note that these are not necessarily the closest edge or vertex; they just have to be in the

triangle or facet. Th is function’s return value tells us where the point landed, as follows.

CV_PTLOC_INSIDE

Th e point falls into some facet; *edge will contain one of edges of the facet.

CV_PTLOC_ON_EDGE

Th e point falls onto the edge; *edge will contain this edge.

CV_PTLOC_VERTEX

Th e point coincides with one of subdivision vertices; *vertex will contain a pointer

to the vertex.

CV_PTLOC_OUTSIDE_RECT

Th e point is outside the subdivision reference rectangle; the function returns and

no pointers are fi lled.

CV_PTLOC_ERROR

One of input arguments is invalid.

Method 2: Step through a sequence of points or edges

Conveniently for us, when we create a Delaunay subdivision of a set of points, the fi rst

three points and edges form the vertices and sides of the fi ctitious outer bounding tri-

angle. From there, we may directly access the outer points and edges that form the con-

vex hull of the actual data points. Once we have formed a Delaunay subdivision (call it

subdiv), we’ll also need to call cvCalcSubdivVoronoi2D(subdiv) in order to calculate

the associated Voronoi tessellation. We can then access the three vertices of the outer

bounding triangle using

CvSubdiv2DPoint* outer_vtx[3];
for(i = 0; i < 3; i++) {
 outer_vtx[i] =
 (CvSubdiv2DPoint*)cvGetSeqElem((CvSeq*)subdiv, I);
}

09-R4886-RC1.indd 30909-R4886-RC1.indd 309 9/15/08 4:23:06 PM9/15/08 4:23:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

310 | Chapter 9: Image Parts and Segmentation

We can similarly obtain the three sides of the outer bounding triangle:

CvQuadEdge2D* outer_qedges[3];
for(i = 0; i < 3; i++) {
 outer_qedges[i] =
 (CvQuadEdge2D*)cvGetSeqElem((CvSeq*)(my_subdiv->edges), I);
}

Now that we know how to get on the graph and move around, we’ll want to know when

we’re on the outer edge or boundary of the points.

Identifying the bounding triangle or edges on the convex hull and walking the hull

Recall that we used a bounding rectangle rect to initialize the Delaunay triangulation

with the call cvInitSubdivDelaunay2D(subdiv, rect). In this case, the following state-

ments hold.

If you are on an edge where both the origin and destination points are out of the 1. rect

bounds, then that edge is on the fi ctitious bounding triangle of the subdivision.

If you are on an edge with one point inside and one point outside the 2. rect bounds,

then the point in bounds is on the convex hull of the set; each point on the convex

hull is connected to two vertices of the fi ctitious outer bounding triangle, and these

two edges occur one aft er another.

From the second condition, you can use the cvSubdiv2DNextEdge() macro to step onto the

fi rst edge whose dst point is within bounds. Th at fi rst edge with both ends in bounds is

on the convex hull of the point set, so remember that point or edge. Once on the convex

hull, you can then move around the convex hull as follows.

Until you have circumnavigated the convex hull, go to the next edge on the hull via 1.

cvSubdiv2DRotateEdge(CvSubdiv2DEdge edge, 0).

From there, another two calls to the 2. cvSubdiv2DNextEdge() macro will get you on

the next edge of the convex hull. Return to step 1.

We now know how to initialize Delaunay and Voronoi subdivisions, how to fi nd the

initial edges, and also how to step through the edges and points of the graph. In the next

section we present some practical applications.

Usage Examples
We can use cvSubdiv2DLocate() to step around the edges of a Delaunay triangle:

void locate_point(
 CvSubdiv2D* subdiv,
 CvPoint2D32f fp,
 IplImage* img,
 CvScalar active_color
) {
 CvSubdiv2DEdge e;
 CvSubdiv2DEdge e0 = 0;
 CvSubdiv2DPoint* p = 0;
 cvSubdiv2DLocate(subdiv, fp, &e0, &p);

09-R4886-RC1.indd 31009-R4886-RC1.indd 310 9/15/08 4:23:06 PM9/15/08 4:23:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Delaunay Triangulation, Voronoi Tesselation | 311

 if(e0) {
 e = e0;
 do // Always 3 edges -- this is a triangulation, after all.
 {
 // [Insert your code here]
 //
 // Do something with e ...
 e = cvSubdiv2DGetEdge(e,CV_NEXT_AROUND_LEFT);
 }
 while(e != e0);
 }
}

We can also fi nd the closest point to an input point by using

CvSubdiv2DPoint* cvFindNearestPoint2D(
 CvSubdiv2D* subdiv,
 CvPoint2D32f pt
);

Unlike cvSubdiv2DLocate(), cvFindNearestPoint2D() will return the nearest vertex point

in the Delaunay subdivision. Th is point is not necessarily on the facet or triangle that

the point lands on.

Similarly, we could step around a Voronoi facet (here we draw it) using

void draw_subdiv_facet(
 IplImage *img,
 CvSubdiv2DEdge edge
) {

 CvSubdiv2DEdge t = edge;
 int i, count = 0;
 CvPoint* buf = 0;

 // Count number of edges in facet
 do{
 count++;
 t = cvSubdiv2DGetEdge(t, CV_NEXT_AROUND_LEFT);
 } while (t != edge);

 // Gather points
 //
 buf = (CvPoint*)malloc(count * sizeof(buf[0]))
 t = edge;
 for(i = 0; i < count; i++) {
 CvSubdiv2DPoint* pt = cvSubdiv2DEdgeOrg(t);
 if(!pt) break;
 buf[i] = cvPoint(cvRound(pt->pt.x), cvRound(pt->pt.y));
 t = cvSubdiv2DGetEdge(t, CV_NEXT_AROUND_LEFT);
 }

 // Around we go
 //
 if(i == count){
 CvSubdiv2DPoint* pt = cvSubdiv2DEdgeDst(

09-R4886-RC1.indd 31109-R4886-RC1.indd 311 9/15/08 4:23:06 PM9/15/08 4:23:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

312 | Chapter 9: Image Parts and Segmentation

 cvSubdiv2DRotateEdge(edge, 1));
 cvFillConvexPoly(img, buf, count,
 CV_RGB(rand()&255,rand()&255,rand()&255), CV_AA, 0);
 cvPolyLine(img, &buf, &count, 1, 1, CV_RGB(0,0,0),
 1, CV_AA, 0);
 draw_subdiv_point(img, pt->pt, CV_RGB(0,0,0));
 }
 free(buf);
}

Finally, another way to access the subdivision structure is by using a CvSeqReader to step

though a sequence of edges. Here’s how to step through all Delaunay or Voronoi edges:

void visit_edges(CvSubdiv2D* subdiv){

 CvSeqReader reader; //Sequence reader
 int i, total = subdiv->edges->total; //edge count
 int elem_size = subdiv->edges->elem_size; //edge size

 cvStartReadSeq((CvSeq*)(subdiv->edges), &reader, 0);

 cvCalcSubdivVoronoi2D(subdiv); //Make sure Voronoi exists

 for(i = 0; i < total; i++) {

 CvQuadEdge2D* edge = (CvQuadEdge2D*)(reader.ptr);

 if(CV_IS_SET_ELEM(edge)) {

 // Do something with Voronoi and Delaunay edges ...
 //
 CvSubdiv2DEdge voronoi_edge = (CvSubdiv2DEdge)edge + 1;
 CvSubdiv2DEdge delaunay_edge = (CvSubdiv2DEdge)edge;

 // …OR WE COULD FOCUS EXCLUSIVELY ON VORONOI…

 // left
 //
 voronoi_edge = cvSubdiv2DRotateEdge(edge, 1);

 // right
 //
 voronoi_edge = cvSubdiv2DRotateEdge(edge, 3);
 }
 CV_NEXT_SEQ_ELEM(elem_size, reader);
 }
}

Finally, we end with an inline convenience macro: once we fi nd the vertices of a Delaunay

triangle, we can fi nd its area by using

double cvTriangleArea(
 CvPoint2D32f a,
 CvPoint2D32f b,
 CvPoint2D32f c
)

09-R4886-RC1.indd 31209-R4886-RC1.indd 312 9/15/08 4:23:06 PM9/15/08 4:23:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 313

Exercises
Using 1. cvRunningAvg(), re-implement the averaging method of background subtrac-

tion. In order to do so, learn the running average of the pixel values in the scene to

fi nd the mean and the running average of the absolute diff erence (cvAbsDiff()) as a

proxy for the standard deviation of the image.

Shadows are oft en a problem in background subtraction because they can show up 2.

as a foreground object. Use the averaging or codebook method of background sub-

traction to learn the background. Have a person then walk in the foreground. Shad-

ows will “emanate” from the bottom of the foreground object.

Outdoors, shadows are darker and bluer than their surround; use this fact to a.

eliminate them.

Indoors, shadows are darker than their surround; use this fact to eliminate b.

them.

Th e simple background models presented in this chapter are oft en quite sensitive to 3.

their threshold parameters. In Chapter 10 we’ll see how to track motion, and this

can be used as a “reality” check on the background model and its thresholds. You

can also use it when a known person is doing a “calibration walk” in front of the

camera: fi nd the moving object and adjust the parameters until the foreground ob-

ject corresponds to the motion boundaries. We can also use distinct patterns on a

calibration object itself (or on the background) for a reality check and tuning guide

when we know that a portion of the background has been occluded.

Modify the code to include an autocalibration mode. Learn a background a.

model and then put a brightly colored object in the scene. Use color to fi nd the

colored object and then use that object to automatically set the thresholds in

the background routine so that it segments the object. Note that you can leave

this object in the scene for continuous tuning.

Use your revised code to address the shadow-removal problem of exercise 2.b.

Use background segmentation to segment a person with arms held out. Inves-4.

tigate the eff ects of the diff erent parameters and defaults in the find_connected_
components() routine. Show your results for diff erent settings of:

poly1_hull0a.

perimScaleb.

CVCONTOUR_APPROX_LEVELc.

CVCLOSE_ITRd.

In the 2005 DARPA Grand Challenge robot race, the authors on the Stanford team 5.

used a kind of color clustering algorithm to separate road from nonroad. Th e colors

were sampled from a laser-defi ned trapezoid of road patch in front of the car. Other

colors in the scene that were close in color to this patch—and whose connected

09-R4886-RC1.indd 31309-R4886-RC1.indd 313 9/15/08 4:23:06 PM9/15/08 4:23:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

314 | Chapter 9: Image Parts and Segmentation

Inpainting works pretty well for the repair of writing over textured regions. What 6.

would happen if the writing obscured a real object edge in a picture? Try it.

Although it might be a little slow, try running background segmentation when 7.

the video input is fi rst pre-segmented by using cvPyrMeanShiftFiltering(). Th at

is, the input stream is fi rst mean-shift segmented and then passed for background

learning—and later testing for foreground—by the codebook background segmen-

tation routine.

Show the results compared to not running the mean-shift segmentation.a.

Try systematically varying the b. max_level, spatialRadius, and colorRadius of the

mean-shift segmentation. Compare those results.

How well does inpainting work at fi xing up writing drawn over a mean-shift seg-8.

mented image? Try it for various settings and show the results.

Modify the 9. …/opencv/samples/delaunay.c code to allow mouse-click point entry

(instead of via the existing method where points are selected at a random). Experi-

ment with triangulations on the results.

Modify the 10. delaunay.c code again so that you can use a keyboard to draw the con-

vex hull of the point set.

Do three points in a line have a Delaunay triangulation?11.

component connected to the original trapezoid—were labeled as road. See Figure

9-18, where the watershed algorithm was used to segment the road aft er using a

trapezoid mark inside the road and an inverted “U” mark outside the road. Sup-

pose we could automatically generate these marks. What could go wrong with this

method of segmenting the road?

Hint: Look carefully at Figure 9-8 and then consider that we are trying
to extend the road trapezoid by using things that look like what’s in the
trapezoid.

Figure 9-18. Using the watershed algorithm to identify a road: markers are put in the original image
(left), and the algorithm yields the segmented road (right)

09-R4886-RC1.indd 31409-R4886-RC1.indd 314 9/15/08 4:23:06 PM9/15/08 4:23:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 315

Is the triangulation shown in Figure 9-19(a) a Delaunay triangulation? If so, ex-12.

plain your answer. If not, how would you alter the fi gure so that it is a Delaunay

triangulation?

Perform a Delaunay triangulation by hand on the points in Figure 9-19(b). For this 13.

exercise, you need not add an outer fi ctitious bounding triangle.

Figure 9-19. Exercise 12 and Exercise 13

09-R4886-RC1.indd 31509-R4886-RC1.indd 315 9/15/08 4:23:07 PM9/15/08 4:23:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

316

CHAPTER 10

Tracking and Motion

The Basics of Tracking
When we are dealing with a video source, as opposed to individual still images, we oft en

have a particular object or objects that we would like to follow through the visual fi eld.

In the previous chapter, we saw how to isolate a particular shape, such as a person or an

automobile, on a frame-by-frame basis. Now what we’d like to do is understand the mo-

tion of this object, a task that has two main components: identifi cation and modeling.

Identifi cation amounts to fi nding the object of interest from one frame in a subsequent

frame of the video stream. Techniques such as moments or color histograms from pre-

vious chapters will help us identify the object we seek. Tracking things that we have not

yet identifi ed is a related problem. Tracking unidentifi ed objects is important when we

wish to determine what is interesting based on its motion—or when an object’s mo-

tion is precisely what makes it interesting. Techniques for tracking unidentifi ed objects

typically involve tracking visually signifi cant key points (more soon on what consti-

tutes “signifi cance”), rather than extended objects. OpenCV provides two methods for

achieving this: the Lucas-Kanade* [Lucas81] and Horn-Schunck [Horn81] techniques,

which represent what are oft en referred to as sparse or dense optical fl ow respectively.

Th e second component, modeling, helps us address the fact that these techniques are

really just providing us with noisy measurement of the object’s actual position. Many

powerful mathematical techniques have been developed for estimating the trajectory

of an object measured in such a noisy manner. Th ese methods are applicable to two- or

three-dimensional models of objects and their locations.

Corner Finding
Th ere are many kinds of local features that one can track. It is worth taking a moment to

consider what exactly constitutes such a feature. Obviously, if we pick a point on a large

blank wall then it won’t be easy to fi nd that same point in the next frame of a video.

* Oddly enough, the defi nitive description of Lucas-Kanade optical fl ow in a pyramid framework imple-
mented in OpenCV is an unpublished paper by Bouguet [Bouguet04].

10-R4886-AT1.indd 31610-R4886-AT1.indd 316 9/15/08 4:23:31 PM9/15/08 4:23:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Corner Finding | 317

If all points on the wall are identical or even very similar, then we won’t have much luck

tracking that point in subsequent frames. On the other hand, if we choose a point that

is unique then we have a pretty good chance of fi nding that point again. In practice, the

point or feature we select should be unique, or nearly unique, and should be param-

eterizable in such a way that it can be compared to other points in another image. See

Figure 10-1.

Returning to our intuition from the large blank wall, we might be tempted to look for

points that have some signifi cant change in them—for example, a strong derivative. It

turns out that this is not enough, but it’s a start. A point to which a strong derivative is

associated may be on an edge of some kind, but it could look like all of the other points

along the same edge (see the aperture problem diagrammed in Figure 10-8 and dis-

cussed in the section titled “Lucas-Kanade Technique”).

However, if strong derivatives are observed in two orthogonal directions then we can

hope that this point is more likely to be unique. For this reason, many trackable features

are called corners. Intuitively, corners—not edges—are the points that contain enough

information to be picked out from one frame to the next.

Th e most commonly used defi nition of a corner was provided by Harris [Harris88]. Th is

defi nition relies on the matrix of the second-order derivatives (, ,)∂ ∂ ∂ ∂2 2x y x y of the

image intensities. We can think of the second-order derivatives of images, taken at all

points in the image, as forming new “second-derivative images” or, when combined to-

gether, a new Hessian image. Th is terminology comes from the Hessian matrix around a

point, which is defi ned in two dimensions by:

H p

I

x

I

x y

I

y x

I

y

()=

∂
∂

∂
∂ ∂

∂
∂ ∂

∂
∂

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥

2

2

2

2 2

2

⎥⎥
⎥

p

Figure 10-1. Th e points in circles are good points to track, whereas those in boxes—even sharply
defi ned edges—are poor choices

10-R4886-AT1.indd 31710-R4886-AT1.indd 317 9/15/08 4:23:31 PM9/15/08 4:23:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

318 | Chapter 10: Tracking and Motion

For the Harris corner, we consider the autocorrelation matrix of the second derivative

images over a small window around each point. Such a matrix is defi ned as follows:

M x y

w I x i y j w I x i
i j x

K i j K

i j x

(,)

(,) (,
,

,

,

=
+ + +

− ≤ ≤
∑ 2 yy j I x i y j

w I x i y j I

y

K i j K

i j x y

+ + +

+ +
− ≤ ≤
∑) (,)

(,) (

,

,
xx i y j w I x i y j

K i j K

i j y

K i j K

+ + + +
− ≤ ≤ − ≤ ≤
∑ ∑,) (,)

,

,

,

2

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(Here wi,j is a weighting term that can be uniform but is oft en used to create a circular

window or Gaussian weighting.) Corners, by Harris’s defi nition, are places in the image

where the autocorrelation matrix of the second derivatives has two large eigenvalues. In

essence this means that there is texture (or edges) going in at least two separate direc-

tions centered around such a point, just as real corners have at least two edges meeting

in a point. Second derivatives are useful because they do not respond to uniform gradi-

ents.* Th is defi nition has the further advantage that, when we consider only the eigen-

values of the autocorrelation matrix, we are considering quantities that are invariant

also to rotation, which is important because objects that we are tracking might rotate as

well as move. Observe also that these two eigenvalues do more than determine if a point

is a good feature to track; they also provide an identifying signature for the point.

Harris’s original defi nition involved taking the determinant of H(p), subtracting the

trace of H(p) (with some weighting coeffi cient), and then comparing this diff erence to

a predetermined threshold. It was later found by Shi and Tomasi [Shi94] that good cor-

ners resulted as long as the smaller of the two eigenvalues was greater than a minimum

threshold. Shi and Tomasi’s method was not only suffi cient but in many cases gave more

satisfactory results than Harris’s method.

Th e cvGoodFeaturesToTrack() routine implements the Shi and Tomasi defi nition. Th is

function conveniently computes the second derivatives (using the Sobel operators) that

are needed and from those computes the needed eigenvalues. It then returns a list of the

points that meet our defi nition of being good for tracking.

void cvGoodFeaturesToTrack(
 const CvArr* image,
 CvArr* eigImage,
 CvArr* tempImage,
 CvPoint2D32f* corners,
 int* corner_count,
 double quality_level,
 double min_distance,
 const CvArr* mask = NULL,
 int block_size = 3,
 int use_harris = 0,
 double k = 0.4
);

* A gradient is derived from fi rst derivatives. If fi rst derivatives are uniform (constant), then second deriva-
tives are 0.

10-R4886-AT1.indd 31810-R4886-AT1.indd 318 9/15/08 4:23:32 PM9/15/08 4:23:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Subpixel Corners | 319

In this case, the input image should be an 8-bit or 32-bit (i.e., IPL_DEPTH_8U or IPL_
DEPTH_32F) single-channel image. Th e next two arguments are single-channel 32-bit

images of the same size. Both tempImage and eigImage are used as scratch by the algo-

rithm, but the resulting contents of eigImage are meaningful. In particular, each entry

there contains the minimal eigenvalue for the corresponding point in the input image.

Here corners is an array of 32-bit points (CvPoint2D32f) that contain the result points

aft er the algorithm has run; you must allocate this array before calling cvGoodFeatures
ToTrack(). Naturally, since you allocated that array, you only allocated a fi nite amount

of memory. Th e corner_count indicates the maximum number of points for which there

is space to return. Aft er the routine exits, corner_count is overwritten by the number

of points that were actually found. Th e parameter quality_level indicates the minimal

acceptable lower eigenvalue for a point to be included as a corner. Th e actual minimal

eigenvalue used for the cutoff is the product of the quality_level and the largest lower

eigenvalue observed in the image. Hence, the quality_level should not exceed 1 (a typi-

cal value might be 0.10 or 0.01). Once these candidates are selected, a further culling

is applied so that multiple points within a small region need not be included in the

response. In particular, the min_distance guarantees that no two returned points are

within the indicated number of pixels.

Th e optional mask is the usual image, interpreted as Boolean values, indicating which

points should and which points should not be considered as possible corners. If set to NULL,

no mask is used. Th e block_size is the region around a given pixel that is considered when

computing the autocorrelation matrix of derivatives. It turns out that it is better to sum

these derivatives over a small window than to compute their value at only a single point

(i.e., at a block_size of 1). If use_harris is nonzero, then the Harris corner defi nition is

used rather than the Shi-Tomasi defi nition. If you set use_harris to a nonzero value, then

the value k is the weighting coeffi cient used to set the relative weight given to the trace of

the autocorrelation matrix Hessian compared to the determinant of the same matrix.

Once you have called cvGoodFeaturesToTrack(), the result is an array of pixel locations

that you hope to fi nd in another similar image. For our current context, we are inter-

ested in looking for these features in subsequent frames of video, but there are many

other applications as well. A similar technique can be used when attempting to relate

multiple images taken from slightly diff erent viewpoints. We will re-encounter this is-

sue when we discuss stereo vision in later chapters.

Subpixel Corners
If you are processing images for the purpose of extracting geometric measurements, as

opposed to extracting features for recognition, then you will normally need more reso-

lution than the simple pixel values supplied by cvGoodFeaturesToTrack(). Another way

of saying this is that such pixels come with integer coordinates whereas we sometimes

require real-valued coordinates—for example, pixel (8.25, 117.16).

One might imagine needing to look for a sharp peak in image values, only to be frus-

trated by the fact that the peak’s location will almost never be in the exact center of a

10-R4886-AT1.indd 31910-R4886-AT1.indd 319 9/15/08 4:23:32 PM9/15/08 4:23:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

320 | Chapter 10: Tracking and Motion

camera pixel element. To overcome this, you might fi t a curve (say, a parabola) to the

image values and then use a little math to fi nd where the peak occurred between the

pixels. Subpixel detection techniques are all about tricks like this (for a review and

newer techniques, see Lucchese [Lucchese02] and Chen [Chen05]). Common uses of

image measurements are tracking for three-dimensional reconstruction, calibrating a

camera, warping partially overlapping views of a scene to stitch them together in the

most natural way, and fi nding an external signal such as precise location of a building

in a satellite image.

Subpixel corner locations are a common measurement used in camera calibration or

when tracking to reconstruct the camera’s path or the three-dimensional structure of

a tracked object. Now that we know how to fi nd corner locations on the integer grid

of pixels, here’s the trick for refi ning those locations to subpixel accuracy: We use the

mathematical fact that the dot product between a vector and an orthogonal vector is 0;

this situation occurs at corner locations, as shown in Figure 10-2.

In the fi gure, we assume a starting corner location q that is near the actual subpixel cor-

ner location. We examine vectors starting at point q and ending at p. When p is in a

nearby uniform or “fl at” region, the gradient there is 0. On the other hand, if the vector

q-p aligns with an edge then the gradient at p on that edge is orthogonal to the vector q-p.

In either case, the dot product between the gradient at p and the vector q-p is 0. We can

assemble many such pairs of the gradient at a nearby point p and the associated vector

q-p, set their dot product to 0, and solve this assemblage as a system of equations; the so-

lution will yield a more accurate subpixel location for q, the exact location of the corner.

Figure 10-2. Finding corners to subpixel accuracy: (a) the image area around the point p is uniform
and so its gradient is 0; (b) the gradient at the edge is orthogonal to the vector q-p along the edge; in
either case, the dot product between the gradient at p and the vector q-p is 0 (see text)

10-R4886-AT1.indd 32010-R4886-AT1.indd 320 9/15/08 4:23:32 PM9/15/08 4:23:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Invariant Features | 321

Th e function that does subpixel corner fi nding is cvFindCornerSubPix():

void cvFindCornerSubPix(
 const CvArr* image,
 CvPoint2D32f* corners,
 int count,
 CvSize win,
 CvSize zero_zone,
 CvTermCriteria criteria
);

Th e input image is a single-channel, 8-bit, grayscale image. Th e corners structure con-

tains integer pixel locations, such as those obtained from routines like cvGoodFeatures
ToTrack(), which are taken as the initial guesses for the corner locations; count holds

how many points there are to compute.

Th e actual computation of the subpixel location uses a system of dot-product expres-

sions that all equal 0 (see Figure 10-2), where each equation arises from considering

a single pixel in the region around p. Th e parameter win specifi es the size of window

from which these equations will be generated. Th is window is centered on the original

integer corner location and extends outward in each direction by the number of pixels

specifi ed in win (e.g., if win.width = 4 then the search area is actually 4 + 1 + 4 = 9 pix-

els wide). Th ese equations form a linear system that can be solved by the inversion of a

single autocorrelation matrix (not related to the autocorrelation matrix encountered in

our previous discussion of Harris corners). In practice, this matrix is not always invert-

ible owing to small eigenvalues arising from the pixels very close to p. To protect against

this, it is common to simply reject from consideration those pixels in the immediate

neighborhood of p. Th e parameter zero_zone defi nes a window (analogously to win, but

always with a smaller extent) that will not be considered in the system of constraining

equations and thus the autocorrelation matrix. If no such zero zone is desired then this

parameter should be set to cvSize(-1,-1).

Once a new location is found for q, the algorithm will iterate using that value as a starting

point and will continue until the user-specifi ed termination criterion is reached. Recall

that this criterion can be of type CV_TERMCRIT_ITER or of type CV_TERMCRIT_EPS (or both)

and is usually constructed with the cvTermCriteria() function. Using CV_TERMCRIT_EPS

will eff ectively indicate the accuracy you require of the subpixel values. Th us, if you

specify 0.10 then you are asking for subpixel accuracy down to one tenth of a pixel.

Invariant Features
Since the time of Harris’s original paper and the subsequent work by Shi and Tomasi,

a great many other types of corners and related local features have been proposed. One

widely used type is the SIFT (“scale-invariant feature transform”) feature [Lowe04]. Such

features are, as their name suggests, scale-invariant. Because SIFT detects the domi-

nant gradient orientation at its location and records its local gradient histogram results

with respect to this orientation, SIFT is also rotationally invariant. As a result, SIFT fea-

tures are relatively well behaved under small affi ne transformations. Although the SIFT

10-R4886-AT1.indd 32110-R4886-AT1.indd 321 9/15/08 4:23:32 PM9/15/08 4:23:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

322 | Chapter 10: Tracking and Motion

algorithm is not yet implemented as part of the OpenCV library (but see Chapter 14),

it is possible to create such an implementation using OpenCV primitives. We will not

spend more time on this topic, but it is worth keeping in mind that, given the OpenCV

functions we’ve already discussed, it is possible (albeit less convenient) to create most of

the features reported in the computer vision literature (see Chapter 14 for a feature tool

kit in development).

Optical Flow
As already mentioned, you may oft en want to assess motion between two frames (or

a sequence of frames) without any other prior knowledge about the content of those

frames. Typically, the motion itself is what indicates that something interesting is going

on. Optical fl ow is illustrated in Figure 10-3.

We can associate some kind of velocity with each pixel in the frame or, equivalently,

some displacement that represents the distance a pixel has moved between the previous

frame and the current frame. Such a construction is usually referred to as a dense optical

fl ow, which associates a velocity with every pixel in an image. Th e Horn-Schunck method

[Horn81] attempts to compute just such a velocity fi eld. One seemingly straightforward

method—simply attempting to match windows around each pixel from one frame to

Figure 10-3. Optical fl ow: target features (upper left) are tracked over time and their movement is
converted into velocity vectors (upper right); lower panels show a single image of the hallway (left)
and fl ow vectors (right) as the camera moves down the hall (original images courtesy of Jean-Yves
Bouguet)

10-R4886-AT1.indd 32210-R4886-AT1.indd 322 9/15/08 4:23:33 PM9/15/08 4:23:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Optical Flow | 323

the next—is also implemented in OpenCV; this is known as block matching. Both of

these routines will be discussed in the “Dense Tracking Techniques” section.

In practice, calculating dense optical fl ow is not easy. Consider the motion of a white

sheet of paper. Many of the white pixels in the previous frame will simply remain white

in the next. Only the edges may change, and even then only those perpendicular to the

direction of motion. Th e result is that dense methods must have some method of inter-

polating between points that are more easily tracked so as to solve for those points that

are more ambiguous. Th ese diffi culties manifest themselves most clearly in the high

computational costs of dense optical fl ow.

Th is leads us to the alternative option, sparse optical fl ow. Algorithms of this nature rely

on some means of specifying beforehand the subset of points that are to be tracked. If

these points have certain desirable properties, such as the “corners” discussed earlier,

then the tracking will be relatively robust and reliable. We know that OpenCV can help

us by providing routines for identifying the best features to track. For many practical

applications, the computational cost of sparse tracking is so much less than dense track-

ing that the latter is relegated to only academic interest.*

Th e next few sections present some diff erent methods of tracking. We begin by consid-

ering the most popular sparse tracking technique, Lucas-Kanade (LK) optical fl ow; this

method also has an implementation that works with image pyramids, allowing us to

track faster motions. We’ll then move on to two dense techniques, the Horn-Schunck

method and the block matching method.

Lucas-Kanade Method
Th e Lucas-Kanade (LK) algorithm [Lucas81], as originally proposed in 1981, was an at-

tempt to produce dense results. Yet because the method is easily applied to a subset of

the points in the input image, it has become an important sparse technique. Th e LK

algorithm can be applied in a sparse context because it relies only on local informa-

tion that is derived from some small window surrounding each of the points of interest.

Th is is in contrast to the intrinsically global nature of the Horn and Schunck algorithm

(more on this shortly). Th e disadvantage of using small local windows in Lucas-Kanade

is that large motions can move points outside of the local window and thus become im-

possible for the algorithm to fi nd. Th is problem led to development of the “pyramidal”

LK algorithm, which tracks starting from highest level of an image pyramid (lowest

detail) and working down to lower levels (fi ner detail). Tracking over image pyramids

allows large motions to be caught by local windows.

Because this is an important and eff ective technique, we shall go into some mathemati-

cal detail; readers who prefer to forgo such details can skip to the function description

and code. However, it is recommended that you at least scan the intervening text and

* Black and Anadan have created dense optical fl ow techniques [Black93; Black96] that are oft en used in
movie production, where, for the sake of visual quality, the movie studio is willing to spend the time
necessary to obtain detailed fl ow information. Th ese techniques are slated for inclusion in later versions of
OpenCV (see Chapter 14).

10-R4886-AT1.indd 32310-R4886-AT1.indd 323 9/15/08 4:23:33 PM9/15/08 4:23:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

324 | Chapter 10: Tracking and Motion

fi gures, which describe the assumptions behind Lucas-Kanade optical fl ow, so that

you’ll have some intuition about what to do if tracking isn’t working well.

How Lucas-Kanade works

Th e basic idea of the LK algorithm rests on three assumptions.

Brightness constancy1. . A pixel from the image of an object in the scene does not

change in appearance as it (possibly) moves from frame to frame. For grayscale im-

ages (LK can also be done in color), this means we assume that the brightness of a

pixel does not change as it is tracked from frame to frame.

Temporal persistence or “small movements”2. . Th e image motion of a surface patch

changes slowly in time. In practice, this means the temporal increments are fast

enough relative to the scale of motion in the image that the object does not move

much from frame to frame.

Spatial coherence3. . Neighboring points in a scene belong to the same surface, have

similar motion, and project to nearby points on the image plane.

We now look at how these assumptions, which are illustrated in Figure 10-4, lead us to

an eff ective tracking algorithm. Th e fi rst requirement, brightness constancy, is just the

requirement that pixels in one tracked patch look the same over time:

f x t I x t t I x t dt t dt(,) ((),) ((),)≡ = + +

Figure 10-4. Assumptions behind Lucas-Kanade optical fl ow: for a patch being tracked on an object
in a scene, the patch’s brightness doesn’t change (top); motion is slow relative to the frame rate (lower
left); and neighboring points stay neighbors (lower right) (component images courtesy of Michael
Black [Black82])

10-R4886-AT1.indd 32410-R4886-AT1.indd 324 9/15/08 4:23:33 PM9/15/08 4:23:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Optical Flow | 325

Th at’s simple enough, and it means that our tracked pixel intensity exhibits no change

over time:

∂
∂

=f x

t

()
0

Th e second assumption, temporal persistence, essentially means that motions are small

from frame to frame. In other words, we can view this change as approximating a de-

rivative of the intensity with respect to time (i.e., we assert that the change between one

frame and the next in a sequence is diff erentially small). To understand the implications

of this assumption, fi rst consider the case of a single spatial dimension.

In this case we can start with our brightness consistency equation, substitute the defi ni-

tion of the brightness f (x, t) while taking into account the implicit dependence of x on t,

I (x(t), t), and then apply the chain rule for partial diff erentiation. Th is yields:

t

∂
∂

∂
∂

⎛
⎝⎜

⎞
⎠⎟

+ ∂
∂

=I

x

x

t

I

t
t

I

x t

Ix

�� �
v

()

0

where Ix is the spatial derivative across the fi rst image, It is the derivative between im-

ages over time, and v is the velocity we are looking for. We thus arrive at the simple

equation for optical fl ow velocity in the simple one-dimensional case:

v = −
I

I
t

x

Let’s now try to develop some intuition for the one-dimensional tracking problem. Con-

sider Figure 10-5, which shows an “edge”—consisting of a high value on the left and

a low value on the right—that is moving to the right along the x-axis. Our goal is to

identify the velocity v at which the edge is moving, as plotted in the upper part of Figure

10-5. In the lower part of the fi gure we can see that our measurement of this velocity is

just “rise over run,” where the rise is over time and the run is the slope (spatial deriva-

tive). Th e negative sign corrects for the slope of x.

Figure 10-5 reveals another aspect to our optical fl ow formulation: our assumptions are

probably not quite true. Th at is, image brightness is not really stable; and our time steps

(which are set by the camera) are oft en not as fast relative to the motion as we’d like.

Th us, our solution for the velocity is not exact. However, if we are “close enough” then

we can iterate to a solution. Iteration is shown in Figure 10-6, where we use our fi rst (in-

accurate) estimate of velocity as the starting point for our next iteration and then repeat.

Note that we can keep the same spatial derivative in x as computed on the fi rst frame

because of the brightness constancy assumption—pixels moving in x do not change.

Th is reuse of the spatial derivative already calculated yields signifi cant computational

savings. Th e time derivative must still be recomputed each iteration and each frame, but

10-R4886-AT1.indd 32510-R4886-AT1.indd 325 9/15/08 4:23:34 PM9/15/08 4:23:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

326 | Chapter 10: Tracking and Motion

if we are close enough to start with then these iterations will converge to near exactitude

within about fi ve iterations. Th is is known as Newton’s method. If our fi rst estimate was

not close enough, then Newton’s method will actually diverge.

Now that we’ve seen the one-dimensional solution, let’s generalize it to images in two

dimensions. At fi rst glance, this seems simple: just add in the y coordinate. Slightly

Figure 10-5. Lucas-Kanade optical fl ow in one dimension: we can estimate the velocity of the moving
edge (upper panel) by measuring the ratio of the derivative of the intensity over time divided by the
derivative of the intensity over space

Figure 10-6. Iterating to refi ne the optical fl ow solution (Newton’s method): using the same two im-
ages and the same spatial derivative (slope) we solve again for the time derivative; convergence to a
stable solution usually occurs within a few iterations

10-R4886-AT1.indd 32610-R4886-AT1.indd 326 9/15/08 4:23:34 PM9/15/08 4:23:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Optical Flow | 327

changing notation, we’ll call the y component of velocity v and the x component of ve-

locity u; then we have:

I u I
x t

+ + =
y
v I 0

Unfortunately, for this single equation there are two unknowns for any given pixel.

Th is means that measurements at the single-pixel level are underconstrained and can-

not be used to obtain a unique solution for the two-dimensional motion at that point.

Instead, we can only solve for the motion component that is perpendicular or “normal”

to the line described by our fl ow equation. Figure 10-7 presents the mathematical and

geometric details.

Normal optical fl ow results from the aperture problem, which arises when you

have a small aperture or window in which to measure motion. When motion is detected

with a small aperture, you oft en see only an edge, not a corner. But an edge alone is in-

suffi cient to determine exactly how (i.e., in what direction) the entire object is moving;

see Figure 10-8.

So then how do we get around this problem that, at one pixel, we cannot resolve the

full motion? We turn to the last optical fl ow assumption for help. If a local patch of

pixels moves coherently, then we can easily solve for the motion of the central pixel by

using the surrounding pixels to set up a system of equations. For example, if we use a

5-by-5* window of brightness values (you can simply triple this for color-based optical

fl ow) around the current pixel to compute its motion, we can then set up 25 equations

as follows.

* Of course, the window could be 3-by-3, 7-by-7, or anything you choose. If the window is too large then you
will end up violating the coherent motion assumption and will not be able to track well. If the window is too
small, you will encounter the aperture problem again.

Figure 10-7. Two-dimensional optical fl ow at a single pixel: optical fl ow at one pixel is underdeter-
mined and so can yield at most motion, which is perpendicular (“normal”) to the line described by
the fl ow equation (fi gure courtesy of Michael Black)

10-R4886-AT1.indd 32710-R4886-AT1.indd 327 9/15/08 4:23:35 PM9/15/08 4:23:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

328 | Chapter 10: Tracking and Motion

We now have an overconstrained system for which we can solve provided it contains

more than just an edge in that 5-by-5 window. To solve for this system, we set up a

least-squares minimization of the equation, whereby min Ad b−
2
 is solved in standard

form as:

()A A d A bT T

2 2 2 1 2 2× × ×

=��� � �

From this relation we obtain our u and v motion components. Writing this out in more

detail yields:

I I I I

I I I I

u

v

x x x y

x y y y

A A

∑ ∑
∑ ∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

T

� ���� ����
⎣⎣
⎢

⎤

⎦
⎥ = −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∑
∑

I I

I I

x t

y t

A bT

��� ��

Th e solution to this equation is then:

u

v
A A A b

⎡

⎣
⎢

⎤

⎦
⎥ = −()T T1

Figure 10-8. Aperture problem: through the aperture window (upper row) we see an edge moving to
the right but cannot detect the downward part of the motion (lower row)

I
x
() ()

() ()

() ()

p I p

I p I p

I p I p

y

x y

x y

1 1

2 2

25 25

� �

⎡

⎣

⎢
⎢⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥ = −

×

×

A

d

t

u

v

I

25 2

2 1� ���� ����

�

(()

()

()

p

I p

I p

t

t

b

1

2

25

2 1

�

��� ��

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

×

10-R4886-AT1.indd 32810-R4886-AT1.indd 328 9/15/08 4:23:35 PM9/15/08 4:23:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Optical Flow | 329

When can this be solved?—when (ATA) is invertible. And (ATA) is invertible when it

has full rank (2), which occurs when it has two large eigenvectors. Th is will happen

in image regions that include texture running in at least two directions. In this case,

(ATA) will have the best properties then when the tracking window is centered over a

corner region in an image. Th is ties us back to our earlier discussion of the Harris cor-

ner detector. In fact, those corners were “good features to track” (see our previous re-

marks concerning cvGoodFeaturesToTrack()) for precisely the reason that (ATA) had two

large eigenvectors there! We’ll see shortly how all this computation is done for us by the

cvCalcOpticalFlowLK() function.

Th e reader who understands the implications of our assuming small and coherent mo-

tions will now be bothered by the fact that, for most video cameras running at 30 Hz,

large and noncoherent motions are commonplace. In fact, Lucas-Kanade optical fl ow by

itself does not work very well for exactly this reason: we want a large window to catch

large motions, but a large window too oft en breaks the coherent motion assumption!

To circumvent this problem, we can track fi rst over larger spatial scales using an image

pyramid and then refi ne the initial motion velocity assumptions by working our way

down the levels of the image pyramid until we arrive at the raw image pixels.

Hence, the recommended technique is fi rst to solve for optical fl ow at the top layer and

then to use the resulting motion estimates as the starting point for the next layer down.

We continue going down the pyramid in this manner until we reach the lowest level.

Th us we minimize the violations of our motion assumptions and so can track faster and

longer motions. Th is more elaborate function is known as pyramid Lucas-Kanade opti-

cal fl ow and is illustrated in Figure 10-9. Th e OpenCV function that implements Pyra-

mid Lucas-Kanade optical fl ow is cvCalcOpticalFlowPyrLK(), which we examine next.

Lucas-Kanade code

Th e routine that implements the nonpyramidal Lucas-Kanade dense optical fl ow algo-

rithm is:

void cvCalcOpticalFlowLK(
 const CvArr* imgA,
 const CvArr* imgB,
 CvSize winSize,
 CvArr* velx,
 CvArr* vely
);

Th e result arrays for this OpenCV routine are populated only by those pixels for which it

is able to compute the minimum error. For the pixels for which this error (and thus the

displacement) cannot be reliably computed, the associated velocity will be set to 0. In

most cases, you will not want to use this routine. Th e following pyramid-based method

is better for most situations most of the time.

Pyramid Lucas-Kanade code

We come now to OpenCV’s algorithm that computes Lucas-Kanade optical fl ow in a

pyramid, cvCalcOpticalFlowPyrLK(). As we will see, this optical fl ow function makes use

10-R4886-AT1.indd 32910-R4886-AT1.indd 329 9/15/08 4:23:35 PM9/15/08 4:23:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

330 | Chapter 10: Tracking and Motion

of “good features to track” and also returns indications of how well the tracking of each

point is proceeding.

void cvCalcOpticalFlowPyrLK(
 const CvArr* imgA,
 const CvArr* imgB,
 CvArr* pyrA,
 CvArr* pyrB,
 CvPoint2D32f* featuresA,
 CvPoint2D32f* featuresB,
 int count,
 CvSize winSize,
 int level,
 char* status,
 float* track_error,
 CvTermCriteria criteria,
 int flags
);

Th is function has a lot of inputs, so let’s take a moment to fi gure out what they all do.

Once we have a handle on this routine, we can move on to the problem of which points

to track and how to compute them.

Th e fi rst two arguments of cvCalcOpticalFlowPyrLK() are the initial and fi nal images;

both should be single-channel, 8-bit images. Th e next two arguments are buff ers allo-

cated to store the pyramid images. Th e size of these buff ers should be at least (img.width

Figure 10-9. Pyramid Lucas-Kanade optical fl ow: running optical fl ow at the top of the pyramid fi rst
mitigates the problems caused by violating our assumptions of small and coherent motion; the mo-
tion estimate from the preceding level is taken as the starting point for estimating motion at the next
layer down

10-R4886-AT1.indd 33010-R4886-AT1.indd 330 9/15/08 4:23:36 PM9/15/08 4:23:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Optical Flow | 331

+ 8)*img.height/3 bytes,* with one such buff er for each of the two input images (pyrA

and pyrB). (If these two pointers are set to NULL then the routine will allocate, use, and

free the appropriate memory when called, but this is not so good for performance.) Th e

array featuresA contains the points for which the motion is to be found, and featuresB

is a similar array into which the computed new locations of the points from featuresA

are to be placed; count is the number of points in the featuresA list. Th e window used for

computing the local coherent motion is given by winSize. Because we are constructing

an image pyramid, the argument level is used to set the depth of the stack of images.

If level is set to 0 then the pyramids are not used. Th e array status is of length count;

on completion of the routine, each entry in status will be either 1 (if the corresponding

point was found in the second image) or 0 (if it was not). Th e track_error parameter is

optional and can be turned off by setting it to NULL. If track_error is active then it is an

array of numbers, one for each tracked point, equal to the diff erence between the patch

around a tracked point in the fi rst image and the patch around the location to which

that point was tracked in the second image. You can use track_error to prune away

points whose local appearance patch changes too much as the points move.

Th e next thing we need is the termination criteria. Th is is a structure used by many

OpenCV algorithms that iterate to a solution:

cvTermCriteria(
 int type, // CV_TERMCRIT_ITER, CV_TERMCRIT_EPS, or both
 int max_iter,
 double epsilon
);

Typically we use the cvTermCriteria() function to generate the structure we need. Th e

fi rst argument of this function is either CV_TERMCRIT_ITER or CV_TERMCRIT_EPS, which tells

the algorithm that we want to terminate either aft er some number of iterations or when

the convergence metric reaches some small value (respectively). Th e next two arguments

set the values at which one, the other, or both of these criteria should terminate the al-

gorithm. Th e reason we have both options is so we can set the type to CV_TERMCRIT_ITER |
CV_TERMCRIT_EPS and thus stop when either limit is reached (this is what is done in most

real code).

Finally, flags allows for some fi ne control of the routine’s internal bookkeeping; it may

be set to any or all (using bitwise OR) of the following.

CV_LKFLOW_PYR_A_READY
Th e image pyramid for the fi rst frame is calculated before the call and stored in

pyrA.

CV_LKFLOW_PYR_B_READY
Th e image pyramid for the second frame is calculated before the call and stored in

pyrB.

* If you are wondering why the funny size, it’s because these scratch spaces need to accommodate not just the
image itself but the entire pyramid.

10-R4886-AT1.indd 33110-R4886-AT1.indd 331 9/15/08 4:23:36 PM9/15/08 4:23:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

332 | Chapter 10: Tracking and Motion

CV_LKFLOW_INITIAL_GUESSES
Th e array B already contains an initial guess for the feature’s coordinates when the

routine is called.

Th ese fl ags are particularly useful when handling sequential video. Th e image pyramids

are somewhat costly to compute, so recomputing them should be avoided whenever

possible. Th e fi nal frame for the frame pair you just computed will be the initial frame

for the pair that you will compute next. If you allocated those buff ers yourself (instead

of asking the routine to do it for you), then the pyramids for each image will be sitting

in those buff ers when the routine returns. If you tell the routine that this information is

already computed then it will not be recomputed. Similarly, if you computed the motion

of points from the previous frame then you are in a good position to make good initial

guesses for where they will be in the next frame.

So the basic plan is simple: you supply the images, list the points you want to track in

featuresA, and call the routine. When the routine returns, you check the status array

to see which points were successfully tracked and then check featuresB to fi nd the new

locations of those points.

Th is leads us back to that issue we put aside earlier: how to decide which features are

good ones to track. Earlier we encountered the OpenCV routine cvGoodFeatures
ToTrack(), which uses the method originally proposed by Shi and Tomasi to solve this

problem in a reliable way. In most cases, good results are obtained by using the com-

bination of cvGoodFeaturesToTrack() and cvCalcOpticalFlowPyrLK(). Of course, you can

also use your own criteria to determine which points to track.

Let’s now look at a simple example (Example 10-1) that uses both cvGoodFeaturesToTrack()

and cvCalcOpticalFlowPyrLK(); see also Figure 10-10.

Example 10-1. Pyramid Lucas-Kanade optical fl ow code

// Pyramid L-K optical flow example
//
#include <cv.h>
#include <cxcore.h>
#include <highgui.h>

const int MAX_CORNERS = 500;

int main(int argc, char** argv) {

 // Initialize, load two images from the file system, and
 // allocate the images and other structures we will need for
 // results.
 //
 IplImage* imgA = cvLoadImage(“image0.jpg”,CV_LOAD_IMAGE_GRAYSCALE);
 IplImage* imgB = cvLoadImage(“image1.jpg”,CV_LOAD_IMAGE_GRAYSCALE);

 CvSize img_sz = cvGetSize(imgA);
 int win_size = 10;

 IplImage* imgC = cvLoadImage(

10-R4886-AT1.indd 33210-R4886-AT1.indd 332 9/15/08 4:23:36 PM9/15/08 4:23:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Optical Flow | 333

Example 10-1. Pyramid Lucas-Kanade optical fl ow code (continued)

 “../Data/OpticalFlow1.jpg”,
 CV_LOAD_IMAGE_UNCHANGED
);

 // The first thing we need to do is get the features
 // we want to track.
 //
 IplImage* eig_image = cvCreateImage(img_sz, IPL_DEPTH_32F, 1);
 IplImage* tmp_image = cvCreateImage(img_sz, IPL_DEPTH_32F, 1);

 int corner_count = MAX_CORNERS;
 CvPoint2D32f* cornersA = new CvPoint2D32f[MAX_CORNERS];

 cvGoodFeaturesToTrack(
 imgA,
 eig_image,
 tmp_image,
 cornersA,
 &corner_count,
 0.01,
 5.0,
 0,
 3,
 0,
 0.04
);

 cvFindCornerSubPix(
 imgA,
 cornersA,
 corner_count,
 cvSize(win_size,win_size),
 cvSize(-1,-1),
 cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03)
);

 // Call the Lucas Kanade algorithm
 //
 char features_found[MAX_CORNERS];
 float feature_errors[MAX_CORNERS];

 CvSize pyr_sz = cvSize(imgA->width+8, imgB->height/3);

 IplImage* pyrA = cvCreateImage(pyr_sz, IPL_DEPTH_32F, 1);
 IplImage* pyrB = cvCreateImage(pyr_sz, IPL_DEPTH_32F, 1);

 CvPoint2D32f* cornersB = new CvPoint2D32f[MAX_CORNERS];

 cvCalcOpticalFlowPyrLK(
 imgA,
 imgB,

10-R4886-AT1.indd 33310-R4886-AT1.indd 333 9/15/08 4:23:36 PM9/15/08 4:23:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

334 | Chapter 10: Tracking and Motion

Example 10-1. Pyramid Lucas-Kanade optical fl ow code (continued)

 pyrA,
 pyrB,
 cornersA,
 cornersB,
 corner_count,
 cvSize(win_size,win_size),
 5,
 features_found,
 feature_errors,
 cvTermCriteria(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, .3),
 0
);

 // Now make some image of what we are looking at:
 //
 for(int i=0; i<corner_count; i++) {
 if(features_found[i]==0|| feature_errors[i]>550) {
 printf(“Error is %f/n”,feature_errors[i]);
 continue;
 }
 printf(“Got it/n”);
 CvPoint p0 = cvPoint(
 cvRound(cornersA[i].x),
 cvRound(cornersA[i].y)
);
 CvPoint p1 = cvPoint(
 cvRound(cornersB[i].x),
 cvRound(cornersB[i].y)
);
 cvLine(imgC, p0, p1, CV_RGB(255,0,0),2);
 }

 cvNamedWindow(“ImageA”,0);
 cvNamedWindow(“ImageB”,0);
 cvNamedWindow(“LKpyr_OpticalFlow”,0);

 cvShowImage(“ImageA”,imgA);
 cvShowImage(“ImageB”,imgB);
 cvShowImage(“LKpyr_OpticalFlow”,imgC);

 cvWaitKey(0);

 return 0;
}

Dense Tracking Techniques
OpenCV contains two other optical fl ow techniques that are now seldom used. Th ese

routines are typically much slower than Lucas-Kanade; moreover, they (could, but) do

not support matching within an image scale pyramid and so cannot track large mo-

tions. We will discuss them briefl y in this section.

10-R4886-AT1.indd 33410-R4886-AT1.indd 334 9/15/08 4:23:36 PM9/15/08 4:23:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Optical Flow | 335

Horn-Schunck method

Th e method of Horn and Schunck was developed in 1981 [Horn81]. Th is technique was

one of the fi rst to make use of the brightness constancy assumption and to derive the

basic brightness constancy equations. Th e solution of these equations devised by Horn

and Schunck was by hypothesizing a smoothness constraint on the velocities vx and vy.

Th is constraint was derived by minimizing the regularized Laplacian of the optical fl ow

velocity components:

∂
∂

∂
∂

− + + =
x

v

x
I I v I v Ix

x x x y y t

1
0

α
()

∂
∂

∂
∂

− + + =
y

v

y
I I v I v I

y

y x x y y t

1
0

α
()

Here α is a constant weighting coeffi cient known as the regularization constant. Larger

values of α lead to smoother (i.e., more locally consistent) vectors of motion fl ow. Th is

is a relatively simple constraint for enforcing smoothness, and its eff ect is to penal-

ize regions in which the fl ow is changing in magnitude. As with Lucas-Kanade, the

Horn-Schunck technique relies on iterations to solve the diff erential equations. Th e

function that computes this is:

void cvCalcOpticalFlowHS(
 const CvArr* imgA,
 const CvArr* imgB,
 int usePrevious,
 CvArr* velx,

Figure 10-10. Sparse optical fl ow from pyramid Lucas-Kanade: the center image is one video frame
aft er the left image; the right image illustrates the computed motion of the “good features to track”
(lower right shows fl ow vectors against a dark background for increased visibility)

10-R4886-AT1.indd 33510-R4886-AT1.indd 335 9/15/08 4:23:37 PM9/15/08 4:23:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

336 | Chapter 10: Tracking and Motion

 CvArr* vely,
 double lambda,
 CvTermCriteria criteria
);

Here imgA and imgB must be 8-bit, single-channel images. Th e x and y velocity results

will be stored in velx and vely, which must be 32-bit, fl oating-point, single-channel im-

ages. Th e usePrevious parameter tells the algorithm to use the velx and vely velocities

computed from a previous frame as the initial starting point for computing the new

velocities. Th e parameter lambda is a weight related to the Lagrange multiplier. You are

probably asking yourself: “What Lagrange multiplier?”* Th e Lagrange multiplier arises

when we attempt to minimize (simultaneously) both the motion-brightness equation

and the smoothness equations; it represents the relative weight given to the errors in

each as we minimize.

Block matching method

You might be thinking: “What’s the big deal with optical fl ow? Just match where pixels

in one frame went to in the next frame.” Th is is exactly what others have done. Th e term

“block matching” is a catchall for a whole class of similar algorithms in which the im-

age is divided into small regions called blocks [Huang95; Beauchemin95]. Blocks are

typically square and contain some number of pixels. Th ese blocks may overlap and, in

practice, oft en do. Block-matching algorithms attempt to divide both the previous and

current images into such blocks and then compute the motion of these blocks. Algo-

rithms of this kind play an important role in many video compression algorithms as

well as in optical fl ow for computer vision.

Because block-matching algorithms operate on aggregates of pixels, not on individual

pixels, the returned “velocity images” are typically of lower resolution than the input

images. Th is is not always the case; it depends on the severity of the overlap between the

blocks. Th e size of the result images is given by the following formula:

W
W W W

Wresult

prev block shiftsize

shiftsize

=
− +⎢

⎣
⎢⎢
⎢

⎥

⎦
⎥
⎥

floor

H
H H H

Hresult

prev block shiftsize

shiftsize

=
− +⎢

⎣
⎢⎢
⎢

⎥

⎦
⎥
⎥

floor

Th e implementation in OpenCV uses a spiral search that works out from the location

of the original block (in the previous frame) and compares the candidate new blocks

with the original. Th is comparison is a sum of absolute diff erences of the pixels (i.e., an

L1 distance). If a good enough match is found, the search is terminated. Here’s the func-

tion prototype:

* You might even be asking yourself: “What is a Lagrange multiplier?”. In that case, it may be best to ignore
this part of the paragraph and just set lambda equal to 1.

10-R4886-AT1.indd 33610-R4886-AT1.indd 336 9/15/08 4:23:37 PM9/15/08 4:23:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Mean-Shift and Camshift Tracking | 337

void cvCalcOpticalFlowBM(
 const CvArr* prev,
 const CvArr* curr,
 CvSize block_size,
 CvSize shift_size,
 CvSize max_range,
 int use_previous,
 CvArr* velx,
 CvArr* vely
);

Th e arguments are straightforward. Th e prev and curr parameters are the previous and

current images; both should be 8-bit, single-channel images. Th e block_size is the size

of the block to be used, and shift_size is the step size between blocks (this parameter

controls whether—and, if so, by how much—the blocks will overlap). Th e max_range pa-

rameter is the size of the region around a given block that will be searched for a cor-

responding block in the subsequent frame. If set, use_previous indicates that the values

in velx and vely should be taken as starting points for the block searches.* Finally, velx

and vely are themselves 32-bit single-channel images that will store the computed mo-

tions of the blocks. As mentioned previously, motion is computed at a block-by-block

level and so the coordinates of the result images are for the blocks (i.e., aggregates of

pixels), not for the individual pixels of the original image.

Mean-Shift and Camshift Tracking
In this section we will look at two techniques, mean-shift and camshift (where “cam-

shift ” stands for “continuously adaptive mean-shift ”). Th e former is a general technique

for data analysis (discussed in Chapter 9 in the context of segmentation) in many ap-

plications, of which computer vision is only one. Aft er introducing the general theory

of mean-shift , we’ll describe how OpenCV allows you to apply it to tracking in images.

Th e latter technique, camshift , builds on mean-shift to allow for the tracking of objects

whose size may change during a video sequence.

Mean-Shift

Th e mean-shift algorithm† is a robust method of fi nding local extrema in the density

distribution of a data set. Th is is an easy process for continuous distributions; in that

context, it is essentially just hill climbing applied to a density histogram of the data.‡ For

discrete data sets, however, this is a somewhat less trivial problem.

* If use_previous==0, then the search for a block will be conducted over a region of max_range distance
from the location of the original block. If use_previous!=0, then the center of that search is fi rst displaced
by Δx x y

x
= vel (,) and Δy x y

y
= vel (,).

† Because mean-shift is a fairly deep topic, our discussion here is aimed mainly at developing intuition
for the user. For the original formal derivation, see Fukunaga [Fukunaga90] and Comaniciu and Meer
[Comaniciu99].

‡ Th e word “essentially” is used because there is also a scale-dependent aspect of mean-shift . To be exact:
mean-shift is equivalent in a continuous distribution to fi rst convolving with the mean-shift kernel and
then applying a hill-climbing algorithm.

10-R4886-AT1.indd 33710-R4886-AT1.indd 337 9/15/08 4:23:38 PM9/15/08 4:23:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

338 | Chapter 10: Tracking and Motion

Th e descriptor “robust” is used here in its formal statistical sense; that is, mean-shift

ignores outliers in the data. Th is means that it ignores data points that are far away from

peaks in the data. It does so by processing only those points within a local window of

the data and then moving that window.

Th e mean-shift algorithm runs as follows.

Choose a search window:1.

its initial location;•

its type (uniform, polynomial, exponential, or Gaussian);•

its shape (symmetric or skewed, possibly rotated, rounded or rectangular);•

its size (extent at which it rolls off or is cut off).•

Compute the window’s (possibly weighted) center of mass.2.

Center the window at the center of mass.3.

Return to step 2 until the window stops moving (it always will).*4.

To give a little more formal sense of what the mean-shift algorithm is: it is related to the

discipline of kernel density estimation, where by “kernel” we refer to a function that has

mostly local focus (e.g., a Gaussian distribution). With enough appropriately weighted

and sized kernels located at enough points, one can express a distribution of data en-

tirely in terms of those kernels. Mean-shift diverges from kernel density estimation in

that it seeks only to estimate the gradient (direction of change) of the data distribution.

When this change is 0, we are at a stable (though perhaps local) peak of the distribution.

Th ere might be other peaks nearby or at other scales.

Figure 10-11 shows the equations involved in the mean-shift algorithm. Th ese equations

can be simplifi ed by considering a rectangular kernel,† which reduces the mean-shift

vector equation to calculating the center of mass of the image pixel distribution:

x
M

M
y

M

Mc c
= =10

00

01

00

,

Here the zeroth moment is calculated as:

M I x y
yx

00
= ∑∑ (,)

and the fi rst moments are:

* Iterations are typically restricted to some maximum number or to some epsilon change in center shift
between iterations; however, they are guaranteed to converge eventually.

† A rectangular kernel is a kernel with no falloff with distance from the center, until a single sharp transi-
tion to zero value. Th is is in contrast to the exponential falloff of a Gaussian kernel and the falloff with the
square of distance from the center in the commonly used Epanechnikov kernel.

10-R4886-AT1.indd 33810-R4886-AT1.indd 338 9/15/08 4:23:38 PM9/15/08 4:23:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Mean-Shift and Camshift Tracking | 339

Th e mean-shift vector in this case tells us to recenter the mean-shift window over the

calculated center of mass within that window. Th is movement will, of course, change

what is “under” the window and so we iterate this recentering process. Such recentering

will always converge to a mean-shift vector of 0 (i.e., where no more centering move-

ment is possible). Th e location of convergence is at a local maximum (peak) of the dis-

tribution under the window. Diff erent window sizes will fi nd diff erent peaks because

“peak” is fundamentally a scale-sensitive construct.

In Figure 10-12 we see an example of a two-dimensional distribution of data and an ini-

tial (in this case, rectangular) window. Th e arrows indicate the process of convergence

on a local mode (peak) in the distribution. Observe that, as promised, this peak fi nder is

statistically robust in the sense that points outside the mean-shift window do not aff ect

convergence—the algorithm is not “distracted” by far-away points.

In 1998, it was realized that this mode-fi nding algorithm could be used to track moving

objects in video [Bradski98a; Bradski98b], and the algorithm has since been greatly ex-

tended [Comaniciu03]. Th e OpenCV function that performs mean-shift is implemented

in the context of image analysis. Th is means in particular that, rather than taking some

Figure 10-11. Mean-shift equations and their meaning

M xI x y M yI x y
yx yx

10 01
= =∑∑ ∑∑(,) (,)and

10-R4886-AT1.indd 33910-R4886-AT1.indd 339 9/15/08 4:23:38 PM9/15/08 4:23:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

340 | Chapter 10: Tracking and Motion

arbitrary set of data points (possibly in some arbitrary number of dimensions), the

OpenCV implementation of mean-shift expects as input an image representing the den-

sity distribution being analyzed. You could think of this image as a two-dimensional

histogram measuring the density of points in some two-dimensional space. It turns out

that, for vision, this is precisely what you want to do most of the time: it’s how you can

track the motion of a cluster of interesting features.

int cvMeanShift(
 const CvArr* prob_image,
 CvRect window,
 CvTermCriteria criteria,
 CvConnectedComp* comp
);

In cvMeanShift(), the prob_image, which represents the density of probable locations,

may be only one channel but of either type (byte or fl oat). Th e window is set at the ini-

tial desired location and size of the kernel window. Th e termination criteria has been

described elsewhere and consists mainly of a maximum limit on number of mean-shift

movement iterations and a minimal movement for which we consider the window

Figure 10-12. Mean-shift algorithm in action: an initial window is placed over a two-dimensional
array of data points and is successively recentered over the mode (or local peak) of its data distribu-
tion until convergence

10-R4886-AT1.indd 34010-R4886-AT1.indd 340 9/15/08 4:23:39 PM9/15/08 4:23:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Motion Templates | 341

locations to have converged.* Th e connected component comp contains the converged

search window location in comp->rect, and the sum of all pixels under the window is

kept in the comp->area fi eld.

Th e function cvMeanShift() is one expression of the mean-shift algorithm for rectangu-

lar windows, but it may also be used for tracking. In this case, you fi rst choose the fea-

ture distribution to represent an object (e.g., color + texture), then start the mean-shift

window over the feature distribution generated by the object, and fi nally compute the

chosen feature distribution over the next video frame. Starting from the current win-

dow location, the mean-shift algorithm will fi nd the new peak or mode of the feature

distribution, which (presumably) is centered over the object that produced the color and

texture in the fi rst place. In this way, the mean-shift window tracks the movement of the

object frame by frame.

Camshift
A related algorithm is the Camshift tracker. It diff ers from the meanshift in that

the search window adjusts itself in size. If you have well-segmented distributions (say

face features that stay compact), then this algorithm will automatically adjust itself for

the size of face as the person moves closer to and further from the camera. Th e form of

the Camshift algorithm is:

int cvCamShift(
 const CvArr* prob_image,
 CvRect window,
 CvTermCriteria criteria,
 CvConnectedComp* comp,
 CvBox2D* box = NULL
);

Th e fi rst four parameters are the same as for the cvMeanShift() algorithm. Th e box param-

eter, if present, will contain the newly resized box, which also includes the orientation of

the object as computed via second-order moments. For tracking applications, we would

use the resulting resized box found on the previous frame as the window in the next frame.

Many people think of mean-shift and camshift as tracking using color
features, but this is not entirely correct. Both of these algorithms
track the distribution of any kind of feature that is expressed in the
prob_image; hence they make for very lightweight, robust, and effi cient
trackers.

Motion Templates
Motion templates were invented in the MIT Media Lab by Bobick and Davis [Bobick96;

Davis97] and were further developed jointly with one of the authors [Davis99; Brad-

ski00]. Th is more recent work forms the basis for the implementation in OpenCV.

* Again, mean-shift will always converge, but convergence may be very slow near the local peak of a distribu-
tion if that distribution is fairly “fl at” there.

10-R4886-AT1.indd 34110-R4886-AT1.indd 341 9/15/08 4:23:39 PM9/15/08 4:23:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

342 | Chapter 10: Tracking and Motion

Motion templates are an eff ective way to track general movement and are especially ap-

plicable to gesture recognition. Using motion templates requires a silhouette (or part of

a silhouette) of an object. Object silhouettes can be obtained in a number of ways.

Th e simplest method of obtaining object silhouettes is to use a reasonably stationary 1.

camera and then employ frame-to-frame diff erencing (as discussed in Chapter 9).

Th is will give you the moving edges of objects, which is enough to make motion

templates work.

You can use chroma keying. For example, if you have a known background color 2.

such as bright green, you can simply take as foreground anything that is not bright

green.

Another way (also discussed in Chapter 9) is to learn a background model from 3.

which you can isolate new foreground objects/people as silhouettes.

You can use active silhouetting techniques—for example, creating a wall of near-4.

infrared light and having a near-infrared-sensitive camera look at the wall. Any

intervening object will show up as a silhouette.

You can use thermal imagers; then any hot object (such as a face) can be taken as 5.

foreground.

Finally, you can generate silhouettes by using the segmentation techniques (e.g., 6.

pyramid segmentation or mean-shift segmentation) described in Chapter 9.

For now, assume that we have a good, segmented object silhouette as represented by

the white rectangle of Figure 10-13(A). Here we use white to indicate that all the pixels

are set to the fl oating-point value of the most recent system time stamp. As the rectangle

moves, new silhouettes are captured and overlaid with the (new) current time stamp;

the new silhouette is the white rectangle of Figure 10-13(B) and Figure 10-13(C). Older

motions are shown in Figure 10-13 as successively darker rectangles. Th ese sequentially

fading silhouettes record the history of previous movement and thus are referred to as

the “motion history image”.

Figure 10-13. Motion template diagram: (A) a segmented object at the current time stamp (white);
(B) at the next time step, the object moves and is marked with the (new) current time stamp, leaving
the older segmentation boundary behind; (C) at the next time step, the object moves further, leaving
older segmentations as successively darker rectangles whose sequence of encoded motion yields the
motion history image

10-R4886-AT1.indd 34210-R4886-AT1.indd 342 9/15/08 4:23:40 PM9/15/08 4:23:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Motion Templates | 343

In cvUpdateMotionHistory(), all image arrays consist of single-channel images. Th e

silhouette image is a byte image in which nonzero pixels represent the most recent seg-

mentation silhouette of the foreground object. Th e mhi image is a fl oating-point image

that represents the motion template (aka motion history image). Here timestamp is the

current system time (typically a millisecond count) and duration, as just described, sets

how long motion history pixels are allowed to remain in the mhi. In other words, any mhi

pixels that are older (less) than timestamp minus duration are set to 0.

Once the motion template has a collection of object silhouettes overlaid in time, we can

derive an indication of overall motion by taking the gradient of the mhi image. When we

take these gradients (e.g., by using the Scharr or Sobel gradient functions discussed in

Chapter 6), some gradients will be large and invalid. Gradients are invalid when older

or inactive parts of the mhi image are set to 0, which produces artifi cially large gradients

around the outer edges of the silhouettes; see Figure 10-15(A). Because we know the

time-step duration with which we’ve been introducing new silhouettes into the mhi via

cvUpdateMotionHistory(), we know how large our gradients (which are just dx and dy

step derivatives) should be. We can therefore use the gradient magnitude to eliminate

gradients that are too large, as in Figure 10-15(B). Finally, we can collect a measure of

global motion; see Figure 10-15(C). Th e function that eff ects parts (A) and (B) of the

fi gure is cvCalcMotionGradient():

Silhouettes whose time stamp is more than a specifi ed duration older than the current

system time stamp are set to 0, as shown in Figure 10-14. Th e OpenCV function that ac-

complishes this motion template construction is cvUpdateMotionHistory():

void cvUpdateMotionHistory(
 const CvArr* silhouette,
 CvArr* mhi,
 double timestamp,
 double duration
);

Figure 10-14. Motion template silhouettes for two moving objects (left); silhouettes older than a
specifi ed duration are set to 0 (right)

10-R4886-AT1.indd 34310-R4886-AT1.indd 343 9/15/08 4:23:40 PM9/15/08 4:23:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

344 | Chapter 10: Tracking and Motion

In cvCalcMotionGradient(), all image arrays are single-channel. Th e function input mhi

is a fl oating-point motion history image, and the input variables delta1 and delta2 are

(respectively) the minimal and maximal gradient magnitudes allowed. Here, the ex-

pected gradient magnitude will be just the average number of time-stamp ticks between

each silhouette in successive calls to cvUpdateMotionHistory(); setting delta1 halfway

below and delta2 halfway above this average value should work well. Th e variable

aperture_size sets the size in width and height of the gradient operator. Th ese values

can be set to -1 (the 3-by-3 CV_SCHARR gradient fi lter), 3 (the default 3-by-3 Sobel fi lter),

5 (for the 5-by-5 Sobel fi lter), or 7 (for the 7-by-7 fi lter). Th e function outputs are mask, a

single-channel 8-bit image in which nonzero entries indicate where valid gradients were

found, and orientation, a fl oating-point image that gives the gradient direction’s angle

at each point.

Th e function cvCalcGlobalOrientation() fi nds the overall direction of motion as the

vector sum of the valid gradient directions.

double cvCalcGlobalOrientation(
 const CvArr* orientation,
 const CvArr* mask,
 const CvArr* mhi,
 double timestamp,
 double duration
);

When using cvCalcGlobalOrientation(), we pass in the orientation and mask image

computed in cvCalcMotionGradient() along with the timestamp, duration, and resulting

mhi from cvUpdateMotionHistory(); what’s returned is the vector-sum global orientation,

void cvCalcMotionGradient(
 const CvArr* mhi,
 CvArr* mask,
 CvArr* orientation,
 double delta1,
 double delta2,
 int aperture_size=3
);

Figure 10-15. Motion gradients of the mhi image: (A) gradient magnitudes and directions; (B) large
gradients are eliminated; (C) overall direction of motion is found

10-R4886-AT1.indd 34410-R4886-AT1.indd 344 9/15/08 4:23:40 PM9/15/08 4:23:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Motion Templates | 345

as in Figure 10-15(C). Th e timestamp together with duration tells the routine how much

motion to consider from the mhi and motion orientation images. One could compute

the global motion from the center of mass of each of the mhi silhouettes, but summing

up the precomputed motion vectors is much faster.

We can also isolate regions of the motion template mhi image and determine the local

motion within that region, as shown in Figure 10-16. In the fi gure, the mhi image is

scanned for current silhouette regions. When a region marked with the most current

time stamp is found, the region’s perimeter is searched for suffi ciently recent motion

(recent silhouettes) just outside its perimeter. When such motion is found, a downward-

stepping fl ood fi ll is performed to isolate the local region of motion that “spilled off ” the

current location of the object of interest. Once found, we can calculate local motion gra-

dient direction in the spill-off region, then remove that region, and repeat the process

until all regions are found (as diagrammed in Figure 10-16).

Figure 10-16. Segmenting local regions of motion in the mhi image: (A) scan the mhi image for cur-
rent silhouettes (a) and, when found, go around the perimeter looking for other recent silhouettes
(b); when a recent silhouette is found, perform downward-stepping fl ood fi lls (c) to isolate local mo-
tion; (B) use the gradients found within the isolated local motion region to compute local motion;
(C) remove the previously found region and search for the next current silhouette region (d), scan
along it (e), and perform downward-stepping fl ood fi ll on it (f); (D) compute motion within the
newly isolated region and continue the process (A)-(C) until no current silhouette remains

10-R4886-AT1.indd 34510-R4886-AT1.indd 345 9/15/08 4:23:40 PM9/15/08 4:23:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

346 | Chapter 10: Tracking and Motion

Th e function that isolates and computes local motion is cvSegmentMotion():

CvSeq* cvSegmentMotion(
 const CvArr* mhi,
 CvArr* seg_mask,
 CvMemStorage* storage,
 double timestamp,
 double seg_thresh
);

In cvSegmentMotion(), the mhi is the single-channel fl oating-point input. We also pass in

storage, a CvMemoryStorage structure allocated via cvCreateMemStorage(). Another input

is timestamp, the value of the most current silhouettes in the mhi from which you want

to segment local motions. Finally, you must pass in seg_thresh, which is the maximum

downward step (from current time to previous motion) that you’ll accept as attached

motion. Th is parameter is provided because there might be overlapping silhouettes from

recent and much older motion that you don’t want to connect together.

It’s generally best to set seg_thresh to something like 1.5 times the average diff erence in

silhouette time stamps. Th is function returns a CvSeq of CvConnectedComp structures, one

for each separate motion found, which delineates the local motion regions; it also re-

turns seg_mask, a single-channel, fl oating-point image in which each region of isolated

motion is marked a distinct nonzero number (a zero pixel in seg_mask indicates no mo-

tion). To compute these local motions one at a time we call cvCalcGlobalOrientation(),

using the appropriate mask region selected from the appropriate CvConnectedComp or

from a particular value in the seg_mask; for example,

cvCmpS(
 seg_mask,
// [value_wanted_in_seg_mask],
// [your_destination_mask],
 CV_CMP_EQ
)

Given the discussion so far, you should now be able to understand the motempl.c

example that ships with OpenCV in the …/opencv/samples/c/ directory. We will now

extract and explain some key points from the update_mhi() function in motempl.c. Th e

update_mhi() function extracts templates by thresholding frame diff erences and then

passing the resulting silhouette to cvUpdateMotionHistory():

...
cvAbsDiff(buf[idx1], buf[idx2], silh);
cvThreshold(silh, silh, diff_threshold, 1, CV_THRESH_BINARY);
cvUpdateMotionHistory(silh, mhi, timestamp, MHI_DURATION);
...

Th e gradients of the resulting mhi image are then taken, and a mask of valid gradients is

produced using cvCalcMotionGradient(). Th en CvMemStorage is allocated (or, if it already

exists, it is cleared), and the resulting local motions are segmented into CvConnectedComp

structures in the CvSeq containing structure seq:

...
cvCalcMotionGradient(

10-R4886-AT1.indd 34610-R4886-AT1.indd 346 9/15/08 4:23:41 PM9/15/08 4:23:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Motion Templates | 347

 mhi,
 mask,
 orient,
 MAX_TIME_DELTA,
 MIN_TIME_DELTA,
 3
);

if(!storage)
 storage = cvCreateMemStorage(0);
else
 cvClearMemStorage(storage);

seq = cvSegmentMotion(
 mhi,
 segmask,
 storage,
 timestamp,
 MAX_TIME_DELTA
);

A “for” loop then iterates through the seq->total CvConnectedComp structures extracting

bounding rectangles for each motion. Th e iteration starts at -1, which has been desig-

nated as a special case for fi nding the global motion of the whole image. For the local

motion segments, small segmentation areas are fi rst rejected and then the orientation is

calculated using cvCalcGlobalOrientation(). Instead of using exact masks, this routine

restricts motion calculations to regions of interest (ROIs) that bound the local motions;

it then calculates where valid motion within the local ROIs was actually found. Any

such motion area that is too small is rejected. Finally, the routine draws the motion.

Examples of the output for a person fl apping their arms is shown in Figure 10-17, where

the output is drawn above the raw image for four sequential frames going across in two

rows. (For the full code, see …/opencv/samples/c/motempl.c.) In the same sequence, “Y”

postures were recognized by the shape descriptors (Hu moments) discussed in Chapter

8, although the shape recognition is not included in the samples code.

for(i = -1; i < seq->total; i++) {
 if(i < 0) { // case of the whole image
// ...[does the whole image]...
 else { // i-th motion component
 comp_rect = ((CvConnectedComp*)cvGetSeqElem(seq, i))->rect;
// [reject very small components]...
 }
 ...[set component ROI regions]...
 angle = cvCalcGlobalOrientation(orient, mask, mhi,
 timestamp, MHI_DURATION);
 ...[find regions of valid motion]...
 ...[reset ROI regions]...
 ...[skip small valid motion regions]...
 ...[draw the motions]...
 }

10-R4886-AT1.indd 34710-R4886-AT1.indd 347 9/15/08 4:23:41 PM9/15/08 4:23:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

348 | Chapter 10: Tracking and Motion

Estimators
Suppose we are tracking a person who is walking across the view of a video camera.

At each frame we make a determination of the location of this person. Th is could be

done any number of ways, as we have seen, but in each case we fi nd ourselves with an

estimate of the position of the person at each frame. Th is estimation is not likely to be

Figure 10-17. Results of motion template routine: going across and top to bottom, a person moving
and the resulting global motions indicated in large octagons and local motions indicated in small
octagons; also, the “Y” pose can be recognized via shape descriptors (Hu moments)

10-R4886-AT1.indd 34810-R4886-AT1.indd 348 9/15/08 4:23:41 PM9/15/08 4:23:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Estimators | 349

Th e machinery for accomplishing the two-phase estimation task falls generally under

the heading of estimators, with the Kalman fi lter [Kalman60] being the most widely

used technique. In addition to the Kalman fi lter, another important method is the con-

densation algorithm, which is a computer-vision implementation of a broader class of

extremely accurate. Th e reasons for this are many. Th ey may include inaccuracies in

the sensor, approximations in earlier processing stages, issues arising from occlusion

or shadows, or the apparent changing of shape when a person is walking due to their

legs and arms swinging as they move. Whatever the source, we expect that these mea-

surements will vary, perhaps somewhat randomly, about the “actual” values that might

be received from an idealized sensor. We can think of all these inaccuracies, taken to-

gether, as simply adding noise to our tracking process.

We’d like to have the capability of estimating the motion of this person in a way that

makes maximal use of the measurements we’ve made. Th us, the cumulative eff ect of

our many measurements could allow us to detect the part of the person’s observed tra-

jectory that does not arise from noise. Th e key additional ingredient is a model for the

person’s motion. For example, we might model the person’s motion with the following

statement: “A person enters the frame at one side and walks across the frame at constant

velocity.” Given this model, we can ask not only where the person is but also what pa-

rameters of the model are supported by our observations.

Th is task is divided into two phases (see Figure 10-18). In the fi rst phase, typically called

the prediction phase, we use information learned in the past to further refi ne our model

for what the next location of the person (or object) will be. In the second phase, the

correction phase, we make a measurement and then reconcile that measurement with

the predictions based on our previous measurements (i.e., our model).

Figure 10-18. Two-phase estimator cycle: prediction based on prior data followed by reconciliation of
the newest measurement

10-R4886-AT1.indd 34910-R4886-AT1.indd 349 9/15/08 4:23:41 PM9/15/08 4:23:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

350 | Chapter 10: Tracking and Motion

methods known as particle fi lters. Th e primary diff erence between the Kalman fi lter and

the condensation algorithm is how the state probability density is described. We will

explore the meaning of this distinction in the following sections.

The Kalman Filter
First introduced in 1960, the Kalman fi lter has risen to great prominence in a wide vari-

ety of signal processing contexts. Th e basic idea behind the Kalman fi lter is that, under

a strong but reasonable* set of assumptions, it will be possible—given a history of mea-

surements of a system—to build a model for the state of the system that maximizes the

a posteriori† probability of those previous measurements. For a good introduction, see

Welsh and Bishop [Welsh95]. In addition, we can maximize the a posteriori probability

without keeping a long history of the previous measurements themselves. Instead, we

iteratively update our model of a system’s state and keep only that model for the next

iteration. Th is greatly simplifi es the computational implications of this method.

Before we go into the details of what this all means in practice, let’s take a moment to

look at the assumptions we mentioned. Th ere are three important assumptions required

in the theoretical construction of the Kalman fi lter: (1) the system being modeled is

linear, (2) the noise that measurements are subject to is “white”, and (3) this noise is also

Gaussian in nature. Th e fi rst assumption means (in eff ect) that the state of the system

at time k can be modeled as some matrix multiplied by the state at time k–1. Th e ad-

ditional assumptions that the noise is both white and Gaussian means that the noise is

not correlated in time and that its amplitude can be accurately modeled using only an

average and a covariance (i.e., the noise is completely described by its fi rst and second

moments). Although these assumptions may seem restrictive, they actually apply to a

surprisingly general set of circumstances.‡

What does it mean to “maximize the a posteriori probability of those previous measure-

ments”? It means that the new model we construct aft er making a measurement—taking

into account both our previous model with its uncertainty and the new measurement

with its uncertainty—is the model that has the highest probability of being correct. For

our purposes, this means that the Kalman fi lter is, given the three assumptions, the best

way to combine data from diff erent sources or from the same source at diff erent times.

We start with what we know, we obtain new information, and then we decide to change

* Here by “reasonable” we mean something like “suffi ciently unrestrictive that the method is useful for a
reasonable variety of actual problems arising in the real world”. “Reasonable” just seemed like less of a
mouthful.

† Th e modifi er “a posteriori” is academic jargon for “with hindsight”. Th us, when we say that such and such
a distribution “maximizes the a posteriori probability”, what we mean is that that distribution, which is es-
sentially a possible explanation of “what really happened”, is actually the most likely one given the data we
have observed . . . you know, looking back on it all in retrospect.

‡ OK, one more footnote. We actually slipped in another assumption here, which is that the initial distribu-
tion also must be Gaussian in nature. Oft en in practice the initial state is known exactly, or at least we treat
it like it is, and so this satisfi es our requirement. If the initial state were (for example) a 50-50 chance of
being either in the bedroom or the bathroom, then we’d be out of luck and would need something more
sophisticated than a single Kalman fi lter.

10-R4886-AT1.indd 35010-R4886-AT1.indd 350 9/15/08 4:23:42 PM9/15/08 4:23:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Estimators | 351

what we know based on how certain we are about the old and new information using a

weighted combination of the old and the new.

Let’s work all this out with a little math for the case of one-dimensional motion. You

can skip the next section if you want, but linear systems and Gaussians are so friendly

that Dr. Kalman might be upset if you didn’t at least give it a try.

Some Kalman math

So what’s the gist of the Kalman fi lter?—information fusion. Suppose you want to know

where some point is on a line (our one-dimensional scenario).* As a result of noise, you

have two unreliable (in a Gaussian sense) reports about where the object is: locations x1

and x2. Because there is Gaussian uncertainty in these measurements, they have means

of x– 1 and x– 2 together with standard deviations σ1and σ2. Th e standard deviations are,

in fact, expressions of our uncertainty regarding how good our measurements are. Th e

probability distribution as a function of location is the Gaussian distribution:

1 2p x
x x

i
i

i

i

i

() exp (,)= −
−()⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=1

2 2

2

2σ π σ

given two such measurements, each with a Gaussian probability distribution, we would

expect that the probability density for some value of x given both measurements would

be proportional to p(x) = p1(x) p2(x). It turns out that this product is another Gaussian

distribution, and we can compute the mean and standard deviation of this new distri-

bution as follows. Given that

p x
x x x x

12

1

2

1

2

2

2

2 2
() exp exp� −

−()⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−
−()

σ σ
22

2

1

2

1

2

2

2

2

22 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= −
−()

−
−()⎛

⎝
⎜
⎜

exp
x x x x

σ σ

⎞⎞

⎠
⎟
⎟

Given also that a Gaussian distribution is maximal at the average value, we can fi nd

that average value simply by computing the derivative of p(x) with respect to x. Where a

function is maximal its derivative is 0, so

dp

dx

x x x x
p

x

12 12 1

1

2

12 2

2

2 12

12

= −
−

+
−⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅σ σ

(xx
12

0) =

Since the probability distribution function p(x) is never 0, it follows that the term in

brackets must be 0. Solving that equation for x gives us this very important relation:

x x x
12

2

2

1

2

2

2 1

1

2

1

2

2

2 2
=

+
⎛

⎝⎜
⎞

⎠⎟
+

+
⎛

⎝⎜
⎞

⎠⎟
σ

σ σ
σ

σ σ

* For a more detailed explanation that follows a similar trajectory, the reader is referred to J. D. Schutter,
J. De Geeter, T. Lefebvre, and H. Bruyninckx, “Kalman Filters: A Tutorial” (http://citeseer.ist.psu.edu/
443226.html).

10-R4886-AT1.indd 35110-R4886-AT1.indd 351 9/15/08 4:23:42 PM9/15/08 4:23:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

352 | Chapter 10: Tracking and Motion

Th us, the new mean value x– 12 is just a weighted combination of the two measured means,

where the weighting is determined by the relative uncertainties of the two measure-

ments. Observe, for example, that if the uncertainty σ2 of the second measurement is

particularly large, then the new mean will be essentially the same as the mean x1 for the

more certain previous measurement.

With the new mean x– 12 in hand, we can substitute this value into our expression for

p12(x) and, aft er substantial rearranging,* identify the uncertainty σ
12

2 as:

σ
σ σ

σ σ12

2 1

2

2

2

1

2

2

2
=

+
.

At this point, you are probably wondering what this tells us. Actually, it tells us a lot. It

says that when we make a new measurement with a new mean and uncertainty, we can

combine that measurement with the mean and uncertainty we already have to obtain a

new state that is characterized by a still newer mean and uncertainty. (We also now have

numerical expressions for these things, which will come in handy momentarily.)

Th is property that two Gaussian measurements, when combined, are equivalent to a sin-

gle Gaussian measurement (with a computable mean and uncertainty) will be the most

important feature for us. It means that when we have M measurements, we can combine

the fi rst two, then the third with the combination of the fi rst two, then the fourth with

the combination of the fi rst three, and so on. Th is is what happens with tracking in com-

puter vision; we obtain one measure followed by another followed by another.

Th inking of our measurements (xi, σi) as time steps, we can compute the current state of

our estimation (ˆ , ˆ)x
i i

σ as follows. At time step 1, we have only our fi rst measure x̂ x
1 1

=

and its uncertainty σ̂ σ
1

2

1

2= . Substituting this in our optimal estimation equations yields

an iteration equation:

ˆ
ˆ ˆ

x x x
2

2

2

1

2

2

2 1

1

2

1

2

2

2 2
=

+
+

+
σ

σ σ
σ

σ σ

Rearranging this equation gives us the following useful form:

ˆ ˆ
ˆ

ˆ
(ˆ)x x x x

2 1

1

2

1

2

2

2 2 1
= +

+
−

σ
σ σ

Before we worry about just what this is useful for, we should also compute the analogous

equation for σ̂
2

2. First, aft er substituting σ̂ σ
1

2

1

2= we have:

* Th e rearranging is a bit messy. If you want to verify all this, it is much easier to (1) start with the equation
for the Gaussian distribution p12(x) in terms of x– 12 and σ12, (2) substitute in the equations that relate x– 12 to x– 1
and x– 2 and those that relate σ12 to σ1 and σ2, and (3) verify that the result can be separated into the product
of the Gaussians with which we started.

10-R4886-AT1.indd 35210-R4886-AT1.indd 352 9/15/08 4:23:42 PM9/15/08 4:23:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Estimators | 353

ˆ
ˆ

ˆ
σ

σ σ
σ σ2

2 2

2

1

2

1

2

2

2
=

+

A rearrangement similar to what we did for x̂
2
 yields an iterative equation for estimating

variance given a new measurement:

ˆ
ˆ

ˆ
ˆσ

σ
σ σ

σ
2

2 1

2

1

2

2

2 1

21= −
+

⎛

⎝⎜
⎞

⎠⎟

In their current form, these equations allow us to separate clearly the “old” information

(what we knew before a new measurement was made) from the “new” information (what

our latest measurement told us). Th e new information (ˆ)x x
2 1

− , seen at time step 2, is

called the innovation. We can also see that our optimal iterative update factor is now:

K =
+

ˆ

ˆ

σ
σ σ

1

2

1

2

2

2

Th is factor is known as the update gain. Using this defi nition for K, we obtain the fol-

lowing convenient recursion form:

ˆ ˆ (ˆ)x x K x x
2 1 2 1

= + −

ˆ () ˆσ σ
2

2

1

21= − K

In the Kalman fi lter literature, if the discussion is about a general series of measurements

then our second time step “2” is usually denoted k and the fi rst time step is thus k – 1.

Systems with dynamics

In our simple one-dimensional example, we considered the case of an object being lo-

cated at some point x, and a series of successive measurements of that point. In that case

we did not specifi cally consider the case in which the object might actually be moving

in between measurements. In this new case we will have what is called the prediction

phase. During the prediction phase, we use what we know to fi gure out where we expect

the system to be before we attempt to integrate a new measurement.

In practice, the prediction phase is done immediately aft er a new measurement is made,

but before the new measurement is incorporated into our estimation of the state of the

system. An example of this might be when we measure the position of a car at time t,

then again at time t + dt. If the car has some velocity v, then we do not just incorporate

the second measurement directly. We fi rst fast-forward our model based on what we

knew at time t so that we have a model not only of the system at time t but also of the

system at time t + dt, the instant before the new information is incorporated. In this

way, the new information, acquired at time t + dt, is fused not with the old model of the

10-R4886-AT1.indd 35310-R4886-AT1.indd 353 9/15/08 4:23:43 PM9/15/08 4:23:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

354 | Chapter 10: Tracking and Motion

system, but with the old model of the system projected forward to time t + dt. Th is is the

meaning of the cycle depicted in Figure 10-18. In the context of Kalman fi lters, there are

three kinds of motion that we would like to consider.

Th e fi rst is dynamical motion. Th is is motion that we expect as a direct result of the state

of the system when last we measured it. If we measured the system to be at position x

with some velocity v at time t, then at time t + dt we would expect the system to be lo-

cated at position x + v ∗ dt, possibly still with velocity.

Th e second form of motion is called control motion. Control motion is motion that we

expect because of some external infl uence applied to the system of which, for whatever

reason, we happen to be aware. As the name implies, the most common example of

control motion is when we are estimating the state of a system that we ourselves have

some control over, and we know what we did to bring about the motion. Th is is par-

ticularly the case for robotic systems where the control is the system telling the robot

to (for example) accelerate or go forward. Clearly, in this case, if the robot was at x and

moving with velocity v at time t, then at time t + dt we expect it to have moved not only

to x + v ∗ dt (as it would have done without the control), but also a little farther, since

we did tell it to accelerate.

Th e fi nal important class of motion is random motion. Even in our simple one-

dimensional example, if whatever we were looking at had a possibility of moving on its

own for whatever reason, we would want to include random motion in our prediction

step. Th e eff ect of such random motion will be to simply increase the variance of our

state estimate with the passage of time. Random motion includes any motions that are

not known or under our control. As with everything else in the Kalman fi lter frame-

work, however, there is an assumption that this random motion is either Gaussian (i.e.,

a kind of random walk) or that it can at least be modeled eff ectively as Gaussian.

Th us, to include dynamics in our simulation model, we would fi rst do an “update” step

before including a new measurement. Th is update step would include fi rst applying any

knowledge we have about the motion of the object according to its prior state, applying

any additional information resulting from actions that we ourselves have taken or that

we know to have been taken on the system from another outside agent, and, fi nally,

incorporating our notion of random events that might have changed the state of the

system since we last measured it. Once those factors have been applied, we can then in-

corporate our next new measurement.

In practice, the dynamical motion is particularly important when the “state” of the sys-

tem is more complex than our simulation model. Oft en when an object is moving, there

are multiple components to the “state” such as the position as well as the velocity. In

this case, of course, the state evolves according to the velocity that we believe it to have.

Handling systems with multiple components to the state is the topic of the next section.

We will develop a little more sophisticated notation as well to handle these new aspects

of the situation.

10-R4886-AT1.indd 35410-R4886-AT1.indd 354 9/15/08 4:23:44 PM9/15/08 4:23:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Estimators | 355

Figure 10-19. Combining our prior knowledge N(xk–1, σk–1) with our measurement observation
N(zk, σk); the result is our new estimate N x

k k
(ˆ , ˆ)σ

Kalman equations

We can now generalize these motion equations in our toy model. Our more general

discussion will allow us to factor in any model that is a linear function F of the object’s

state. Such a model might consider combinations of the fi rst and second derivatives of

the previous motion, for example. We’ll also see how to allow for a control input uk to

our model. Finally, we will allow for a more realistic observation model z in which we

might measure only some of the model’s state variables and in which the measurements

may be only indirectly related to the state variables.*

To get started, let’s look at how K, the gain in the previous section, aff ects the estimates.

If the uncertainty of the new measurement is very large, then the new measurement es-

sentially contributes nothing and our equations reduce to the combined result being the

same as what we already knew at time k – 1. Conversely, if we start out with a large vari-

ance in the original measurement and then make a new, more accurate measurement,

then we will “believe” mostly the new measurement. When both measurements are of

equal certainty (variance), the new expected value is exactly between them. All of these

remarks are in line with our reasonable expectations.

Figure 10-19 shows how our uncertainty evolves over time as we gather new

observations.

Th is idea of an update that is sensitive to uncertainty can be generalized to many

state variables. Th e simplest example of this might be in the context of video tracking,

where objects can move in two or three dimensions. In general, the state might contain

* Observe the change in notation from xk to zk. Th e latter is standard in the literature and is intended to
clarify that zk is a general measurement, possibly of multiple parameters of the model, and not just (and
sometimes not even) the position xk.

10-R4886-AT1.indd 35510-R4886-AT1.indd 355 9/15/08 4:23:44 PM9/15/08 4:23:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

356 | Chapter 10: Tracking and Motion

additional elements, such as the velocity of an object being tracked. In any of these gen-

eral cases, we will need a bit more notation to keep track of what we are talking about.

We will generalize the description of the state at time step k to be the following function

of the state at time step k – 1:

x Fx Bu w
k k k k

= + +−1

Here xk is now an n-dimensional vector of state components and F is an n-by-n matrix,

sometimes called the transfer matrix, that multiplies xk–1. Th e vector uk is new. It’s there

to allow external controls on the system, and it consists of a c-dimensional vector re-

ferred to as the control inputs; B is an n-by-c matrix that relates these control inputs to

the state change.* Th e variable wk is a random variable (usually called the process noise)

associated with random events or forces that directly aff ect the actual state of the sys-

tem. We assume that the components of wk have Gaussian distribution N(0, Qk) for some

n-by-n covariance matrix Qk (Q is allowed to vary with time, but oft en it does not).

In general, we make measurements zk that may or may not be direct measurements of

the state variable xk. (For example, if you want to know how fast a car is moving then

you could either measure its speed with a radar gun or measure the sound coming from

its tailpipe; in the former case, zk will be xk with some added measurement noise, but in

the latter case, the relationship is not direct in this way.) We can summarize this situa-

tion by saying that we measure the m-dimensional vector of measurements zk given by:

z H x v
k k k k

= +

Here Hk is an m-by-n matrix and vk is the measurement error, which is also assumed to

have Gaussian distributions N(0, Rk) for some m-by-m covariance matrix Rk.
†

Before we get totally lost, let’s consider a particular realistic situation of taking measure-

ments on a car driving in a parking lot. We might imagine that the state of the car could

be summarized by two position variables, x and y, and two velocities, vk and vy. Th ese

four variables would be the elements of the state vector xk. Th is suggests that the correct

form for F is:

x

x

y

v

v

F

dt

dt
k

x

y
k

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=,

1 0 0

0 1 0

0 0 1 0

0 0 00 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

* Th e astute reader, or one who already knows something about Kalman fi lters, will notice another important
assumption we slipped in—namely, that there is a linear relationship (via matrix multiplication) between
the controls uk and the change in state. In practical applications, this is oft en the fi rst assumption to
break down.

† Th e k in these terms allows them to vary with time but does not require this. In actual practice, it’s common
for H and R not to vary with time.

10-R4886-AT1.indd 35610-R4886-AT1.indd 356 9/15/08 4:23:44 PM9/15/08 4:23:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Estimators | 357

However, when using a camera to make measurements of the car’s state, we probably

measure only the position variables:

z
z

zk

x

y
k

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Th is implies that the structure of H is something like:

H =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1

0

0

0

0

1

0

0

In this case, we might not really believe that the velocity of the car is constant and so

would assign a value of Qk to refl ect this. We would choose Rk based on our estimate

of how accurately we have measured the car’s position using (for example) our image

analysis techniques on a video stream.

All that remains now is to plug these expressions into the generalized forms of the up-

date equations. Th e basic idea is the same, however. First we compute the a priori esti-

mate x
k

− of the state. It is relatively common (though not universal) in the literature to

use the superscript minus sign to mean “at the time immediately prior to the new mea-

surement”; we’ll adopt that convention here as well. Th is a priori estimate is given by:

x Fx Bu w
k k k k

−
− −= + +

1 1

Using P
k

− to denote the error covariance, the a priori estimate for this covariance at time

k is obtained from the value at time k – 1 by:

P FP F Q
k k k

−
− −= +

1 1

T

Th is equation forms the basis of the predictive part of the estimator, and it tells us “what

we expect” based on what we’ve already seen. From here we’ll state (without derivation)

what is oft en called the Kalman gain or the blending factor, which tells us how to weight

new information against what we think we already know:

K P H H P H R
k k k k k k k

= +− − −T T() 1

Th ough this equation looks intimidating, it’s really not so bad. We can understand it more

easily by considering various simple cases. For our one-dimensional example in which

we measured one position variable directly, Hk is just a 1-by-1 matrix containing only a

1! Th us, if our measurement error is σ
k+1

2 , then Rk is also a 1-by-1 matrix containing that

value. Similarly, Pk is just the variance σ
k

2. So that big equation boils down to just this:

K k

k k

=
+ +

σ
σ σ

2

2

1

2

10-R4886-AT1.indd 35710-R4886-AT1.indd 357 9/15/08 4:23:45 PM9/15/08 4:23:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

358 | Chapter 10: Tracking and Motion

Note that this is exactly what we thought it would be. Th e gain, which we fi rst saw in the

previous section, allows us to optimally compute the updated values for xk and Pk when

a new measurement is available:

x x K z H x
k k k k k k

= + −− − −()

P I K H P
k k k k

= − −()

Once again, these equations look intimidating at fi rst; but in the context of our sim-

ple one-dimensional discussion, it’s really not as bad as it looks. Th e optimal weights

and gains are obtained by the same methodology as for the one-dimensional case, ex-

cept this time we minimize the uncertainty of our position state x by setting to 0 the

partial derivatives with respect to x before solving. We can show the relationship with

the simpler one-dimensional case by fi rst setting F = I (where I is the identity matrix),

B = 0, and Q = 0. Th e similarity to our one-dimensional fi lter derivation is then revealed

by making the following substitutions in our more general equations: x x
k

← ˆ
2

, x x
k

− ← ˆ
1
,

K K
k

← , z x
k

←
2
, H

k
←1, P

k
←σ̂

2

2, I ←1, P
k

− ←σ̂
1

2, and R
k

←σ
2

2.

OpenCV and the Kalman filter

With all of this at our disposal, you might feel that we don’t need OpenCV to do any-

thing for us or that we desperately need OpenCV to do all of this for us. Fortunately,

OpenCV is amenable to either interpretation. It provides four functions that are directly

related to working with Kalman fi lters.

cvCreateKalman(
 int nDynamParams,
 int nMeasureParams,
 int nControlParams
);
cvReleaseKalman(
 CvKalman** kalman
);

Th e fi rst of these generates and returns to us a pointer to a CvKalman data structure, and

the second deletes that structure.

typedef struct CvKalman {
 int MP; // measurement vector dimensions
 int DP; // state vector dimensions
 int CP; // control vector dimensions
 CvMat* state_pre; // predicted state:
 // x_k = F x_k-1 + B u_k
 CvMat* state_post; // corrected state:
 // x_k = x_k’ + K_k (z_k’- H x_k’)
 CvMat* transition_matrix; // state transition matrix
 // F
 CvMat* control_matrix; // control matrix
 // B
 // (not used if there is no control)
 CvMat* measurement_matrix; // measurement matrix
 // H

10-R4886-AT1.indd 35810-R4886-AT1.indd 358 9/15/08 4:23:46 PM9/15/08 4:23:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Estimators | 359

 CvMat* process_noise_cov; // process noise covariance
 // Q
 CvMat* measurement_noise_cov; // measurement noise covariance
 // R
 CvMat* error_cov_pre; // prior error covariance:
 // (P_k’=F P_k-1 Ft) + Q
 CvMat* gain; // Kalman gain matrix:
 // K_k = P_k’ H^T (H P_k’ H^T + R)^-1
 CvMat* error_cov_post; // posteriori error covariance
 // P_k = (I - K_k H) P_k’
 CvMat* temp1; // temporary matrices
 CvMat* temp2;
 CvMat* temp3;
 CvMat* temp4;
 CvMat* temp5;
 } CvKalman;

Th e next two functions implement the Kalman fi lter itself. Once the data is in the struc-

ture, we can compute the prediction for the next time step by calling cvKalmanPredict()

and then integrate our new measurements by calling cvKalmanCorrect(). Aft er running

each of these routines, we can read the state of the system being tracked. Th e result of

cvKalmanCorrect() is in state_post, and the result of cvKalmanPredict() is in state_pre.

cvKalmanPredict(
 CvKalman* kalman,
 const CvMat* control = NULL
);
cvKalmanCorrect(
 CvKalman* kalman,
 CvMat* measured
);

Kalman filter example code

Clearly it is time for a good example. Let’s take a relatively simple one and implement it

explicitly. Imagine that we have a point moving around in a circle, like a car on a race

track. Th e car moves with mostly constant velocity around the track, but there is some

variation (i.e., process noise). We measure the location of the car using a method such as

tracking it via our vision algorithms. Th is generates some (unrelated and probably dif-

ferent) noise as well (i.e., measurement noise).

So our model is quite simple: the car has a position and an angular velocity at any moment

in time. Together these factors form a two-dimensional state vector xk. However, our

measurements are only of the car’s position and so form a one-dimensional “vector” zk.

We’ll write a program (Example 10-2) whose output will show the car circling around

(in red) as well as the measurements we make (in yellow) and the location predicted by

the Kalman fi lter (in white).

We begin with the usual calls to include the library header fi les. We also defi ne a macro

that will prove useful when we want to transform the car’s location from angular to

Cartesian coordinates so we can draw on the screen.

10-R4886-AT1.indd 35910-R4886-AT1.indd 359 9/15/08 4:23:46 PM9/15/08 4:23:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

360 | Chapter 10: Tracking and Motion

Example 10-2. Kalman fi lter sample code

// Use Kalman Filter to model particle in circular trajectory.
//
#include “cv.h”
#include “highgui.h”
#include “cvx_defs.h”

#define phi2xy(mat) /
 cvPoint(cvRound(img->width/2 + img->width/3*cos(mat->data.fl[0])), /
 cvRound(img->height/2 - img->width/3*sin(mat->data.fl[0])))

int main(int argc, char** argv) {

 // Initialize, create Kalman Filter object, window, random number
 // generator etc.
 //
 cvNamedWindow(“Kalman”, 1);
. . . continued below

Next, we will create a random-number generator, an image to draw to, and the Kalman

fi lter structure. Notice that we need to tell the Kalman fi lter how many dimensions the

state variables are (2) and how many dimensions the measurement variables are (1).

. . . continued from above
 CvRandState rng;
 cvRandInit(&rng, 0, 1, -1, CV_RAND_UNI);

 IplImage* img = cvCreateImage(cvSize(500,500), 8, 3);
 CvKalman* kalman = cvCreateKalman(2, 1, 0);
. . . continued below

Once we have these building blocks in place, we create a matrix (really a vector, but in

OpenCV we call everything a matrix) for the state x_k, the process noise w_k, the mea-

surements z_k, and the all-important transition matrix F. Th e state needs to be initial-

ized to something, so we fi ll it with some reasonable random numbers that are narrowly

distributed around zero.

Th e transition matrix is crucial because it relates the state of the system at time k to

the state at time k + 1. In this case, the transition matrix will be 2-by-2 (since the state

vector is two-dimensional). It is, in fact, the transition matrix that gives meaning to

the components of the state vector. We view x_k as representing the angular position

of the car (φ) and the car’s angular velocity (ω). In this case, the transition matrix has

the components [[1, dt], [0, 1]]. Hence, aft er multiplying by F, the state (φ, ω) becomes

(φ + ω dt, ω)—that is, the angular velocity is unchanged but the angular position in-

creases by an amount equal to the angular velocity multiplied by the time step. In our

example we choose dt=1.0 for convenience, but in practice we’d need to use something

like the time between sequential video frames.

. . . continued from above
 // state is (phi, delta_phi) - angle and angular velocity
 // Initialize with random guess.

10-R4886-AT1.indd 36010-R4886-AT1.indd 360 9/15/08 4:23:47 PM9/15/08 4:23:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Estimators | 361

 //
 CvMat* x_k = cvCreateMat(2, 1, CV_32FC1);
 cvRandSetRange(&rng, 0, 0.1, 0);
 rng.disttype = CV_RAND_NORMAL;
 cvRand(&rng, x_k);

 // process noise
 //
 CvMat* w_k = cvCreateMat(2, 1, CV_32FC1);

 // measurements, only one parameter for angle
 //
 CvMat* z_k = cvCreateMat(1, 1, CV_32FC1);
 cvZero(z_k);

 // Transition matrix ‘F’ describes relationship between
 // model parameters at step k and at step k+1 (this is
 // the “dynamics” in our model)
 //
 const float F[] = { 1, 1, 0, 1 };
 memcpy(kalman->transition_matrix->data.fl, F, sizeof(F));
. . . continued below

Th e Kalman fi lter has other internal parameters that must be initialized. In particular,

the 1-by-2 measurement matrix H is initialized to [1, 0] by a somewhat unintuitive use

of the identity function. Th e covariance of process noise and of measurement noise are

set to reasonable but interesting values (you can play with these yourself), and we ini-

tialize the posterior error covariance to the identity as well (this is required to guarantee

the meaningfulness of the fi rst iteration; it will subsequently be overwritten).

Similarly, we initialize the posterior state (of the hypothetical step previous to the fi rst

one!) to a random value since we have no information at this time.

. . . continued from above
 // Initialize other Kalman filter parameters.
 //
 cvSetIdentity(kalman->measurement_matrix, cvRealScalar(1));
 cvSetIdentity(kalman->process_noise_cov, cvRealScalar(1e-5));
 cvSetIdentity(kalman->measurement_noise_cov, cvRealScalar(1e-1));
 cvSetIdentity(kalman->error_cov_post, cvRealScalar(1));

 // choose random initial state
 //
 cvRand(&rng, kalman->state_post);

 while(1) {
. . . continued below

Finally we are ready to start up on the actual dynamics. First we ask the Kalman fi lter

to predict what it thinks this step will yield (i.e., before giving it any new information);

we call this y_k. Th en we proceed to generate the new value of z_k (the measurement)

for this iteration. By defi nition, this value is the “real” value x_k multiplied by the mea-

surement matrix H with the random measurement noise added. We must remark here

10-R4886-AT1.indd 36110-R4886-AT1.indd 361 9/15/08 4:23:47 PM9/15/08 4:23:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

362 | Chapter 10: Tracking and Motion

that, in anything but a toy application such as this, you would not generate z_k from

x_k; instead, a generating function would arise from the state of the world or your sen-

sors. In this simulated case, we generate the measurements from an underlying “real”

data model by adding random noise ourselves; this way, we can see the eff ect of the

Kalman fi lter.

. . . continued from above
 // predict point position
 const CvMat* y_k = cvKalmanPredict(kalman, 0);

 // generate measurement (z_k)
 //
 cvRandSetRange(
 &rng,
 0,
 sqrt(kalman->measurement_noise_cov->data.fl[0]),
 0
);
 cvRand(&rng, z_k);
 cvMatMulAdd(kalman->measurement_matrix, x_k, z_k, z_k);
. . . continued below

Draw the three points corresponding to the observation we synthesized previously, the

location predicted by the Kalman fi lter, and the underlying state (which we happen to

know in this simulated case).

. . . continued from above
 // plot points (eg convert to planar coordinates and draw)
 //
 cvZero(img);
 cvCircle(img, phi2xy(z_k), 4, CVX_YELLOW); // observed state
 cvCircle(img, phi2xy(y_k), 4, CVX_WHITE, 2); // “predicted” state
 cvCircle(img, phi2xy(x_k), 4, CVX_RED); // real state
 cvShowImage(“Kalman”, img);
. . . continued below

At this point we are ready to begin working toward the next iteration. Th e fi rst thing

to do is again call the Kalman fi lter and inform it of our newest measurement. Next we

will generate the process noise. We then use the transition matrix F to time-step x_k

forward one iteration and then add the process noise we generated; now we are ready for

another trip around.

. . . continued from above
 // adjust Kalman filter state
 //
 cvKalmanCorrect(kalman, z_k);

 // Apply the transition matrix ‘F’ (e.g., step time forward)
 // and also apply the “process” noise w_k.
 //
 cvRandSetRange(
 &rng,
 0,
 sqrt(kalman->process_noise_cov->data.fl[0]),
 0

10-R4886-AT1.indd 36210-R4886-AT1.indd 362 9/15/08 4:23:47 PM9/15/08 4:23:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Estimators | 363

);
 cvRand(&rng, w_k);
 cvMatMulAdd(kalman->transition_matrix, x_k, w_k, x_k);

 // exit if user hits ‘Esc’
 if(cvWaitKey(100) == 27) break;
 }

 return 0;
}

As you can see, the Kalman fi lter part was not that complicated; half of the required

code was just generating some information to push into it. In any case, we should sum-

marize everything we’ve done, just to be sure it all makes sense.

We started out by creating matrices to represent the state of the system and the mea-

surements we would make. We defi ned both the transition and measurement matrices

and then initialized the noise covariances and other parameters of the fi lter.

Aft er initializing the state vector to a random value, we called the Kalman fi lter and

asked it to make its fi rst prediction. Once we read out that prediction (which was not

very meaningful this fi rst time through), we drew to the screen what was predicted. We

also synthesized a new observation and drew that on the screen for comparison with

the fi lter’s prediction. Next we passed the fi lter new information in the form of that new

measurement, which it integrated into its internal model. Finally, we synthesized a new

“real” state for the model so that we could iterate through the loop again.

Running the code, the little red ball orbits around and around. Th e little yellow ball ap-

pears and disappears about the red ball, representing the noise that the Kalman fi lter

is trying to “see through”. Th e white ball rapidly converges down to moving in a small

space around the red ball, showing that the Kalman fi lter has given a reasonable esti-

mate of the motion of the particle (the car) within the framework of our model.

One topic that we did not address in our example is the use of control inputs. For exam-

ple, if this were a radio-controlled car and we had some knowledge of what the person

with the controller was doing, then we could include that information into our model.

In that case it might be that the velocity is being set by the controller. We’d then need to

supply the matrix B (kalman->control_matrix) and also to provide a second argument for

cvKalmanPredict() to accommodate the control vector u.

A Brief Note on the Extended Kalman Filter
You might have noticed that requiring the dynamics of the system to be linear in the

underlying parameters is quite restrictive. It turns out that the Kalman fi lter is still use-

ful to us when the dynamics are nonlinear, and the OpenCV Kalman Filter routines

remain useful as well.

Recall that “linear” meant (in eff ect) that the various steps in the defi nition of the Kal-

man fi lter could be represented with matrices. When might this not be the case? Th ere are

actually many possibilities. For example, suppose our control measure is the amount by

10-R4886-AT1.indd 36310-R4886-AT1.indd 363 9/15/08 4:23:47 PM9/15/08 4:23:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

364 | Chapter 10: Tracking and Motion

which our car’s gas pedal is depressed: the relationship between the car’s velocity and the

gas pedal’s depression is not a linear one. Another common problem is a force on the car

that is more naturally expressed in Cartesian coordinates while the motion of the car (as

in our example) is more naturally expressed in polar coordinates. Th is might arise if our

car were instead a boat moving in circles but in a uniform water current and heading

some particular direction.

In all such cases, the Kalman fi lter is not, by itself, suffi cient. One way to handle these

nonlinearities (or at least attempt to handle them) is to linearize the relevant processes

(e.g., the update F or the control input response B). Th us, we’d need to compute new

values for F and B, at every time step, based on the state x. Th ese values would only ap-

proximate the real update and control functions in the vicinity of the particular value

of x, but in practice this is oft en suffi cient. Th is extension to the Kalman fi lter is known

simply enough as the extended Kalman fi lter [Schmidt66].

OpenCV does not provide any specifi c routines to implement this, but none are actually

needed. All we have to do is recompute and reset the values of kalman->update_matrix

and kalman->control_matrix before each update. Th e Kalman fi lter has since been more

elegantly extended to nonlinear systems in a formulation called the unscented particle

fi lter [Merwe00]. A very good overview of the entire fi eld of Kalman fi ltering, including

the latest advances, is given in [Th run05].

The Condensation Algorithm
Th e Kalman fi lter models a single hypothesis. Because the underlying model of the prob-

ability distribution for that hypothesis is unimodal Gaussian, it is not possible to rep-

resent multiple hypotheses simultaneously using the Kalman fi lter. A somewhat more

advanced technique known as the condensation algorithm [Isard98], which is based on a

broader class of estimators called particle fi lters, will allow us to address this issue.

To understand the purpose of the condensation algorithm, consider the hypothesis that

an object is moving with constant speed (as modeled by the Kalman fi lter). Any data

measured will, in essence, be integrated into the model as if it supports this hypothesis.

Consider now the case of an object moving behind an occlusion. Here we do not know

what the object is doing; it might be continuing at constant speed, it might have stopped

and/or reversed direction. Th e Kalman fi lter cannot represent these multiple possibili-

ties other than by simply broadening the uncertainty associated with the (Gaussian)

distribution of the object’s location. Th e Kalman fi lter, since it is necessarily Gaussian,

cannot represent such multimodal distributions.

As with the Kalman fi lter, we have two routines for (respectively) creating and destroy-

ing the data structure used to represent the condensation fi lter. Th e only diff erence is

that in this case the creation routine cvCreateConDensation() has an extra parameter.

Th e value entered for this parameter sets the number of hypotheses (i.e., “particles”) that

the fi lter will maintain at any given time. Th is number should be relatively large (50 or

100; perhaps more for complicated situations) because the collection of these individual

10-R4886-AT1.indd 36410-R4886-AT1.indd 364 9/15/08 4:23:47 PM9/15/08 4:23:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

The Condensation Algorithm | 365

CvConDensation* cvCreateConDensation(
 int dynam_params,
 int measure_params,
 int sample_count
);

void cvReleaseConDensation(
 CvConDensation** condens
);

Th is data structure has the following internal elements:

)typedef struct CvConDensation
{
 int MP; // Dimension of measurement vector
 int DP; // Dimension of state vector
 float* DynamMatr; // Matrix of the linear Dynamics system
 float* State; // Vector of State
 int SamplesNum; // Number of Samples
 float** flSamples; // array of the Sample Vectors
 float** flNewSamples; // temporary array of the Sample Vectors
 float* flConfidence; // Confidence for each Sample
 float* flCumulative; // Cumulative confidence
 float* Temp; // Temporary vector
 float* RandomSample; // RandomVector to update sample set
 CvRandState* RandS; // Array of structures to generate random vectors
} CvConDensation;

Once we have allocated the condensation fi lter’s data structure, we need to initialize

that structure. We do this with the routine cvConDensInitSampleSet(). While creating

the CvConDensation structure we indicated how many particles we’d have, and for each

particle we also specifi ed some number of dimensions. Initializing all of these particles

Figure 10-20. Distributions that can (panel a) and cannot (panel b) be represented as a continuous
Gaussian distribution parameterizable by a mean and an uncertainty; both distributions can alter-
natively be represented by a set of particles whose density approximates the represented distribution

hypotheses takes the place of the parameterized Gaussian probability distribution of

the Kalman fi lter. See Figure 10-20.

10-R4886-AT1.indd 36510-R4886-AT1.indd 365 9/15/08 4:23:48 PM9/15/08 4:23:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

366 | Chapter 10: Tracking and Motion

could be quite a hassle.* Fortunately, cvConDensInitSampleSet() does this for us in a con-

venient way; we need only specify the ranges for each dimension.

void cvConDensInitSampleSet(
 CvConDensation* condens,
 CvMat* lower_bound,
 CvMat* upper_bound
);

Th is routine requires that we initialize two CvMat structures. Both are vectors (meaning

that they have only one column), and each has as many entries as the number of dimen-

sions in the system state. Th ese vectors are then used to set the ranges that will be used

to initialize the sample vectors in the CvConDensation structure.

Th e following code creates two matrices of size Dim and initializes them to -1 and +1, re-

spectively. When cvConDensInitSampleSet() is called, the initial sample set will be initial-

ized to random numbers each of which falls within the (in this case, identical) interval

from -1 to +1. Th us, if Dim were three then we would be initializing the fi lter with particles

uniformly distributed inside of a cube centered at the origin and with sides of length 2.

CvMat LB = cvMat(Dim,1,CV_MAT32F,NULL);
CvMat UB = cvMat(Dim,1,CV_MAT32F,NULL);
cvmAlloc(&LB);
cvmAlloc(&UB);
ConDens = cvCreateConDensation(Dim, Dim,SamplesNum);
for(int i = 0; i<Dim; i++) {
 LB.data.fl[i] = -1.0f;
 UB.data.fl[i] = 1.0f;
}
cvConDensInitSampleSet(ConDens,&LB,&UB);

Finally, our last routine allows us to update the condensation fi lter state:

void cvConDensUpdateByTime(CvConDensation* condens);

Th ere is a little more to using this routine than meets the eye. In particular, we must up-

date the confi dences of all of the particles in light of whatever new information has be-

come available since the previous update. Sadly, there is no convenient routine for doing

this in OpenCV. Th e reason is that the relationship between the new confi dence for a

particle and the new information depends on the context. Here is an example of such an

update, which applies a simple† update to the confi dence of each particle in the fi lter.

// Update the confidences on all of the particles in the filter
// based on a new measurement M[]. Here M has the dimensionality of
// the particles in the filter.
//
void CondProbDens(
 CvConDensation* CD,
 float* M

* Of course, if you know about particle fi lters then you know that this is where we could initialize the fi lter
with our prior knowledge (or prior assumptions) about the state of the system. Th e function that initializes
the fi lter is just to help you generate a uniform distribution of points (i.e., a fl at prior).

† Th e attentive reader will notice that this update actually implies a Gaussian probability distribution, but of
course you could have a much more complicated update for your particular context.

10-R4886-AT1.indd 36610-R4886-AT1.indd 366 9/15/08 4:23:48 PM9/15/08 4:23:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 367

) {
 for(int i=0; i<CD->SamplesNum; i++) {
 float p = 1.0f;
 for(int j=0; j<CD->DP; j++) {
 p *= (float) exp(
 -0.05*(M[j] - CD->flSamples[i][j])*(M[j]-CD->flSamples[i][j])
);
 }
 CD->flConfidence[i] = Prob;
 }
}

Once you have updated the confi dences, you can then call cvCondensUpdateByTime() in

order to update the particles. Here “updating” means resampling, which is to say that

a new set of particles will be generated in accordance with the computed confi dences.

Aft er updating, all of the confi dences will again be exactly 1.0f, but the distribution of

particles will now include the previously modifi ed confi dences directly into the density

of particles in the next iteration.

Exercises
Th ere are sample code routines in the .../opencv/samples/c/ directory that demonstrate

many of the algorithms discussed in this chapter:

lkdemo.c• (optical fl ow)

camshift demo.c• (mean-shift tracking of colored regions)

motempl.c• (motion template)

kalman.c• (Kalman fi lter)

Th e covariance Hessian matrix used in 1. cvGoodFeaturesToTrack() is computed over

some square region in the image set by block_size in that function.

Conceptually, what happens when block size increases? Do we get more or a.

fewer “good features”? Why?

Dig into the b. lkdemo.c code, search for cvGoodFeaturesToTrack(), and try playing

with the block_size to see the diff erence.

Refer to Figure 10-2 and consider the function that implements subpixel corner 2.

fi nding, cvFindCornerSubPix().

What would happen if, in Figure 10-2, the checkerboard were twisted so that a.

the straight dark-light lines formed curves that met in a point? Would subpixel

corner fi nding still work? Explain.

If you expand the window size around the twisted checkerboard’s corner b.

point (aft er expanding the win and zero_zone parameters), does subpixel corner

fi nding become more accurate or does it rather begin to diverge? Explain your

answer.

10-R4886-AT1.indd 36710-R4886-AT1.indd 367 9/15/08 4:23:48 PM9/15/08 4:23:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

368 | Chapter 10: Tracking and Motion

Optical fl ow3.

Describe an object that would be better tracked by block matching than by a.

Lucas-Kanade optical fl ow.

Describe an object that would be better tracked by Lucas-Kanade optical fl ow b.

than by block matching.

Compile 4. lkdemo.c. Attach a web camera (or use a previously captured sequence

of a textured moving object). In running the program, note that “r” autoinitial-

izes tracking, “c” clears tracking, and a mouse click will enter a new point or turn

off an old point. Run lkdemo.c and initialize the point tracking by typing “r”. Ob-

serve the eff ects.

Now go into the code and remove the subpixel point placement function a.

cvFindCornerSubPix(). Does this hurt the results? In what way?

Go into the code again and, in place of b. cvGoodFeaturesToTrack(), just put down

a grid of points in an ROI around the object. Describe what happens to the

points and why.

Hint: Part of what happens is a consequence of the aperture problem—
given a fi xed window size and a line, we can’t tell how the line is
moving.

Modify the 5. lkdemo.c program to create a program that performs simple image sta-

bilization for moderately moving cameras. Display the stabilized results in the cen-

ter of a much larger window than the one output by your camera (so that the frame

may wander while the fi rst points remain stable).

Compile and run 6. camshift demo.c using a web camera or color video of a moving

colored object. Use the mouse to draw a (tight) box around the moving object; the

routine will track it.

In a. camshift demo.c, replace the cvCamShif() routine with cvMeanShift(). De-

scribe situations where one tracker will work better than another.

Write a function that will put down a grid of points in the initial b. cvMeanShift()

box. Run both trackers at once.

How can these two trackers be used together to make tracking more robust? c.

Explain and/or experiment.

Compile and run the motion template code 7. motempl.c with a web camera or using

a previously stored movie fi le.

Modify a. motempl.c so that it can do simple gesture recognition.

If the camera was moving, explain how to use your motion stabilization code b.

from exercise 5 to enable motion templates to work also for moderately moving

cameras.

10-R4886-AT1.indd 36810-R4886-AT1.indd 368 9/15/08 4:23:48 PM9/15/08 4:23:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 369

Describe how you can track circular (nonlinear) motion using a linear state model 8.

(not extended) Kalman fi lter.

Hint: How could you preprocess this to get back to linear dynamics?

Use a motion model that posits that the current state depends on the previous state’s 9.

location and velocity. Combine the lkdemo.c (using only a few click points) with the

Kalman fi lter to track Lucas-Kanade points better. Display the uncertainty around

each point. Where does this tracking fail?

Hint: Use Lucas-Kanade as the observation model for the Kalman fi lter,
and adjust noise so that it tracks. Keep motions reasonable.

A Kalman fi lter depends on linear dynamics and on Markov independence (i.e., it 10.

assumes the current state depends only on the immediate past state, not on all past

states). Suppose you want to track an object whose movement is related to its previous

location and its previous velocity but that you mistakenly include a dynamics term

only for state dependence on the previous location—in other words, forgetting the

previous velocity term.

Do the Kalman assumptions still hold? If so, explain why; if not, explain how a.

the assumptions were violated.

How can a Kalman fi lter be made to still track when you forget some terms of b.

the dynamics?

Hint: Th ink of the noise model.

Use a web cam or a movie of a person waving two brightly colored objects, one in 11.

each hand. Use condensation to track both hands.

10-R4886-AT1.indd 36910-R4886-AT1.indd 369 9/15/08 4:23:48 PM9/15/08 4:23:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

370

CHAPTER 11

Camera Models and Calibration

Vision begins with the detection of light from the world. Th at light begins as rays ema-

nating from some source (e.g., a light bulb or the sun), which then travels through space

until striking some object. When that light strikes the object, much of the light is ab-

sorbed, and what is not absorbed we perceive as the color of the light. Refl ected light

that makes its way to our eye (or our camera) is collected on our retina (or our imager).

Th e geometry of this arrangement—particularly of the ray’s travel from the object,

through the lens in our eye or camera, and to the retina or imager—is of particular im-

portance to practical computer vision.

A simple but useful model of how this happens is the pinhole camera model.* A pinhole

is an imaginary wall with a tiny hole in the center that blocks all rays except those pass-

ing through the tiny aperture in the center. In this chapter, we will start with a pinhole

camera model to get a handle on the basic geometry of projecting rays. Unfortunately,

a real pinhole is not a very good way to make images because it does not gather enough

light for rapid exposure. Th is is why our eyes and cameras use lenses to gather more

light than what would be available at a single point. Th e downside, however, is that gath-

ering more light with a lens not only forces us to move beyond the simple geometry of

the pinhole model but also introduces distortions from the lens itself.

In this chapter we will learn how, using camera calibration, to correct (mathemati-

cally) for the main deviations from the simple pinhole model that the use of lenses im-

poses on us. Camera calibration is important also for relating camera measurements

with measurements in the real, three-dimensional world. Th is is important because

scenes are not only three-dimensional; they are also physical spaces with physical units.

Hence, the relation between the camera’s natural units (pixels) and the units of the

* Knowledge of lenses goes back at least to Roman times. Th e pinhole camera model goes back at least 987
years to al-Hytham [1021] and is the classic way of introducing the geometric aspects of vision. Mathemati-
cal and physical advances followed in the 1600s and 1700s with Descartes, Kepler, Galileo, Newton, Hooke,
Euler, Fermat, and Snell (see O’Connor [O’Connor02]). Some key modern texts for geometric vision include
those by Trucco [Trucco98], Jaehne (also sometimes spelled Jähne) [Jaehne95; Jaehne97], Hartley and Zis-
serman [Hartley06], Forsyth and Ponce [Forsyth03], Shapiro and Stockman [Shapiro02], and Xu and Zhang
[Xu96].

11-R4886-RC1.indd 37011-R4886-RC1.indd 370 9/15/08 4:24:08 PM9/15/08 4:24:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Camera Model | 371

physical world (e.g., meters) is a critical component in any attempt to reconstruct a three-

dimensional scene.

Th e process of camera calibration gives us both a model of the camera’s geometry and a

distortion model of the lens. Th ese two informational models defi ne the intrinsic param-

eters of the camera. In this chapter we use these models to correct for lens distortions; in

Chapter 12, we will use them to interpret a physical scene.

We shall begin by looking at camera models and the causes of lens distortion. From

there we will explore the homography transform, the mathematical instrument that al-

lows us to capture the eff ects of the camera’s basic behavior and of its various distortions

and corrections. We will take some time to discuss exactly how the transformation that

characterizes a particular camera can be calculated mathematically. Once we have all

this in hand, we’ll move on to the OpenCV function that does most of this work for us.

Just about all of this chapter is devoted to building enough theory that you will truly

understand what is going into (and what is coming out of) the OpenCV function
cvCalibrateCamera2() as well as what that function is doing “under the hood”. Th is is

important stuff if you want to use the function responsibly. Having said that, if you are

already an expert and simply want to know how to use OpenCV to do what you already

understand, jump right ahead to the “Calibration Function” section and get to it.

Camera Model
We begin by looking at the simplest model of a camera, the pinhole camera model. In

this simple model, light is envisioned as entering from the scene or a distant object, but

only a single ray enters from any particular point. In a physical pinhole camera, this

point is then “projected” onto an imaging surface. As a result, the image on this image

plane (also called the projective plane) is always in focus, and the size of the image rela-

tive to the distant object is given by a single parameter of the camera: its focal length.

For our idealized pinhole camera, the distance from the pinhole aperture to the screen

is precisely the focal length. Th is is shown in Figure 11-1, where f is the focal length of

the camera, Z is the distance from the camera to the object, X is the length of the object,

and x is the object’s image on the imaging plane. In the fi gure, we can see by similar

triangles that –x/f = X/Z, or

− =x f
X

Z

We shall now rearrange our pinhole camera model to a form that is equivalent but in

which the math comes out easier. In Figure 11-2, we swap the pinhole and the image

plane.* Th e main diff erence is that the object now appears rightside up. Th e point in the

pinhole is reinterpreted as the center of projection. In this way of looking at things, every

* Typical of such mathematical abstractions, this new arrangement is not one that can be built physically; the
image plane is simply a way of thinking of a “slice” through all of those rays that happen to strike the center
of projection. Th is arrangement is, however, much easier to draw and do math with.

11-R4886-RC1.indd 37111-R4886-RC1.indd 371 9/15/08 4:24:09 PM9/15/08 4:24:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

372 | Chapter 11: Camera Models and Calibration

ray leaves a point on the distant object and heads for the center of projection. Th e point

at the intersection of the image plane and the optical axis is referred to as the principal

point. On this new frontal image plane (see Figure 11-2), which is the equivalent of the

old projective or image plane, the image of the distant object is exactly the same size as it

was on the image plane in Figure 11-1. Th e image is generated by intersecting these rays

with the image plane, which happens to be exactly a distance f from the center of projec-

tion. Th is makes the similar triangles relationship x/f = X/Z more directly evident than

before. Th e negative sign is gone because the object image is no longer upside down.

Figure 11-1. Pinhole camera model: a pinhole (the pinhole aperture) lets through only those light
rays that intersect a particular point in space; these rays then form an image by “projecting” onto an
image plane

Figure 11-2. A point Q = (X, Y, Z) is projected onto the image plane by the ray passing through the
center of projection, and the resulting point on the image is q = (z, y, f); the image plane is really just
the projection screen “pushed” in front of the pinhole (the math is equivalent but simpler this way)

11-R4886-RC1.indd 37211-R4886-RC1.indd 372 9/15/08 4:24:09 PM9/15/08 4:24:09 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Camera Model | 373

You might think that the principle point is equivalent to the center of the imager; yet

this would imply that some guy with tweezers and a tube of glue was able to attach the

imager in your camera to micron accuracy. In fact, the center of the chip is usually not

on the optical axis. We thus introduce two new parameters, cx and cy, to model a pos-

sible displacement (away from the optic axis) of the center of coordinates on the projec-

tion screen. Th e result is that a relatively simple model in which a point Q in the physical

world, whose coordinates are (X, Y, Z), is projected onto the screen at some pixel loca-

tion given by (xscreen, yscreen) in accordance with the following equations:*

x f
X

Z
c y f

Y

Z
c

x x y yscreen screen
=

⎛
⎝⎜

⎞
⎠⎟

+ =
⎛
⎝⎜

⎞
⎠⎟

+,

Note that we have introduced two diff erent focal lengths; the reason for this is that

the individual pixels on a typical low-cost imager are rectangular rather than square.

Th e focal length fx (for example) is actually the product of the physical focal length of the

lens and the size sx of the individual imager elements (this should make sense because

sx has units of pixels per millimeter† while F has units of millimeters, which means that

fx is in the required units of pixels). Of course, similar statements hold for fy and sy. It is

important to keep in mind, though, that sx and sy cannot be measured directly via any

camera calibration process, and neither is the physical focal length F directly measur-

able. Only the combinations fx = Fsx and fy = Fsy can be derived without actually disman-

tling the camera and measuring its components directly.

Basic Projective Geometry
Th e relation that maps the points Qi in the physical world with coordinates (Xi, Yi, Zi) to

the points on the projection screen with coordinates (xi, yi) is called a projective trans-

form. When working with such transforms, it is convenient to use what are known as

homogeneous coordinates. Th e homogeneous coordinates associated with a point in a

projective space of dimension n are typically expressed as an (n + 1)-dimensional vector

(e.g., x, y, z becomes x, y, z, w), with the additional restriction that any two points whose

values are proportional are equivalent. In our case, the image plane is the projective

space and it has two dimensions, so we will represent points on that plane as three-

dimensional vectors q = (q1, q2, q3). Recalling that all points having proportional values

in the projective space are equivalent, we can recover the actual pixel coordinates by

dividing through by q3. Th is allows us to arrange the parameters that defi ne our camera

(i.e., fx, fy, cx, and cy) into a single 3-by-3 matrix, which we will call the camera intrinsics

matrix (the approach OpenCV takes to camera intrinsics is derived from Heikkila and

* Here the subscript “screen” is intended to remind you that the coordinates being computed are in the
coordinate system of the screen (i.e., the imager). Th e diff erence between (xscreen, yscreen) in the equation and
(x, y) in Figure 11-2 is precisely the point of cx and cy. Having said that, we will subsequently drop the
“screen” subscript and simply use lowercase letters to describe coordinates on the imager.

† Of course, “millimeter” is just a stand-in for any physical unit you like. It could just as easily be “meter,”
“micron,” or “furlong.” Th e point is that sx converts physical units to pixel units.

11-R4886-RC1.indd 37311-R4886-RC1.indd 373 9/15/08 4:24:10 PM9/15/08 4:24:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

374 | Chapter 11: Camera Models and Calibration

Silven [Heikkila97]). Th e projection of the points in the physical world into the camera

is now summarized by the following simple form:

q MQ q

x

y

w

M

f c

f c
x x

y y
= =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

⎡

⎣

, ,where

0

0

0 0 1

⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, Q

X

Y

Z

Multiplying this out, you will fi nd that w = Z and so, since the point q is in homoge-

neous coordinates, we should divide through by w (or Z) in order to recover our earlier

defi nitions. (Th e minus sign is gone because we are now looking at the noninverted im-

age on the projective plane in front of the pinhole rather than the inverted image on the

projection screen behind the pinhole.)

While we are on the topic of homogeneous coordinates, there is a function in the OpenCV

library which would be appropriate to introduce here: cvConvertPointsHomogenious()* is

handy for converting to and from homogeneous coordinates; it also does a bunch of

other useful things.

void cvConvertPointsHomogenious(
 const CvMat* src,
 CvMat* dst
);

Don’t let the simple arguments fool you; this routine does a whole lot of useful stuff . Th e

input array src can be Mscr-by-N or N-by-Mscr (for Mscr = 2, 3, or 4); it can also be 1-by-N

or N-by-1, with the array having Mscr = 2, 3, or 4 channels (N can be any number; it is es-

sentially the number of points that you have stuff ed into the matrix src for conversion).

Th e output array dst can be any of these types as well, with the additional restriction

that the dimensionality Mdst must be equal to Mscr, Mscr – 1, or Mscr + 1.

When the input dimension Mscr is equal to the output dimension Mdst, the data is sim-

ply copied (and, if necessary, transposed). If Mscr > Mdst, then the elements in dst are

computed by dividing all but the last elements of the corresponding vector from src by

the last element of that same vector (i.e., src is assumed to contain homogeneous coor-

dinates). If Mscr < Mdst, then the points are copied but with a 1 being inserted into the

fi nal coordinate of every vector in the dst array (i.e., the vectors in src are extended to

homogeneous coordinates). In these cases, just as in the trivial case of Mscr = Mdst, any

necessary transpositions are also done.

One word of warning about this function is that there can be cases
(when N < 5) where the input and output dimensionality are ambigu-
ous. In this event, the function will throw an error. If you fi nd yourself
in this situation, you can just pad out the matrices with some bogus
values. Alternatively, the user may pass multichannel N-by-1 or 1-by-N
matrices, where the number of channels is Mscr (Mdst). Th e function
cvReshape() can be used to convert single-channel matrices to multi-
channel ones without copying any data.

* Yes, “Homogenious” in the function name is misspelled.

11-R4886-RC1.indd 37411-R4886-RC1.indd 374 9/15/08 4:24:10 PM9/15/08 4:24:10 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Camera Model | 375

With the ideal pinhole, we have a useful model for some of the three-dimensional

geometry of vision. Remember, however, that very little light goes through a pinhole;

thus, in practice such an arrangement would make for very slow imaging while we wait

for enough light to accumulate on whatever imager we are using. For a camera to form

images at a faster rate, we must gather a lot of light over a wider area and bend (i.e., fo-

cus) that light to converge at the point of projection. To accomplish this, we use a lens. A

lens can focus a large amount of light on a point to give us fast imaging, but it comes at

the cost of introducing distortions.

Lens Distortions
In theory, it is possible to defi ne a lens that will introduce no distortions. In practice,

however, no lens is perfect. Th is is mainly for reasons of manufacturing; it is much easier

to make a “spherical” lens than to make a more mathematically ideal “parabolic” lens. It

is also diffi cult to mechanically align the lens and imager exactly. Here we describe the

two main lens distortions and how to model them.* Radial distortions arise as a result of

the shape of lens, whereas tangential distortions arise from the assembly process of the

camera as a whole.

We start with radial distortion. Th e lenses of real cameras oft en noticeably distort the

location of pixels near the edges of the imager. Th is bulging phenomenon is the source

of the “barrel” or “fi sh-eye” eff ect (see the room-divider lines at the top of Figure 11-12

for a good example). Figure 11-3 gives some intuition as to why radial distortion occurs.

With some lenses, rays farther from the center of the lens are bent more than those

closer in. A typical inexpensive lens is, in eff ect, stronger than it ought to be as you get

farther from the center. Barrel distortion is particularly noticeable in cheap web cam-

eras but less apparent in high-end cameras, where a lot of eff ort is put into fancy lens

systems that minimize radial distortion.

For radial distortions, the distortion is 0 at the (optical) center of the imager and in-

creases as we move toward the periphery. In practice, this distortion is small and can be

characterized by the fi rst few terms of a Taylor series expansion around r = 0.† For cheap

web cameras, we generally use the fi rst two such terms; the fi rst of which is convention-

ally called k1 and the second k2. For highly distorted cameras such as fi sh-eye lenses we

can use a third radial distortion term k3. In general, the radial location of a point on the

imager will be rescaled according to the following equations:

* Th e approach to modeling lens distortion taken here derives mostly from Brown [Brown71] and earlier
Fryer and Brown [Fryer86].

† If you don’t know what a Taylor series is, don’t worry too much. Th e Taylor series is a mathematical tech-
nique for expressing a (potentially) complicated function in the form of a polynomial of similar value to
the approximated function in at least a small neighborhood of some particular point (the more terms we
include in the polynomial series, the more accurate the approximation). In our case we want to expand the
distortion function as a polynomial in the neighborhood of r = 0. Th is polynomial takes the general form
f(r) = a0 + a1r + a2r

2+ ..., but in our case the fact that f(r) = 0 at r = 0 implies a0 = 0. Similarly, because the
function must be symmetric in r, only the coeffi cients of even powers of r will be nonzero. For these reasons,
the only parameters that are necessary for characterizing these radial distortions are the coeffi cients of
r2, r4, and (sometimes) r6.

11-R4886-RC1.indd 37511-R4886-RC1.indd 375 9/15/08 4:24:11 PM9/15/08 4:24:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

376 | Chapter 11: Camera Models and Calibration

x x k r k r k r
corrected

= + + +()1
1

2

2

4

3

6

y y k r k r k r
corrected

= + + +()1
1

2

2

4

3

6

Here, (x, y) is the original location (on the imager) of the distorted point and (xcorrected,

ycorrected) is the new location as a result of the correction. Figure 11-4 shows displace-

ments of a rectangular grid that are due to radial distortion. External points on a front-

facing rectangular grid are increasingly displaced inward as the radial distance from the

optical center increases.

Th e second-largest common distortion is tangential distortion. Th is distortion is due to

manufacturing defects resulting from the lens not being exactly parallel to the imaging

plane; see Figure 11-5.

Tangential distortion is minimally characterized by two additional parameters, p1 and

p2, such that:*

x x p y p r x
corrected

= + + +[()]2 2
1 2

2 2

y y p r y p x
corrected

= + + +[()]
1

2 2

2
2 2

Th us in total there are fi ve distortion coeffi cients that we require. Because all fi ve are

necessary in most of the OpenCV routines that use them, they are typically bundled

into one distortion vector; this is just a 5-by-1 matrix containing k1, k2, p1, p2, and k3

(in that order). Figure 11-6 shows the eff ects of tangential distortion on a front-facing

external rectangular grid of points. Th e points are displaced elliptically as a function of

location and radius.

* Th e derivation of these equations is beyond the scope of this book, but the interested reader is referred to
the “plumb bob” model; see D. C. Brown, “Decentering Distortion of Lenses”, Photometric Engineering 32(3)
(1966), 444–462.

Figure 11-3. Radial distortion: rays farther from the center of a simple lens are bent too much com-
pared to rays that pass closer to the center; thus, the sides of a square appear to bow out on the image
plane (this is also known as barrel distortion)

11-R4886-RC1.indd 37611-R4886-RC1.indd 376 9/15/08 4:24:11 PM9/15/08 4:24:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Camera Model | 377

Th ere are many other kinds of distortions that occur in imaging systems, but they typi-

cally have lesser eff ects than radial and tangential distortions. Hence neither we nor

OpenCV will deal with them further.

Figure 11-4. Radial distortion plot for a particular camera lens: the arrows show where points on an
external rectangular grid are displaced in a radially distorted image (courtesy of Jean-Yves Bouguet)

Figure 11-5. Tangential distortion results when the lens is not fully parallel to the image plane; in
cheap cameras, this can happen when the imager is glued to the back of the camera (image courtesy
of Sebastian Th run)

11-R4886-RC1.indd 37711-R4886-RC1.indd 377 9/15/08 4:24:11 PM9/15/08 4:24:11 PM

www.it-ebooks.info

http://www.it-ebooks.info/

378 | Chapter 11: Camera Models and Calibration

Calibration
Now that we have some idea of how we’d describe the intrinsic and distortion properties

of a camera mathematically, the next question that naturally arises is how we can use

OpenCV to compute the intrinsics matrix and the distortion vector.*

OpenCV provides several algorithms to help us compute these intrinsic parameters.

Th e actual calibration is done via cvCalibrateCamera2(). In this routine, the method of

calibration is to target the camera on a known structure that has many individual and

identifi able points. By viewing this structure from a variety of angles, it is possible to

then compute the (relative) location and orientation of the camera at the time of each

image as well as the intrinsic parameters of the camera (see Figure 11-9 in the “Chess-

boards” section). In order to provide multiple views, we rotate and translate the object,

so let’s pause to learn a little more about rotation and translation.

* For a great online tutorial of camera calibration, see Jean-Yves Bouguet’s calibration website
(http://www.vision.caltech.edu/bouguetj/calib_doc).

Figure 11-6. Tangential distortion plot for a particular camera lens: the arrows show where points on
an external rectangular grid are displaced in a tangentially distorted image (courtesy of Jean-Yves
Bouguet)

11-R4886-RC1.indd 37811-R4886-RC1.indd 378 9/15/08 4:24:12 PM9/15/08 4:24:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Calibration | 379

Rotation Matrix and Translation Vector
For each image the camera takes of a particular object, we can describe the pose of the

object relative to the camera coordinate system in terms of a rotation and a translation;

see Figure 11-7.

In general, a rotation in any number of dimensions can be described in terms of multi-

plication of a coordinate vector by a square matrix of the appropriate size. Ultimately,

a rotation is equivalent to introducing a new description of a point’s location in a dif-

ferent coordinate system. Rotating the coordinate system by an angle θ is equivalent

to counterrotating our target point around the origin of that coordinate system by the

same angle θ. Th e representation of a two-dimensional rotation as matrix multiplication

is shown in Figure 11-8. Rotation in three dimensions can be decomposed into a two-

dimensional rotation around each axis in which the pivot axis measurements remain

constant. If we rotate around the x-, y-, and z-axes in sequence* with respective rotation

angles ψ, φ, and θ, the result is a total rotation matrix R that is given by the product of

the three matrices Rx(ψ), Ry(φ), and Rz(θ), where:

R
x
() cos sin

sin cos

ψ ψ ψ
ψ ψ

=
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 0

0

0

* Just to be clear: the rotation we are describing here is fi rst around the z-axis, then around the new position
of the y-axis, and fi nally around the new position of the x-axis.

Figure 11-7. Converting from object to camera coordinate systems: the point P on the object is seen
as point p on the image plane; the point p is related to point P by applying a rotation matrix R and a
translation vector t to P

11-R4886-RC1.indd 37911-R4886-RC1.indd 379 9/15/08 4:24:12 PM9/15/08 4:24:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

380 | Chapter 11: Camera Models and Calibration

R
y
()

cos sin

sin cos

ϕ
ϕ ϕ

ϕ ϕ
=

−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0

0 1 0

0

R
z
()

cos sin

sin cosθ
θ θ
θ θ= −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0

0

0 0 1

Th us, R = Rz(θ), Ry(φ), Rx(ψ). Th e rotation matrix R has the property that its inverse is

its transpose (we just rotate back); hence we have RTR = RRT = I, where I is the identity

matrix consisting of 1s along the diagonal and 0s everywhere else.

Th e translation vector is how we represent a shift from one coordinate system to another

system whose origin is displaced to another location; in other words, the translation vec-

tor is just the off set from the origin of the fi rst coordinate system to the origin of the sec-

ond coordinate system. Th us, to shift from a coordinate system centered on an object to

one centered at the camera, the appropriate translation vector is simply T = originobject –

origincamera. We then have (with reference to Figure 11-7) that a point in the object (or

world) coordinate frame Po has coordinates Pc in the camera coordinate frame:

P R P T
c o
= −()

Figure 11-8. Rotating points by θ (in this case, around the Z-axis) is the same as counterrotating the
coordinate axis by θ; by simple trigonometry, we can see how rotation changes the coordinates of a
point

11-R4886-RC1.indd 38011-R4886-RC1.indd 380 9/15/08 4:24:12 PM9/15/08 4:24:12 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Calibration | 381

Combining this equation for Pc above with the camera intrinsic corrections will form

the basic system of equations that we will be asking OpenCV to solve. Th e solution to

these equations will be the camera calibration parameters we seek.

We have just seen that a three-dimensional rotation can be specifi ed with three angles

and that a three-dimensional translation can be specifi ed with the three parameters

(x, y, z); thus we have six parameters so far. Th e OpenCV intrinsics matrix for a camera

has four parameters (fx, fy, cx, and cy), yielding a grand total of ten parameters that must

be solved for each view (but note that the camera intrinsic parameters stay the same

between views). Using a planar object, we’ll soon see that each view fi xes eight param-

eters. Because the six parameters of rotation and translation change between views, for

each view we have constraints on two additional parameters that we use to resolve the

camera intrinsic matrix. We’ll then need at least two views to solve for all the geometric

parameters.

We’ll provide more details on the parameters and their constraints later in the chap-

ter, but fi rst we discuss the calibration object. Th e calibration object used in OpenCV

is a fl at grid of alternating black and white squares that is usually called a “chessboard”

(even though it needn’t have eight squares, or even an equal number of squares, in each

direction).

Chessboards
In principle, any appropriately characterized object could be used as a calibration object,

yet the practical choice is a regular pattern such as a chessboard.* Some calibration meth-

ods in the literature rely on three-dimensional objects (e.g., a box covered with markers),

but fl at chessboard patterns are much easier to deal with; it is diffi cult to make (and to

store and distribute) precise 3D calibration objects. OpenCV thus opts for using multiple

views of a planar object (a chessboard) rather than one view of a specially constructed

3D object. We use a pattern of alternating black and white squares (see Figure 11-9),

which ensures that there is no bias toward one side or the other in measurement. Also,

the resulting grid corners lend themselves naturally to the subpixel localization func-

tion discussed in Chapter 10.

Given an image of a chessboard (or a person holding a chessboard, or any other scene

with a chessboard and a reasonably uncluttered background), you can use the OpenCV

function cvFindChessboardCorners() to locate the corners of the chessboard.

int cvFindChessboardCorners(
 const void* image,
 CvSize pattern_size,
 CvPoint2D32f* corners,
 int* corner_count = NULL,
 int flags = CV_CALIB_CB_ADAPTIVE_THRESH
);

* Th e specifi c use of this calibration object—and much of the calibration approach itself—comes from Zhang
[Zhang99; Zhang00] and Sturm [Sturm99].

11-R4886-RC1.indd 38111-R4886-RC1.indd 381 9/15/08 4:24:13 PM9/15/08 4:24:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

382 | Chapter 11: Camera Models and Calibration

Th is function takes as arguments a single image containing a chessboard. Th is image

must be an 8-bit grayscale (single-channel) image. Th e second argument, pattern_size,

indicates how many corners are in each row and column of the board. Th is count is

the number of interior corners; thus, for a standard chess game board the correct value

would be cvSize(7,7).* Th e next argument, corners, is a pointer to an array where the

corner locations can be recorded. Th is array must be preallocated and, of course, must

be large enough for all of the corners on the board (49 on a standard chess game board).

Th e individual values are the locations of the corners in pixel coordinates. Th e corner_
count argument is optional; if non-NULL, it is a pointer to an integer where the number of

corners found can be recorded. If the function is successful at fi nding all of the corners,†

then the return value will be a nonzero number. If the function fails, 0 will be returned.

Th e fi nal flags argument can be used to implement one or more additional fi ltration

steps to help fi nd the corners on the chessboard. Any or all of the arguments may be

combined using a Boolean OR.

CV_CALIB_CB_ADAPTIVE_THRESH
Th e default behavior of cvFindChessboardCorners() is fi rst to threshold the image

based on average brightness, but if this fl ag is set then an adaptive threshold will be

used instead.

* In practice, it is oft en more convenient to use a chessboard grid that is asymmetric and of even and odd
dimensions—for example, (5, 6). Using such even-odd asymmetry yields a chessboard that has only one
symmetry axis, so the board orientation can always be defi ned uniquely.

† Actually, the requirement is slightly stricter: not only must all the corners be found, they must also be
ordered into rows and columns as expected. Only if the corners can be found and ordered correctly will the
return value of the function be nonzero.

Figure 11-9. Images of a chessboard being held at various orientations (left) provide enough infor-
mation to completely solve for the locations of those images in global coordinates (relative to the
camera) and the camera intrinsics

11-R4886-RC1.indd 38211-R4886-RC1.indd 382 9/15/08 4:24:13 PM9/15/08 4:24:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Calibration | 383

CV_CALIB_CB_NORMALIZE_IMAGE
If set, this fl ag causes the image to be normalized via cvEqualizeHist() before the

thresholding is applied.

CV_CALIB_CB_FILTER_QUADS
Once the image is thresholded, the algorithm attempts to locate the quadrangles

resulting from the perspective view of the black squares on the chessboard. Th is is

an approximation because the lines of each edge of a quadrangle are assumed to be

straight, which isn’t quite true when there is radial distortion in the image. If this

fl ag is set, then a variety of additional constraints are applied to those quadrangles

in order to reject false quadrangles.

Subpixel corners

Th e corners returned by cvFindChessboardCorners() are only approximate. What this

means in practice is that the locations are accurate only to within the limits of our im-

aging device, which means accurate to within one pixel. A separate function must be

used to compute the exact locations of the corners (given the approximate locations and

the image as input) to subpixel accuracy. Th is function is the same cvFindCornerSubPix()

function that we used for tracking in Chapter 10. It should not be surprising that this

function can be used in this context, since the chessboard interior corners are simply a

special case of the more general Harris corners; the chessboard corners just happen to

be particularly easy to fi nd and track. Neglecting to call subpixel refi nement aft er you

fi rst locate the corners can cause substantial errors in calibration.

Drawing chessboard corners

Particularly when debugging, it is oft en desirable to draw the found chessboard corners

onto an image (usually the image that we used to compute the corners in the fi rst place);

this way, we can see whether the projected corners match up with the observed corners.

Toward this end, OpenCV provides a convenient routine to handle this common task.

Th e function cvDrawChessboardCorners() draws the corners found by cvFindChessboard-
Corners() onto an image that you provide. If not all of the corners were found, the avail-

able corners will be represented as small red circles. If the entire pattern was found, then

the corners will be painted into diff erent colors (each row will have its own color) and

connected by lines representing the identifi ed corner order.

void cvDrawChessboardCorners(
 CvArr* image,
 CvSize pattern_size,
 CvPoint2D32f* corners,
 int count,
 int pattern_was_found
);

Th e fi rst argument to cvDrawChessboardCorners() is the image to which the draw-

ing will be done. Because the corners will be represented as colored circles, this must

be an 8-bit color image; in most cases, this will be a copy of the image you gave to

cvFindChessboardCorners() (but you must convert it to a three-channel image yourself).

11-R4886-RC1.indd 38311-R4886-RC1.indd 383 9/15/08 4:24:13 PM9/15/08 4:24:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

384 | Chapter 11: Camera Models and Calibration

Th e next two arguments, pattern_size and corners, are the same as the correspond-

ing arguments for cvFindChessboardCorners(). Th e argument count is an integer equal

to the number of corners. Finally the argument pattern_was_found indicates whether

the entire chessboard pattern was successfully found; this can be set to the return

value from cvFindChessboardCorners(). Figure 11-10 shows the result of applying

cvDrawChessboardCorners() to a chessboard image.

We now turn to what a planar object can do for us. Points on a plane undergo perspec-

tive transform when viewed through a pinhole or lens. Th e parameters for this trans-

form are contained in a 3-by-3 homography matrix, which we describe next.

Homography
In computer vision, we defi ne planar homography as a projective mapping from one

plane to another.* Th us, the mapping of points on a two-dimensional planar surface to

* Th e term “homography” has diff erent meanings in diff erent sciences; for example, it has a somewhat more
general meaning in mathematics. Th e homographies of greatest interest in computer vision are a subset of
the other, more general, meanings of the term.

Figure 11-10. Result of cvDrawChessboardCorners(); once you fi nd the corners using
cvFindChessboardCorners(), you can project where these corners were found (small circles
on corners) and in what order they belong (as indicated by the lines between circles)

11-R4886-RC1.indd 38411-R4886-RC1.indd 384 9/15/08 4:24:13 PM9/15/08 4:24:13 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Calibration | 385

the imager of our camera is an example of planar homography. It is possible to express

this mapping in terms of matrix multiplication if we use homogeneous coordinates to

express both the viewed point Q and the point q on the imager to which Q is mapped. If

we defi ne:

�

�

Q X Y Z

q x y

= ⎡⎣ ⎤⎦

= ⎡⎣ ⎤⎦

1

1

T

T

then we can express the action of the homography simply as:

� �q sHQ=

Here we have introduced the parameter s, which is an arbitrary scale factor (intended to

make explicit that the homography is defi ned only up to that factor). It is conventionally

factored out of H, and we’ll stick with that convention here.

With a little geometry and some matrix algebra, we can solve for this transformation

matrix. Th e most important observation is that H has two parts: the physical transfor-

mation, which essentially locates the object plane we are viewing; and the projection,

which introduces the camera intrinsics matrix. See Figure 11-11.

Figure 11-11. View of a planar object as described by homography: a mapping—from the object
plane to the image plane—that simultaneously comprehends the relative locations of those two
planes as well as the camera projection matrix

11-R4886-RC1.indd 38511-R4886-RC1.indd 385 9/15/08 4:24:14 PM9/15/08 4:24:14 PM

www.it-ebooks.info

http://www.it-ebooks.info/

386 | Chapter 11: Camera Models and Calibration

Th e physical transformation part is the sum of the eff ects of some rotation R and some

translation t that relate the plane we are viewing to the image plane. Because we are

working in homogeneous coordinates, we can combine these within a single matrix as

follows:*

W R= ⎡⎣ ⎤⎦t

Th en, the action of the camera matrix M (which we already know how to express in pro-

jective coordinates) is multiplied by WQ
~

; this yields:

� �q sMWQ M

f c

f c
x x

y y
= =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, where

0

0

0 0 1

It would seem that we are done. However, it turns out that in practice our interest is not

the coordinate Q
~

, which is defi ned for all of space, but rather a coordinate Q
~

�, which is

defi ned only on the plane we are looking at. Th is allows for a slight simplifi cation.

Without loss of generality, we can choose to defi ne the object plane so that Z = 0. We

do this because, if we also break up the rotation matrix into three 3-by-1 columns (i.e.,

R = [r1 r2 r3]), then one of those columns is not needed. In particular:

x

y sM r r r

X

Y

1
0

1

1 2 3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= ⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

t

⎥⎥

= ⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

sM r r

X

Y
1 2

1

t

Th e homography matrix H that maps a planar object’s points onto the imager is then

described completely by H = sM[r1 r2 t], where:

� �q sHQ= ′

Observe that H is now a 3-by-3 matrix.

OpenCV uses the preceding equations to compute the homography matrix. It uses mul-

tiple images of the same object to compute both the individual translations and rota-

tions for each view as well as the intrinsics (which are the same for all views). As we

have discussed, rotation is described by three angles and translation is defi ned by three

off sets; hence there are six unknowns for each view. Th is is OK, because a known pla-

nar object (such as our chessboard) gives us eight equations—that is, the mapping of a

square into a quadrilateral can be described by four (x, y) points. Each new frame gives

us eight equations at the cost of six new extrinsic unknowns, so given enough images we

should be able to compute any number of intrinsic unknowns (more on this shortly).

* Here W = [R t] is a 3-by-4 matrix whose fi rst three columns comprise the nine entries of R and whose last
column consists of the three-component vector t.

11-R4886-RC1.indd 38611-R4886-RC1.indd 386 9/15/08 4:24:14 PM9/15/08 4:24:14 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Calibration | 387

Th e homography matrix H relates the positions of the points on a source image plane

to the points on the destination image plane (usually the imager plane) by the following

simple equations:

p Hp p H p
dst src src dst

,= = −1

p

x

y p

x

y
dst

dst

dst src

src

src
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢

1 1

,

⎢⎢

⎤

⎦

⎥
⎥
⎥

Notice that we can compute H without knowing anything about the camera intrinsics.

In fact, computing multiple homographies from multiple views is the method OpenCV

uses to solve for the camera intrinsics, as we’ll see.

OpenCV provides us with a handy function, cvFindHomography(), which takes a list of

correspondences and returns the homography matrix that best describes those corre-

spondences. We need a minimum of four points to solve for H, but we can supply many

more if we have them* (as we will with any chessboard bigger than 3-by-3). Using more

points is benefi cial, because invariably there will be noise and other inconsistencies

whose eff ect we would like to minimize.

void cvFindHomography(
 const CvMat* src_points,
 const CvMat* dst_points,
 CvMat* homography
);

Th e input arrays src_points and dst_points can be either N-by-2 matrices or N-by-3

matrices. In the former case the points are pixel coordinates, and in the latter they are

expected to be homogeneous coordinates. Th e fi nal argument, homography, is just a

3-by-3 matrix to be fi lled by the function in such a way that the back-projection error

is minimized. Because there are only eight free parameters in the homography matrix,

we chose a normalization where H33 = 1. Scaling the homography could be applied to

the ninth homography parameter, but usually scaling is instead done by multiplying the

entire homography matrix by a scale factor.

Camera Calibration
We fi nally arrive at camera calibration for camera intrinsics and distortion parameters.

In this section we’ll learn how to compute these values using cvCalibrateCamera2() and

also how to use these models to correct distortions in the images that the calibrated

camera would have otherwise produced. First we say a little more about how many

views of a chessboard are necessary in order to solve for the intrinsics and distortion.

Th en we’ll off er a high-level overview of how OpenCV actually solves this system before

moving on to the code that makes it all easy to do.

* Of course, an exact solution is guaranteed only when there are four correspondences. If more are provided,
then what’s computed is a solution that is optimal in the sense of least-squares error.

11-R4886-RC1.indd 38711-R4886-RC1.indd 387 9/15/08 4:24:14 PM9/15/08 4:24:14 PM

www.it-ebooks.info

http://www.it-ebooks.info/

388 | Chapter 11: Camera Models and Calibration

How many chess corners for how many parameters?

It will prove instructive to review our unknowns. Th at is, how many parameters are we

attempting to solve for through calibration? In the OpenCV case, we have four intrinsic

parameters (fx, fy, cx, cy,) and fi ve distortion parameters: three radial (k1, k2, k3) and two

tangential (p1, p2). Intrinsic parameters are directly tied to the 3D geometry (and hence

the extrinsic parameters) of where the chessboard is in space; distortion parameters are

tied to the 2D geometry of how the pattern of points gets distorted, so we deal with

the constraints on these two classes of parameters separately. Th ree corner points in a

known pattern yielding six pieces of information are (in principle) all that is needed to

solve for our fi ve distortion parameters (of course, we use much more for robustness).

Th us, one view of a chessboard is all that we need to compute our distortion parameters.

Th e same chessboard view could also be used in our intrinsics computation, which we

consider next, starting with the extrinsic parameters. For the extrinsic parameters we’ll

need to know where the chessboard is. Th is will require three rotation parameters (ψ,

ϕ, θ) and three translation parameters (Tx, Ty, Tz) for a total of six per view of the chess-

board, because in each image the chessboard will move. Together, the four intrinsic and

six extrinsic parameters make for ten altogether that we must solve for each view.

Let’s say we have N corners and K images of the chessboard (in diff erent positions). How

many views and corners must we see so that there will be enough constraints to solve

for all these parameters?

K• images of the chessboard provide 2NK constraints (we use the multiplier 2 be-

cause each point on the image has both an x and a y coordinate).

Ignoring the distortion parameters for the moment, we have 4 intrinsic parameters •

and 6K extrinsic parameters (since we need to fi nd the 6 parameters of the chess-

board location in each of the K views).

Solving then requires that 2• NK ≥ 6K + 4 hold (or, equivalently, (N – 3) K ≥ 2).

It seems that if N = 5 then we need only K = 1 image, but watch out! For us, K (the

number of images) must be more than 1. Th e reason for requiring K > 1 is that we’re

using chessboards for calibration to fi t a homography matrix for each of the K views.

As discussed previously, a homography can yield at most eight parameters from four

(x, y) pairs. Th is is because only four points are needed to express everything that a pla-

nar perspective view can do: it can stretch a square in four diff erent directions at once,

turning it into any quadrilateral (see the perspective images in Chapter 6). So, no matter

how many corners we detect on a plane, we only get four corners’ worth of information.

Per chessboard view, then, the equation can give us only four corners of information or

(4 – 3) K > 1, which means K > 1. Th is implies that two views of a 3-by-3 chessboard

(counting only internal corners) are the minimum that could solve our calibration prob-

lem. Consideration for noise and numerical stability is typically what requires the col-

lection of more images of a larger chessboard. In practice, for high-quality results, you’ll

need at least ten images of a 7-by-8 or larger chessboard (and that’s only if you move the

chessboard enough between images to obtain a “rich” set of views).

11-R4886-RC1.indd 38811-R4886-RC1.indd 388 9/15/08 4:24:15 PM9/15/08 4:24:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Calibration | 389

What’s under the hood?

Th is subsection is for those who want to go deeper; it can be safely skipped if you just

want to call the calibration functions. If you are still with us, the question remains:

how is all this mathematics used for calibration? Although there are many ways to

solve for the camera parameters, OpenCV chose one that works well on planar objects.

Th e algorithm OpenCV uses to solve for the focal lengths and off sets is based on Zhang’s

method [Zhang00], but OpenCV uses a diff erent method based on Brown [Brown71] to

solve for the distortion parameters.

To get started, we pretend that there is no distortion in the camera while solving for the

other calibration parameters. For each view of the chessboard, we collect a homography

H as described previously. We’ll write H out as column vectors, H = [h1 h2 h3], where

each h is a 3-by-1 vector. Th en, in view of the preceding homography discussion, we can

set H equal to the camera intrinsics matrix M multiplied by a combination of the fi rst

two rotation matrix columns, r1 and r2, and the translation vector t; aft er including the

scale factor s, this yields:

H h h h sM r r= ⎡⎣ ⎤⎦ = ⎡⎣ ⎤⎦1 2 3 1 2
t

Reading off these equations, we have:

h sMr r M h
1 1 1

1

1
= = −or λ

h sMr r M h
2 2 2

1

2
= = −or λ

h sMt t M h
3

1

3
= = −or λ

Here, λ = 1/s.

Th e rotation vectors are orthogonal to each other by construction, and since the scale is

extracted it follows that r1 and r2 are orthonormal. Orthonormal implies two things: the

rotation vector’s dot product is 0, and the vectors’ magnitudes are equal. Starting with

the dot product, we have:

r r
1 2

T 0=

For any vectors a and b we have (ab)T = bTaT, so we can substitute for r1 and r2 to derive

our fi rst constraint:

h M M h
1

1

2
0T T− − =

where A–T is shorthand for (A–1)T. We also know that the magnitudes of the rotation vec-

tors are equal:

= r r r r
1 1 2 2=T Tr r

1 2
or

Substituting for r1 and r2 yields our second constraint:

h M M h h M M h
1

1

1 2

1

2

T T T T− − − −=

11-R4886-RC1.indd 38911-R4886-RC1.indd 389 9/15/08 4:24:15 PM9/15/08 4:24:15 PM

www.it-ebooks.info

http://www.it-ebooks.info/

390 | Chapter 11: Camera Models and Calibration

To make things easier, we set B = M–TM–1. Writing this out, we have:

B M M

B B B

B B B

B B B

= =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

− −T 1

11 12 13

12 22 23

13 23 33

⎥⎥
⎥
⎥

It so happens that this matrix B has a general closed-form solution:

B

f

c

f

f

c

f

c

f

c

f

c

f

x

x

x

y

y

y

x

x

y

y

x

x

=

−

−

− −
+

1
0

0
1

2 2

2 2

2 2

2

2

cc

f

y

y

2

2
1+

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Using the B-matrix, both constraints have the general form h Bhi j
T in them. Let’s multi-

ply this out to see what the components are. Because B is symmetric, it can be written as

one six-dimensional vector dot product. Arranging the necessary elements of B into the

new vector b, we have:

h Bh v b

h h

h h h h

h h

h hi j ij

i j

i j i j

i j

i j

T T= =

+
1 1

1 2 2 1

2 2

3 11 1 3

3 2 2 3

3 3

+

+

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥

h h

h h h h

h h

i j

i j i j

i j

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

B

B

B

B

B

B

11

12

22

13

23

33

⎥⎥
⎥
⎥
⎥

T
T

Using this defi nition for vij
T, our two constraints may now be written as:

v

v v
b12

11 22

0
T

T()−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

If we collect K images of chessboards together, then we can stack K of these equations

together:

Vb = 0

where V is a 2K-by-6 matrix. As before, if K ≥ 2 then this equation can be solved for our

b = [B11, B12, B22, B13, B23, B33]
T. Th e camera intrinsics are then pulled directly out of our

closed-form solution for the B-matrix:

11-R4886-RC1.indd 39011-R4886-RC1.indd 390 9/15/08 4:24:16 PM9/15/08 4:24:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Calibration | 391

f B

f B B B B

c B f

c

x

y

x x

y

=

= −

= −

λ

λ

λ

/

/()

/

11

11 11 22 12

2

13

2

== − −()/()B B B B B B B
12 13 11 23 11 22 12

2

where:

λ = − + −B B c B B B B B
y33

(())/
13

2

12 13 11 23 11

Th e extrinsics (rotation and translation) are then computed from the equations we read

off of the homography condition:

r M h

r M h

r r r

t M h

1

1

1

2

1

2

3 1 2

1

3

=

=
= ×

=

−

−

−

λ
λ

λ

Here the scaling parameter is determined from the orthonormality condition
M hλ = −

1
1

1
/ .

Some care is required because, when we solve using real data and put the r-vectors

together (R = [r1 r2 r3]), we will not end up with an exact rotation matrix for which

RTR = RRT = I holds.

To get around this problem, the usual trick is to take the singular value decomposition

(SVD) of R. As discussed in Chapter 3, SVD is a method of factoring a matrix into two

orthonormal matrices, U and V, and a middle matrix D of scale values on its diagonal.

Th is allows us to turn R into R = UDV T. Because R is itself orthonormal, the matrix D

must be the identity matrix I such that R = UIV T. We can thus “coerce” our computed

R into being a rotation matrix by taking R’s singular value decomposition, setting its D

matrix to the identity matrix, and multiplying by the SVD again to yield our new, con-

forming rotation matrix Rʹ.

Despite all this work, we have not yet dealt with lens distortions. We use the camera

intrinsics found previously—together with the distortion parameters set to 0—for our

initial guess to start solving a larger system of equations.

Th e points we “perceive” on the image are really in the wrong place owing to distortion.

Let (xp, yp) be the point’s location if the pinhole camera were perfect and let (xd, yd) be its

distorted location; then:

x

y

f X Z c

f X Z c

p

p

x

W W

x

y

W W

y

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
+
+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

/

/

11-R4886-RC1.indd 39111-R4886-RC1.indd 391 9/15/08 4:24:16 PM9/15/08 4:24:16 PM

www.it-ebooks.info

http://www.it-ebooks.info/

392 | Chapter 11: Camera Models and Calibration

We use the results of the calibration without distortion via the following substitution:

2 22 2+ +
r x

()

+ +()x

y
k r k r k r

x

y

p

p

d

d

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= + + +
⎡

⎣
⎢

⎤

⎦
⎥ +()1

2
1

2

2

4

3

6 pp x y p

p r y p x y
d d d

d d d

1 2

2 2

1 2

2⎡

⎣
⎢
⎢

⎤

⎦⎦
⎥
⎥

A large list of these equations are collected and solved to fi nd the distortion parameters,

aft er which the intrinsics and extrinsics are reestimated. Th at’s the heavy lift ing that the

single function cvCalibrateCamera2()* does for you!

Calibration function

Once we have the corners for several images, we can call cvCalibrateCamera2(). Th is

routine will do the number crunching and give us the information we want. In particu-

lar, the results we receive are the camera intrinsics matrix, the distortion coeffi cients, the

rotation vectors, and the translation vectors. Th e fi rst two of these constitute the intrinsic

parameters of the camera, and the latter two are the extrinsic measurements that tell us

where the objects (i.e., the chessboards) were found and what their orientations were.

Th e distortion coeffi cients (k1, k2, p1, p2, and k3)
† are the coeffi cients from the radial and

tangential distortion equations we encountered earlier; they help us when we want to

correct that distortion away. Th e camera intrinsic matrix is perhaps the most interesting

fi nal result, because it is what allows us to transform from 3D coordinates to the image’s

2D coordinates. We can also use the camera matrix to do the reverse operation, but in

this case we can only compute a line in the three-dimensional world to which a given

image point must correspond. We will return to this shortly.

Let’s now examine the camera calibration routine itself.

void cvCalibrateCamera2(
 CvMat* object_points,
 CvMat* image_points,
 int* point_counts,
 CvSize image_size,
 CvMat* intrinsic_matrix,
 CvMat* distortion_coeffs,
 CvMat* rotation_vectors = NULL,
 CvMat* translation_vectors = NULL,
 int flags = 0
);

When calling cvCalibrateCamera2(), there are many arguments to keep straight. Yet

we’ve covered (almost) all of them already, so hopefully they’ll make sense.

* Th e cvCalibrateCamera2() function is used internally in the stereo calibration functions we will see in
Chapter 12. For stereo calibration, we’ll be calibrating two cameras at the same time and will be looking to
relate them together through a rotation matrix and a translation vector.

† Th e third radial distortion component k3 comes last because it was a late addition to OpenCV to allow
better correction to highly distorted fi sh eye type lenses and should only be used in such cases. We will see
momentarily that k3 can be set to 0 by fi rst initializing it to 0 and then setting the fl ag to CV_CALIB_FIX_K3.

11-R4886-RC1.indd 39211-R4886-RC1.indd 392 9/15/08 4:24:17 PM9/15/08 4:24:17 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Calibration | 393

Th e fi rst argument is the object_points, which is an N-by-3 matrix containing the phys-

ical coordinates of each of the K points on each of the M images of the object (i.e., N =

K × M). Th ese points are located in the coordinate frame attached to the object.* Th is

argument is a little more subtle than it appears in that your manner of describing the

points on the object will implicitly defi ne your physical units and the structure of your

coordinate system hereaft er. In the case of a chessboard, for example, you might defi ne

the coordinates such that all of the points on the chessboard had a z-value of 0 while the

x- and y-coordinates are measured in centimeters. Had you chosen inches, all computed

parameters would then (implicitly) be in inches. Similarly if you had chosen all the

x-coordinates (rather than the z-coordinates) to be 0, then the implied location of the

chessboards relative to the camera would be largely in the x-direction rather than

the z-direction. Th e squares defi ne one unit, so that if, for example, your squares are

90 mm on each side, your camera world, object and camera coordinate units would be

in mm/90. In principle you can use an object other than a chessboard, so it is not really

necessary that all of the object points lie on a plane, but this is usually the easiest way to

calibrate a camera.† In the simplest case, we simply defi ne each square of the chessboard

to be of dimension one “unit” so that the coordinates of the corners on the chessboard

are just integer corner rows and columns. Defi ning Swidth as the number of squares across

the width of the chessboard and Sheight as the number of squares over the height:

(,),(,),(,), ,(,),(,), ,(,), ,(0 0 0 1 0 2 1 0 2 0 1 1… … … SS S
width height

− −1 1,)

Th e second argument is the image_points, which is an N-by-2 matrix containing the

pixel coordinates of all the points supplied in object_points. If you are performing a

calibration using a chessboard, then this argument consists simply of the return values

for the M calls to cvFindChessboardCorners() but now rearranged into a slightly diff erent

format.

Th e argument point_counts indicates the number of points in each image; this is sup-

plied as an M-by-1 matrix. Th e image_size is just the size, in pixels, of the images from

which the image points were extracted (e.g., those images of yourself waving a chess-

board around).

Th e next two arguments, intrinsic_matrix and distortion_coeffs, constitute the in-

trinsic parameters of the camera. Th ese arguments can be both outputs (fi lling them in

is the main reason for calibration) and inputs. When used as inputs, the values in these

matrices when the function is called will aff ect the computed result. Which of these

matrices will be used as input will depend on the flags parameter; see the following dis-

cussion. As we discussed earlier, the intrinsic matrix completely specifi es the behavior

* Of course, it’s normally the same object in every image, so the N points described are actually M repeated
listings of the locations of the K points on a single object.

† At the time of this writing, automatic initialization of the intrinsic matrix before the optimization
algorithm runs has been implemented only for planar calibration objects. Th is means that if you have
a nonplanar object then you must provide a starting guess for the principal point and focal lengths (see
CV_CALIB_USE_INTRINSIC_GUESS to follow).

11-R4886-RC1.indd 39311-R4886-RC1.indd 393 9/15/08 4:24:17 PM9/15/08 4:24:17 PM

www.it-ebooks.info

http://www.it-ebooks.info/

394 | Chapter 11: Camera Models and Calibration

of the camera in our ideal camera model, while the distortion coeffi cients characterize

much of the camera’s nonideal behavior. Th e camera matrix is always 3-by-3 and the

distortion coeffi cients always number fi ve, so the distortion_coeffs argument should

be a pointer to a 5-by-1 matrix (they will be recorded in the order k1, k2, p1, p2, k3).

Whereas the previous two arguments summarized the camera’s intrinsic information,

the next two summarize the extrinsic information. Th at is, they tell us where the cali-

bration objects (e.g., the chessboards) were located relative to the camera in each picture.

Th e locations of the objects are specifi ed by a rotation and a translation.* Th e rotations,

rotation_vectors, are defi ned by M three-component vectors arranged into an M-by-3

matrix (where M is the number of images). Be careful, these are not in the form of the

3-by-3 rotation matrix we discussed previously; rather, each vector represents an axis in

three-dimensional space in the camera coordinate system around which the chessboard

was rotated and where the length or magnitude of the vector encodes the counterclock-

wise angle of the rotation. Each of these rotation vectors can be converted to a 3-by-3

rotation matrix by calling cvRodrigues2(), which is described in its own section to fol-

low. Th e translations, translation_vectors, are similarly arranged into a second M-by-3

matrix, again in the camera coordinate system. As stated before, the units of the camera

coordinate system are exactly those assumed for the chessboard. Th at is, if a chessboard

square is 1 inch by 1 inch, the units are inches.

Finding parameters through optimization can be somewhat of an art. Sometimes trying

to solve for all parameters at once can produce inaccurate or divergent results if your

initial starting position in parameter space is far from the actual solution. Th us, it is

oft en better to “sneak up” on the solution by getting close to a good parameter starting

position in stages. For this reason, we oft en hold some parameters fi xed, solve for other

parameters, then hold the other parameters fi xed and solve for the original and so on.

Finally, when we think all of our parameters are close to the actual solution, we use our

close parameter setting as the starting point and solve for everything at once. OpenCV

allows you this control through the flags setting. Th e flags argument allows for some

fi ner control of exactly how the calibration will be performed. Th e following values may

be combined together with a Boolean OR operation as needed.

CV_CALIB_USE_INTRINSIC_GUESS
Normally the intrinsic matrix is computed by cvCalibrateCamera2() with no addi-

tional information. In particular, the initial values of the parameters cx and cy (the

image center) are taken directly from the image_size argument. If this argument is

set, then intrinsic_matrix is assumed to contain valid values that will be used as an

initial guess to be further optimized by cvCalibrateCamera2().

* You can envision the chessboard’s location as being expressed by (1) “creating” a chessboard at the origin of
your camera coordinates, (2) rotating that chessboard by some amount around some axis, and (3) moving
that oriented chessboard to a particular place. For those who have experience with systems like OpenGL,
this should be a familiar construction.

11-R4886-RC1.indd 39411-R4886-RC1.indd 394 9/15/08 4:24:17 PM9/15/08 4:24:17 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Calibration | 395

CV_CALIB_FIX_PRINCIPAL_POINT
Th is fl ag can be used with or without CV_CALIB_USE_INTRINSIC_GUESS. If used with-

out, then the principle point is fi xed at the center of the image; if used with, then the

principle point is fi xed at the supplied initial value in the intrinsic_matrix.

CV_CALIB_FIX_ASPECT_RATIO
If this fl ag is set, then the optimization procedure will only vary fx and fy together

and will keep their ratio fi xed to whatever value is set in the intrinsic_matrix when

the calibration routine is called. (If the CV_CALIB_USE_INTRINSIC_GUESS fl ag is not also

set, then the values of fx and fy in intrinsic_matrix can be any arbitrary values and

only their ratio will be considered relevant.)

CV_CALIB_FIX_FOCAL_LENGTH
Th is fl ag causes the optimization routine to just use the fx and fy that were passed in

in the intrinsic_matrix.

CV_CALIB_FIX_K1, CV_CALIB_FIX_K2 and CV_CALIB_FIX_K3
Fix the radial distortion parameters k1, k2, and k3. Th e radial parameters may be set

in any combination by adding these fl ags together. In general, the last parameter

should be fi xed to 0 unless you are using a fi sh-eye lens.

CV_CALIB_ZERO_TANGENT_DIST:
Th is fl ag is important for calibrating high-end cameras which, as a result of preci-

sion manufacturing, have very little tangential distortion. Trying to fi t parameters

that are near 0 can lead to noisy spurious values and to problems of numerical sta-

bility. Setting this fl ag turns off fi tting the tangential distortion parameters p1 and

p2, which are thereby both set to 0.

Computing extrinsics only

In some cases you will already have the intrinsic parameters of the camera and therefore

need only to compute the location of the object(s) being viewed. Th is scenario clearly

diff ers from the usual camera calibration, but it is nonetheless a useful task to be able to

perform.

void cvFindExtrinsicCameraParams2(
 const CvMat* object_points,
 const CvMat* image_points,
 const CvMat* intrinsic_matrix,
 const CvMat* distortion_coeffs,
 CvMat* rotation_vector,
 CvMat* translation_vector
);

Th e arguments to cvFindExtrinsicCameraParams2() are identical to the corresponding ar-

guments for cvCalibrateCamera2() with the exception that the intrinsic matrix and the

distortion coeffi cients are being supplied rather than computed. Th e rotation output is in

the form of a 1-by-3 or 3-by-1 rotation_vector that represents the 3D axis around which

the chessboard or points were rotated, and the vector magnitude or length represents the

counterclockwise angle of rotation. Th is rotation vector can be converted into the 3-by-3

11-R4886-RC1.indd 39511-R4886-RC1.indd 395 9/15/08 4:24:18 PM9/15/08 4:24:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

396 | Chapter 11: Camera Models and Calibration

rotation matrix we’ve discussed before via the cvRodrigues2() function. Th e translation

vector is the off set in camera coordinates to where the chessboard origin is located.

Undistortion
As we have alluded to already, there are two things that one oft en wants to do with a cali-

brated camera. Th e fi rst is to correct for distortion eff ects, and the second is to construct

three-dimensional representations of the images it receives. Let’s take a moment to look

at the fi rst of these before diving into the more complicated second task in Chapter 12.

OpenCV provides us with a ready-to-use undistortion algorithm that takes a raw

image and the distortion coeffi cients from cvCalibrateCamera2() and produces a cor-

rected image (see Figure 11-12). We can access this algorithm either through the func-

tion cvUndistort2(), which does everything we need in one shot, or through the pair of

routines cvInitUndistortMap() and cvRemap(), which allow us to handle things a little

more effi ciently for video or other situations where we have many images from the same

camera.*

Th e basic method is to compute a distortion map, which is then used to correct the image.

Th e function cvInitUndistortMap() computes the distortion map, and cvRemap() can be

used to apply this map to an arbitrary image.† Th e function cvUndistort2() does one aft er

the other in a single call. However, computing the distortion map is a time-consuming

operation, so it’s not very smart to keep calling cvUndistort2() if the distortion map

is not changing. Finally, if we just have a list of 2D points, we can call the function

cvUndistortPoints() to transform them from their original coordinates to their undis-

torted coordinates.

* We should take a moment to clearly make a distinction here between undistortion, which mathematically
removes lens distortion, and rectifi cation, which mathematically aligns the images with respect to each
other.

† We fi rst encountered cvRemap() in the context of image transformations (Chapter 6).

Figure 11-12. Camera image before undistortion (left) and aft er undistortion (right)

11-R4886-RC1.indd 39611-R4886-RC1.indd 396 9/15/08 4:24:18 PM9/15/08 4:24:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Putting Calibration All Together | 397

// Undistort images
void cvInitUndistortMap(
 const CvMat* intrinsic_matrix,
 const CvMat* distortion_coeffs,
 cvArr* mapx,
 cvArr* mapy
);
void cvUndistort2(
 const CvArr* src,
 CvArr* dst,
 const cvMat* intrinsic_matrix,
 const cvMat* distortion_coeffs
);
// Undistort a list of 2D points only
void cvUndistortPoints(
 const CvMat* _src,
 CvMat* dst,
 const CvMat* intrinsic_matrix,
 const CvMat* distortion_coeffs,
 const CvMat* R = 0,
 const CvMat* Mr = 0;
);

Th e function cvInitUndistortMap() computes the distortion map, which relates each

point in the image to the location where that point is mapped. Th e fi rst two arguments

are the camera intrinsic matrix and the distortion coeffi cients, both in the expected

form as received from cvCalibrateCamera2(). Th e resulting distortion map is represented

by two separate 32-bit, single-channel arrays: the fi rst gives the x-value to which a given

point is to be mapped and the second gives the y-value. You might be wondering why we

don’t just use a single two-channel array instead. Th e reason is so that the results from

cvUnitUndistortMap() can be passed directly to cvRemap().

Th e function cvUndistort2() does all this in a single pass. It takes your initial (distorted

image) as well as the camera’s intrinsic matrix and distortion coeffi cients, and then out-

puts an undistorted image of the same size. As mentioned previously, cvUndistortPoints()

is used if you just have a list of 2D point coordinates from the original image and you

want to compute their associated undistorted point coordinates. It has two extra pa-

rameters that relate to its use in stereo rectifi cation, discussed in Chapter 12. Th ese

parameters are R, the rotation matrix between the two cameras, and Mr, the camera in-

trinsic matrix of the rectifi ed camera (only really used when you have two cameras as

per Chapter 12). Th e rectifi ed camera matrix Mr can have dimensions of 3-by-3 or 3-by-4

deriving from the fi rst three or four columns of cvStereoRectify()’s return value for

camera matrices P1 or P2 (for the left or right camera; see Chapter 12). Th ese parameters

are by default NULL, which the function interprets as identity matrices.

Putting Calibration All Together
OK, now it’s time to put all of this together in an example. We’ll present a program that

performs the following tasks: it looks for chessboards of the dimensions that the user

specifi ed, grabs as many full images (i.e., those in which it can fi nd all the chessboard

11-R4886-RC1.indd 39711-R4886-RC1.indd 397 9/15/08 4:24:18 PM9/15/08 4:24:18 PM

www.it-ebooks.info

http://www.it-ebooks.info/

398 | Chapter 11: Camera Models and Calibration

corners) as the user requested, and computes the camera intrinsics and distortion pa-

rameters. Finally, the program enters a display mode whereby an undistorted version of

the camera image can be viewed; see Example 11-1. When using this algorithm, you’ll

want to substantially change the chessboard views between successful captures. Oth-

erwise, the matrices of points used to solve for calibration parameters may form an ill-

conditioned (rank defi cient) matrix and you will end up with either a bad solution or no

solution at all.

Example 11-1. Reading a chessboard’s width and height, reading and collecting the requested
number of views, and calibrating the camera

// calib.cpp
// Calling convention:
// calib board_w board_h number_of_views
//
// Hit ‘p’ to pause/unpause, ESC to quit
//
#include <cv.h>
#include <highgui.h>
#include <stdio.h>
#include <stdlib.h>

int n_boards = 0; //Will be set by input list
const int board_dt = 20; //Wait 20 frames per chessboard view
int board_w;
int board_h;

int main(int argc, char* argv[]) {

 if(argc != 4){
 printf(“ERROR: Wrong number of input parameters\n”);
 return -1;
 }
 board_w = atoi(argv[1]);
 board_h = atoi(argv[2]);
 n_boards = atoi(argv[3]);
 int board_n = board_w * board_h;
 CvSize board_sz = cvSize(board_w, board_h);
 CvCapture* capture = cvCreateCameraCapture(0);
 assert(capture);

 cvNamedWindow(“Calibration”);
 //ALLOCATE STORAGE
 CvMat* image_points = cvCreateMat(n_boards*board_n,2,CV_32FC1);
 CvMat* object_points = cvCreateMat(n_boards*board_n,3,CV_32FC1);
 CvMat* point_counts = cvCreateMat(n_boards,1,CV_32SC1);
 CvMat* intrinsic_matrix = cvCreateMat(3,3,CV_32FC1);
 CvMat* distortion_coeffs = cvCreateMat(5,1,CV_32FC1);

 CvPoint2D32f* corners = new CvPoint2D32f[board_n];
 int corner_count;
 int successes = 0;
 int step, frame = 0;

11-R4886-RC1.indd 39811-R4886-RC1.indd 398 9/15/08 4:24:19 PM9/15/08 4:24:19 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Putting Calibration All Together | 399

Example 11-1. Reading a chessboard’s width and height, reading and collecting the requested
number of views, and calibrating the camera (continued)

 IplImage *image = cvQueryFrame(capture);
 IplImage *gray_image = cvCreateImage(cvGetSize(image),8,1);//subpixel

 // CAPTURE CORNER VIEWS LOOP UNTIL WE’VE GOT n_boards
 // SUCCESSFUL CAPTURES (ALL CORNERS ON THE BOARD ARE FOUND)
 //
 while(successes < n_boards) {
 //Skip every board_dt frames to allow user to move chessboard
 if(frame++ % board_dt == 0) {
 //Find chessboard corners:
 int found = cvFindChessboardCorners(
 image, board_sz, corners, &corner_count,
 CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_FILTER_QUADS
);

 //Get Subpixel accuracy on those corners
 cvCvtColor(image, gray_image, CV_BGR2GRAY);
 cvFindCornerSubPix(gray_image, corners, corner_count,
 cvSize(11,11),cvSize(-1,-1), cvTermCriteria(
 CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 30, 0.1));

 //Draw it
 cvDrawChessboardCorners(image, board_sz, corners,
 corner_count, found);
 cvShowImage(“Calibration”, image);

 // If we got a good board, add it to our data
 if(corner_count == board_n) {
 step = successes*board_n;
 for(int i=step, j=0; j<board_n; ++i,++j) {
 CV_MAT_ELEM(*image_points, float,i,0) = corners[j].x;
 CV_MAT_ELEM(*image_points, float,i,1) = corners[j].y;
 CV_MAT_ELEM(*object_points,float,i,0) = j/board_w;
 CV_MAT_ELEM(*object_points,float,i,1) = j%board_w;
 CV_MAT_ELEM(*object_points,float,i,2) = 0.0f;
 }
 CV_MAT_ELEM(*point_counts, int,successes,0) = board_n;
 successes++;
 }
 } //end skip board_dt between chessboard capture

 //Handle pause/unpause and ESC
 int c = cvWaitKey(15);
 if(c == ‘p’){
 c = 0;
 while(c != ‘p’ && c != 27){
 c = cvWaitKey(250);
 }
 }
 if(c == 27)
 return 0;

11-R4886-RC1.indd 39911-R4886-RC1.indd 399 9/15/08 4:24:19 PM9/15/08 4:24:19 PM

www.it-ebooks.info

http://www.it-ebooks.info/

400 | Chapter 11: Camera Models and Calibration

Example 11-1. Reading a chessboard’s width and height, reading and collecting the requested
number of views, and calibrating the camera (continued)

 image = cvQueryFrame(capture); //Get next image
 } //END COLLECTION WHILE LOOP.

 //ALLOCATE MATRICES ACCORDING TO HOW MANY CHESSBOARDS FOUND
 CvMat* object_points2 = cvCreateMat(successes*board_n,3,CV_32FC1);
 CvMat* image_points2 = cvCreateMat(successes*board_n,2,CV_32FC1);
 CvMat* point_counts2 = cvCreateMat(successes,1,CV_32SC1);
 //TRANSFER THE POINTS INTO THE CORRECT SIZE MATRICES
 //Below, we write out the details in the next two loops. We could
 //instead have written:
 //image_points->rows = object_points->rows = \
 //successes*board_n; point_counts->rows = successes;
 //
 for(int i = 0; i<successes*board_n; ++i) {
 CV_MAT_ELEM(*image_points2, float, i, 0) =
 CV_MAT_ELEM(*image_points, float, i, 0);
 CV_MAT_ELEM(*image_points2, float,i,1) =
 CV_MAT_ELEM(*image_points, float, i, 1);
 CV_MAT_ELEM(*object_points2, float, i, 0) =
 CV_MAT_ELEM(*object_points, float, i, 0) ;
 CV_MAT_ELEM(*object_points2, float, i, 1) =
 CV_MAT_ELEM(*object_points, float, i, 1) ;
 CV_MAT_ELEM(*object_points2, float, i, 2) =
 CV_MAT_ELEM(*object_points, float, i, 2) ;
 }
 for(int i=0; i<successes; ++i){ //These are all the same number
 CV_MAT_ELEM(*point_counts2, int, i, 0) =
 CV_MAT_ELEM(*point_counts, int, i, 0);
 }
 cvReleaseMat(&object_points);
 cvReleaseMat(&image_points);
 cvReleaseMat(&point_counts);

 // At this point we have all of the chessboard corners we need.
 // Initialize the intrinsic matrix such that the two focal
 // lengths have a ratio of 1.0
 //
 CV_MAT_ELEM(*intrinsic_matrix, float, 0, 0) = 1.0f;
 CV_MAT_ELEM(*intrinsic_matrix, float, 1, 1) = 1.0f;

 //CALIBRATE THE CAMERA!
 cvCalibrateCamera2(
 object_points2, image_points2,
 point_counts2, cvGetSize(image),
 intrinsic_matrix, distortion_coeffs,
 NULL, NULL,0 //CV_CALIB_FIX_ASPECT_RATIO
);

 // SAVE THE INTRINSICS AND DISTORTIONS
 cvSave(“Intrinsics.xml”,intrinsic_matrix);
 cvSave(“Distortion.xml”,distortion_coeffs);

11-R4886-RC1.indd 40011-R4886-RC1.indd 400 9/15/08 4:24:19 PM9/15/08 4:24:19 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Rodrigues Transform | 401

Example 11-1. Reading a chessboard’s width and height, reading and collecting the requested
number of views, and calibrating the camera (continued)

 // EXAMPLE OF LOADING THESE MATRICES BACK IN:
 CvMat *intrinsic = (CvMat*)cvLoad(“Intrinsics.xml”);
 CvMat *distortion = (CvMat*)cvLoad(“Distortion.xml”);

 // Build the undistort map that we will use for all
 // subsequent frames.
 //
 IplImage* mapx = cvCreateImage(cvGetSize(image), IPL_DEPTH_32F, 1);
 IplImage* mapy = cvCreateImage(cvGetSize(image), IPL_DEPTH_32F, 1);
 cvInitUndistortMap(
 intrinsic,
 distortion,
 mapx,
 mapy
);
 // Just run the camera to the screen, now showing the raw and
 // the undistorted image.
 //
 cvNamedWindow(“Undistort”);
 while(image) {
 IplImage *t = cvCloneImage(image);
 cvShowImage(“Calibration”, image); // Show raw image
 cvRemap(t, image, mapx, mapy); // Undistort image
 cvReleaseImage(&t);
 cvShowImage(“Undistort”, image); // Show corrected image

 //Handle pause/unpause and ESC
 int c = cvWaitKey(15);
 if(c == ‘p’) {
 c = 0;
 while(c != ‘p’ && c != 27) {
 c = cvWaitKey(250);
 }
 }
 if(c == 27)
 break;
 image = cvQueryFrame(capture);
 }

 return 0;
}

Rodrigues Transform
When dealing with three-dimensional spaces, one most oft en represents rotations in

that space by 3-by-3 matrices. Th is representation is usually the most convenient be-

cause multiplication of a vector by this matrix is equivalent to rotating the vector in

some way. Th e downside is that it can be diffi cult to intuit just what 3-by-3 matrix goes

11-R4886-RC1.indd 40111-R4886-RC1.indd 401 9/15/08 4:24:19 PM9/15/08 4:24:19 PM

www.it-ebooks.info

http://www.it-ebooks.info/

402 | Chapter 11: Camera Models and Calibration

with what rotation. An alternate and somewhat easier-to-visualize* representation for a

rotation is in the form of a vector about which the rotation operates together with a sin-

gle angle. In this case it is standard practice to use only a single vector whose direction

encodes the direction of the axis to be rotated around and to use the size of the vector to

encode the amount of rotation in a counterclockwise direction. Th is is easily done be-

cause the direction can be equally well represented by a vector of any magnitude; hence

we can choose the magnitude of our vector to be equal to the magnitude of the rotation.

Th e relationship between these two representations, the matrix and the vector, is cap-

tured by the Rodrigues transform.† Let r be the three-dimensional vector r = [rx ry rz];

this vector implicitly defi nes θ, the magnitude of the rotation by the length (or magni-

tude) of r. We can then convert from this axis-magnitude representation to a rotation

matrix R as follows:

) (θ θR I rr

r r

r

z y

z
= ⋅ + − ⋅ + ⋅

−

−cos(cos()) sin()θ1

0

0T rr

r r
x

y x
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

We can also go from a rotation matrix back to the axis-magnitude representation

by using:

sin()
()θ ⋅

−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= −
0

0

0
2

r r

r r

r r

R R
z y

z x

y x

T

Th us we fi nd ourselves in the situation of having one representation (the matrix rep-

resentation) that is most convenient for computation and another representation (the

Rodrigues representation) that is a little easier on the brain. OpenCV provides us with a

function for converting from either representation to the other.

void cvRodrigues2(
 const CvMat* src,
 CvMat* dst,
 CvMat* jacobian = NULL
);

Suppose we have the vector r and need the corresponding rotation matrix representation

R; we set src to be the 3-by-1 vector r and dst to be the 3-by-3 rotation matrix R. Con-

versely, we can set src to be a 3-by-3 rotation matrix R and dst to be a 3-by-1 vector r.

In either case, cvRodrigues2() will do the right thing. Th e fi nal argument is optional. If

jacobian is not NULL, then it should be a pointer to a 3-by-9 or a 9-by-3 matrix that will

* Th is “easier” representation is not just for humans. Rotation in 3D space has only three components. For
numerical optimization procedures, it is more effi cient to deal with the three components of the Rodrigues
representation than with the nine components of a 3-by-3 rotation matrix.

† Rodrigues was a 19th-century French mathematician.

11-R4886-RC1.indd 40211-R4886-RC1.indd 402 9/15/08 4:24:19 PM9/15/08 4:24:19 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 403

be fi lled with the partial derivatives of the output array components with respect to the

input array components. Th e jacobian outputs are mainly used for the internal opti-

mization algorithms of cvFindExtrinsicCameraParameters2() and cvCalibrateCamera2();

your use of the jacobian function will mostly be limited to converting the outputs of

cvFindExtrinsicCameraParameters2() and cvCalibrateCamera2() from the Rodrigues for-

mat of 1-by-3 or 3-by-1 axis-angle vectors to rotation matrices. For this, you can leave

jacobian set to NULL.

Exercises
Use Figure 11-2 to derive the equations 1. x = fx . (X/Z) + cx and y – fy . (Y/Z) + cy using

similar triangles with a center-position off set.

Will errors in estimating the true center location (2. cx, cy) aff ect the estimation of

other parameters such as focus?

Hint: See the q = MQ equation.

Draw an image of a square:3.

Under radial distortion.a.

Under tangential distortion.b.

Under both distortions.c.

Refer to Figure 11-13. For perspective views, explain the following.4.

Where does the “line at infi nity” come from?a.

Why do parallel lines on the object plane converge to a point on the image b.

plane?

Assume that the object and image planes are perpendicular to one another. On c.

the object plane, starting at a point p1, move 10 units directly away from the

image plane to p2. What is the corresponding movement distance on the image

plane?

Figure 11-3 shows the outward-bulging “barrel distortion” eff ect of radial distor-5.

tion, which is especially evident in the left panel of Figure 11-12. Could some lenses

generate an inward-bending eff ect? How would this be possible?

Using a cheap web camera or cell phone, create examples of radial and tangential 6.

distortion in images of concentric squares or chessboards.

Calibrate the camera in exercise 6. Display the pictures before and aft er 7.

undistortion.

Experiment with numerical stability and noise by collecting many images of chess-8.

boards and doing a “good” calibration on all of them. Th en see how the calibration

parameters change as you reduce the number of chessboard images. Graph your

results: camera parameters as a function of number of chessboard images.

11-R4886-RC1.indd 40311-R4886-RC1.indd 403 9/15/08 4:24:20 PM9/15/08 4:24:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

404 | Chapter 11: Camera Models and Calibration

With reference to exercise 8, how do calibration parameters change when you use 9.

(say) 10 images of a 3-by-5, a 4-by-6, and a 5-by-7 chessboard? Graph the results.

High-end cameras typically have systems of lens that correct physically for distor-10.

tions in the image. What might happen if you nevertheless use a multiterm distor-

tion model for such a camera?

Hint: Th is condition is known as overfi tting.

Th ree-dimensional joystick trick.11. Calibrate a camera. Using video, wave a chess-

board around and use cvFindExtrinsicCameraParams2() as a 3D joystick. Remember

that cvFindExtrinsicCameraParams2() outputs rotation as a 3-by-1 or 1-by-3 vector

axis of rotation, where the magnitude of the vector represents the counterclockwise

angle of rotation along with a 3D translation vector.

Output the chessboard’s axis and angle of the rotation along with where it is a.

(i.e., the translation) in real time as you move the chessboard around. Handle

cases where the chessboard is not in view.

Use b. cvRodrigues2() to translate the output of cvFindExtrinsicCameraParams2()
into a 3-by-3 rotation matrix and a translation vector. Use this to animate a

simple 3D stick fi gure of an airplane rendered back into the image in real time

as you move the chessboard in view of the video camera.

Figure 11-13. Homography diagram showing intersection of the object plane with the image plane
and a viewpoint representing the center of projection

11-R4886-RC1.indd 40411-R4886-RC1.indd 404 9/15/08 4:24:20 PM9/15/08 4:24:20 PM

www.it-ebooks.info

http://www.it-ebooks.info/

405

12CHAPTER

Projection and 3D Vision

In this chapter we’ll move into three-dimensional vision, fi rst with projections and then

with multicamera stereo depth perception. To do this, we’ll have to carry along some of

the concepts from Chapter 11. We’ll need the camera instrinsics matrix M, the distortion

coeffi cients, the rotation matrix R, the translation vector T, and especially the homogra-

phy matrix H.

We’ll start by discussing projection into the 3D world using a calibrated camera and

reviewing affi ne and projective transforms (which we fi rst encountered in Chapter 6);

then we’ll move on to an example of how to get a bird’s-eye view of a ground plane.*

We’ll also discuss POSIT, an algorithm that allows us to fi nd the 3D pose (position and

rotation) of a known 3D object in an image.

We will then move into the three-dimensional geometry of multiple images. In general,

there is no reliable way to do calibration or to extract 3D information without multiple

images. Th e most obvious case in which we use multiple images to reconstruct a three-

dimensional scene is stereo vision. In stereo vision, features in two (or more) images

taken at the same time from separate cameras are matched with the corresponding fea-

tures in the other images, and the diff erences are analyzed to yield depth information.

Another case is structure from motion. In this case we may have only a single camera,

but we have multiple images taken at diff erent times and from diff erent places. In the

former case we are primarily interested in disparity eff ects (triangulation) as a means of

computing distance. In the latter, we compute something called the fundamental matrix

(relates two diff erent views together) as the source of our scene understanding. Let’s get

started with projection.

Projections
Once we have calibrated the camera (see Chapter 11), it is possible to unambiguously

project points in the physical world to points in the image. Th is means that, given a

location in the three-dimensional physical coordinate frame attached to the camera, we

* Th is is a recurrent problem in robotics as well as many other vision applications.

12-R4886-AT1.indd 40512-R4886-AT1.indd 405 9/15/08 4:24:41 PM9/15/08 4:24:41 PM

www.it-ebooks.info

http://www.it-ebooks.info/

406 | Chapter 12: Projection and 3D Vision

can compute where on the imager, in pixel coordinates, an external 3D point should ap-

pear. Th is transformation is accomplished by the OpenCV routine cvProjectPoints2().

void cvProjectPoints2(
 const CvMat* object_points,
 const CvMat* rotation_vector,
 const CvMat* translation_vector,
 const CvMat* intrinsic_matrix,
 const CvMat* distortion_coeffs,
 CvMat* image_points,
 CvMat* dpdrot = NULL,
 CvMat* dpdt = NULL,
 CvMat* dpdf = NULL,
 CvMat* dpdc = NULL,
 CvMat* dpddist = NULL,
 double aspectRatio = 0
);

At fi rst glance the number of arguments might be a little intimidating, but in fact this is

a simple function to use. Th e cvProjectPoints2() routine was designed to accommodate

the (very common) circumstance where the points you want to project are located on

some rigid body. In this case, it is natural to represent the points not as just a list of loca-

tions in the camera coordinate system but rather as a list of locations in the object’s own

body centered coordinate system; then we can add a rotation and a translation to specify

the relationship between the object coordinates and the camera’s coordinate system. In

fact, cvProjectPoints2() is used internally in cvCalibrateCamera2(), and of course this is

the way cvCalibrateCamera2() organizes its own internal operation. All of the optional

arguments are primarily there for use by cvCalibrateCamera2(), but sophisticated users

might fi nd them handy for their own purposes as well.

Th e fi rst argument, object_points, is the list of points you want projected; it is just an

N-by-3 matrix containing the point locations. You can give these in the object’s own

local coordinate system and then provide the 3-by-1 matrices rotation_vector* and

translation_vector to relate the two coordinates. If in your particular context it is easier

to work directly in the camera coordinates, then you can just give object_points in that

system and set both rotation_vector and translation_vector to contain 0s.†

Th e intrinsic_matrix and distortion_coeffs are just the camera intrinsic information

and the distortion coeffi cients that come from cvCalibrateCamera2() discussed in Chap-

ter 11. Th e image_points argument is an N-by-2 matrix into which the results of the

computation will be written.

Finally, the long list of optional arguments dpdrot, dpdt, dpdf, dpdc, and dpddist are all

Jacobian matrices of partial derivatives. Th ese matrices relate the image points to each

of the diff erent input parameters. In particular: dpdrot is an N-by-3 matrix of partial de-

rivatives of image points with respect to components of the rotation vector; dpdt is an

* Th e “rotation vector” is in the usual Rodrigues representation.

† Remember that this rotation vector is an axis-angle representation of the rotation, so being set to all 0s
means it has zero magnitude and thus “no rotation”.

12-R4886-AT1.indd 40612-R4886-AT1.indd 406 9/15/08 4:24:42 PM9/15/08 4:24:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Affi ne and Perspective Transformations | 407

N-by-3 matrix of partial derivatives of image points with respect to components of the

translation vector; dpdf is an N-by-2 matrix of partial derivatives of image points with

respect to fx and fy; dpdc is an N-by-2 matrix of partial derivatives of image points with

respect to cx and cy; and dpddist is an N-by-4 matrix of partial derivatives of image points

with respect to the distortion coeffi cients. In most cases, you will just leave these as NULL,

in which case they will not be computed. Th e last parameter, aspectRatio, is also optional;

it is used for derivatives only when the aspect ratio is fi xed in cvCalibrateCamera2() or

cvStereoCalibrate(). If this parameter is not 0 then the derivatives dpdf are adjusted.

Affine and Perspective Transformations
Two transformations that come up oft en in the OpenCV routines we have discussed—as

well as in other applications you might write yourself—are the affi ne and perspective

transformations. We fi rst encountered these in Chapter 6. As implemented in OpenCV,

these routines aff ect either lists of points or entire images, and they map points on one

location in the image to a diff erent location, oft en performing subpixel interpolation

along the way. You may recall that an affi ne transform can produce any parallelogram

from a rectangle; the perspective transform is more general and can produce any trap-

ezoid from a rectangle.

Th e perspective transformation is closely related to the perspective projection. Recall that

the perspective projection maps points in the three-dimensional physical world onto

points on the two-dimensional image plane along a set of projection lines that all meet

at a single point called the center of projection. Th e perspective transformation, which

is a specifi c kind of homography,* relates two diff erent images that are alternative pro-

jections of the same three-dimensional object onto two diff erent projective planes (and

thus, for nondegenerate confi gurations such as the plane physically intersecting the 3D

object, typically to two diff erent centers of projection).

Th ese projective transformation-related functions were discussed in detail in Chapter 6;

for convenience, we summarize them here in Table 12-1.

Table 12-1. Affi ne and perspective transform functions

Function Use

cvTransform() Affi ne transform a list of points

cvWarpAffine() Affi ne transform a whole image

cvGetAffineTransform() Fill in affi ne transform matrix parameters

cv2DRotationMatrix() Fill in affi ne transform matrix parameters

cvGetQuadrangleSubPix() Low-overhead whole image affi ne transform

cvPerspectiveTransform() Perspective transform a list of points

cvWarpPerspective() Perspective transform a whole image

cvGetPerspectiveTransform() Fill in perspective transform matrix parameters

* Recall from Chapter 11 that this special kind of homography is known as planar homography.

12-R4886-AT1.indd 40712-R4886-AT1.indd 407 9/15/08 4:24:42 PM9/15/08 4:24:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

408 | Chapter 12: Projection and 3D Vision

Bird’s-Eye View Transform Example
A common task in robotic navigation, typically used for planning purposes, is to con-

vert the robot’s camera view of the scene into a top-down “bird’s-eye” view. In Figure

12-1, a robot’s view of a scene is turned into a bird’s-eye view so that it can be subse-

quently overlaid with an alternative representation of the world created from scanning

laser range fi nders. Using what we’ve learned so far, we’ll look in detail about how to use

our calibrated camera to compute such a view.

Figure 12-1. Bird’s-eye view: A camera on a robot car looks out at a road scene where laser range
fi nders have identifi ed a region of “road” in front of the car and marked it with a box (top); vision
algorithms have segmented the fl at, roadlike areas (center); the segmented road areas are converted
to a bird’s-eye view and merged with the bird’s-eye view laser map (bottom)

12-R4886-AT1.indd 40812-R4886-AT1.indd 408 9/15/08 4:24:42 PM9/15/08 4:24:42 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Affi ne and Perspective Transformations | 409

To get a bird’s-eye view,* we’ll need our camera intrinsics and distortion matrices from

the calibration routine. Just for the sake of variety, we’ll read the fi les from disk. We put

a chessboard on the fl oor and use that to obtain a ground plane image for a robot cart;

we then remap that image into a bird’s-eye view. Th e algorithm runs as follows.

Read the intrinsics and distortion models for the camera.1.

Find a known object on the ground plane (in this case, a chessboard). Get at least 2.

four points at subpixel accuracy.

Enter the found points into 3. cvGetPerspectiveTransform() (see Chapter 6) to com-

pute the homography matrix H for the ground plane view.

Use 4. cvWarpPerspective() (again, see Chapter 6) with the fl ags CV_INTER_LINEAR +
CV_WARP_INVERSE_MAP + CV_WARP_FILL_OUTLIERS to obtain a frontal parallel (bird’s-

eye) view of the ground plane.

Example 12-1 shows the full working code for bird’s-eye view.

Example 12-1. Bird’s-eye view

//Call:
// birds-eye board_w board_h instrinics distortion image_file
// ADJUST VIEW HEIGHT using keys ‘u’ up, ‘d’ down. ESC to quit.
//

int main(int argc, char* argv[]) {
 if(argc != 6) return -1;

 // INPUT PARAMETERS:
 //
 int board_w = atoi(argv[1]);
 int board_h = atoi(argv[2]);
 int board_n = board_w * board_h;
 CvSize board_sz = cvSize(board_w, board_h);
 CvMat* intrinsic = (CvMat*)cvLoad(argv[3]);
 CvMat* distortion = (CvMat*)cvLoad(argv[4]);
 IplImage* image = 0;
 IplImage* gray_image = 0;
 if((image = cvLoadImage(argv[5])) == 0) {
 printf(“Error: Couldn’t load %s\n”,argv[5]);
 return -1;
 }
 gray_image = cvCreateImage(cvGetSize(image), 8, 1);
 cvCvtColor(image, gray_image, CV_BGR2GRAY);

 // UNDISTORT OUR IMAGE
 //
 IplImage* mapx = cvCreateImage(cvGetSize(image), IPL_DEPTH_32F, 1);
 IplImage* mapy = cvCreateImage(cvGetSize(image), IPL_DEPTH_32F, 1);

* Th e bird’s-eye view technique also works for transforming perspective views of any plane (e.g., a wall or
ceiling) into frontal parallel views.

12-R4886-AT1.indd 40912-R4886-AT1.indd 409 9/15/08 4:24:43 PM9/15/08 4:24:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

410 | Chapter 12: Projection and 3D Vision

Example 12-1. Bird’s-eye view (continued)

 //This initializes rectification matrices
 //
 cvInitUndistortMap(
 intrinsic,
 distortion,
 mapx,
 mapy
);
 IplImage *t = cvCloneImage(image);

 // Rectify our image
 //
 cvRemap(t, image, mapx, mapy);

 // GET THE CHESSBOARD ON THE PLANE
 //
 cvNamedWindow(“Chessboard”);
 CvPoint2D32f* corners = new CvPoint2D32f[board_n];
 int corner_count = 0;
 int found = cvFindChessboardCorners(
 image,
 board_sz,
 corners,
 &corner_count,
 CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_FILTER_QUADS
);
 if(!found){
 printf(“Couldn’t aquire chessboard on %s, ”
 “only found %d of %d corners\n”,
 argv[5],corner_count,board_n
);
 return -1;
 }
 //Get Subpixel accuracy on those corners:
 cvFindCornerSubPix(
 gray_image,
 corners,
 corner_count,
 cvSize(11,11),
 cvSize(-1,-1),
 cvTermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 30, 0.1)
);

 //GET THE IMAGE AND OBJECT POINTS:
 // We will choose chessboard object points as (r,c):
 // (0,0), (board_w-1,0), (0,board_h-1), (board_w-1,board_h-1).
 //
 CvPoint2D32f objPts[4], imgPts[4];
 objPts[0].x = 0; objPts[0].y = 0;
 objPts[1].x = board_w-1; objPts[1].y = 0;
 objPts[2].x = 0; objPts[2].y = board_h-1;
 objPts[3].x = board_w-1; objPts[3].y = board_h-1;
 imgPts[0] = corners[0];

12-R4886-AT1.indd 41012-R4886-AT1.indd 410 9/15/08 4:24:43 PM9/15/08 4:24:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Affi ne and Perspective Transformations | 411

Example 12-1. Bird’s-eye view (continued)

 imgPts[1] = corners[board_w-1];
 imgPts[2] = corners[(board_h-1)*board_w];
 imgPts[3] = corners[(board_h-1)*board_w + board_w-1];

 // DRAW THE POINTS in order: B,G,R,YELLOW
 //
 cvCircle(image, cvPointFrom32f(imgPts[0]), 9, CV_RGB(0,0,255), 3);
 cvCircle(image, cvPointFrom32f(imgPts[1]), 9, CV_RGB(0,255,0), 3);
 cvCircle(image, cvPointFrom32f(imgPts[2]), 9, CV_RGB(255,0,0), 3);
 cvCircle(image, cvPointFrom32f(imgPts[3]), 9, CV_RGB(255,255,0), 3);

 // DRAW THE FOUND CHESSBOARD
 //
 cvDrawChessboardCorners(
 image,
 board_sz,
 corners,
 corner_count,
 found
);
 cvShowImage(“Chessboard”, image);

 // FIND THE HOMOGRAPHY
 //
 CvMat *H = cvCreateMat(3, 3, CV_32F);
 cvGetPerspectiveTransform(objPts, imgPts, H);

 // LET THE USER ADJUST THE Z HEIGHT OF THE VIEW
 //
 float Z = 25;
 int key = 0;
 IplImage *birds_image = cvCloneImage(image);
 cvNamedWindow(“Birds_Eye”);

 // LOOP TO ALLOW USER TO PLAY WITH HEIGHT:
 //
 // escape key stops
 //
 while(key != 27) {
 // Set the height
 //
 CV_MAT_ELEM(*H,float,2,2) = Z;

 // COMPUTE THE FRONTAL PARALLEL OR BIRD’S-EYE VIEW:
 // USING HOMOGRAPHY TO REMAP THE VIEW
 //
 cvWarpPerspective(
 image,
 birds_image,
 H,
 CV_INTER_LINEAR | CV_WARP_INVERSE_MAP | CV_WARP_FILL_OUTLIERS
);
 cvShowImage(“Birds_Eye”, birds_image);

12-R4886-AT1.indd 41112-R4886-AT1.indd 411 9/15/08 4:24:43 PM9/15/08 4:24:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

412 | Chapter 12: Projection and 3D Vision

Example 12-1. Bird’s-eye view (continued)

 key = cvWaitKey();
 if(key == ‘u’) Z += 0.5;
 if(key == ‘d’) Z -= 0.5;
 }

 cvSave(“H.xml”,H); //We can reuse H for the same camera mounting
 return 0;
}

Once we have the homography matrix and the height parameter set as we wish, we could

then remove the chessboard and drive the cart around, making a bird’s-eye view video

of the path, but we’ll leave that as an exercise for the reader. Figure 12-2 shows the input

at left and output at right for the bird’s-eye view code.

POSIT: 3D Pose Estimation
Before moving on to stereo vision, we should visit a useful algorithm that can estimate

the positions of known objects in three dimensions. POSIT (aka “Pose from Orthography

and Scaling with Iteration”) is an algorithm originally proposed in 1992 for computing

the pose (the position T and orientation R described by six parameters [DeMenthon92])

of a 3D object whose exact dimensions are known. To compute this pose, we must fi nd

on the image the corresponding locations of at least four non-coplanar points on the

surface of that object. Th e fi rst part of the algorithm, pose from orthography and scaling

Figure 12-2. Bird’s-eye view example

12-R4886-AT1.indd 41212-R4886-AT1.indd 412 9/15/08 4:24:43 PM9/15/08 4:24:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

POSIT: 3D Pose Estimation | 413

(POS), assumes that the points on the object are all at eff ectively the same depth* and

that size variations from the original model are due solely to scaling with distance from

the camera. In this case there is a closed-form solution for that object’s 3D pose based

on scaling. Th e assumption that the object points are all at the same depth eff ectively

means that the object is far enough away from the camera that we can neglect any inter-

nal depth diff erences within the object; this assumption is known as the weak-perspective

approximation.

Given that we know the camera intrinsics, we can fi nd the perspective scaling of our

known object and thus compute its approximate pose. Th is computation will not be

very accurate, but we can then project where our four observed points would go if the

true 3D object were at the pose we calculated through POS. We then start all over again

with these new point positions as the inputs to the POS algorithm. Th is process typi-

cally converges within four or fi ve iterations to the true object pose—hence the name

“POS algorithm with iteration”. Remember, though, that all of this assumes that the

internal depth of the object is in fact small compared to the distance away from the

camera. If this assumption is not true, then the algorithm will either not converge or

will converge to a “bad pose”. Th e OpenCV implementation of this algorithm will allow

us to track more than four (non-coplanar) points on the object to improve pose estima-

tion accuracy.

Th e POSIT algorithm in OpenCV has three associated functions: one to allocate a data

structure for the pose of an individual object, one to de-allocate the same data struc-

ture, and one to actually implement the algorithm.

CvPOSITObject* cvCreatePOSITObject(
 CvPoint3D32f* points,
 int point_count
);
void cvReleasePOSITObject(
 CvPOSITObject** posit_object
);

Th e cvCreatePOSITObject() routine just takes points (a set of three-dimensional points)

and point_count (an integer indicating the number of points) and returns a pointer to an

allocated POSIT object structure. Th en cvReleasePOSITObject() takes a pointer to such a

structure pointer and de-allocates it (setting the pointer to NULL in the process).

void cvPOSIT(
 CvPOSITObject* posit_object,
 CvPoint2D32f* image_points,
 double focal_length,
 CvTermCriteria criteria,
 float* rotation_matrix,
 float* translation_vector
);

* Th e construction fi nds a reference plane through the object that is parallel to the image plane; this plane
through the object then has a single distance Z from the image plane. Th e 3D points on the object are fi rst
projected to this plane through the object and then projected onto the image plane using perspective projec-
tion. Th e result is scaled orthographic projection, and it makes relating object size to depth particularly easy.

12-R4886-AT1.indd 41312-R4886-AT1.indd 413 9/15/08 4:24:43 PM9/15/08 4:24:43 PM

www.it-ebooks.info

http://www.it-ebooks.info/

414 | Chapter 12: Projection and 3D Vision

Now, on to the POSIT function itself. Th e argument list to cvPOSIT() is diff erent sty-

listically than most of the other functions we have seen in that it uses the “old style”

arguments common in earlier versions of OpenCV.* Here posit_object is just a pointer

to the POSIT object that you are trying to track, and image_points is a list of the loca-

tions of the corresponding points in the image plane (notice that these are 32-bit values,

thus allowing for subpixel locations). Th e current implementation of cvPOSIT() assumes

square pixels and thus allows only a single value for the focal_length parameter instead

of one in the x and one in the y directions. Because cvPOSIT() is an iterative algorithm, it

requires a termination criteria: criteria is of the usual form and indicates when the fi t

is “good enough”. Th e fi nal two parameters, rotation_matrix and translation_vector,

are analogous to the same arguments in earlier routines; observe, however, that these

are pointers to float and so are just the data part of the matrices you would obtain from

calling (for example) cvCalibrateCamera2(). In this case, given a matrix M, you would

want to use something like M->data.fl as an argument to cvPOSIT().

When using POSIT, keep in mind that the algorithm does not benefi t from additional

surface points that are coplanar with other points already on the surface. Any point

lying on a plane defi ned by three other points will not contribute anything useful to

the algorithm. In fact, extra coplanar points can cause degeneracies that hurt the algo-

rithm’s performance. Extra non-coplanar points will help the algorithm. Figure 12-3

shows the POSIT algorithm in use with a toy plane [Tanguay00]. Th e plane has marking

lines on it, which are used to defi ne four non-coplanar points. Th ese points were fed

into cvPOSIT(), and the resulting rotation_matrix and translation_vector are used to

control a fl ight simulator.

* You might have noticed that many function names end in “2”. More oft en than not, this is because the func-
tion in the current release in the library has been modifi ed from its older incarnation to use the newer style
of arguments.

Figure 12-3. POSIT algorithm in use: four non-coplanar points on a toy jet are used to control a
fl ight simulator

12-R4886-AT1.indd 41412-R4886-AT1.indd 414 9/15/08 4:24:44 PM9/15/08 4:24:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stereo Imaging | 415

Stereo Imaging
Now we are in a position to address stereo imaging.* We all are familiar with the stereo

imaging capability that our eyes give us. To what degree can we emulate this capability

in computational systems? Computers accomplish this task by fi nding correspondences

between points that are seen by one imager and the same points as seen by the other

imager. With such correspondences and a known baseline separation between cameras,

we can compute the 3D location of the points. Although the search for corresponding

points can be computationally expensive, we can use our knowledge of the geometry

of the system to narrow down the search space as much as possible. In practice, stereo

imaging involves four steps when using two cameras.

Mathematically remove radial and tangential lens distortion; this is called 1. undistor-

tion and is detailed in Chapter 11. Th e outputs of this step are undistorted images.

Adjust for the angles and distances between cameras, a process called 2. rectifi cation.

Th e outputs of this step are images that are row-aligned† and rectifi ed.

Find the same features in the left and right3. ‡ camera views, a process known as cor-

respondence. Th e output of this step is a disparity map, where the disparities are the

diff erences in x-coordinates on the image planes of the same feature viewed in the

left and right cameras: xl – xr.

If we know the geometric arrangement of the cameras, then we can turn the dis-4.

parity map into distances by triangulation. Th is step is called reprojection, and the

output is a depth map.

We start with the last step to motivate the fi rst three.

Triangulation
Assume that we have a perfectly undistorted, aligned, and measured stereo rig as shown

in Figure 12-4: two cameras whose image planes are exactly coplanar with each other,

with exactly parallel optical axes (the optical axis is the ray from the center of projection

O through the principal point c and is also known as the principal ray§) that are a known

distance apart, and with equal focal lengths f l = fr. Also, assume for now that the princi-

pal points cx
left and cx

right have been calibrated to have the same pixel coordinates in their

respective left and right images. Please don’t confuse these principal points with the

center of the image. A principal point is where the principal ray intersects the imaging

* Here we give just a high-level understanding. For details, we recommend the following texts: Trucco and
Verri [Trucco98], Hartley and Zisserman [Hartley06], Forsyth and Ponce [Forsyth03], and Shapiro and
Stockman [Shapiro02]. Th e stereo rectifi cation sections of these books will give you the background to
tackle the original papers cited in this chapter.

† By “row-aligned” we mean that the two image planes are coplanar and that the image rows are exactly
aligned (in the same direction and having the same y-coordinates).

‡ Every time we refer to left and right cameras you can also use vertically oriented up and down cameras,
where disparities are in the y-direction rather than the x-direction.

§ Two parallel principal rays are said to intersect at infi nity.

12-R4886-AT1.indd 41512-R4886-AT1.indd 415 9/15/08 4:24:44 PM9/15/08 4:24:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

416 | Chapter 12: Projection and 3D Vision

plane. Th is intersection depends on the optical axis of the lens. As we saw in Chapter 11,

the image plane is rarely aligned exactly with the lens and so the center of the imager is

almost never exactly aligned with the principal point.

Moving on, let’s further assume the images are row-aligned and that every pixel row of

one camera aligns exactly with the corresponding row in the other camera.* We will

call such a camera arrangement frontal parallel. We will also assume that we can fi nd a

point P in the physical world in the left and the right image views at pl and pr, which will

have the respective horizontal coordinates xl and xr.

In this simplifi ed case, taking xl and xr to be the horizontal positions of the points in

the left and right imager (respectively) allows us to show that the depth is inversely pro-

portional to the disparity between these views, where the disparity is defi ned simply by

d = xl – xr. Th is situation is shown in Figure 12-4, where we can easily derive the depth Z

by using similar triangles. Referring to the fi gure, we have:†

* Th is makes for quite a few assumptions, but we are just looking at the basics right now. Remember that the
process of rectifi cation (to which we will return shortly) is how we get things done mathematically when
these assumptions are not physically true. Similarly, in the next sentence we will temporarily “assume
away” the correspondence problem.

† Th is formula is predicated on the principal rays intersecting at infi nity. However, as you will see in “Cali-
brated Stereo Rectifi cation” (later in this chapter), we derive stereo rectifi cation relative to the principal
points cx

left and cx
right. In our derivation, if the principal rays intersect at infi nity then the principal points have

the same coordinates and so the formula for depth holds as is. However, if the principal rays intersect at a
fi nite distance then the principal points will not be equal and so the equation for depth becomes Z = fT /
(d – (cx

left – cx
right)).

Figure 12-4. With a perfectly undistorted, aligned stereo rig and known correspondence, the depth Z
can be found by similar triangles; the principal rays of the imagers begin at the centers of projection
Ol and Or and extend through the principal points of the two image planes at cl and cr

12-R4886-AT1.indd 41612-R4886-AT1.indd 416 9/15/08 4:24:44 PM9/15/08 4:24:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stereo Imaging | 417

T x x

Z f

T

Z
Z

fT

x x

l r

l r

− −
−

= ⇒ =
−

()

Since depth is inversely proportional to disparity, there is obviously a nonlinear rela-

tionship between these two terms. When disparity is near 0, small disparity diff erences

make for large depth diff erences. When disparity is large, small disparity diff erences do

not change the depth by much. Th e consequence is that stereo vision systems have high

depth resolution only for objects relatively near the camera, as Figure 12-5 makes clear.

We have already seen many coordinate systems in the discussion of calibration in Chap-

ter 11. Figure 12-6 shows the 2D and 3D coordinate systems used in OpenCV for stereo

vision. Note that it is a right-handed coordinate system: if you point your right index

fi nger in the direction of X and bend your right middle fi nger in the direction of Y, then

your thumb will point in the direction of the principal ray. Th e left and right imager

pixels have image origins at upper left in the image, and pixels are denoted by coor-

dinates (xl, yl) and (xr, yr), respectively. Th e center of projection are at Ol and Or with

principal rays intersecting the image plane at the principal point (not the center) (cx, cy).

Aft er mathematical rectifi cation, the cameras are row-aligned (coplanar and horizon-

tally aligned), displaced from one another by T, and of the same focal length f.

With this arrangement it is relatively easily to solve for distance. Now we must spend

some energy on understanding how we can map a real-world camera setup into a geom-

etry that resembles this ideal arrangement. In the real world, cameras will almost never

be exactly aligned in the frontal parallel confi guration depicted in Figure 12-4. Instead,

Figure 12-5. Depth and disparity are inversely related, so fi ne-grain depth measurement is restricted
to nearby objects

12-R4886-AT1.indd 41712-R4886-AT1.indd 417 9/15/08 4:24:44 PM9/15/08 4:24:44 PM

www.it-ebooks.info

http://www.it-ebooks.info/

418 | Chapter 12: Projection and 3D Vision

we will mathematically fi nd image projections and distortion maps that will rectify the

left and right images into a frontal parallel arrangement. When designing your stereo

rig, it is best to arrange the cameras approximately frontal parallel and as close to hori-

zontally aligned as possible. Th is physical alignment will make the mathematical tran-

formations more tractable. If you don’t align the cameras at least approximately, then

the resulting mathematical alignment can produce extreme image distortions and so

reduce or eliminate the stereo overlap area of the resulting images.* For good results,

you’ll also need synchronized cameras. If they don’t capture their images at the exact

same time, then you will have problems if anything is moving in the scene (including

the cameras themselves). If you do not have synchronized cameras, you will be limited

to using stereo with stationary cameras viewing static scenes.

Figure 12-7 depicts the real situation between two cameras and the mathematical align-

ment we want to achieve. To perform this mathematical alignment, we need to learn

more about the geometry of two cameras viewing a scene. Once we have that geometry

defi ned and some terminology and notation to describe it, we can return to the problem

of alignment.

* Th e exception to this advice is that for applications where we want more resolution at close range; in this
case, we tilt the cameras slightly in toward each other so that their principal rays intersect at a fi nite dis-
tance. Aft er mathematical alignment, the eff ect of such inward verging cameras is to introduce an x-off set
that is subtracted from the disparity. Th is may result in negative disparities, but we can thus gain fi ner
depth resolution at the nearby depths of interest.

Figure 12-6. Stereo coordinate system used by OpenCV for undistorted rectifi ed cameras: the pixel
coordinates are relative to the upper left corner of the image, and the two planes are row-aligned; the
camera coordinates are relative to the left camera’s center of projection

12-R4886-AT1.indd 41812-R4886-AT1.indd 418 9/15/08 4:24:45 PM9/15/08 4:24:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stereo Imaging | 419

Epipolar Geometry
Th e basic geometry of a stereo imaging system is referred to as epipolar geometry. In

essence, this geometry combines two pinhole models (one for each camera*) and some

interesting new points called the epipoles (see Figure 12-8). Before explaining what these

epipoles are good for, we will start by taking a moment to defi ne them clearly and to add

some new related terminology. When we are done, we will have a concise understand-

ing of this overall geometry and will also fi nd that we can narrow down considerably

the possible locations of corresponding points on the two stereo cameras. Th is added

discovery will be important to practical stereo implementations.

For each camera there is now a separate center of projection, Ol and Or, and a pair of

corresponding projective planes, ∏l and ∏r. Th e point P in the physical world has a pro-

jection onto each of the projective planes that we can label pl and pr. Th e new points of

interest are the epipoles. An epipole el (resp. er) on image plane ∏l (resp. ∏r) is defi ned as

the image of the center of projection of the other camera Or (resp. Ol). Th e plane in space

formed by the actual viewed point P and the two epipoles el and er (or, equivalently,

through the two centers of projection Or and Ol) is called the epipolar plane, and the

lines plel and prer (from the points of projection to the corresponding epipolar points)

are called the epipolar lines.†

* Since we are actually dealing with real lenses and not pinhole cameras, it is important that the two images
be undistorted; see Chapter 11.

† You can see why the epipoles did not come up before: as the planes approach being perfectly parallel, the
epipoles head out toward infi nity!

Figure 12-7. Our goal will be to mathematically (rather than physically) align the two cameras into
one viewing plane so that pixel rows between the cameras are exactly aligned with each other

12-R4886-AT1.indd 41912-R4886-AT1.indd 419 9/15/08 4:24:45 PM9/15/08 4:24:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

420 | Chapter 12: Projection and 3D Vision

To understand the utility of the epipoles we fi rst recall that, when we see a point in the

physical world projected onto our right (or left) image plane, that point could actually

be located anywhere along a entire line of points formed by the ray going from Or out

through pr (or Ol through pl) because, with just that single camera, we do not know the

distance to the point we are viewing. More specifi cally, take for example the point P as

seen by the camera on the right. Because that camera sees only pr (the projection of P

onto ∏r), the actual point P could be located anywhere on the line defi ned by pr and Or.

Th is line obviously contains P, but it contains a lot of other points, too. What is interest-

ing, though, is to ask what that line looks like projected onto the left image plane ∏l; in

fact, it is the epipolar line defi ned by pl and el. To put that into English, the image of all

of the possible locations of a point seen in one imager is the line that goes through the

corresponding point and the epipolar point on the other imager.

We’ll now summarize some facts about stereo camera epipolar geometry (and why we

care).

Every 3D point in view of the cameras is contained in an epipolar plane that inter-•

sects each image in an epipolar line.

Given a feature in one image, its matching view in the other image • must lie along

the corresponding epipolar line. Th is is known as the epipolar constraint.

Th e epipolar constraint means that the possible two-dimensional search for match-•

ing features across two imagers becomes a one-dimensional search along the epi-

polar lines once we know the epipolar geometry of the stereo rig. Th is is not only

a vast computational savings, it also allows us to reject a lot of points that could

otherwise lead to spurious correspondences.

Figure 12-8. Th e epipolar plane is defi ned by the observed point P and the two centers of projection,
Ol and Or; the epipoles are located at the point of intersection of the line joining the centers of projec-
tion and the two projective planes

12-R4886-AT1.indd 42012-R4886-AT1.indd 420 9/15/08 4:24:45 PM9/15/08 4:24:45 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stereo Imaging | 421

Order is preserved. If points • A and B are visible in both images and occur horizon-

tally in that order in one imager, then they occur horizontally in that order in the

other imager.*

The Essential and Fundamental Matrices
You might think that the next step would be to introduce some OpenCV function that

computes these epipolar lines for us, but we actually need two more ingredients before

we can arrive at that point. Th ese ingredients are the essential matrix E and the funda-

mental matrix F.† Th e matrix E contains information about the translation and rotation

that relate the two cameras in physical space (see Figure 12-9), and F contains the same

information as E in addition to information about the intrinsics of both cameras.‡ Be-

cause F embeds information about the intrinsic parameters, it relates the two cameras

in pixel coordinates.

* Because of occlusions and areas of overlapping view, it is certainly possible that both cameras do not see the
same points. Nevertheless, order is maintained. If points A, B, and C are arranged left to right on the left
imager and if B is not seen on the right imager owing to occlusion, then the right imager will still see points
A and C left to right.

† Th e next subsections are a bit mathy. If you do not like math then just skim over them; at least you’ll have
confi dence that somewhere, someone understands all of this stuff . For simple applications, you can just use
the machinery that OpenCV provides without the need for all of the details in these next few pages.

‡ Th e astute reader will recognize that E was described in almost the exact same words as the homography
matrix H in the previous section. Although both are constructed from similar information, they are not the
same matrix and should not be confused. An essential part of the defi nition of H is that we were considering
a plane viewed by a camera and thus could relate one point in that plane to the point on the camera plane.
Th e matrix E makes no such assumption and so will only be able to relate a point in one image to a line in
the other.

Figure 12-9. Th e essential geometry of stereo imaging is captured by the essential matrix E, which
contains all of the information about the translation T and the rotation R, which describe the loca-
tion of the second camera relative to the fi rst in global coordinates

12-R4886-AT1.indd 42112-R4886-AT1.indd 421 9/15/08 4:24:46 PM9/15/08 4:24:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

422 | Chapter 12: Projection and 3D Vision

Let’s reinforce the diff erences between E and F. Th e essential matrix E is purely geo-

metrical and knows nothing about imagers. It relates the location, in physical coordi-

nates, of the point P as seen by the left camera to the location of the same point as seen

by the right camera (i.e., it relates pl to pr). Th e fundamental matrix F relates the points

on the image plane of one camera in image coordinates (pixels) to the points on the im-

age plane of the other camera in image coordinates (for which we will use the notation

ql and qr).

Essential matrix math

We will now submerge into some math so we can better understand the OpenCV func-

tion calls that do the hard work for our stereo geometry problems.

Given a point P, we would like to derive a relation which connects the observed loca-

tions pl and pr of P on the two imagers. Th is relationship will turn out to serve as the

defi nition of the essential matrix. We begin by considering the relationship between pl

and pr, the physical locations of the point we are viewing in the coordinates of the two

cameras. Th ese can be related by using epipolar geometry, as we have already seen.*

Let’s pick one set of coordinates, left or right, to work in and do our calculations there.

Either one is just as good, but we’ll choose the coordinates centered on Ol of the left

camera. In these coordinates, the location of the observed point is Pl and the origin of

the other camera is located at T. Th e point P as seen by the right camera is Pr in that

camera’s coordinates, where Pr = R(Pl – T). Th e key step is the introduction of the epipo-

lar plane, which we already know relates all of these things. We could, of course, repre-

sent a plane any number of ways, but for our purpose it is most helpful to recall that the

equation for all points x on a plane with normal vector n and passing through point a

obey the following constraint:

()x a− =n⋅ 0

Recall that the epipolar plane contains the vectors Pl and T; thus, if we had a vector (e.g.,

Pl × T) perpendicular to both,† then we could use that for n in our plane equation. Th us

an equation for all possible points Pl through the point T and containing both vectors

would be:‡

() ()P T T P
l l
− × =T 0

Remember that our goal was to relate ql and qr by fi rst relating Pl and Pr. We draw Pr into

the picture via our equality Pr = R(Pl – T), which we can conveniently rewrite as (Pl – T) =

R–1 Pr. Making this substitution and using that RT = R–1 yields:

* Please do not confuse pl and pr, which are points on the projective image planes, with pl and pr, which are
the locations of the point P in the coordinate frames of the two cameras.

† Th e cross product of vectors produces a third vector orthogonal to the fi rst two. Th e direction is defi ned by
the “right hand rule”: if you point in the direction a and bend your middle fi nger in the direction b, then the
cross product a × b points perpendicular to a and b in the direction of your thumb.

‡ Here we have replaced the dot product with matrix multiplication by the transpose of the normal vector.

12-R4886-AT1.indd 42212-R4886-AT1.indd 422 9/15/08 4:24:46 PM9/15/08 4:24:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stereo Imaging | 423

T T() ()R P T P
r l

× = 0

It is always possible to rewrite a cross product as a (somewhat bulky) matrix multiplica-

tion. We thus defi ne the matrix S such that:

T P SP S

T T

T T

T T
l l

z y

z x

y x

× = ⇒ =

−

−
−

⎡

⎣

⎢
⎢
⎢

⎤0

0

0 ⎦⎦

⎥
⎥
⎥

Th is leads to our fi rst result. Making this substitution for the cross product gives:

()P RSP
r l

T = 0

Th is product RS is what we defi ne to be the essential matrix E, which leads to the com-

pact equation:

()P EP
r l

T = 0

Of course, what we really wanted was a relation between the points as we observe them

on the imagers, but this is just a step away. We can simply substitute using the projec-

tion equations pl = f lPl / Zl and pr = fr Pr / Zr and then divide the whole thing by ZlZr / f l fr

to obtain our fi nal result:

p Ep
r l

T = 0

Th is might look at fi rst like it completely specifi es one of the p-terms if the other is given,

but E turns out to be a rank-defi cient matrix* (the 3-by-3 essential matrix has rank 2)

and so this actually ends up being an equation for a line. Th ere are fi ve parameters in

the essential matrix—three for rotation and two for the direction of translation (scale is

not set)—along with two other constraints. Th e two additional constraints on the essen-

tial matrix are: (1) the determinant is 0 because it is rank-defi cient (a 3-by-3 matrix of

rank 2); and (2) its two nonzero singular values are equal because the matrix S is skew-

symmetric and R is a rotation matrix. Th is yields a total of seven constraints. Note again

that E contains nothing intrinsic to the cameras in E; thus, it relates points to each other

in physical or camera coordinates, not pixel coordinates.

Fundamental matrix math

Th e matrix E contains all of the information about the geometry of the two cameras

relative to one another but no information about the cameras themselves. In practice,

we are usually interested in pixel coordinates. In order to fi nd a relationship between a

pixel in one image and the corresponding epipolar line in the other image, we will have

* For a square n-by-n matrix like E, rank defi cient essentially means that there are fewer than n nonzero
eigenvalues. As a result, a system of linear equations specifi ed by a rank-defi cient matrix does not have a
unique solution. If the rank (number of nonzero eigenvalues) is n – 1 then there will be a line formed by a
set of points all of which satisfy the system of equations. A system specifi ed by a matrix of rank n – 2 will
form a plane, and so forth.

12-R4886-AT1.indd 42312-R4886-AT1.indd 423 9/15/08 4:24:46 PM9/15/08 4:24:46 PM

www.it-ebooks.info

http://www.it-ebooks.info/

424 | Chapter 12: Projection and 3D Vision

to introduce intrinsic information about the two cameras. To do this, for p (the pixel

coordinate) we substitute q and the camera intrinsics matrix that relates them. Recall

that q = Mp (where M is the camera intrinsics matrix) or, equivalently, p = M–1 q. Hence

our equation for E becomes:

q M EM q
r r l l

T T()− − =1 1 0

Th ough this looks like a bit of a mess, we clean it up by defi ning the fundamental matrix

F as:
− −1 1F M EM
r

T

l
= ()

so that

q Fq
r l

=T 0

In a nutshell: the fundamental matrix F is just like the essential matrix E, except that

F operates in image pixel coordinates whereas E operates in physical coordinates.* Just

like E, the fundamental matrix F is of rank 2. Th e fundamental matrix has seven pa-

rameters, two for each epipole and three for the homography that relates the two image

planes (the scale aspect is missing from the usual four parameters).

How OpenCV handles all of this

We can compute F, in a manner analogous to computing the image homography in the

previous section, by providing a number of known correspondences. In this case, we

don’t even have to calibrate the cameras separately because we can solve directly for F,

which contains implicitly the fundamental matrices for both cameras. Th e routine that

does all of this for us is called cvFindFundamentalMat().

int cvFindFundamentalMat(
 const CvMat* points1,
 const CvMat* points2,
 CvMat* fundamental_matrix,
 int method = CV_FM_RANSAC,
 double param1 = 1.0,
 double param2 = 0.99,
 CvMat* status = NULL
);

Th e fi rst two arguments are N-by-2 or N-by-3† fl oating-point (single- or double-

precision) matrices containing the corresponding N points that you have collected (they

can also be N-by-1 multichannel matrices with two or three channels). Th e result is

* Note the equation that relates the fundamental matrix to the essential matrix. If we have rectifi ed images
and we normalize the points by dividing by the focal lengths, then the intrinsic matrix M becomes the
identity matrix and F = E.

† You might be wondering what the N-by-3 or three-channel matrix is for. Th e algorithm will deal just fi ne
with actual 3D points (x, y, z) measured on the calibration object. Th ree-dimensional points will end up
being scaled to (x/z, y/z), or you could enter 2D points in homogeneous coordinates (x, y, 1), which will
be treated in the same way. If you enter (x, y, 0) then the algorithm will just ignore the 0. Using actual 3D
points would be rare because usually you have only the 2D points detected on the calibration object.

12-R4886-AT1.indd 42412-R4886-AT1.indd 424 9/15/08 4:24:47 PM9/15/08 4:24:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stereo Imaging | 425

fundamental_matrix, which should be a 3-by-3 matrix of the same precision as the points

(in a special case the dimensions may be 9-by-3; see below).

Th e next argument determines the method to be used in computing the fundamen-

tal matrix from the corresponding points, and it can take one of four values. For each

value there are particular restrictions on the number of points required (or allowed) in

points1 and points2, as shown in Table 12-2.

Table 12-2. Restrictions on argument for method in cvFindFundamentalMat()

Value of method Number of points Algorithm

CV_FM_7POINT N = 7 7-point algorithm

CV_FM_8POINT N ≥ 8 8-point algorithm

CV_FM_RANSAC N ≥ 8 RANSAC algorithm

CV_FM_LMEDS N ≥ 8 LMedS algorithm

Th e 7-point algorithm uses exactly seven points, and it uses the fact that the matrix F

must be of rank 2 to fully constrain the matrix. Th e advantage of this constraint is that

F is then always exactly of rank 2 and so cannot have one very small eigenvalue that

is not quite 0. Th e disadvantage is that this constraint is not absolutely unique and so

three diff erent matrices might be returned (this is the case in which you should make

fundamental_matrix a 9-by-3 matrix, so that all three returns can be accommodated).

Th e 8-point algorithm just solves F as a linear system of equations. If more than eight

points are provided then a linear least-squares error is minimized across all points. Th e

problem with both the 7-point and 8-point algorithms is that they are extremely sensi-

tive to outliers (even if you have many more than eight points in the 8-point algorithm).

Th is is addressed by the RANSAC and LMedS algorithms, which are generally classifi ed

as robust methods because they have some capacity to recognize and remove outliers.*

For both methods, it is desirable to have many more than the minimal eight points.

Th e next two arguments are parameters used only by RANSAC and LMedS. Th e fi rst,

param1, is the maximum distance from a point to the epipolar line (in pixels) beyond

which the point is considered an outlier. Th e second parameter, param2, is the desired

confi dence (between 0 and 1), which essentially tells the algorithm how many times to

iterate.

Th e fi nal argument, status, is optional; if used, it should be an N-by-1 matrix of type

CV_8UC1, where N is the same as the length of points1 and points2. If this matrix is non-

NULL, then RANSAC and LMedS will use it to store information about which points were

ultimately considered outliers and which points were not. In particular, the appropriate

* Th e inner workings of RANSAC and LMedS are beyond the scope of this book, but the basic idea of
RANSAC is to solve the problem many times using a random subset of the points and then take the particu-
lar solution closest to the average or the median solution. LMedS takes a subset of points, estimates a solu-
tion, then adds from the remaining points only those points that are “consistent” with that solution. You do
this many times, take the set of points that fi ts the best, and throw away the others as “outliers”. For more
information, consult the original papers: Fischler and Bolles [Fischler81] for RANSAC; Rousseeuw [Rous-
seeuw84] for least median squares; and Inui, Kaneko, and Igarashi [Inui03] for line fi tting using LMedS.

12-R4886-AT1.indd 42512-R4886-AT1.indd 425 9/15/08 4:24:47 PM9/15/08 4:24:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

426 | Chapter 12: Projection and 3D Vision

entry will be set to 0 if the point was decided to be an outlier and to 1 otherwise. For the

other two methods, if this array is present then all values will be set to 1.

Th e return value of cvFindFundamentalMat() is an integer indicating the number of ma-

trices found. It will be either 1 or 0 for all methods other than the 7-point algorithm,

where it can also be 3. If the value is 0 then no matrix could be computed. Th e sample

code from the OpenCV manual, shown in Example 12-2, makes this clear.

Example 12-2. Computing the fundamental matrix using RANSAC

int point_count = 100;
CvMat* points1;
CvMat* points2;
CvMat* status;
CvMat* fundamental_matrix;

points1 = cvCreateMat(1,point_count,CV_32FC2);
points2 = cvCreateMat(1,point_count,CV_32FC2);
status = cvCreateMat(1,point_count,CV_8UC1);

/* Fill the points here ... */
for(int i = 0; i < point_count; i++)
{
 points1->data.fl[i*2] = <x1,i>; //These are points such as found
 points1->data.fl[i*2+1] = <y1,i>; // on the chessboard calibration
 points2->data.fl[i*2] = <x2,i>; // pattern.
 points2->data.fl[i*2+1] = <y2,i>;
}

fundamental_matrix = cvCreateMat(3,3,CV_32FC1);
int fm_count = cvFindFundamentalMat(points1, points2,
 fundamental_matrix,
 CV_FM_RANSAC,1.0,0.99,status);

One word of warning—related to the possibility of returning 0—is that these algorithms

can fail if the points supplied form degenerate confi gurations. Th ese degenerate confi gu-

rations arise when the points supplied provide less than the required amount of infor-

mation, such as when one point appears more than once or when multiple points are

collinear or coplanar with too many other points. It is important to always check the

return value of cvFindFundamentalMat().

Computing Epipolar Lines
Now that we have the fundamental matrix, we want to be able to compute epipolar lines.

Th e OpenCV function cvComputeCorrespondEpilines() computes, for a list of points in

one image, the epipolar lines in the other image. Recall that, for any given point in one

image, there is a diff erent corresponding epipolar line in the other image. Each com-

puted line is encoded in the form of a vector of three points (a, b, c) such that the epipo-

lar line is defi ned by the equation:

ax + by + c = 0

12-R4886-AT1.indd 42612-R4886-AT1.indd 426 9/15/08 4:24:47 PM9/15/08 4:24:47 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stereo Imaging | 427

To compute these epipolar lines, the function requires the fundamental matrix that we

computed with cvFindFundamentalMat().

void cvComputeCorrespondEpilines(
 const CvMat* points,
 int which_image,
 const CvMat* fundamental_matrix,
 CvMat* correspondent_lines
);

Here the fi rst argument, points, is the usual N-by-2 or N-by-3* array of points (which

may be an N-by-1 multichannel array with two or three channels). Th e argument

which_image must be either 1 or 2, and indicates which image the points are defi ned

on (relative to the points1 and points2 arrays in cvFindFundamentalMat()), Of course,

fundamental_matrix is the 3-by-3 matrix returned by cvFindFundamentalMat(). Finally,

correspondent_lines is an N-by-3 array of fl oating-point numbers to which the result

lines will be written. It is easy to see that the line equation ax + by = c = 0 is independent

of the overall normalization of the parameters a, b, and c. By default they are normal-

ized so that a2 + b2 = 1.

Stereo Calibration
We’ve built up a lot of theory and machinery behind cameras and 3D points that we can

now put to use. Th is section will cover stereo calibration, and the next section will cover

stereo rectifi cation. Stereo calibration is the process of computing the geometrical rela-

tionship between the two cameras in space. In contrast, stereo rectifi cation is the process

of “correcting” the individual images so that they appear as if they had been taken by

two cameras with row-aligned image planes (review Figures 12-4 and 12-7). With such

a rectifi cation, the optical axes (or principal rays) of the two cameras are parallel and

so we say that they intersect at infi nity. We could, of course, calibrate the two camera

images to be in many other confi gurations, but here (and in OpenCV) we focus on the

more common and simpler case of setting the principal rays to intersect at infi nity.

Stereo calibration depends on fi nding the rotation matrix R and translation vector T

between the two cameras, as depicted in Figure 12-9. Both R and T are calculated by the

function cvStereoCalibrate(), which is similar to cvCalibrateCamera2() that we saw in

Chapter 11 except that we now have two cameras and our new function can compute (or

make use of any prior computation of) the camera, distortion, essential, or fundamen-

tal matrices. Th e other main diff erence between stereo and single-camera calibration is

that, in cvCalibrateCamera2(), we ended up with a list of rotation and translation vectors

between the camera and the chessboard views. In cvStereoCalibrate(), we seek a single

rotation matrix and translation vector that relate the right camera to the left camera.

We’ve already shown how to compute the essential and fundamental matrices. But how

do we compute R and T between the left and right cameras? For any given 3D point P in

object coordinates, we can separately use single-camera calibration for the two cameras

* See the footnote on page 424.

12-R4886-AT1.indd 42712-R4886-AT1.indd 427 9/15/08 4:24:48 PM9/15/08 4:24:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

428 | Chapter 12: Projection and 3D Vision

to put P in the camera coordinates Pl = RlP + Tl and Pr = Rr P + Tr for the left and right

cameras, respectively. It is also evident from Figure 12-9 that the two views of P (from

the two cameras) are related by Pl = RT(Pr – T),* where R and T are, respectively, the

rotation matrix and translation vector between the cameras. Taking these three equa-

tions and solving for the rotation and translation separately yields the following simple

relations:†

R = Rr(Rl)
T

T = Tr – RTl

Given many joint views of chessboard corners, cvStereoCalibrate() uses cvCalibrate
Camera2() to solve for rotation and translation parameters of the chessboard views for

each camera separately (see the discussion in the “What’s under the hood?” subsec-

tion of Chapter 11 to recall how this is done). It then plugs these left and right rotation

and translation solutions into the equations just displayed to solve for the rotation and

translation parameters between the two cameras. Because of image noise and round-

ing errors, each chessboard pair results in slightly diff erent values for R and T. Th e

cvStereoCalibrate() routine then takes the median values for the R and T parameters

as the initial approximation of the true solution and then runs a robust Levenberg-

Marquardt iterative algorithm to fi nd the (local) minimum of the reprojection error of

the chessboard corners for both camera views, and the solution for R and T is returned.

To be clear on what stereo calibration gives you: the rotation matrix will put the right

camera in the same plane as the left camera; this makes the two image planes coplanar

but not row-aligned (we’ll see how row-alignment is accomplished in the Stereo Rectifi -

cation section below).

Th e function cvStereoCalibrate() has a lot of parameters, but they are all fairly straight-

forward and many are the same as for cvCalibrateCamera2() in Chapter 11.

bool cvStereoCalibrate(
 const CvMat* objectPoints,
 const CvMat* imagePoints1,
 const CvMat* imagePoints2,
 const CvMat* npoints,
 CvMat* cameraMatrix1,
 CvMat* distCoeffs1,
 CvMat* cameraMatrix2,
 CvMat* distCoeffs2,
 CvSize imageSize,
 CvMat* R,
 CvMat* T,
 CvMat* E,
 CvMat* F,

* Let’s be careful about what these terms mean: Pl and Pr denote the locations of the 3D point P from the
coordinate system of the left and right cameras respectively; Rl and Tl (resp., Rr and Tr) denote the rotation
and translation vectors from the camera to the 3D point for the left (resp. right) camera; and R and T are the
rotation and translation that bring the right-camera coordinate system into the left .

† Th e left and right cameras can be reversed in these equations either by reversing the subscripts in both
equations or by reversing the subscripts and dropping the transpose of R in the translation equation only.

12-R4886-AT1.indd 42812-R4886-AT1.indd 428 9/15/08 4:24:48 PM9/15/08 4:24:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stereo Imaging | 429

 CvTermCriteria termCrit,
 int flags=CV_CALIB_FIX_INTRINSIC
);

Th e fi rst parameter, objectPoints, is an N-by-3 matrix containing the physical coordi-

nates of each of the K points on each of the M images of the 3D object such that N = K × M.

When using chessboards as the 3D object, these points are located in the coordinate

frame attached to the object—setting, say, the upper left corner of the chessboard as the

origin (and usually choosing the Z-coordinate of the points on the chessboard plane to

be 0), but any known 3D points may be used as discussed with cvCalibrateCamera2().

We now have two cameras, denoted by “1” and “2” appended to the appropriate param-

eter names.* Th us we have imagePoints1 and imagePoints2, which are N-by-2 matrices

containing the left and right pixel coordinates (respectively) of all of the object reference

points supplied in objectPoints. If you performed calibration using a chessboard for the

two cameras, then imagePoints1 and imagePoints2 are just the respective returned val-

ues for the M calls to cvFindChessboardCorners() for the left and right camera views.

Th e argument npoints contains the number of points in each image supplied as an

M-by-1 matrix.

Th e parameters cameraMatrix1 and cameraMatrix2 are the 3-by-3 camera matrices, and

distCoeffs1 and distCoeffs2 are the 5-by-1 distortion matrices for cameras 1 and 2,

respectively. Remember that, in these matrices, the fi rst two radial parameters come

fi rst; these are followed by the two tangential parameters and fi nally the third radial

parameter (see the discussion in Chapter 11 on distortion coeffi cients). Th e third radial

distortion parameter is last because it was added later in OpenCV’s development; it is

mainly used for wide-angle (fi sh-eye) camera lenses. Th e use of these camera intrin-

sics is controlled by the flags parameter. If flags is set to CV_CALIB_FIX_INTRINSIC, then

these matrices are used as is in the calibration process. If flags is set to CV_CALIB_USE_
INTRINSIC_GUESS, then these matrices are used as a starting point to optimize further

the intrinsic and distortion parameters for each camera and will be set to the refi ned

values on return from cvStereoCalibrate(). You may additively combine other settings

of flags that have possible values that are exactly the same as for cvCalibrateCamera2(),

in which case these parameters will be computed from scratch in cvStereoCalibrate().

Th at is, you can compute the intrinsic, extrinsic, and stereo parameters in a single pass

using cvStereoCalibrate().†

Th e parameter imageSize is the image size in pixels. It is used only if you are refi ning or

computing intrinsic parameters, as when flags is not equal to CV_CALIB_FIX_INTRINSIC.

* For simplicity, think of “1” as denoting the left camera and “2” as denoting the right camera. You can inter-
change these as long as you consistently treat the resulting rotation and translation solutions in the opposite
fashion to the text discussion. Th e most important thing is to physically align the cameras so that their scan
lines approximately match in order to achieve good calibration results.

† Be careful: Trying to solve for too many parameters at once will sometimes cause the solution to diverge to
nonsense values. Solving systems of equations is something of an art, and you must verify your results. You
can see some of these considerations in the calibration and rectifi cation code example, where we check our
calibration results by using the epipolar constraint.

12-R4886-AT1.indd 42912-R4886-AT1.indd 429 9/15/08 4:24:48 PM9/15/08 4:24:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

430 | Chapter 12: Projection and 3D Vision

Th e terms R and T are output parameters that are fi lled on function return with the rota-

tion matrix and translation vector (relating the right camera to the left camera) that we

seek. Th e parameters E and F are optional. If they are not set to NULL, then cvStereo
Calibrate() will calculate and fi ll these 3-by-3 essential and fundamental matrices. We

have seen termCrit many times before. It sets the internal optimization either to termi-

nate aft er a certain number of iterations or to stop when the computed parameters change

by less than the threshold indicated in the termCrit structure. A typical argument for

this function is cvTermCriteria(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 100, 1e-5).

Finally, we’ve already discussed the flags parameter somewhat. If you’ve calibrated both

cameras and are sure of the result, then you can “hard set” the previous single-camera

calibration results by using CV_CALIB_FIX_INTRINSIC. If you think the two cameras’ initial

calibrations were OK but not great, you can use it to refi ne the intrinsic and distortion

parameters by setting flags to CV_CALIB_USE_INTRINSIC_GUESS. If the cameras have not

been individually calibrated, you can use the same settings as we used for the flags pa-

rameter in cvCalibrateCamera2() in Chapter 11.

Once we have either the rotation and translation values (R, T) or the fundamental ma-

trix F, we may use these results to rectify the two stereo images so that the epipolar

lines are arranged along image rows and the scan lines are the same across both images.

Although R and T don’t defi ne a unique stereo rectifi cation, we’ll see how to use these

terms (together with other constraints) in the next section.

Stereo Rectification
It is easiest to compute the stereo disparity when the two image planes align exactly

(as shown in Figure 12-4). Unfortunately, as discussed previously, a perfectly aligned

confi guration is rare with a real stereo system, since the two cameras almost never have

exactly coplanar, row-aligned imaging planes. Figure 12-7 shows the goal of stereo rec-

tifi cation: We want to reproject the image planes of our two cameras so that they reside

in the exact same plane, with image rows perfectly aligned into a frontal parallel confi g-

uration. How we choose the specifi c plane in which to mathematically align the cameras

depends on the algorithm being used. In what follows we discuss two cases addressed

by OpenCV.

We want the image rows between the two cameras to be aligned aft er rectifi cation so

that stereo correspondence (fi nding the same point in the two diff erent camera views)

will be more reliable and computationally tractable. Note that reliability and computa-

tional effi ciency are both enhanced by having to search only one row for a match with

a point in the other image. Th e result of aligning horizontal rows within a common

image plane containing each image is that the epipoles themselves are then located at

infi nity. Th at is, the image of the center of projection in one image is parallel to the

other image plane. But because there are an infi nite number of possible frontal parallel

planes to choose from, we will need to add more constraints. Th ese include maximiz-

ing view overlap and/or minimizing distortion, choices that are made by the algorithms

discussed in what follows.

12-R4886-AT1.indd 43012-R4886-AT1.indd 430 9/15/08 4:24:48 PM9/15/08 4:24:48 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stereo Imaging | 431

Th e result of the process of aligning the two image planes will be eight terms, four

each for the left and the right cameras. For each camera we’ll get a distortion vector

distCoeffs , a rotation matrix Rrect (to apply to the image), and the rectifi ed and unrecti-

fi ed camera matrices (Mrect and M, respectively). From these terms, we can make a map,

using cvInitUndistortRectifyMap() (to be discussed shortly), of where to interpolate pix-

els from the original image in order to create a new rectifi ed image.*

Th ere are many ways to compute our rectifi cation terms, of which OpenCV implements

two: (1) Hartley’s algorithm [Hartley98], which can yield uncalibrated stereo using just

the fundamental matrix; and (2) Bouguet’s algorithm,† which uses the rotation and

translation parameters from two calibrated cameras. Hartley’s algorithm can be used to

derive structure from motion recorded by a single camera but may (when stereo recti-

fi ed) produce more distorted images than Bouguet’s calibrated algorithm. In situations

where you can employ calibration patterns—such as on a robot arm or for security cam-

era installations—Bouguet’s algorithm is the natural one to use.

Uncalibrated stereo rectification: Hartley’s algorithm

Hartley’s algorithm attempts to fi nd homographies that map the epipoles to infi nity

while minimizing the computed disparities between the two stereo images; it does this

simply by matching points between two image pairs. Th us, we bypass having to com-

pute the camera intrinsics for the two cameras because such intrinsic information is im-

plicitly contained in the point matches. Hence we need only compute the fundamental

matrix, which can be obtained from any matched set of seven or more points between

the two views of the scene via cvFindFundamentalMat() as already described. Alterna-

tively, the fundamental matrix can be computed from cvStereoCalibrate().

Th e advantage of Hartley’s algorithm is that online stereo calibration can be performed

simply by observing points in the scene. Th e disadvantage is that we have no sense of

image scale. For example, if we used a chessboard for generating point matches then

we would not be able to tell if the chessboard were 100 meters on each side and far away

or 100 centimeters on each side and nearby. Neither do we explicitly learn the intrinsic

camera matrix, without which the cameras might have diff erent focal lengths, skewed

pixels, diff erent centers of projection, and/or diff erent principal points. As a result, we

can determine 3D object reconstruction only up to a projective transform. What this

means is that diff erent scales or projections of an object can appear the same to us (i.e.,

the feature points have the same 2D coordinates even though the 3D objects diff er).

Both of these issues are illustrated in Figure 12-10.

* Stereo rectifi cation of an image in OpenCV is possible only when the epipole is outside of the image rect-
angle. Hence this rectifi cation algorithm may not work with stereo confi gurations that are characterized by
either a very wide baseline or when the cameras point towards each other too much.

† Th e Bouguet algorithm is a completion and simplifi cation of the method fi rst presented by Tsai [Tsai87]
and Zhang [Zhang99; Zhang00]. Jean-Yves Bouguet never published this algorithm beyond its well-known
implementation in his Camera Calibration Toolbox Matlab.

12-R4886-AT1.indd 43112-R4886-AT1.indd 431 9/15/08 4:24:49 PM9/15/08 4:24:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

432 | Chapter 12: Projection and 3D Vision

Assuming we have the fundamental matrix F, which required seven or more points to

compute, Hartley’s algorithm proceeds as follows (see Hartley’s original paper [Hartley98]

for more details).

We use the fundamental matrix to compute the two epipoles via the relations 1. Fe
l
= 0

and ()e F
r

T = 0 for the left and right epipoles, respectively.

We seek a fi rst homography 2. Hr , which will map the right epipole to the 2D homo-

geneous point at infi nity (1, 0, 0)T. Since a homography has seven constraints (scale

is missing), and we use three to do the mapping to infi nity, we have 4 degrees of

freedom left in which to choose our Hr . Th ese 4 degrees of freedom are mostly free-

dom to make a mess since most choices of Hr will result in highly distorted images.

To fi nd a good Hr , we choose a point in the image where we want minimal distor-

tion to happen, allowing only rigid rotation and translation not shearing there. A

reasonable choice for such a point is the image origin and we’ll further assume that

the epipole (,e f 0 1() ,)
r

T = lies on the x-axis (a rotation matrix will accomplish this

below). Given these coordinates, the matrix

G

k

=
−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 0 0

0 1 0

1 0 1/

 will take such an epipole to infi nity.

For a selected point of interest in the right image (we chose the origin), we compute 3.

the translation T that will take that point to the image origin (0 in our case) and the

rotation R that will take the epipole to (,e f 0 1() ,)
r

T = . Th e homography we want

will then be H GRT
r

= .

Figure 12-10. Stereo reconstruction ambiguity: if we do not know object size, then diff erent size
objects can appear the same depending on their distance from the camera (left); if we don’t know the
camera instrinsics, then diff erent projections can appear the same—for example, by having diff erent
focal lengths and principal points

12-R4886-AT1.indd 43212-R4886-AT1.indd 432 9/15/08 4:24:49 PM9/15/08 4:24:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stereo Imaging | 433

We next search for a matching homography 4. Hl that will send the left epipole to

infi nity and align the rows of the two images. Sending the left epipole to infi nity

is easily done by using up three constraints as in step 2. To align the rows, we just

use the fact that aligning the rows minimizes the total distance between all match-

ing points between the two images. Th at is, we fi nd the Hl that minimizes the total

disparity in left -right matching points d H p H p
l i

l

r i

r

i
(,)∑ . Th ese two homographies

defi ne the stereo rectifi cation.

Although the details of this algorithm are a bit tricky, cvStereoRectify Uncalibrated()

does all the hard work for us. Th e function is a bit misnamed because it does not rectify

uncalibrated stereo images; rather, it computes homographies that may be used for rec-

tifi cation. Th e algorithm call is

int cvStereoRectifyUncalibrated(
 const CvMat* points1,
 const CvMat* points2,
 const CvMat* F,
 CvSize imageSize,
 CvMat* Hl,
 CvMat* Hr,
 double threshold
);

In cvStereoRectifyUncalibrated(), the algorithm takes as input an array of 2-by-K cor-

responding points between the left and right images in the arrays points1 and points2.

Th e fundamental matrix we calculated above is passed as the array F. We are familiar

with imageSize, which just describes the width and height of the images that were used

during calibration. Our return rectifying homographies are returned in the function

variables Hl and Hr. Finally, if the distance from points to their corresponding epilines

exceeds a set threshold, the corresponding point is eliminated by the algorithm.*

If our cameras have roughly the same parameters and are set up in an approximately

horizontally aligned frontal parallel confi guration, then our eventual rectifi ed outputs

from Hartley’s algorithm will look very much like the calibrated case described next.

If we know the size or the 3D geometry of objects in the scene, we can obtain the same

results as the calibrated case.

Calibrated stereo rectification: Bouguet’s algorithm

Given the rotation matrix and translation (R, T) between the stereo images, Bouguet’s

algorithm for stereo rectifi cation simply attempts to minimize the amount of change

reprojection produces for each of the two images (and thereby minimize the resulting

reprojection distortions) while maximizing common viewing area.

To minimize image reprojection distortion, the rotation matrix R that rotates the right

camera’s image plane into the left camera’s image plane is split in half between the two

* Hartley’s algorithm works best for images that have been rectifi ed previously by single-camera calibration.
It won’t work at all for images with high distortion. It is rather ironic that our “calibration-free” routine
works only for undistorted image inputs whose parameters are typically derived from prior calibration. For
another uncalibrated 3D approach, see Pollefeys [Pollefeys99a].

12-R4886-AT1.indd 43312-R4886-AT1.indd 433 9/15/08 4:24:49 PM9/15/08 4:24:49 PM

www.it-ebooks.info

http://www.it-ebooks.info/

434 | Chapter 12: Projection and 3D Vision

cameras; we call the two resulting rotation matrixes rl and rr for the left and right cam-

era, respectively. Each camera rotates half a rotation, so their principal rays each end up

parallel to the vector sum of where their original principal rays had been pointing. As

we have noted, such a rotation puts the cameras into coplanar alignment but not into

row alignment. To compute the Rrect that will take the left camera’s epipole to infi nity

and align the epipolar lines horizontally, we create a rotation matrix by starting with

the direction of the epipole e1 itself. Taking the principal point (cx, cy) as the left image’s

origin, the (unit normalized) direction of the epipole is directly along the translation

vector between the two cameras’ centers of projection:

e
T

T
1

=

Th e next vector, e2, must be orthogonal to e1 but is otherwise unconstrained. For e2,

choosing a direction orthogonal to the principal ray (which will tend to be along the

image plane) is a good choice. Th is is accomplished by using the cross product of e1 with

the direction of the principal ray and then normalizing so that we’ve got another unit

vector:

e
T T

T T

y x

x y

2 2 2

0
=

−

+

[]T

Th e third vector is just orthogonal to e1 and e2; it can be found using the cross product:

e3 = e1 × e2

Our matrix that takes the epipole in the left camera to infi nity is then:

R

e

e

e
rect

T

T

T

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

()

()

()

1

2

3

Th is matrix rotates the left camera about the center of projection so that the epipolar

lines become horizontal and the epipoles are at infi nity. Th e row alignment of the two

cameras is then achieved by setting:

Rl = Rrectrl

Rr = Rrectrr

We will also compute the rectifi ed left and right camera matrices Mrect_l and Mrect_r but

return them combined with projection matrices Pl and Pr:

P M P

f c

f c
l l l

x l l x l

y l y l
= ′=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

rect_

_ _

_ _

α
0

0 0 1

⎥⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 0 0

0 1 0 0

0 0 1 0

12-R4886-AT1.indd 43412-R4886-AT1.indd 434 9/15/08 4:24:50 PM9/15/08 4:24:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stereo Imaging | 435

and

P M P

f c

f c
r r r

x r r x r

y r y r
= ′=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

rect_

_ _

_ _

α
0

0 0 1

⎥⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 0

0 1 0 0

0 0 1 0

T
x

(here αl and αr allow for a pixel skew factor that in modern cameras is almost always 0).

Th e projection matrices take a 3D point in homogeneous coordinates to a 2D point in

homogeneous coordinates as follows:

P

X

Y

Z

x

y

w
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

where the screen coordinates can be calculated as (x/w, y/w). Points in two dimensions

can also then be reprojected into three dimensions given their screen coordinates and

the camera intrinsics matrix. Th e reprojection matrix is:

Q

c

c

f

T c c T

x

y

x x x x

=

−
−

− − ′

⎡

⎣

⎢
⎢
⎢
⎢
⎢

1 0 0

0 1 0

0 0 0

0 0 1/ ()/

⎤⎤

⎦

⎥
⎥
⎥
⎥
⎥

Here the parameters are from the left image except for cx� , which is the principal point

x coordinate in the right image. If the principal rays intersect at infi nity, then cx = cx′ and

the term in the lower right corner is 0. Given a two-dimensional homogeneous point

and its associated disparity d, we can project the point into three dimensions using:

Q

x

y

d

X

Y

Z

W1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Th e 3D coordinates are then (X/W, Y/W, Z/W).

Applying the Bouguet rectifi cation method just described yields our ideal stereo confi g-

uration as per Figure 12-4. New image centers and new image bounds are then chosen

for the rotated images so as to maximize the overlapping viewing area. Mainly this just

sets a uniform camera center and a common maximal height and width of the two im-

age areas as the new stereo viewing planes.

void cvStereoRectify(
 const CvMat* cameraMatrix1,
 const CvMat* cameraMatrix2,

12-R4886-AT1.indd 43512-R4886-AT1.indd 435 9/15/08 4:24:50 PM9/15/08 4:24:50 PM

www.it-ebooks.info

http://www.it-ebooks.info/

436 | Chapter 12: Projection and 3D Vision

 const CvMat* distCoeffs1,
 const CvMat* distCoeffs2,
 CvSize imageSize,
 const CvMat* R,
 const CvMat* T,
 CvMat* Rl,
 CvMat* Rr,
 CvMat* Pl,
 CvMat* Pr,
 CvMat* Q=0,
 int flags=CV_CALIB_ZERO_DISPARITY
);

For cvStereoRectify(),* we input the familiar original camera matrices and distortion

vectors returned by cvStereoCalibrate(). Th ese are followed by imageSize, the size of the

chessboard images used to perform the calibration. We also pass in the rotation matrix

R and translation vector T between the right and left cameras that was also returned by

cvStereoCalibrate().

Return parameters are Rl and Rr, the 3-by-3 row-aligned rectifi cation rotations for the

left and right image planes as derived in the preceding equations. Similarly, we get back

the 3-by-4 left and right projection equations Pl and Pr. An optional return parameter is

Q, the 4-by-4 reprojection matrix described previously.

Th e flags parameter is defaulted to set disparity at infi nity, the normal case as per Fig-

ure 12-4. Unsetting flags means that we want the cameras verging toward each other

(i.e., slightly “cross-eyed”) so that zero disparity occurs at a fi nite distance (this might

be necessary for greater depth resolution in the proximity of that particular distance).

If the flags parameter was not set to CV_CALIB_ZERO_DISPARITY, then we must be more

careful about how we achieve our rectifi ed system. Recall that we rectifi ed our system

relative to the principal points (cx, cy) in the left and right cameras. Th us, our mea-

surements in Figure 12-4 must also be relative to these positions. Basically, we have

to modify the distances so that �x x cr r

x
= − right and �x x cl l

x
= − left. When disparity has

been set to infi nity, we have cx
left = cx

right (i.e., when CV_CALIB_ZERO_DISPARITY is passed to

cvStereoRectify()), and we can pass plain pixel coordinates (or disparity) to the formula

for depth. But if cvStereoRectify() is called without CV_CALIB_ZERO_DISPARITY then cx
left ≠

cx
right in general. Th erefore, even though the formula Z = fT/(xl – xr) remains the same,

one should keep in mind that xl and xr are not counted from the image center but rather

from the respective principal points cx
left and cx

right, which could diff er from xl and xr.

Hence, if you computed disparity d = xl – xr then it should be adjusted before computing

Z: Z fT/(d – (cx
left – cx

right)).

Rectification map

Once we have our stereo calibration terms, we can pre-compute left and right rectifi cation

lookup maps for the left and right camera views using separate calls to cvInitUndistort

* Again, cvStereoRectify() is a bit of a misnomer because the function computes the terms that we can use
for rectifi cation but doesn’t actually rectify the stereo images.

12-R4886-AT1.indd 43612-R4886-AT1.indd 436 9/15/08 4:24:51 PM9/15/08 4:24:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stereo Imaging | 437

RectifyMap(). As with any image-to-image mapping function, a forward mapping (in

which we just compute where pixels go from the source image to the destination image)

will not, owing to fl oating-point destination locations, hit all the pixel locations in the

destination image, which thus will look like Swiss cheese. So instead we work backward:

for each integer pixel location in the destination image, we look up what fl oating-point

coordinate it came from in the source image and then interpolate from its surrounding

source pixels a value to use in that integer destination location. Th is source lookup typi-

cally uses bilinear interpolation, which we encountered with cvRemap() in Chapter 6.

Th e process of rectifi cation is illustrated in Figure 12-11. As shown by the equation fl ow

in that fi gure, the actual rectifi cation process proceeds backward from (c) to (a) in a

process known as reverse mapping. For each integer pixel in the rectifi ed image (c), we

fi nd its coordinates in the undistorted image (b) and use those to look up the actual

(fl oating-point) coordinates in the raw image (a). Th e fl oating-point coordinate pixel

value is then interpolated from the nearby integer pixel locations in the original source

image, and that value is used to fi ll in the rectifi ed integer pixel location in the destina-

tion image (c). Aft er the rectifi ed image is fi lled in, it is typically cropped to emphasize

the overlapping areas between the left and right images.

Th e function that implements the math depicted in Figure 12-11 is called cvInitUndistort
RectifyMap(). We call this function twice, once for the left and once for the right image

of stereo pair.

void cvInitUndistortRectifyMap(
 const CvMat* M,
 const CvMat* distCoeffs,
 const CvMat* Rrect,
 const CvMat* Mrect,
 CvArr* mapx,
 CvArr* mapy
);

Th e cvInitUndistortRectifyMap() function takes as input the 3-by-3 camera matrix

M, the rectifi ed 3-by-3 camera matrix Mrect, the 3-by-3 rotation matrix Rrect, and the

5-by-1 camera distortion parameters in distCoeffs.

If we calibrated our stereo cameras using cvStereoRectify(), then we can read our in-

put to cvInitUndistortRectifyMap() straight out of cvStereoRectify() using fi rst the left

parameters to rectify the left camera and then the right parameters to rectify the right

camera. For Rrect, use Rl or Rr from cvStereoRectify(); for M, use cameraMatrix1 or

cameraMatrix2. For Mrect we could use the fi rst three columns of the 3-by-4 Pl or Pr

from cvStereoRectify(), but as a convenience the function allows us to pass Pl or Pr di-

rectly and it will read Mrect from them.

If, on the other hand, we used cvStereoRectifyUncalibrated() to calibrate our ste-

reo cameras, then we must preprocess the homography a bit. Although we could—in

principle and in practice—rectify stereo without using the camera intrinsics, OpenCV

does not have a function for doing this directly. If we do not have Mrect from some

prior calibration, the proper procedure is to set Mrect equal to M. Th en, for Rrect in

12-R4886-AT1.indd 43712-R4886-AT1.indd 437 9/15/08 4:24:51 PM9/15/08 4:24:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

438 | Chapter 12: Projection and 3D Vision

cvInitUndistortRectifyMap(), we need to compute Rrect_l = M–1
rect_l HlMl (or just Rrect_l = M–1

l

HlMl if M
–1
rect_l is unavailable) and Rrect_r = M–1

rect_r Hr Mr (or just Rrect_r = M–1
r Hr Mr if M

–1
rect_r is

unavailable) for the left and the right rectifi cation, respectively. Finally, we will also need

the distortion coeffi cients for each camera to fi ll in the 5-by-1 distCoeffs parameters.

Th e function cvInitUndistortRectifyMap() returns lookup maps mapx and mapy as output.

Th ese maps indicate from where we should interpolate source pixels for each pixel of the

destination image; the maps can then be plugged directly into cvRemap(), a function we

fi rst saw in Chapter 6. As we mentioned, the function cvInitUndistortRectifyMap() is

called separately for the left and the right cameras so that we can obtain their distinct

mapx and mapy remapping parameters. Th e function cvRemap() may then be called, using

the left and then the right maps each time we have new left and right stereo images to

rectify. Figure 12-12 shows the results of stereo undistortion and rectifi cation of a stereo

pair of images. Note how feature points become horizontally aligned in the undistorted

rectifi ed images.

Stereo Correspondence
Stereo correspondence—matching a 3D point in the two diff erent camera views—can

be computed only over the visual areas in which the views of the two cameras overlap.

Once again, this is one reason why you will tend to get better results if you arrange your

cameras to be as nearly frontal parallel as possible (at least until you become expert at

stereo vision). Th en, once we know the physical coordinates of the cameras or the sizes

Figure 12-11. Stereo rectifi cation: for the left and right camera, the raw image (a) is undistorted (b)
and rectifi ed (c) and fi nally cropped (d) to focus on overlapping areas between the two cameras; the
rectifi cation computation actually works backward from (c) to (a)

12-R4886-AT1.indd 43812-R4886-AT1.indd 438 9/15/08 4:24:51 PM9/15/08 4:24:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stereo Imaging | 439

of objects in the scene, we can derive depth measurements from the triangulated dispar-

ity measures d = xl – xr (or d = xl – xr – (cx
left – cx

right) if the principal rays intersect at a fi nite

distance) between the corresponding points in the two diff erent camera views. Without

such physical information, we can compute depth only up to a scale factor. If we don’t

have the camera instrinsics, as when using Hartley’s algorithm, we can compute point

locations only up to a projective transform (review Figure 12-10).

OpenCV implements a fast and eff ective block-matching stereo algorithm, cvFindStereo
CorrespondenceBM(), that is similar to the one developed by Kurt Konolige [Konolige97];

it works by using small “sum of absolute diff erence” (SAD) windows to fi nd matching

points between the left and right stereo rectifi ed images.* Th is algorithm fi nds only

strongly matching (high-texture) points between the two images. Th us, in a highly tex-

tured scene such as might occur outdoors in a forest, every pixel might have computed

depth. In a very low-textured scene, such as an indoor hallway, very few points might

register depth. Th ere are three stages to the block-matching stereo correspondence algo-

rithm, which works on undistorted, rectifi ed stereo image pairs:

* Th is algorithm is available in an FPGA stereo hardware system from Videre (see [Videre]).

Figure 12-12. Stereo rectifi cation: original left and right image pair (upper panels) and the stereo
rectifi ed left and right image pair (lower panels); note that the barrel distortion (in top of chessboard
patterns) has been corrected and the scan lines are aligned in the rectifi ed images

12-R4886-AT1.indd 43912-R4886-AT1.indd 439 9/15/08 4:24:51 PM9/15/08 4:24:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

440 | Chapter 12: Projection and 3D Vision

Prefi ltering to normalize image brightness and enhance texture.1.

Correspondence search along horizontal epipolar lines using an SAD window.2.

Postfi ltering to eliminate bad correspondence matches.3.

In the prefi ltering step, the input images are normalized to reduce lighting diff erences

and to enhance image texture. Th is is done by running a window—of size 5-by-5, 7-by-7

(the default), . . ., 21-by-21 (the maximum)—over the image. Th e center pixel Ic under the

window is replaced by min[max(Ic – I
–

, – Icap), Icap], where I
–

 is the average value in the win-

dow and Icap is a positive numeric limit whose default value is 30. Th is method is invoked

by a CV_NORMALIZED_RESPONSE fl ag. Th e other possible fl ag is CV_LAPLACIAN_OF_GAUSSIAN,

which runs a peak detector over a smoothed version of the image.

Correspondence is computed by a sliding SAD window. For each feature in the left im-

age, we search the corresponding row in the right image for a best match. Aft er rectifi -

cation, each row is an epipolar line, so the matching location in the right image must be

along the same row (same y-coordinate) as in the left image; this matching location can

be found if the feature has enough texture to be detectable and if it is not occluded in

the right camera’s view (see Figure 12-16). If the left feature pixel coordinate is at (x0, y0)

then, for a horizontal frontal parallel camera arrangement, the match (if any) must be

found on the same row and at, or to the left of, x0; see Figure 12-13. For frontal parallel

cameras, x0 is at zero disparity and larger disparities are to the left . For cameras that are

angled toward each other, the match may occur at negative disparities (to the right of

x0). Th e fi rst parameter that controls matching search is minDisparity, which is where

the matching search should start. Th e default for minDisparity is 0. Th e disparity search

is then carried out over numberOfDisparities counted in pixels (the default is 64 pixels).

Disparities have discrete, subpixel resolution that is set by the parameter subPixelDis-
parities (the default is 16 subdisparities per pixel). Reducing the number of disparities

to be searched can help cut down computation time by limiting the length of a search

for a matching point along an epipolar line. Remember that large disparities represent

closer distances.

Setting the minimum disparity and the number of disparities to be searched establishes

the horopter, the 3D volume that is covered by the search range of the stereo algorithm.

Figure 12-14 shows disparity search limits of fi ve pixels starting at three diff erent dis-

parity limits: 20, 17, and 16. Each disparity limit defi nes a plane at a fi xed depth from

the cameras (see Figure 12-15). As shown in Figure 12-14, each disparity limit—together

with the number of disparities—sets a diff erent horopter at which depth can be detected.

Outside of this range, depth will not be found and will represent a “hole” in the depth

map where depth is not known. Horopters can be made larger by decreasing the base-

line distance T between the cameras, by making the focal length smaller, by increasing

the stereo disparity search range, or by increasing the pixel width.

Correspondence within the horopter has one in-built constraint, called the order con-

straint, which simply states that the order of the features cannot change from the left

view to the right. Th ere may be missing features—where, owing to occlusion and noise,

12-R4886-AT1.indd 44012-R4886-AT1.indd 440 9/15/08 4:24:52 PM9/15/08 4:24:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stereo Imaging | 441

Figure 12-13. Any right-image match of a left -image feature must occur on the same row and at (or
to the left of) the same coordinate point, where the match search starts at the minDisparity point
(here, 0) and moves to the left for the set number of disparities; the characteristic matching function
of window-based feature matching is shown in the lower part of the fi gure

Figure 12-14. Each line represents a plane of constant disparity in integer pixels from 20 to 12; a
disparity search range of fi ve pixels will cover diff erent horopter ranges, as shown by the vertical ar-
rows, and diff erent maximal disparity limits establish diff erent horopters

12-R4886-AT1.indd 44112-R4886-AT1.indd 441 9/15/08 4:24:52 PM9/15/08 4:24:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

442 | Chapter 12: Projection and 3D Vision

Figure 12-15. A fi xed disparity forms a plane of fi xed distance from the cameras

some features found on the left cannot be found on the right—but the ordering of those

features that are found remains the same. Similarly, there may be many features on the

right that were not identifi ed on the left (these are called insertions), but insertions do

not change the order of features although they may spread those features out. Th e proce-

dure illustrated in Figure 12-16 refl ects the ordering constraint when matching features

on a horizontal scan line.

Given the smallest allowed disparity increment ∆d, we can determine smallest achiev-

able depth range resolution ∆Z by using the formula:

Δ ΔZ
Z

fT
d=

2

It is useful to keep this formula in mind so that you know what kind of depth resolution

to expect from your stereo rig.

Aft er correspondence, we turn to postfi ltering. Th e lower part of Figure 12-13 shows a

typical matching function response as a feature is “swept” from the minimum disparity

out to maximum disparity. Note that matches oft en have the characteristic of a strong

central peak surrounded by side lobes. Once we have candidate feature correspondences

between the two views, postfi ltering is used to prevent false matches. OpenCV makes

use of the matching function pattern via a uniquenessRatio parameter (whose default

value is 12) that fi lters out matches, where uniquenessRatio > (match_val–min_match)/
min_match.

12-R4886-AT1.indd 44212-R4886-AT1.indd 442 9/15/08 4:24:52 PM9/15/08 4:24:52 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stereo Imaging | 443

To make sure that there is enough texture to overcome random noise during matching,

OpenCV also employs a textureThreshold. Th is is just a limit on the SAD window re-

sponse such that no match is considered whose response is below the textureThreshold
(the default value is 12). Finally, block-based matching has problems near the boundar-

ies of objects because the matching window catches the foreground on one side and

the background on the other side. Th is results in a local region of large and small dis-

parities that we call speckle. To prevent these borderline matches, we can set a speckle

detector over a speckle window (ranging in size from 5-by-5 up to 21-by-21) by setting

speckleWindowSize, which has a default setting of 9 for a 9-by-9 window. Within

the speckle window, as long as the minimum and maximum detected disparities are

within speckleRange, the match is allowed (the default range is set to 4).

Stereo vision is becoming crucial to surveillance systems, navigation, and robotics, and

such systems can have demanding real-time performance requirements. Th us, the ste-

reo correspondence routines are designed to run fast. Th erefore, we can’t keep allocat-

ing all the internal scratch buff ers that the correspondence routine needs each time we

call cvFindStereoCorrespondenceBM().

Th e block-matching parameters and the internal scratch buff ers are kept in a data struc-

ture named CvStereoBMState:

typedef struct CvStereoBMState {
 //pre filters (normalize input images):

Figure 12-16. Stereo correspondence starts by assigning point matches between corresponding rows
in the left and right images: left and right images of a lamp (upper panel); an enlargement of a single
scan line (middle panel); visualization of the correspondences assigned (lower panel).

12-R4886-AT1.indd 44312-R4886-AT1.indd 443 9/15/08 4:24:53 PM9/15/08 4:24:53 PM

www.it-ebooks.info

http://www.it-ebooks.info/

444 | Chapter 12: Projection and 3D Vision

 int preFilterType;
 int preFilterSize;//for 5x5 up to 21x21
 int preFilterCap;
 //correspondence using Sum of Absolute Difference (SAD):
 int SADWindowSize; // Could be 5x5,7x7, ..., 21x21
 int minDisparity;
 int numberOfDisparities;//Number of pixels to search
 //post filters (knock out bad matches):
 int textureThreshold; //minimum allowed
 float uniquenessRatio;// Filter out if:
 // [match_val - min_match <
 // uniqRatio*min_match]
 // over the corr window area
 int speckleWindowSize;//Disparity variation window
 int speckleRange;//Acceptable range of variation in window
 // temporary buffers
 CvMat* preFilteredImg0;
 CvMat* preFilteredImg1;
 CvMat* slidingSumBuf;
} CvStereoBMState;

Th e state structure is allocated and returned by the function cvCreateStereoBMState().

Th is function takes the parameter preset, which can be set to any one of the following.

CV_STEREO_BM_BASIC
Sets all parameters to their default values

CV_STEREO_BM_FISH_EYE
Sets parameters for dealing with wide-angle lenses

CV_STEREO_BM_NARROW
Sets parameters for stereo cameras with narrow fi eld of view

Th is function also takes the optional parameter numberOfDisparities; if nonzero, it

overrides the default value from the preset. Here is the specifi cation:

CvStereoBMState* cvCreateStereoBMState(
 int presetFlag=CV_STEREO_BM_BASIC,
 int numberOfDisparities=0
);

Th e state structure, CvStereoBMState{}, is released by calling

void cvReleaseBMState(
 CvStereoBMState **BMState
);

Any stereo correspondence parameters can be adjusted at any time between cvFindStereo
CorrespondenceBM calls by directly assigning new values of the state structure fi elds. Th e

correspondence function will take care of allocating/reallocating the internal buff ers as

needed.

Finally, cvFindStereoCorrespondenceBM() takes in rectifi ed image pairs and outputs a

disparity map given its state structure:

void cvFindStereoCorrespondenceBM(
 const CvArr *leftImage,

12-R4886-AT1.indd 44412-R4886-AT1.indd 444 9/15/08 4:24:54 PM9/15/08 4:24:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stereo Imaging | 445

 const CvArr *rightImage,
 CvArr *disparityResult,
 CvStereoBMState *BMState
);

Stereo Calibration, Rectification, and Correspondence Code
Let’s put this all together with code in an example program that will read in a number

of chessboard patterns from a fi le called list.txt. Th is fi le contains a list of alternating

left and right stereo (chessboard) image pairs, which are used to calibrate the cameras

and then rectify the images. Note once again that we’re assuming you’ve arranged the

cameras so that their image scan lines are roughly physically aligned and such that each

camera has essentially the same fi eld of view. Th is will help avoid the problem of the epi-

pole being within the image* and will also tend to maximize the area of stereo overlap

while minimizing the distortion from reprojection.

In the code (Example 12-3), we fi rst read in the left and right image pairs, fi nd the chess-

board corners to subpixel accuracy, and set object and image points for the images

where all the chessboards could be found. Th is process may optionally be displayed.

Given this list of found points on the found good chessboard images, the code calls

cvStereoCalibrate() to calibrate the camera. Th is calibration gives us the camera matrix

_M and the distortion vector _D for the two cameras; it also yields the rotation matrix _R,

the translation vector _T, the essential matrix _E, and the fundamental matrix _F.

Next comes a little interlude where the accuracy of calibration is assessed by check-

ing how nearly the points in one image lie on the epipolar lines of the other image. To

do this, we undistort the original points using cvUndistortPoints() (see Chapter 11),

compute the epilines using cvComputeCorrespondEpilines(), and then compute the dot

product of the points with the lines (in the ideal case, these dot products would all be 0).

Th e accumulated absolute distance forms the error.

Th e code then optionally moves on to computing the rectifi cation maps using the un-

calibrated (Hartley) method cvStereoRectifyUncalibrated() or the calibrated (Bouguet)

method cvStereoRectify(). If uncalibrated rectifi cation is used, the code further allows

for either computing the needed fundamental matrix from scratch or for just using the

fundamental matrix from the stereo calibration. Th e rectifi ed images are then computed

using cvRemap(). In our example, lines are drawn across the image pairs to aid in seeing

how well the rectifi ed images are aligned. An example result is shown in Figure 12-12,

where we can see that the barrel distortion in the original images is largely corrected

from top to bottom and that the images are aligned by horizontal scan lines.

Finally, if we rectifi ed the images then we initialize the block-matching state (internal

allocations and parameters) using cvCreateBMState(). We can then compute the dispar-

ity maps by using cvFindStereoCorrespondenceBM(). Our code example allows you to use

either horizontally aligned (left -right) or vertically aligned (top-bottom) cameras; note,

* OpenCV does not (yet) deal with the case of rectifying stereo images when the epipole is within the image
frame. See, for example, Pollefeys, Koch, and Gool [Pollefeys99b] for a discussion of this case.

12-R4886-AT1.indd 44512-R4886-AT1.indd 445 9/15/08 4:24:54 PM9/15/08 4:24:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

446 | Chapter 12: Projection and 3D Vision

however, that for the vertically aligned case the function cvFindStereoCorrespondenceBM()

can compute disparity only for the case of uncalibrated rectifi cation unless you add

code to transpose the images yourself. For horizontal camera arrangements, cvFind
StereoCorrespondenceBM() can fi nd disparity for calibrated or for uncalibrated rectifi ed

stereo image pairs. (See Figure 12-17 in the next section for example disparity results.)

Example 12-3. Stereo calibration, rectifi cation, and correspondence

#include "cv.h"
#include "cxmisc.h"
#include "highgui.h"
#include "cvaux.h"
#include <vector>
#include <string>
#include <algorithm>
#include <stdio.h>
#include <ctype.h>

using namespace std;

//
// Given a list of chessboard images, the number of corners (nx, ny)
// on the chessboards, and a flag called useCalibrated (0 for Hartley
// or 1 for Bouguet stereo methods). Calibrate the cameras and display the
// rectified results along with the computed disparity images.
//
static void
StereoCalib(const char* imageList, int nx, int ny, int useUncalibrated)
{
 int displayCorners = 0;
 int showUndistorted = 1;
 bool isVerticalStereo = false;//OpenCV can handle left-right
 //or up-down camera arrangements
 const int maxScale = 1;
 const float squareSize = 1.f; //Set this to your actual square size
 FILE* f = fopen(imageList, "rt");
 int i, j, lr, nframes, n = nx*ny, N = 0;
 vector<string> imageNames[2];
 vector<CvPoint3D32f> objectPoints;
 vector<CvPoint2D32f> points[2];
 vector<int> npoints;
 vector<uchar> active[2];
 vector<CvPoint2D32f> temp(n);
 CvSize imageSize = {0,0};
 // ARRAY AND VECTOR STORAGE:
 double M1[3][3], M2[3][3], D1[5], D2[5];
 double R[3][3], T[3], E[3][3], F[3][3];
 CvMat _M1 = cvMat(3, 3, CV_64F, M1);
 CvMat _M2 = cvMat(3, 3, CV_64F, M2);
 CvMat _D1 = cvMat(1, 5, CV_64F, D1);
 CvMat _D2 = cvMat(1, 5, CV_64F, D2);
 CvMat _R = cvMat(3, 3, CV_64F, R);
 CvMat _T = cvMat(3, 1, CV_64F, T);
 CvMat _E = cvMat(3, 3, CV_64F, E);

12-R4886-AT1.indd 44612-R4886-AT1.indd 446 9/15/08 4:24:54 PM9/15/08 4:24:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stereo Imaging | 447

Example 12-3. Stereo calibration, rectifi cation, and correspondence (continued)

 CvMat _F = cvMat(3, 3, CV_64F, F);
 if(displayCorners)
 cvNamedWindow("corners", 1);
// READ IN THE LIST OF CHESSBOARDS:
 if(!f)
 {
 fprintf(stderr, "can not open file %s\n", imageList);
 return;
 }
 for(i=0;;i++)
 {
 char buf[1024];
 int count = 0, result=0;
 lr = i % 2;
 vector<CvPoint2D32f>& pts = points[lr];
 if(!fgets(buf, sizeof(buf)-3, f))
 break;
 size_t len = strlen(buf);
 while(len > 0 && isspace(buf[len-1]))
 buf[--len] = '\0';
 if(buf[0] == '#')
 continue;
 IplImage* img = cvLoadImage(buf, 0);
 if(!img)
 break;
 imageSize = cvGetSize(img);
 imageNames[lr].push_back(buf);
 //FIND CHESSBOARDS AND CORNERS THEREIN:
 for(int s = 1; s <= maxScale; s++)
 {
 IplImage* timg = img;
 if(s > 1)
 {
 timg = cvCreateImage(cvSize(img->width*s,img->height*s),
 img->depth, img->nChannels);
 cvResize(img, timg, CV_INTER_CUBIC);
 }
 result = cvFindChessboardCorners(timg, cvSize(nx, ny),
 &temp[0], &count,
 CV_CALIB_CB_ADAPTIVE_THRESH |
 CV_CALIB_CB_NORMALIZE_IMAGE);
 if(timg != img)
 cvReleaseImage(&timg);
 if(result || s == maxScale)
 for(j = 0; j < count; j++)
 {
 temp[j].x /= s;
 temp[j].y /= s;
 }
 if(result)
 break;
 }
 if(displayCorners)

12-R4886-AT1.indd 44712-R4886-AT1.indd 447 9/15/08 4:24:54 PM9/15/08 4:24:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

448 | Chapter 12: Projection and 3D Vision

Example 12-3. Stereo calibration, rectifi cation, and correspondence (continued)

 {
 printf("%s\n", buf);
 IplImage* cimg = cvCreateImage(imageSize, 8, 3);
 cvCvtColor(img, cimg, CV_GRAY2BGR);
 cvDrawChessboardCorners(cimg, cvSize(nx, ny), &temp[0],
 count, result);
 cvShowImage("corners", cimg);
 cvReleaseImage(&cimg);
 if(cvWaitKey(0) == 27) //Allow ESC to quit
 exit(-1);
 }
 else
 putchar('.');
 N = pts.size();
 pts.resize(N + n, cvPoint2D32f(0,0));
 active[lr].push_back((uchar)result);
 //assert(result != 0);
 if(result)
 {
 //Calibration will suffer without subpixel interpolation
 cvFindCornerSubPix(img, &temp[0], count,
 cvSize(11, 11), cvSize(-1,-1),
 cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,
 30, 0.01));
 copy(temp.begin(), temp.end(), pts.begin() + N);
 }
 cvReleaseImage(&img);
 }
 fclose(f);
 printf("\n");
// HARVEST CHESSBOARD 3D OBJECT POINT LIST:
 nframes = active[0].size();//Number of good chessboads found
 objectPoints.resize(nframes*n);
 for(i = 0; i < ny; i++)
 for(j = 0; j < nx; j++)
 objectPoints[i*nx + j] =
 cvPoint3D32f(i*squareSize, j*squareSize, 0);
 for(i = 1; i < nframes; i++)
 copy(objectPoints.begin(), objectPoints.begin() + n,
 objectPoints.begin() + i*n);
 npoints.resize(nframes,n);
 N = nframes*n;
 CvMat _objectPoints = cvMat(1, N, CV_32FC3, &objectPoints[0]);
 CvMat _imagePoints1 = cvMat(1, N, CV_32FC2, &points[0][0]);
 CvMat _imagePoints2 = cvMat(1, N, CV_32FC2, &points[1][0]);
 CvMat _npoints = cvMat(1, npoints.size(), CV_32S, &npoints[0]);
 cvSetIdentity(&_M1);
 cvSetIdentity(&_M2);
 cvZero(&_D1);
 cvZero(&_D2);

// CALIBRATE THE STEREO CAMERAS
 printf("Running stereo calibration ...");

12-R4886-AT1.indd 44812-R4886-AT1.indd 448 9/15/08 4:24:54 PM9/15/08 4:24:54 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stereo Imaging | 449

Example 12-3. Stereo calibration, rectifi cation, and correspondence (continued)

 fflush(stdout);
 cvStereoCalibrate(&_objectPoints, &_imagePoints1,
 &_imagePoints2, &_npoints,
 &_M1, &_D1, &_M2, &_D2,
 imageSize, &_R, &_T, &_E, &_F,
 cvTermCriteria(CV_TERMCRIT_ITER+
 CV_TERMCRIT_EPS, 100, 1e-5),
 CV_CALIB_FIX_ASPECT_RATIO +
 CV_CALIB_ZERO_TANGENT_DIST +
 CV_CALIB_SAME_FOCAL_LENGTH);
 printf(" done\n");
// CALIBRATION QUALITY CHECK
// because the output fundamental matrix implicitly
// includes all the output information,
// we can check the quality of calibration using the
// epipolar geometry constraint: m2^t*F*m1=0
 vector<CvPoint3D32f> lines[2];
 points[0].resize(N);
 points[1].resize(N);
 _imagePoints1 = cvMat(1, N, CV_32FC2, &points[0][0]);
 _imagePoints2 = cvMat(1, N, CV_32FC2, &points[1][0]);
 lines[0].resize(N);
 lines[1].resize(N);
 CvMat _L1 = cvMat(1, N, CV_32FC3, &lines[0][0]);
 CvMat _L2 = cvMat(1, N, CV_32FC3, &lines[1][0]);
//Always work in undistorted space
 cvUndistortPoints(&_imagePoints1, &_imagePoints1,
 &_M1, &_D1, 0, &_M1);
 cvUndistortPoints(&_imagePoints2, &_imagePoints2,
 &_M2, &_D2, 0, &_M2);
 cvComputeCorrespondEpilines(&_imagePoints1, 1, &_F, &_L1);
 cvComputeCorrespondEpilines(&_imagePoints2, 2, &_F, &_L2);
 double avgErr = 0;
 for(i = 0; i < N; i++)
 {
 double err = fabs(points[0][i].x*lines[1][i].x +
 points[0][i].y*lines[1][i].y + lines[1][i].z)
 + fabs(points[1][i].x*lines[0][i].x +
 points[1][i].y*lines[0][i].y + lines[0][i].z);
 avgErr += err;
 }
 printf("avg err = %g\n", avgErr/(nframes*n));
//COMPUTE AND DISPLAY RECTIFICATION
 if(showUndistorted)
 {
 CvMat* mx1 = cvCreateMat(imageSize.height,
 imageSize.width, CV_32F);
 CvMat* my1 = cvCreateMat(imageSize.height,
 imageSize.width, CV_32F);
 CvMat* mx2 = cvCreateMat(imageSize.height,
 imageSize.width, CV_32F);
 CvMat* my2 = cvCreateMat(imageSize.height,

12-R4886-AT1.indd 44912-R4886-AT1.indd 449 9/15/08 4:24:55 PM9/15/08 4:24:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

450 | Chapter 12: Projection and 3D Vision

Example 12-3. Stereo calibration, rectifi cation, and correspondence (continued)

 imageSize.width, CV_32F);
 CvMat* img1r = cvCreateMat(imageSize.height,
 imageSize.width, CV_8U);
 CvMat* img2r = cvCreateMat(imageSize.height,
 imageSize.width, CV_8U);
 CvMat* disp = cvCreateMat(imageSize.height,
 imageSize.width, CV_16S);
 CvMat* vdisp = cvCreateMat(imageSize.height,
 imageSize.width, CV_8U);
 CvMat* pair;
 double R1[3][3], R2[3][3], P1[3][4], P2[3][4];
 CvMat _R1 = cvMat(3, 3, CV_64F, R1);
 CvMat _R2 = cvMat(3, 3, CV_64F, R2);
// IF BY CALIBRATED (BOUGUET'S METHOD)
 if(useUncalibrated == 0)
 {
 CvMat _P1 = cvMat(3, 4, CV_64F, P1);
 CvMat _P2 = cvMat(3, 4, CV_64F, P2);
 cvStereoRectify(&_M1, &_M2, &_D1, &_D2, imageSize,
 &_R, &_T,
 &_R1, &_R2, &_P1, &_P2, 0,
 0/*CV_CALIB_ZERO_DISPARITY*/);
 isVerticalStereo = fabs(P2[1][3]) > fabs(P2[0][3]);
 //Precompute maps for cvRemap()
 cvInitUndistortRectifyMap(&_M1,&_D1,&_R1,&_P1,mx1,my1);
 cvInitUndistortRectifyMap(&_M2,&_D2,&_R2,&_P2,mx2,my2);
 }
//OR ELSE HARTLEY'S METHOD
 else if(useUncalibrated == 1 || useUncalibrated == 2)
 // use intrinsic parameters of each camera, but
 // compute the rectification transformation directly
 // from the fundamental matrix
 {
 double H1[3][3], H2[3][3], iM[3][3];
 CvMat _H1 = cvMat(3, 3, CV_64F, H1);
 CvMat _H2 = cvMat(3, 3, CV_64F, H2);
 CvMat _iM = cvMat(3, 3, CV_64F, iM);
 //Just to show you could have independently used F
 if(useUncalibrated == 2)
 cvFindFundamentalMat(&_imagePoints1,
 &_imagePoints2, &_F);
 cvStereoRectifyUncalibrated(&_imagePoints1,
 &_imagePoints2, &_F,
 imageSize,
 &_H1, &_H2, 3);
 cvInvert(&_M1, &_iM);
 cvMatMul(&_H1, &_M1, &_R1);
 cvMatMul(&_iM, &_R1, &_R1);
 cvInvert(&_M2, &_iM);
 cvMatMul(&_H2, &_M2, &_R2);
 cvMatMul(&_iM, &_R2, &_R2);
 //Precompute map for cvRemap()

12-R4886-AT1.indd 45012-R4886-AT1.indd 450 9/15/08 4:24:55 PM9/15/08 4:24:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Stereo Imaging | 451

Example 12-3. Stereo calibration, rectifi cation, and correspondence (continued)

 cvInitUndistortRectifyMap(&_M1,&_D1,&_R1,&_M1,mx1,my1);

 cvInitUndistortRectifyMap(&_M2,&_D1,&_R2,&_M2,mx2,my2);
 }
 else
 assert(0);
 cvNamedWindow("rectified", 1);
// RECTIFY THE IMAGES AND FIND DISPARITY MAPS
 if(!isVerticalStereo)
 pair = cvCreateMat(imageSize.height, imageSize.width*2,
 CV_8UC3);
 else
 pair = cvCreateMat(imageSize.height*2, imageSize.width,
 CV_8UC3);
//Setup for finding stereo correspondences
 CvStereoBMState *BMState = cvCreateStereoBMState();
 assert(BMState != 0);
 BMState->preFilterSize=41;
 BMState->preFilterCap=31;
 BMState->SADWindowSize=41;
 BMState->minDisparity=-64;
 BMState->numberOfDisparities=128;
 BMState->textureThreshold=10;
 BMState->uniquenessRatio=15;
 for(i = 0; i < nframes; i++)
 {
 IplImage* img1=cvLoadImage(imageNames[0][i].c_str(),0);
 IplImage* img2=cvLoadImage(imageNames[1][i].c_str(),0);
 if(img1 && img2)
 {
 CvMat part;
 cvRemap(img1, img1r, mx1, my1);
 cvRemap(img2, img2r, mx2, my2);
 if(!isVerticalStereo || useUncalibrated != 0)
 {
 // When the stereo camera is oriented vertically,
 // useUncalibrated==0 does not transpose the
 // image, so the epipolar lines in the rectified
 // images are vertical. Stereo correspondence
 // function does not support such a case.
 cvFindStereoCorrespondenceBM(img1r, img2r, disp,
 BMState);
 cvNormalize(disp, vdisp, 0, 256, CV_MINMAX);
 cvNamedWindow("disparity");
 cvShowImage("disparity", vdisp);
 }
 if(!isVerticalStereo)
 {
 cvGetCols(pair, &part, 0, imageSize.width);
 cvCvtColor(img1r, &part, CV_GRAY2BGR);
 cvGetCols(pair, &part, imageSize.width,
 imageSize.width*2);

12-R4886-AT1.indd 45112-R4886-AT1.indd 451 9/15/08 4:24:55 PM9/15/08 4:24:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

452 | Chapter 12: Projection and 3D Vision

Example 12-3. Stereo calibration, rectifi cation, and correspondence (continued)

 cvCvtColor(img2r, &part, CV_GRAY2BGR);
 for(j = 0; j < imageSize.height; j += 16)
 cvLine(pair, cvPoint(0,j),
 cvPoint(imageSize.width*2,j),
 CV_RGB(0,255,0));
 }
 else
 {
 cvGetRows(pair, &part, 0, imageSize.height);
 cvCvtColor(img1r, &part, CV_GRAY2BGR);
 cvGetRows(pair, &part, imageSize.height,
 imageSize.height*2);
 cvCvtColor(img2r, &part, CV_GRAY2BGR);
 for(j = 0; j < imageSize.width; j += 16)
 cvLine(pair, cvPoint(j,0),
 cvPoint(j,imageSize.height*2),
 CV_RGB(0,255,0));
 }
 cvShowImage("rectified", pair);
 if(cvWaitKey() == 27)
 break;
 }
 cvReleaseImage(&img1);
 cvReleaseImage(&img2);
 }
 cvReleaseStereoBMState(&BMState);
 cvReleaseMat(&mx1);
 cvReleaseMat(&my1);
 cvReleaseMat(&mx2);
 cvReleaseMat(&my2);
 cvReleaseMat(&img1r);
 cvReleaseMat(&img2r);
 cvReleaseMat(&disp);
 }
}
int main(void)
{
 StereoCalib("list.txt", 9, 6, 1);
 return 0;
}

Depth Maps from 3D Reprojection
Many algorithms will just use the disparity map directly—for example, to detect

whether or not objects are on (stick out from) a table. But for 3D shape matching, 3D

model learning, robot grasping, and so on, we need the actual 3D reconstruction or

depth map. Fortunately, all the stereo machinery we’ve built up so far makes this easy.

Recall the 4-by-4 reprojection matrix Q introduced in the section on calibrated stereo

rectifi cation. Also recall that, given the disparity d and a 2D point (x, y), we can derive

the 3D depth using

12-R4886-AT1.indd 45212-R4886-AT1.indd 452 9/15/08 4:24:55 PM9/15/08 4:24:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Structure from Motion | 453

Q

x

y

d

X

Y

Z

W1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

where the 3D coordinates are then (X/W, Y/W, Z/W). Remarkably, Q encodes whether

or not the cameras’ lines of sight were converging (cross eyed) as well as the camera

baseline and the principal points in both images. As a result, we need not explicitly ac-

count for converging or frontal parallel cameras and may instead simply extract depth

by matrix multiplication. OpenCV has two functions that do this for us. Th e fi rst, which

you are already familiar with, operates on an array of points and their associated dis-

parities. It’s called cvPerspectiveTransform:

void cvPerspectiveTransform(
 const CvArr *pointsXYD,
 CvArr* result3DPoints,
 const CvMat *Q
);

Th e second (and new) function cvReprojectImageTo3D() operates on whole images:

void cvReprojectImageTo3D(
 CvArr *disparityImage,
 CvArr *result3DImage,
 CvArr *Q
);

Th is routine takes a single-channel disparityImage and transforms each pixel’s (x, y)

coordinates along with that pixel’s disparity (i.e., a vector [x y d]T) to the corresponding

3D point (X/W, Y/W, Z/W) by using the 4-by-4 reprojection matrix Q. Th e output is a

three-channel fl oating-point (or a 16-bit integer) image of the same size as the input.

Of course, both functions let you pass an arbitrary perspective transformation (e.g., the

canonical one) computed by cvStereoRectify or a superposition of that and the arbi-

trary 3D rotation, translation, et cetera.

Th e results of cvReprojectImageTo3D() on an image of a mug and chair are shown in

Figure 12-17.

Structure from Motion
Structure from motion is an important topic in mobile robotics as well as in the analysis

of more general video imagery such as might come from a handheld camcorder. Th e

topic of structure from motion is a broad one, and a great deal of research has been done

in this fi eld. However, much can be accomplished by making one simple observation: In

a static scene, an image taken by a camera that has moved is no diff erent than an image

taken by a second camera. Th us all of our intuition, as well as our mathematical and al-

gorithmic machinery, is immediately portable to this situation. Of course, the descriptor

12-R4886-AT1.indd 45312-R4886-AT1.indd 453 9/15/08 4:24:55 PM9/15/08 4:24:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

454 | Chapter 12: Projection and 3D Vision

“static” is crucial, but in many practical situations the scene is either static or suffi ciently

static that the few moved points can be treated as outliers by robust fi tting methods.

Consider the case of a camera moving through a building. If the environment is rela-

tively rich in recognizable features, as might be found with optical fl ow techniques such

as cvCalcOpticalFlowPyrLK(), then we should be able to compute correspondences be-

tween enough points—from frame to frame—to reconstruct not only the trajectory of

the camera (this information is encoded in the essential matrix E, which can be com-

puted from the fundamental matrix F and the camera intrinsics matrix M) but also,

indirectly, the overall three-dimensional structure of the building and the locations of

all the aforementioned features in that building. Th e cvStereoRectifyUncalibrated()

routine requires only the fundamental matrix in order to compute the basic structure of

a scene up to a scale factor.

Fitting Lines in Two and Three Dimensions
A fi nal topic of interest in this chapter is that of general line fi tting. Th is can arise for

many reasons and in a many contexts. We have chosen to discuss it here because one es-

pecially frequent context in which line fi tting arises is that of analyzing points in three

dimensions (although the function described here can also fi t lines in two dimensions).

Line-fi tting algorithms generally use statistically robust techniques [Inui03, Meer91,

Figure 12-17. Example output of depth maps (for a mug and a chair) computed using cvFindStereo-
CorrespondenceBM() and cvReprojectImageTo3D() (image courtesy of Willow Garage)

12-R4886-AT1.indd 45412-R4886-AT1.indd 454 9/15/08 4:24:55 PM9/15/08 4:24:55 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Fitting Lines in Two and Three Dimensions | 455

Rousseeuw87]. Th e OpenCV line-fi tting algorithm cvFitLine() can be used whenever

line fi tting is needed.

void cvFitLine(
 const CvArr* points,
 int dist_type,
 double param,
 double reps,
 double aeps,
 float* line
);

Th e array points can be an N-by-2 or N-by-3 matrix of fl oating-point values (accommo-

dating points in two or three dimensions), or it can be a sequence of cvPointXXX struc-

tures.* Th e argument dist_type indicates the distance metric that is to be minimized

across all of the points (see Table 12-3).

Table 12-3. Metrics used for computing dist_type values

Value of dist_type Metric

CV_DIST_L2 ρ()r
r=

2

2

CV_DIST_L1 ρ()r r=

CV_DIST_L12 ρ()r
r= + −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2

1
2

CV_DIST_FAIR ρ() log , .r C
r

C

r

C
C= − +

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =2 1 1 3998

CV_DIST_WELSCH ρ() exp , .r
C r

c
C= −

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
2 2

2
1 2 9846

CV_DIST_HUBER ρ()
/

(/)
.r

r r C

C r C r C
C=

<
− ≥

=
⎧
⎨
⎪

⎩⎪

2 2

2
1 345

Th e parameter param is used to set the parameter C listed in Table 12-3. Th is can be left

set to 0, in which case the listed value from the table will be selected. We’ll get back to

reps and aeps aft er describing line.

Th e argument line is the location at which the result is stored. If points is an N-by-2 ar-

ray, then line should be a pointer to an array of four fl oating-point numbers (e.g., float
array[4]). If points is an N-by-3 array, then line should be a pointer to an array of six

fl oating-point numbers (e.g., float array[6]). In the former case, the return values will

be (vx, vy, x0, y0), where (vx, vy) is a normalized vector parallel to the fi tted line and (x0, y0)

* Here XXX is used as a placeholder for anything like 2D32f or 3D64f.

12-R4886-AT1.indd 45512-R4886-AT1.indd 455 9/15/08 4:24:56 PM9/15/08 4:24:56 PM

www.it-ebooks.info

http://www.it-ebooks.info/

456 | Chapter 12: Projection and 3D Vision

is a point on that line. Similarly, in the latter (three-dimensional) case, the return values

will be (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a normalized vector parallel to the fi tted

line and (x0, y0, z0) is a point on that line. Given this line representation, the estimation

accuracy parameters reps and aeps are as follows: reps is the requested accuracy of x0,
y0[, z0] estimates and aeps is the requested angular accuracy for vx, vy[, vz]. Th e

OpenCV documentation recommends values of 0.01 for both accuracy values.

cvFitLine() can fi t lines in two or three dimensions. Since line fi tting in two dimensions

is commonly needed and since three-dimensional techniques are of growing impor-

tance in OpenCV (see Chapter 14), we will end with a program for line fi tting, shown

in Example 12-4.* In this code we fi rst synthesize some 2D points noisily around a

line, then add some random points that have nothing to do with the line (called outlier

points), and fi nally fi t a line to the points and display it. Th e cvFitLine() routine is good

at ignoring the outlier points; this is important in real applications, where some mea-

surements might be corrupted by high noise, sensor failure, and so on.

Example 12-4. Two-dimensional line fi tting

#include “cv.h”
#include “highgui.h”
#include <math.h>

int main(int argc, char** argv)
{
 IplImage* img = cvCreateImage(cvSize(500, 500), 8, 3);
 CvRNG rng = cvRNG(-1);

 cvNamedWindow(“fitline”, 1);

 for(;;) {

 char key;
 int i;
 int count = cvRandInt(&rng)%100 + 1;
 int outliers = count/5;
 float a = cvRandReal(&rng)*200;
 float b = cvRandReal(&rng)*40;
 float angle = cvRandReal(&rng)*CV_PI;
 float cos_a = cos(angle);
 float sin_a = sin(angle);
 CvPoint pt1, pt2;
 CvPoint* points = (CvPoint*)malloc(count * sizeof(points[0]));
 CvMat pointMat = cvMat(1, count, CV_32SC2, points);
 float line[4];
 float d, t;

 b = MIN(a*0.3, b);

 // generate some points that are close to the line
 //

* Th anks to Vadim Pisarevsky for generating this example.

12-R4886-AT1.indd 45612-R4886-AT1.indd 456 9/15/08 4:24:57 PM9/15/08 4:24:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Fitting Lines in Two and Three Dimensions | 457

Example 12-4. Two-dimensional line fi tting (continued)

 for(i = 0; i < count - outliers; i++) {
 float x = (cvRandReal(&rng)*2-1)*a;
 float y = (cvRandReal(&rng)*2-1)*b;
 points[i].x = cvRound(x*cos_a - y*sin_a + img->width/2);
 points[i].y = cvRound(x*sin_a + y*cos_a + img->height/2);
 }

 // generate “completely off” points
 //
 for(; i < count; i++) {
 points[i].x = cvRandInt(&rng) % img->width;
 points[i].y = cvRandInt(&rng) % img->height;
 }

 // find the optimal line
 //
 cvFitLine(&pointMat, CV_DIST_L1, 1, 0.001, 0.001, line);
 cvZero(img);

 // draw the points
 //
 for(i = 0; i < count; i++)
 cvCircle(
 img,
 points[i],
 2,
 (i < count – outliers) ? CV_RGB(255, 0, 0) : CV_RGB(255,255,0),
 CV_FILLED, CV_AA,
 0
);

 // ... and the line long enough to cross the whole image
 d = sqrt((double)line[0]*line[0] + (double)line[1]*line[1]);
 line[0] /= d;
 line[1] /= d;
 t = (float)(img->width + img->height);
 pt1.x = cvRound(line[2] - line[0]*t);
 pt1.y = cvRound(line[3] - line[1]*t);
 pt2.x = cvRound(line[2] + line[0]*t);
 pt2.y = cvRound(line[3] + line[1]*t);
 cvLine(img, pt1, pt2, CV_RGB(0,255,0), 3, CV_AA, 0);

 cvShowImage(“fitline”, img);

 key = (char) cvWaitKey(0);
 if(key == 27 || key == ‘q’ || key == ‘Q’) // ‘ESC’
 break;
 free(points);
 }

 cvDestroyWindow(“fitline”);
 return 0;
}

12-R4886-AT1.indd 45712-R4886-AT1.indd 457 9/15/08 4:24:57 PM9/15/08 4:24:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

458 | Chapter 12: Projection and 3D Vision

Exercises
Calibrate a camera using 1. cvCalibrateCamera2() and at least 15 images of chess-

boards. Th en use cvProjectPoints2() to project an arrow orthogonal to the chess-

boards (the surface normal) into each of the chessboard images using the rotation

and translation vectors from the camera calibration.

Th ree-dimensional joystick2. . Use a simple known object with at least four measured,

non-coplanar, trackable feature points as input into the POSIT algorithm. Use the

object as a 3D joystick to move a little stick fi gure in the image.

In the text’s bird’s-eye view example, with a camera above the plane looking out 3.

horizontally along the plane, we saw that the homography of the ground plane had

a horizon line beyond which the homography wasn’t valid. How can an infi nite

plane have a horizon? Why doesn’t it just appear to go on forever?

Hint: Draw lines to an equally spaced series of points on the plane going
out away from the camera. How does the angle from the camera to each
next point on the plane change from the angle to the point before?

Implement a bird’s-eye view in a video camera looking at the ground plane. Run it 4.

in real time and explore what happens as you move objects around in the normal

image versus the bird’s-eye view image.

Set up two cameras or a single camera that you move between taking two images.5.

Compute, store, and examine the fundamental matrix.a.

Repeat the calculation of the fundamental matrix several times. How stable is b.

the computation?

If you had a calibrated stereo camera and were tracking moving points in both 6.

cameras, can you think of a way of using the fundamental matrix to fi nd tracking

errors?

Compute and draw epipolar lines on two cameras set up to do stereo.7.

Set up two video cameras, implement stereo rectifi cation and experiment with 8.

depth accuracy.

What happens when you bring a mirror into the scene?a.

Vary the amount of texture in the scene and report the results.b.

Try diff erent disparity methods and report on the results.c.

Set up stereo cameras and wear something that is textured over one of your arms. 9.

Fit a line to your arm using all the dist_type methods. Compare the accuracy and

reliability of the diff erent methods.

12-R4886-AT1.indd 45812-R4886-AT1.indd 458 9/15/08 4:24:57 PM9/15/08 4:24:57 PM

www.it-ebooks.info

http://www.it-ebooks.info/

459

13CHAPTER

Machine Learning

What Is Machine Learning
Th e goal of machine learning (ML)* is to turn data into information. Aft er learning from

a collection of data, we want a machine to be able to answer questions about the data:

What other data is most similar to this data? Is there a car in the image? What ad will

the user respond to? Th ere is oft en a cost component, so this question could become:

“Of the products that we make the most money from, which one will the user most

likely buy if we show them an ad for it?” Machine learning turns data into information

by extracting rules or patterns from that data.

Training and Test Set
Machine learning works on data such as temperature values, stock prices, color intensi-

ties, and so on. Th e data is oft en preprocessed into features. We might, for example, take

a database of 10,000 face images, run an edge detector on the faces, and then collect fea-

tures such as edge direction, edge strength, and off set from face center for each face. We

might obtain 500 such values per face or a feature vector of 500 entries. We could then

use machine learning techniques to construct some kind of model from this collected

data. If we only want to see how faces fall into diff erent groups (wide, narrow, etc.), then

a clustering algorithm would be the appropriate choice. If we want to learn to predict the

age of a person from (say) the pattern of edges detected on his or her face, then a clas-

sifi er algorithm would be appropriate. To meet our goals, machine learning algorithms

analyze our collected features and adjust weights, thresholds, and other parameters to

maximize performance according to those goals. Th is process of parameter adjustment

to meet a goal is what we mean by the term learning.

* Machine learning is a vast topic. OpenCV deals mostly with statistical machine learning rather than things
that go under the name “Bayesian networks”, “Markov random fi elds”, or “graphical models”. Some good
texts in machine learning are by Hastie, Tibshirani, and Friedman [Hastie01], Duda and Hart [Duda73],
Duda, Hart, and Stork [Duda00], and Bishop [Bishop07]. For discussions on how to parallelize machine
learning, see Ranger et al. [Ranger07] and Chu et al. [Chu07].

13-R4886-AT1.indd 45913-R4886-AT1.indd 459 9/15/08 4:25:23 PM9/15/08 4:25:23 PM

www.it-ebooks.info

http://www.it-ebooks.info/

460 | Chapter 13: Machine Learning

It is always important to know how well machine learning methods are working, and

this can be a subtle task. Traditionally, one breaks up the original data set into a large

training set (perhaps 9,000 faces, in our example) and a smaller test set (the remaining

1,000 faces). We can then run our classifi er over the training set to learn our age predic-

tion model given the data feature vectors. When we are done, we can test the age predic-

tion classifi er on the remaining images in the test set.

Th e test set is not used in training, and we do not let the classifi er “see” the test set age

labels. We run the classifi er over each of the 1,000 faces in the test set of data and record

how well the ages it predicts from the feature vector match the actual ages. If the clas-

sifi er does poorly, we might try adding new features to our data or consider a diff erent

type of classifi er. We’ll see in this chapter that there are many kinds of classifi ers and

many algorithms for training them.

If the classifi er does well, we now have a potentially valuable model that we can deploy

on data in the real world. Perhaps this system will be used to set the behavior of a video

game based on age. As the person prepares to play, his or her face will be processed into

500 (edge direction, edge strength, off set from face center) features. Th is data will be

passed to the classifi er; the age it returns will set the game play behavior accordingly.

Aft er it has been deployed, the classifi er sees faces that it never saw before and makes

decisions according to what it learned on the training set.

Finally, when developing a classifi cation system, we oft en use a validation data set.

Sometimes, testing the whole system at the end is too big a step to take. We oft en want

to tweak parameters along the way before submitting our classifi er to fi nal testing. We

can do this by breaking the original 10,000-face data set into three parts: a training set

of 8,000 faces, a validation set of 1,000 faces, and a test set of 1,000 faces. Now, while

we’re running through the training data set, we can “sneak” pretests on the validation

data to see how we are doing. Only when we are satisfi ed with our performance on the

validation set do we run the classifi er on the test set for fi nal judgment.

Supervised and Unsupervised Data
Data sometimes has no labels; we might just want to see what kinds of groups the faces

settle into based on edge information. Sometimes the data has labels, such as age. What

this means is that machine learning data may be supervised (i.e., may utilize a teaching

“signal” or “label” that goes with the data feature vectors). If the data vectors are unla-

beled then the machine learning is unsupervised.

Supervised learning can be categorical, such as learning to associate a name to a face,

or the data can have numeric or ordered labels, such as age. When the data has names

(categories) as labels, we say we are doing classifi cation. When the data is numeric, we

say we are doing regression: trying to fi t a numeric output given some categorical or nu-

meric input data.

Supervised learning also comes in shades of gray: It can involve one-to-one pair-

ing of labels with data vectors or it may consist of deferred learning (sometimes called

13-R4886-AT1.indd 46013-R4886-AT1.indd 460 9/15/08 4:25:24 PM9/15/08 4:25:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Machine Learning | 461

reinforcement learning). In reinforcement learning, the data label (also called the reward

or punishment) can come long aft er the individual data vectors were observed. When

a mouse is running down a maze to fi nd food, the mouse may experience a series of

turns before it fi nally fi nds the food, its reward. Th at reward must somehow cast its

infl uence back on all the sights and actions that the mouse took before fi nding the food.

Reinforcement learning works the same way: the system receives a delayed signal (a re-

ward or a punishment) and tries to infer a policy for future runs (a way of making deci-

sions; e.g., which way to go at each step through the maze). Supervised learning can also

have partial labeling, where some labels are missing (this is also called semisupervised

learning), or noisy labels, where some labels are just wrong. Most ML algorithms handle

only one or two of the situations just described. For example, the ML algorithms might

handle classifi cation but not regression; the algorithm might be able to do semisuper-

vised learning but not reinforcement learning; the algorithm might be able to deal with

numeric but not categorical data; and so on.

In contrast, oft en we don’t have labels for our data and are interested in seeing whether

the data falls naturally into groups. Th e algorithms for such unsupervised learning are

called clustering algorithms. In this situation, the goal is to group unlabeled data vectors

that are “close” (in some predetermined or possibly even some learned sense). We might

just want to see how faces are distributed: Do they form clumps of thin, wide, long, or

short faces? If we’re looking at cancer data, do some cancers cluster into groups having

diff erent chemical signals? Unsupervised clustered data is also oft en used to form a fea-

ture vector for a higher-level supervised classifi er. We might fi rst cluster faces into face

types (wide, narrow, long, short) and then use that as an input, perhaps with other data

such as average vocal frequency, to predict the gender of a person.

Th ese two common machine learning tasks, classifi cation and clustering, overlap with

two of the most common tasks in computer vision: recognition and segmentation. Th is

is sometimes referred to as “the what” and “the where”. Th at is, we oft en want our com-

puter to name the object in an image (recognition, or “what”) and also to say where the

object appears (segmentation, or “where”). Because computer vision makes such heavy

use of machine learning, OpenCV includes many powerful machine learning algo-

rithms in the ML library, located in the …/ opencv/ml directory.

Th e OpenCV machine learning code is general. Th at is, although it is
highly useful for vision tasks, the code itself is not specifi c to vision.
One could learn, say, genomic sequences using the appropriate routines.
Of course, our concern here is mostly with object recognition given
feature vectors derived from images.

Generative and Discriminative Models
Many algorithms have been devised to perform learning and clustering. OpenCV sup-
ports some of the most useful currently available statistical approaches to machine
learning. Probabilistic approaches to machine learning, such as Bayesian networks

13-R4886-AT1.indd 46113-R4886-AT1.indd 461 9/15/08 4:25:24 PM9/15/08 4:25:24 PM

www.it-ebooks.info

http://www.it-ebooks.info/

462 | Chapter 13: Machine Learning

or graphical models, are less well supported in OpenCV, partly because they are
newer and still under active development. OpenCV tends to support discriminative
algorithms, which give us the probability of the label given the data (P(L | D)), rather
than generative algorithms, which give the distribution of the data given the label
(P(D | L)). Although the distinction is not always clear, discriminative models are good
for yielding predictions given the data while generative models are good for giving
you more powerful representations of the data or for conditionally synthesizing new
data (think of “imagining” an elephant; you’d be generating data given a condition
“elephant”).

It is oft en easier to interpret a generative model because it models (correctly or incor-

rectly) the cause of the data. Discriminative learning oft en comes down to making a de-

cision based on some threshold that may seem arbitrary. For example, suppose a patch

of road is identifi ed in a scene partly because its color “red” is less than 125. But does

this mean that red = 126 is defi nitely not road? Such issues can be hard to interpret.

With generative models you are usually dealing with conditional distributions of data

given the categories, so you can develop a feel for what it means to be “close” to the re-

sulting distribution.

OpenCV ML Algorithms
Th e machine learning algorithms included in OpenCV are given in Table 13-1. All al-

gorithms are in the ML library with the exception of Mahalanobis and K-means, which

are in CVCORE, and face detection, which is in CV.

Table 13-1. Machine learning algorithms supported in OpenCV, original references to the algorithms
are provided aft er the descriptions

Algorithm Comment

Mahalanobis A distance measure that accounts for the “stretchiness” of the data space by dividing
out the covariance of the data. If the covariance is the identity matrix (identi-
cal variance), then this measure is identical to the Euclidean distance measure
[Mahalanobis36].

K-means An unsupervised clustering algorithm that represents a distribution of data using K
centers, where K is chosen by the user. The diff erence between this algorithm and
expectation maximization is that here the centers are not Gaussian and the resulting
clusters look more like soap bubbles, since centers (in eff ect) compete to “own” the
closest data points. These cluster regions are often used as sparse histogram bins to
represent the data. Invented by Steinhaus [Steinhaus56], as used by Lloyd [Lloyd57].

Normal/Naïve Bayes classifi er A generative classifi er in which features are assumed to be Gaussian distributed and
statistically independent from each other, a strong assumption that is generally not
true. For this reason, it’s often called a “naïve Bayes” classifi er. However, this method
often works surprisingly well. Original mention [Maron61; Minsky61].

Decision trees A discriminative classifi er. The tree fi nds one data feature and a threshold at the
current node that best divides the data into separate classes. The data is split and we
recursively repeat the procedure down the left and right branches of the tree. Though
not often the top performer, it’s often the fi rst thing you should try because it is fast
and has high functionality [Breiman84].

13-R4886-AT1.indd 46213-R4886-AT1.indd 462 9/15/08 4:25:25 PM9/15/08 4:25:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Machine Learning | 463

Algorithm Comment

Boosting A discriminative group of classifi ers. The overall classifi cation decision is made from
the combined weighted classifi cation decisions of the group of classifi ers. In training,
we learn the group of classifi ers one at a time. Each classifi er in the group is a “weak”
classifi er (only just above chance performance). These weak classifi ers are typically
composed of single-variable decision trees called “stumps”. In training, the decision
stump learns its classifi cation decisions from the data and also learns a weight for its
“vote” from its accuracy on the data. Between training each classifi er one by one, the
data points are re-weighted so that more attention is paid to data points where errors
were made. This process continues until the total error over the data set, arising from
the combined weighted vote of the decision trees, falls below a set threshold. This al-
gorithm is often eff ective when a large amount of training data is available [Freund97].

Random trees A discriminative forest of many decision trees, each built down to a large or maximal
splitting depth. During learning, each node of each tree is allowed to choose splitting
variables only from a random subset of the data features. This helps ensure that each
tree becomes a statistically independent decision maker. In run mode, each tree
gets an unweighted vote. This algorithm is often very eff ective and can also perform
regression by averaging the output numbers from each tree [Ho95]; implemented:
[Breiman01].

Face detector /

Haar classifi er

An object detection application based on a clever use of boosting. The OpenCV dis-
tribution comes with a trained frontal face detector that works remarkably well. You
may train the algorithm on other objects with the software provided. It works well for
rigid objects and characteristic views [Viola04].

Expectation maximization (EM) A generative unsupervised algorithm that is used for clustering. It will fi t N multi-
dimensional Gaussians to the data, where N is chosen by the user. This can be an
eff ective way to represent a more complex distribution with only a few parameters
(means and variances). Often used in segmentation. Compare with K-means listed
previously [Dempster77].

K-nearest neighbors The simplest possible discriminative classifi er. Training data are simply stored with
labels. Thereafter, a test data point is classifi ed according to the majority vote of its
K nearest other data points (in a Euclidean sense of nearness). This is probably the sim-
plest thing you can do. It is often eff ective but it is slow and requires lots of memory
[Fix51].

Neural networks /

Multilayer perceptron (MLP)

A discriminative algorithm that (almost always) has “hidden units” between output
and input nodes to better represent the input signal. It can be slow to train but is
very fast to run. Still the top performer for things like letter recognition [Werbos74;
Rumelhart88].

Support vector machine (SVM) A discriminative classifi er that can also do regression. A distance function between
any two data points in a higher-dimensional space is defi ned. (Projecting data into
higher dimensions makes the data more likely to be linearly separable.) The algorithm
learns separating hyperplanes that maximally separate the classes in the higher
dimension. It tends to be among the best with limited data, losing out to boosting or
random trees only when large data sets are available [Vapnik95].

Using Machine Learning in Vision
In general, all the algorithms in Table 13-1 take as input a data vector made up of many

features, where the number of features might well number in the thousands. Suppose

Table 13-1. Machine learning algorithms supported in OpenCV, original references to the algorithms
are provided aft er the descriptions (continued)

13-R4886-AT1.indd 46313-R4886-AT1.indd 463 9/15/08 4:25:25 PM9/15/08 4:25:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

464 | Chapter 13: Machine Learning

your task is to recognize a certain type of object—for example, a person. Th e fi rst prob-

lem that you will encounter is how to collect and label training data that falls into posi-

tive (there is a person in the scene) and negative (no person) cases. You will soon realize

that people appear at diff erent scales: their image may consist of just a few pixels, or you

may be looking at an ear that fi lls the whole screen. Even worse, people will oft en be oc-

cluded: a man inside a car; a woman’s face; one leg showing behind a tree. You need to

defi ne what you actually mean by saying a person is in the scene.

Next, you have the problem of collecting data. Do you collect it from a security camera,

go to http://www.fl icker.com and attempt to fi nd “person” labels, or both (and more)? Do

you collect movement information? Do you collect other information, such as whether a

gate in the scene is open, the time, the season, the temperature? An algorithm that fi nds

people on a beach might fail on a ski slope. You need to capture the variations in the data:

diff erent views of people, diff erent lightings, weather conditions, shadows, and so on.

Aft er you have collected lots of data, how will you label it? You must fi rst decide on what

you mean by “label”. Do you want to know where the person is in the scene? Are actions

(running, walking, crawling, following) important? You might end up with a million

images or more. How will you label all that? Th ere are many tricks, such as doing back-

ground subtraction in a controlled setting and collecting the segmented foreground hu-

mans who come into the scene. You can use data services to help in classifi cation; for

example, you can pay people to label your images through Amazon’s “mechanical turk”

(http://www.mturk.com/mturk/welcome). If you arrange things to be simple, you can get

the cost down to somewhere around a penny per label.

Aft er labeling the data, you must decide which features to extract from the objects.

Again, you must know what you are aft er. If people always appear right side up, there’s

no reason to use rotation-invariant features and no reason to try to rotate the objects be-

forehand. In general, you must fi nd features that express some invariance in the objects,

such as scale-tolerant histograms of gradients or colors or the popular SIFT features.*

If you have background scene information, you might want to fi rst remove it to make

other objects stand out. You then perform your image processing, which may consist of

normalizing the image (rescaling, rotation, histogram equalization, etc.) and comput-

ing many diff erent feature types. Th e resulting data vectors are each given the label as-

sociated with that object, action, or scene.

Once the data is collected and turned into feature vectors, you oft en want to break up

the data into training, validation, and test sets. It is a “best practice” to do your learning,

validation, and testing within a cross-validation framework. Th at is, the data is divided

into K subsets and you run many training (possibly validation) and test sessions, where

each session consists of diff erent sets of data taking on the roles of training (validation)

and test.† Th e test results from these separate sessions are then averaged to get the fi nal

performance result. Cross-validation gives a more accurate picture of how the classifi er

* See Lowe’s SIFT feature demo (http://www.cs.ubc.ca/~lowe/keypoints/).

† One typically does the train (possibly validation) and test cycle fi ve to ten times.

13-R4886-AT1.indd 46413-R4886-AT1.indd 464 9/15/08 4:25:25 PM9/15/08 4:25:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Machine Learning | 465

will perform when deployed in operation on novel data. (We’ll have more to say about

this in what follows.)

Now that the data is prepared, you must choose your classifi er. Oft en the choice of clas-

sifi er is dictated by computational, data, or memory considerations. For some applica-

tions, such as online user preference modeling, you must train the classifi er rapidly. In

this case, nearest neighbors, normal Bayes, or decision trees would be a good choice. If

memory is a consideration, decision trees or neural networks are space effi cient. If you

have time to train your classifi er but it must run quickly, neural networks are a good

choice, as are normal Bayes classifi ers and support vector machines. If you have time

to train but need high accuracy, then boosting and random trees are likely to fi t your

needs. If you just want an easy, understandable sanity check that your features are cho-

sen well, then decision trees or nearest neighbors are good bets. For best “out of the box”

classifi cation performance, try boosting or random trees fi rst.

Th ere is no “best” classifi er (see http://en.wikipedia.org/wiki/No_free_
lunch_theorem). Averaged over all possible types of data distributions,
all classifi ers perform the same. Th us, we cannot say which algorithm
in Table 13-1 is the “best”. Over any given data distribution or set of
data distributions, however, there is usually a best classifi er. Th us, when
faced with real data it’s a good idea to try many classifi ers. Consider
your purpose: Is it just to get the right score, or is it to interpret the
data? Do you seek fast computation, small memory requirements, or
confi dence bounds on the decisions? Diff erent classifi ers have diff erent
properties along these dimensions.

Variable Importance
Two of the algorithms in Table 13-1 allow you to assess a variable’s importance.* Given a

vector of features, how do you determine the importance of those features for classifi ca-

tion accuracy? Binary decision trees do this directly: they are trained by selecting which

variable best splits the data at each node. Th e top node’s variable is the most important

variable; the next-level variables are the second most important, and so on. Random

trees can measure variable importance using a technique developed by Leo Breiman;†

this technique can be used with any classifi er, but so far it is implemented only for deci-

sion and random trees in OpenCV.

One use of variable importance is to reduce the number of features your classifi er

must consider. Starting with many features, you train the classifi er and then fi nd the im-

portance of each feature relative to the other features. You can then discard unimportant

features. Eliminating unimportant features improves speed performance (since it elimi-

nates the processing it took to compute those features) and makes training and testing

quicker. Also, if you don’t have enough data, which is oft en the case, then eliminating

* Th is is known as “variable importance” even though it refers to the importance of a variable (noun) and not
the fl uctuating importance (adjective) of a variable.

† Breiman’s variable importance technique is described in “Looking Inside the Black Box” (www.stat.berkeley
.edu/~breiman/wald2002-2.pdf).

13-R4886-AT1.indd 46513-R4886-AT1.indd 465 9/15/08 4:25:25 PM9/15/08 4:25:25 PM

www.it-ebooks.info

http://www.it-ebooks.info/

466 | Chapter 13: Machine Learning

unimportant variables can increase classifi cation accuracy; this yields faster processing

with better results.

Breiman’s variable importance algorithm runs as follows.

Train a classifi er on the training set.1.

Use a validation or test set to determine the accuracy of the classifi er.2.

For every data point and a chosen feature, randomly choose a new value for that 3.

feature from among the values the feature has in the rest of the data set (called

“sampling with replacement”). Th is ensures that the distribution of that feature will

remain the same as in the original data set, but now the actual structure or mean-

ing of that feature is erased (because its value is chosen at random from the rest of

the data).

Train the classifi er on the altered set of training data and then measure the ac-4.

curacy of classifi cation on the altered test or validation data set. If randomizing a

feature hurts accuracy a lot, then that feature is very important. If randomizing a

feature does not hurt accuracy much, then that feature is of little importance and is

a candidate for removal.

Restore the original test or validation data set and try the next feature until we are 5.

done. Th e result is an ordering of each feature by its importance.

Th is procedure is built into random trees and decision trees. Th us, you can use random

trees or decision trees to decide which variables you will actually use as features; then

you can use the slimmed-down feature vectors to train the same (or another) classifi er.

Diagnosing Machine Learning Problems
Getting machine learning to work well can be more of an art than a science. Algorithms

oft en “sort of” work but not quite as well as you need them to. Th at’s where the art comes

in; you must fi gure out what’s going wrong in order to fi x it. Although we can’t go into all

the details here, we’ll give an overview of some of the more common problems you might

encounter.* First, some rules of thumb: More data beats less data, and better features beat

better algorithms. If you design your features well—maximizing their independence

from one another and minimizing how they vary under diff erent conditions—then

almost any algorithm will work well. Beyond that, there are two common problems:

Bias

Your model assumptions are too strong for the data, so the model won’t fi t well.

Variance

Your algorithm has memorized the data including the noise, so it can’t generalize.

Figure 13-1 shows the basic setup for statistical machine learning. Our job is to model the

true function f that transforms the underlying inputs to some output. Th is function may

* Professor Andrew Ng at Stanford University gives the details in a web lecture entitled “Advice for Applying
Machine Learning” (http://www.stanford.edu/class/cs229/materials/ML-advice.pdf).

13-R4886-AT1.indd 46613-R4886-AT1.indd 466 9/15/08 4:25:26 PM9/15/08 4:25:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Machine Learning | 467

be a regression problem (e.g., predicting a person’s age from their face) or a category pre-

diction problem (e.g., identifying a person given their facial features). For problems in the

real world, noise and unconsidered eff ects can cause the observed outputs to diff er from

the theoretical outputs. For example, in face recognition we might learn a model of the

measured distance between eyes, mouth, and nose to identify a face. But lighting varia-

tions from a nearby fl ickering bulb might cause noise in the measurements, or a poorly

manufactured camera lens might cause a systematic distortion in the measurements that

wasn’t considered as part of the model. Th ese aff ects will cause accuracy to suff er.

Figure 13-2 shows under- and overfi tting of data in the upper two panels and the conse-

quences in terms of error with training set size in the lower two panels. On the left side

of Figure 13-2 we attempt to train a classifi er to predict the data in the lower panel of

Figure 13-1. If we use a model that’s too restrictive—indicated here by the heavy, straight

dashed line—then we can never fi t the underlying true parabola f indicated by the thin-

ner dashed line. Th us, the fi t to both the training data and the test data will be poor,

even with a lot of data. In this case we have bias because both training and test data are

predicted poorly. On the right side of Figure 13-2 we fi t the training data exactly, but this

produces a nonsense function that fi ts every bit of noise. Th us, it memorizes the training

data as well as the noise in that data. Once again, the resulting fi t to the test data is poor.

Low training error combined with high test error indicates a variance (overfi t) problem.

Sometimes you have to be careful that you are solving the correct problem. If your train-

ing and test set error are low but the algorithm does not perform well in the real world,

the data set may have been chosen from unrealistic conditions—perhaps because these

conditions made collecting or simulating the data easier. If the algorithm just cannot

reproduce the test or training set data, then perhaps the algorithm is the wrong one to

use or the features that were extracted from the data are ineff ective or the “signal” just

isn’t in the data you collected. Table 13-2 lays out some possible fi xes to the problems

Figure 13-1. Setup for statistical machine learning: we train a classifi er to fi t a data set; the true
model f is almost always corrupted by noise or unknown infl uences

13-R4886-AT1.indd 46713-R4886-AT1.indd 467 9/15/08 4:25:26 PM9/15/08 4:25:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

468 | Chapter 13: Machine Learning

we’ve described here. Of course, this is not a complete list of the possible problems or

solutions. It takes careful thought and design of what data to collect and what features

to compute in order for machine learning to work well. It can also take some systematic

thinking to diagnose machine learning problems.

Table 13-2. Problems encountered in machine learning and possible solutions to try; coming up with
better features will help any problem

Problem Possible Solutions

Bias More features can help make a better fi t.•

Use a more powerful algorithm.•

Variance More training data can help smooth the model.•

Fewer features can reduce overfi tting.•

Use a less powerful algorithm.•

Good test/train,

bad real world

Collect a more realistic set of data.•

Model can’t learn test

or train

Redesign features to better capture invariance in the data.•

Collect new, more relevant data.•

Use a more powerful algorithm.•

Figure 13-2. Poor model fi tting in machine learning and its eff ect on training and test prediction per-
formance, where the true function is graphed by the lighter dashed line at top: an underfi t model for
the data (upper left) yields high error in predicting the training and the test set (lower left), whereas
an overfi t model for the data (upper right) yields low error in the training data but high error in the
test data (lower right)

13-R4886-AT1.indd 46813-R4886-AT1.indd 468 9/15/08 4:25:26 PM9/15/08 4:25:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Machine Learning | 469

Cross-validation, bootstrapping, ROC curves, and confusion matrices

Finally, there are some basic tools that are used in machine learning to measure re-

sults. In supervised learning, one of the most basic problems is simply knowing how

well your algorithm has performed: How accurate is it at classifying or fi tting the data?

You might think: “Easy, I’ll just run it on my test or validation data and get the result.”

But for real problems, we must account for noise, sampling fl uctuations, and sampling

errors. Simply put, your test or validation set of data might not accurately refl ect the

actual distribution of data. To get closer to “guessing” the true performance of the clas-

sifi er, we employ the technique of cross-validation and/or the closely related technique

of bootstrapping.*

In its most basic form, cross-validation involves dividing the data into K diff erent sub-

sets of data. You train on K – 1 of the subsets and test on the fi nal subset of data (the

“validation set”) that wasn’t trained on. You do this K times, where each of the K subsets

gets a “turn” at being the validation set, and then average the results.

Bootstrapping is similar to cross-validation, but the validation set is selected at random

from the training data. Selected points for that round are used only in test, not training.

Th en the process starts again from scratch. You do this N times, where each time you

randomly select a new set of validation data and average the results in the end. Note that

this means some and/or many of the data points are reused in diff erent validation sets,

but the results are oft en superior compared to cross-validation.

Using either one of these techniques can yield more accurate measures of actual perfor-

mance. Th is increased accuracy can in turn be used to tune parameters of the learning

system as you repeatedly change, train, and measure.

Two other immensely useful ways of assessing, characterizing, and tuning classifi ers are

plotting the receiver operating characteristic (ROC) and fi lling in a confusion matrix;

see Figure 13-3. Th e ROC curve measures the response over the performance parameter

of the classifi er over the full range of settings of that parameter. Let’s say the parameter

is a threshold. Just to make this more concrete, suppose we are trying to recognize yel-

low fl owers in an image and that we have a threshold on the color yellow as our detector.

Setting the yellow threshold extremely high would mean that the classifi er would fail to

recognize any yellow fl owers, yielding a false positive rate of 0 but at the cost of a true

positive rate also at 0 (lower left part of the curve in Figure 13-3). On the other hand, if

the yellow threshold is set to 0 then any signal at all counts as a recognition. Th is means

that all of the true positives (the yellow fl owers) are recognized as well as all the false

positives (orange and red fl owers); thus we have a false positive rate of 100% (upper right

part of the curve in Figure 13-3). Th e best possible ROC curve would be one that follows

the y-axis up to 100% and then cuts horizontally over to the upper right corner. Failing

that, the closer the curve comes to the upper left corner, the better. One can compute

the fraction of area under the ROC curve versus the total area of the ROC plot as a sum-

mary statistic of merit: Th e closer that ratio is to 1 the better is the classifi er.

* For more information on these techniques, see “What Are Cross-Validation and Bootstrapping?” (http://
www.faqs.org/faqs/ai-faq/neural-nets/part3/section-12.html).

13-R4886-AT1.indd 46913-R4886-AT1.indd 469 9/15/08 4:25:26 PM9/15/08 4:25:26 PM

www.it-ebooks.info

http://www.it-ebooks.info/

470 | Chapter 13: Machine Learning

Figure 13-3 also shows a confusion matrix. Th is is just a chart of true and false positives

along with true and false negatives. It is another quick way to assess the performance

of a classifi er: ideally we’d see 100% along the NW-SE diagonal and 0% elsewhere. If

we have a classifi er that can learn more than one class (e.g., a multilayer perceptron or

random forest classifi er can learn many diff erent class labels at once), then the confu-

sion matrix generalizes to many classes and you just keep track of the class to which

each labeled data point was assigned.

Cost of misclassification. One thing we haven’t discussed much here is the cost of misclas-

sifi cation. Th at is, if our classifi er is built to detect poisonous mushrooms (we’ll see an

example that uses such a data set shortly) then we are willing to have more false nega-

tives (edible mushrooms mistaken as poisonous) as long as we minimize false positives

(poisonous mushrooms mistaken as edible). Th e ROC curve can help with this; we can

set our ROC parameter to choose an operation point lower on the curve—toward the

lower left of the graph in Figure 13-3. Th e other way of doing this is to weight false posi-

tive errors more than false negatives when generating the ROC curve. For example, you

can set each false positive error to count as much as ten false negatives.* Some OpenCV

machine learning algorithms, such as decision trees and SVM, can regulate this balance

of “hit rate versus false alarm” by specifying prior probabilities of the classes themselves

* Th is is useful if you have some specifi c a priori notion of the relative cost of the two error types. For example,
the cost of misclassifying one product as another in a supermarket checkout would be easy to quantify ex-
actly beforehand.

Figure 13-3. Receiver operating curve (ROC) and associated confusion matrix: the former shows
the response of correct classifi cations to false positives along the full range of varying a performance
parameter of the classifi er; the latter shows the false positives (false recognitions) and false negatives
(missed recognitions)

13-R4886-AT1.indd 47013-R4886-AT1.indd 470 9/15/08 4:25:27 PM9/15/08 4:25:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Common Routines in the ML Library | 471

(which classes are expected to be more likely and which less) or by specifying weights of

the individual training samples.

Mismatched feature variance. Another common problem with training some classifi ers arises

when the feature vector comprises features of widely diff erent variances. For instance,

if one feature is represented by lowercase ASCII characters then it ranges over only

26 diff erent values. In contrast, a feature that is represented by the count of biological

cells on a microscope slide might vary over several billion values. An algorithm such as

K-nearest neighbors might then see the fi rst feature as relatively constant (nothing to

learn from) compared to the cell-count feature. Th e way to correct this problem is to pre-

process each feature variable by normalizing for its variance. Th is practice is acceptable

provided the features are not correlated with each other; when features are correlated,

you can normalize by their average variance or by their covariance. Some algorithms,

such as decision trees,* are not adversely aff ected by widely diff ering variance and so

this precaution need not be taken. A rule of thumb is that if the algorithm depends in

some way on a distance measure (e.g., weighted values) then you should normalize for

variance. One may normalize all features at once and account for their covariance by

using the Mahalanobis distance, which is discussed later in this chapter.†

We now turn to discussing some of the machine learning algorithms supported in

OpenCV, most of which are found in the …/opencv/ml directory. We start with some of

the class methods that are universal across the ML sublibrary.

Common Routines in the ML Library
Th is chapter is written to get you up and running with the machine learning algorithms.

As you try out and become comfortable with diff erent methods, you’ll also want to ref-

erence the …/opencv/docs/ref/opencvref_ml.htm manual that installs with OpenCV and/

or the online OpenCV Wiki documentation (http://opencvlibrary.sourceforge.net/). Be-

cause this portion of the library is under active development, you will want to know

about the latest and greatest available tools.

All the routines in the ML library‡ are written as C++ classes and all derived from the

CvStatModel class, which holds the methods that are universal to all the algorithms.

Th ese methods are listed in Table 13-3. Note that in the CvStatModel there are two

ways of storing and recalling the model from disk: save() versus write() and load()

versus read(). For machine learning models, you should use the much simpler save()

* Decision trees are not aff ected by variance diff erences in feature variables because each variable is searched
only for eff ective separating thresholds. In other words, it doesn’t matter how large the variable’s range is as
long as a clear separating value can be found.

† Readers familiar with machine learning or signal processing might recognize this as a technique for “whit-
ening” the data.

‡ Note that the Haar classifi er, Mahalanobis, and K-means algorithms were written before the ML library was
created and so are in cv and cvcore libraries instead.

13-R4886-AT1.indd 47113-R4886-AT1.indd 471 9/15/08 4:25:27 PM9/15/08 4:25:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

472 | Chapter 13: Machine Learning

and load(), which essentially wrap the more complex write() and read() functions into

an interface that writes and reads XML and YAML to and from disk. Beyond that, for

learning from data the two most important functions, predict() and train(), vary by

algorithm and will be discussed next.

Table 13-3. Base class methods for the machine learning (ML) library

CvStatModel:: Methods Description

save(
 const char* filename,
 const char* name = 0
)

Saves learned model in XML or YMAL. Use this method
for storage.

load(
 const char* filename,
 const char* name=0
);

Calls clear() and then loads XML or YMAL model. Use
this method for recall.

clear() De-allocates all memory. Ready for reuse.

bool train(
 —data points—,
 [flags]
 —responses—,
 [flags etc]
) ;

The training function to learn a model of the dataset.
Training is specifi c to the algorithm and so the input
parameters will vary.

float predict(
 const CvMat* sample
 [,<prediction_params>]
) const;

After training, use this function to predict the label or
value of a new training point or points.

Constructor, Destructor:

CvStatModel();
CvStatModel(
 const CvMat* train_data ...
);

Default constructor and constructor that allows creation
and training of the model in one shot.

CvStatModel::~CvStatModel(); The destructor of the ML model.

Write/Read support (but use save/load above instead):

write(
 CvFileStorage* storage,
 const char* name
);

Generic CvFileStorage structured write to disk,
located in the cvcore library (discussed in Chapter 3) and
called by save().

read(
 CvFileStorage* storage,
 CvFileNode* node
);

Generic fi le read to CvFileStorage structure, located
in the cvcore library and called by load().

Training
Th e training prototype is as follows:

bool CvStatModel::train(
 const CvMat* train_data,
 [int tflag,] ...,
 const CvMat* responses, ...,

13-R4886-AT1.indd 47213-R4886-AT1.indd 472 9/15/08 4:25:27 PM9/15/08 4:25:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Common Routines in the ML Library | 473

 [const CvMat* var_idx,] ...,
 [const CvMat* sample_idx,] ...,
 [const CvMat* var_type,] ...,
 [const CvMat* missing_mask,]
 <misc_training_alg_params> ...
);

Th e train() method for the machine learning algorithms can assume diff erent forms

according to what the algorithm can do. All algorithms take a CvMat matrix pointer as

training data. Th is matrix must be of type 32FC1 (32-bit, fl oating-point, single-channel).

CvMat does allow for multichannel images, but machine learning algorithms take only a

single channel—that is, just a two-dimensional matrix of numbers. Typically this ma-

trix is organized as rows of data points, where each “point” is represented as a vector of

features. Hence the columns contain the individual features for each data point and the

data points are stacked to yield the 2D single-channel training matrix. To belabor the

topic: the typical data matrix is thus composed of (rows, columns) = (data points, fea-

tures). However, some algorithms can handle transposed matrices directly. For such al-

gorithms you may use the tflag parameter to tell the algorithm that the training points

are organized in columns. Th is is just a convenience so that you won’t have to transpose

a large data matrix. When the algorithm can handle both row-order and column-order

data, the following fl ags apply.

tflag = CV_ROW_SAMPLE
Means that the feature vectors are stored as rows (default)

tflag = CV_COL_SAMPLE
Means that the feature vectors are stored as columns

Th e reader may well ask: What if my training data is not fl oating-point numbers but in-

stead is letters of the alphabet or integers representing musical notes or names of plants?

Th e answer is: Fine, just turn them into unique 32-bit fl oating-point numbers when you

fi ll the CvMat. If you have letters as features or labels, you can cast the ASCII character to

fl oats when fi lling the data array. Th e same applies to integers. As long as the conversion

is unique, things should work—but remember that some routines are sensitive to widely

diff ering variances among features. It’s generally best to normalize the variance of fea-

tures as discussed previously. With the exception of the tree-based algorithms (deci-

sion trees, random trees, and boosting) that support both categorical and ordered input

variables, all other OpenCV ML algorithms work only with ordered inputs. A popular

technique for making ordered-input algorithms also work with categorical data is to

represent them in 1-radix notation; for example, if the input variable color may have

seven diff erent values then it may be replaced by seven binary variables, where one and

only one of the variables may be set to 1.

Th e parameter responses are either categorical labels such as “poisonous” or “nonpoi-

sonous”, as with mushroom identifi cation, or are regression values (numbers) such as

body temperatures taken with a thermometer. Th e response values or “labels” are usu-

ally a one-dimensional vector of one value per data point—except for neural networks,

13-R4886-AT1.indd 47313-R4886-AT1.indd 473 9/15/08 4:25:27 PM9/15/08 4:25:27 PM

www.it-ebooks.info

http://www.it-ebooks.info/

474 | Chapter 13: Machine Learning

which can have a vector of responses for each data point. Response values are one of two

types: For categorical responses, the type can be integer (32SC1); for regression values,

the response is 32-bit fl oating-point (32FC1). Observe also that some algorithms can deal

only with classifi cation problems and others only with regression; but others can handle

both. In this last case, the type of output variable is passed either as a separate param-

eter or as a last element of a var_type vector, which can be set as follows.

CV_VAR_CATEGORICAL
Means that the output values are discrete class labels

CV_VAR_ORDERED (= CV_VAR_NUMERICAL)

Means that the output values are ordered; that is, diff erent values can be compared

as numbers and so this is a regression problem

Th e types of input variables can also be specifi ed using var_type. However, algorithms of

the regression type can handle only ordered-input variables. Sometimes it is possible to

make up an ordering for categorical variables as long as the order is kept consistent, but

this can sometimes cause diffi culties for regression because the pretend “ordered” val-

ues may jump around wildly when they have no physical basis for their imposed order.

Many models in the ML library may be trained on a selected feature subset and/or on a

selected sample subset of the training set. To make this easier for the user, the method

train() usually includes the vectors var_idx and sample_idx as parameters. Th ese may

be defaulted to “use all data” by passing NULL values for these parameters, but var_idx

can be used to indentify variables (features) of interest and sample_idx can identify data

points of interest. Using these, you may specify which features and which sample points

on which to train. Both vectors are either single-channel integer (CV_32SC1) vectors—

that is, lists of zero-based indices—or single-channel 8-bit (CV_8UC1) masks of active

variables/samples, where a nonzero value signifi es active. Th e parameter sample_idx is

particularly helpful when you’ve read in a chunk of data and want to use some of it for

training and some of it for test without breaking it into two diff erent vectors.

Additionally, some algorithms can handle missing measurements. For example, when

the authors were working with manufacturing data, some measurement features would

end up missing during the time that workers took coff ee breaks. Sometimes experimen-

tal data simply is forgotten, such as forgetting to take a patient’s temperature one day

during a medical experiment. For such situations, the parameter missing_mask, an 8-bit

matrix of the same dimensions as train_data, is used to mark the missed values (non-

zero elements of the mask). Some algorithms cannot handle missing values, so the miss-

ing points should be interpolated by the user before training or the corrupted records

should be rejected in advance. Other algorithms, such as decision tree and naïve Bayes,

handle missing values in diff erent ways. Decision trees use alternative splits (called “sur-

rogate splits” by Breiman); the naïve Bayes algorithm infers the values.

Usually, the previous model state is cleared by clear() before running the training pro-

cedure. However, some algorithms may optionally update the model learning with the

new training data instead of starting from scratch.

13-R4886-AT1.indd 47413-R4886-AT1.indd 474 9/15/08 4:25:28 PM9/15/08 4:25:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Common Routines in the ML Library | 475

Prediction
When using the method predict(), the var_idx parameter that specifi es which features

were used in the train() method is remembered and then used to extract only the nec-

essary components from the input sample. Th e general form of the predict() method is

as follows:

float CvStatMode::predict(
 const CvMat* sample
 [, <prediction_params>]
) const;

Th is method is used to predict the response for a new input data vector. When using

a classifi er, predict() returns a class label. For the case of regression, this method re-

turns a numerical value. Note that the input sample must have as many components as

the train_data that was used for training. Additional prediction_params are algorithm-

specifi c and allow for such things as missing feature values in tree-based methods. Th e

function suffi x const tells us that prediction does not aff ect the internal state of the

model, so this method is thread-safe and can be run in parallel, which is useful for web

servers performing image retrieval for multiple clients and for robots that need to ac-

celerate the scanning of a scene.

Controlling Training Iterations
Although the iteration control structure CvTermCriteria has been discussed in other

chapters, it is used by several machine learning routines. So, just to remind you of what

the function is, we repeat it here.

typedef struct CvTermCriteria {
 int type; /* CV_TERMCRIT_ITER and/or CV_TERMCRIT_EPS */
 int max_iter; /* maximum number of iterations */
 double epsilon; /* stop when error is below this value */
}

Th e integer parameter max_iter sets the total number of iterations that the algorithm

will perform. Th e epsilon parameter sets an error threshold stopping criteria; when the

error drops below this level, the routine stops. Finally, the type tells which of these two

criteria to use, though you may add the criteria together and so use both (CV_TERMCRIT_
ITER | CV_TERMCRIT_EPS). Th e defi ned values for term_crit.type are:

#define CV_TERMCRIT_ITER 1
#define CV_TERMCRIT_NUMBER CV_TERMCRIT_ITER
#define CV_TERMCRIT_EPS 2

Let’s now move on to describing specifi c algorithms that are implemented in OpenCV.

We will start with the frequently used Mahalanobis distance metric and then go into

some detail on one unsupervised algorithm (K-means); both of these may be found

in the cxcore library. We then move into the machine learning library proper with the

normal Bayes classifi er, aft er which we discuss decision-tree algorithms (decision trees,

boosting, random trees, and Haar cascade). For the other algorithms we’ll provide short

descriptions and usage examples.

13-R4886-AT1.indd 47513-R4886-AT1.indd 475 9/15/08 4:25:28 PM9/15/08 4:25:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

476 | Chapter 13: Machine Learning

Mahalanobis Distance
Th e Mahalanobis distance is a distance measure that accounts for the covariance or

“stretch” of the space in which the data lies. If you know what a Z-score is then you

can think of the Mahalanobis distance as a multidimensional analogue of the Z-score.

Figure 13-4(a) shows an initial distribution between three sets of data that make the

vertical sets look closer together. When we normalize the space by the covariance in the

data, we see in Figure 13-4(b) that that horizontal data sets are actually closer together.

Th is sort of thing occurs frequently; for instance, if we are comparing people’s height in

meters with their age in days, we’d see very little variance in height to relate to the large

variance in age. By normalizing for the variance we can obtain a more realistic com-

parison of variables. Some classifi ers such as K-nearest neighbors deal poorly with large

diff erences in variance, whereas other algorithms (such as decision trees) don’t mind it.

We can already get a hint for what the Mahalanobis distance must be by looking at

Figure 13-4;* we must somehow divide out the covariance of the data while measuring

distance. First, let us review what covariance is. Given a list X of N data points, where

each data point may be of dimension (vector length) K with mean vector μx (consisting

of individual means μ1,...,K), the covariance is a K-by-K matrix given by:

= − −∑ E X X
x x

[()()]μ μ T

where E[⋅] is the expectation operator. OpenCV makes computing the covariance ma-

trix easy, using

void cvCalcCovarMatrix(
 const CvArr** vects,
 int count,
 CvArr* cov_mat,
 CvArr* avg,
 int flags
);

Th is function is a little bit tricky. Note that vects is a pointer to a pointer of CvArr. Th is

implies that we have vects[0] through vects[count-1], but it actually depends on the

flags settings as described in what follows. Basically, there are two cases.

Vects1. is a 1D vector of pointers to 1D vectors or 2D matrices (the two dimensions

are to accommodate images). Th at is, each vects[i] can point to a 1D or a 2D vector,

which occurs if neither CV_COV_ROWS nor CV_COV_COLS is set. Th e accumulating covari-

ance computation is scaled or divided by the number of data points given by count

if CV_COVAR_SCALE is set.

Oft en there is only one input vector, so use only 2. vects[0] if either CV_COVAR_ROWS or

CV_COVAR_COLS is set. If this is set, then scaling by the value given by count is ignored

* Note that Figure 13-4 has a diagonal covariance matrix, which entails independent X and Y variance rather
than actual covariance. Th is was done to make the explanation simple. In reality, data is oft en “stretched” in
much more interesting ways.

13-R4886-AT1.indd 47613-R4886-AT1.indd 476 9/15/08 4:25:28 PM9/15/08 4:25:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Mahalanobis Distance | 477

in favor of the number of actual data vectors contained in vects[0]. All the data

points are then in:

the rows of a. vects[0] if CV_COVAR_ROWS is set; or

the columns of b. vects[0] if instead CV_COVAR_COLS is set. You cannot set both row

and column fl ags simultaneously (see fl ag descriptions for more details).

Vects can be of types 8UC1, 16UC1, 32FC1, or 64FC1. In any case, vects contains a list of

K-dimensional data points. To reiterate: count is how many vectors there are in vects[]

for case 1 (CV_COVAR_ROWS and CV_COVAR_COLS not set); for case 2a and 2b (CV_COVAR_ROWS

or CV_COVAR_COLS is set), count is ignored and the actual number of vectors in vects[0] is

used instead. Th e resulting K-by-K covariance matrix will be returned in cov_mat, and

it can be of type CV_32FC1 or CV_64FC1. Whether or not the vector avg is used depends on

the settings of flags (see listing that follows). If avg is used then it has the same type as

vects and contains the K-feature averages across vects. Th e parameter flags can have

many combinations of settings formed by adding values together (for more complicated

applications, refer to the …/opencv/docs/ref/opencvref_cxcore.htm documentation). In

general, you will set flags to one of the following.

CV_COVAR_NORMAL
Do the regular type of covariance calculation as in the previously displayed equa-

tion. Average the results by the number in count if CV_COVAR_SCALE is not set; other-

wise, average by the number of data points in vects[0].

CV_COVAR_SCALE
Normalize the computed covariance matrix.

CV_COVAR_USE_AVG
Use the avg matrix instead of automatically calculating the average of each feature.

Setting this saves on computation time if you already have the averages (e.g., by

Figure 13-4. Th e Mahalanobis computation allows us to reinterpret the data’s covariance as a
“stretch” of the space: (a) the vertical distance between raw data sets is less than the horizontal
distance; (b) aft er the space is normalized for variance, the horizontal distance between data sets is
less than the vertical distance

13-R4886-AT1.indd 47713-R4886-AT1.indd 477 9/15/08 4:25:28 PM9/15/08 4:25:28 PM

www.it-ebooks.info

http://www.it-ebooks.info/

478 | Chapter 13: Machine Learning

having called cvAvg() yourself); otherwise, the routine will compute these averages

for you.*

Most oft en you will combine your data into one big matrix, let’s say by rows of data

points; then fl ags would be set as flags = CV_COVAR_NORMAL | CV_COVAR_SCALE |
CV_COVAR_ROWS.

We now have the covariance matrix. For Mahalanobis distance, however, we’ll need to

divide out the variance of the space and so will need the inverse covariance matrix. Th is

is easily done by using:

double cvInvert(
 const CvArr* src,
 CvArr* dst,
 int method = CV_LU
);

In cvInvert(), the src matrix should be the covariance matrix calculated before and

dst should be a same sized matrix, which will be fi lled with the inverse on return. You

could leave the method at its default value, CV_LU, but it is better to set the method to

CV_SVD_SYM.†

With the inverse covariance matrix Σ−1 fi nally in hand, we can move on to the Ma-

halanobis distance measure. Th is measure is much like the Euclidean distance measure,

which is the square root of the sum of squared diff erences between two vectors x and y,

but it divides out the covariance of the space:

x y) ()−−1
D

Mahalanobis

T(,) (x y x y= − Σ

Th is distance is just a number. Note that if the covariance matrix is the identity matrix

then the Mahalanobis distance is equal to the Euclidean distance. We fi nally arrive at the

actual function that computes the Mahalanobis distance. It takes two input vectors (vec1

and vec2) and the inverse covariance in mat, and it returns the distance as a double:

double cvMahalanobis(
 const CvArr* vec1,
 const CvArr* vec2,
 CvArr* mat
);

Th e Mahalanobis distance is an important measure of similarity between two diff erent

data points in a multidimensional space, but is not a clustering algorithm or classifi er

itself. Let us now move on, starting with the most frequently used clustering algorithm:

K-means.

* A precomputed average data vector should be passed if the user has a more statistically justifi ed value of the
average or if the covariance matrix is computed by blocks.

† CV_SVD could also be used in this case, but it is somewhat slower and less accurate than CV_SVD_SYM. CV_SVD_
SYM, even if it is slower than CV_LU, still should be used if the dimensionality of the space is much smaller
than the number of data points. In such a case the overall computing time will be dominated by cvCalcCo-
varMatrix() anyway. So it may be wise to spend a little bit more time on computing inverse covariance
matrix more accurately (much more accurately, if the set of points is concentrated in a subspace of a smaller
dimensionality). Th us, CV_SVD_SYM is usually the best choice for this task.

13-R4886-AT1.indd 47813-R4886-AT1.indd 478 9/15/08 4:25:29 PM9/15/08 4:25:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

K-Means | 479

K-Means
K-means is a clustering algorithm implemented in the cxcore because it was written long

before the ML library. K-means attempts to fi nd the natural clusters or “clumps” in the

data. Th e user sets the desired number of clusters and then K-means rapidly fi nds a

good placement for those cluster centers, where “good” means that the cluster centers

tend to end up located in the middle of the natural clumps of data. It is one of the most

used clustering techniques and has strong similarities to the expectation maximization

algorithm for Gaussian mixture (implemented as CvEM() in the ML library) as well as

some similarities to the mean-shift algorithm discussed in Chapter 9 (implemented as

cvMeanShift() in the CV library). K-means is an iterative algorithm and, as implemented

in OpenCV, is also known as Lloyd’s algorithm* or (equivalently) “Voronoi iteration”.

Th e algorithm runs as follows.

Take as input (a) a data set and (b) desired number of clusters 1. K (chosen by the

user).

Randomly assign cluster center locations.2.

Associate each data point with its nearest cluster center.3.

Move cluster centers to the centroid of their data points.4.

Return to step 3 until convergence (centroid does not move).5.

Figure 13-5 diagrams K-means in action; in this case, it takes just two iterations to con-

verge. In real cases the algorithm oft en converges rapidly, but it can sometimes require

a large number of iterations.

Problems and Solutions
K-means is an extremely eff ective clustering algorithm, but it does have three problems.

K-means isn’t guaranteed to fi nd the best possible solution to locating the cluster 1.

centers. However, it is guaranteed to converge to some solution (i.e., the iterations

won’t continue indefi nitely).

K-means doesn’t tell you how many cluster centers you should use. If we had chosen 2.

two or four clusters for the example of Figure 13-5, then the results would be diff er-

ent and perhaps nonintuitive.

K-means presumes that the covariance in the space either doesn’t matter or has al-3.

ready been normalized (cf. our discussion of the Mahalanobis distance).

Each one of these problems has a “solution”, or at least an approach that helps. Th e fi rst

two of these solutions depend on “explaining the variance of the data”. In K-means,

each cluster center “owns” its data points and we compute the variance of those points.

* S. P. Lloyd, “Least Squares Quantization in PCM,” IEEE Transactions on Information Th eory 28 (1982),
129–137.

13-R4886-AT1.indd 47913-R4886-AT1.indd 479 9/15/08 4:25:29 PM9/15/08 4:25:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

480 | Chapter 13: Machine Learning

Th e best clustering minimizes the variance without causing too much complexity (too

many clusters). With that in mind, the listed problems can be ameliorated as follows.

Run K-means several times, each with diff erent placement of the cluster centers 1.

(easy to do, since OpenCV places the centers at random); then choose the run whose

results exhibit the least variance.

Start with one cluster and try an increasing number of clusters (up to some limit), 2.

each time employing the method of #1 as well. Usually the total variance will shrink

quite rapidly, aft er which an “elbow” will appear in the variance curve; this indi-

cates that a new cluster center does not signifi cantly reduce the total variance. Stop

at the elbow and keep that many cluster centers.

Multiply the data by the inverse covariance matrix (as described in the “Mahalano-3.

bis Distance” section). For example, if the input data vectors D are organized as

rows with one data point per row, then normalize the “stretch” in the space by com-

puting a new data vector D *, where D D* /= −Σ 1 2.

Figure 13-5. K-means in action for two iterations: (a) cluster centers are placed randomly and each
data point is then assigned to its nearest cluster center; (b) cluster centers are moved to the centroid
of their points; (c) data points are again assigned to their nearest cluster centers; (d) cluster centers
are again moved to the centroid of their points

13-R4886-AT1.indd 48013-R4886-AT1.indd 480 9/15/08 4:25:29 PM9/15/08 4:25:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

K-Means | 481

K-Means Code
Th e call for K-means is simple:

void cvKMeans2(
 const CvArr* samples,
 int cluster_count,
 CvArr* labels,
 CvTermCriteria termcrit
);

Th e samples array is a matrix of multidimensional data points, one per row. Th ere is a

little subtlety here in that each element of the data point may be either a regular fl oat-

ing-point vector of CV_32FC1 numbers or a multidimensional point of type CV_32FC2 or

CV_32FC3 or even CV_32FC(K).* Th e parameter cluster_count is simply how many clusters

you want, and the return vector labels contains the fi nal cluster index for each data

point. We encountered termcrit in the section “Common Routines in the ML Library”

and in the “Controlling Training Iterations” subsection.

It’s instructive to see a complete example of K-means in code (Example 13-1), because

the data generation sections can be used to test other machine learning routines.

Example 13-1. Using K-means

#include “cxcore.h”
#include “highgui.h”

void main(int argc, char** argv)
{
 #define MAX_CLUSTERS 5
 CvScalar color_tab[MAX_CLUSTERS];
 IplImage* img = cvCreateImage(cvSize(500, 500), 8, 3);
 CvRNG rng = cvRNG(0xffffffff);

 color_tab[0] = CV_RGB(255,0,0);
 color_tab[1] = CV_RGB(0,255,0);
 color_tab[2] = CV_RGB(100,100,255);
 color_tab[3] = CV_RGB(255,0,255);
 color_tab[4] = CV_RGB(255,255,0);

 cvNamedWindow(“clusters”, 1);

 for(;;)
 {
 int k, cluster_count = cvRandInt(&rng)%MAX_CLUSTERS + 1;
 int i, sample_count = cvRandInt(&rng)%1000 + 1;
 CvMat* points = cvCreateMat(sample_count, 1, CV_32FC2);
 CvMat* clusters = cvCreateMat(sample_count, 1, CV_32SC1);

 /* generate random sample from multivariate

* Th is is exactly equivalent to an N-by-K matrix in which the N rows are the data points, the K columns are the
individual components of each point’s location, and the underlying data type is 32FC1. Recall that, owing to
the memory layout used for arrays, there is no distinction between these representations.

13-R4886-AT1.indd 48113-R4886-AT1.indd 481 9/15/08 4:25:30 PM9/15/08 4:25:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

482 | Chapter 13: Machine Learning

Example 13-1. Using K-means (continued)

 Gaussian distribution */
 for(k = 0; k < cluster_count; k++)
 {
 CvPoint center;
 CvMat point_chunk;
 center.x = cvRandInt(&rng)%img->width;
 center.y = cvRandInt(&rng)%img->height;
 cvGetRows(points, &point_chunk,
 k*sample_count/cluster_count,
 k == cluster_count - 1 ? sample_count :
 (k+1)*sample_count/cluster_count);
 cvRandArr(&rng, &point_chunk, CV_RAND_NORMAL,
 cvScalar(center.x,center.y,0,0),
 cvScalar(img->width/6, img->height/6,0,0));
 }

 /* shuffle samples */
 for(i = 0; i < sample_count/2; i++)
 {
 CvPoint2D32f* pt1 = (CvPoint2D32f*)points->data.fl +
 cvRandInt(&rng)%sample_count;
 CvPoint2D32f* pt2 = (CvPoint2D32f*)points->data.fl +
 cvRandInt(&rng)%sample_count;
 CvPoint2D32f temp;
 CV_SWAP(*pt1, *pt2, temp);
 }

 cvKMeans2(points, cluster_count, clusters,
 cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,
 10, 1.0));
 cvZero(img);
 for(i = 0; i < sample_count; i++)
 {
 CvPoint2D32f pt = ((CvPoint2D32f*)points->data.fl)[i];
 int cluster_idx = clusters->data.i[i];
 cvCircle(img, cvPointFrom32f(pt), 2,
 color_tab[cluster_idx], CV_FILLED);
 }

 cvReleaseMat(&points);
 cvReleaseMat(&clusters);

 cvShowImage(“clusters”, img);

 int key = cvWaitKey(0);
 if(key == 27) // ‘ESC’
 break;
 }
}

In this code we included highgui.h to use a window output interface and cxcore.h be-

cause it contains Kmeans2(). In main(), we set up the coloring of returned clusters for

display, set the upper limit to how many cluster centers can be chosen at random to MAX_

13-R4886-AT1.indd 48213-R4886-AT1.indd 482 9/15/08 4:25:30 PM9/15/08 4:25:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Naïve/Normal Bayes Classifi er | 483

CLUSTERS (here 5) in cluster_count, and allow up to 1,000 data points, where the random

value for this is kept in sample_count. In the outer for{} loop, which repeats until the Esc

key is hit, we allocate a fl oating point matrix points to contain sample_count data points

(in this case, a single column of 2D data points CV_32FC2) and allocate an integer matrix

clusters to contain their resulting cluster labels, 0 through cluster_count - 1.

We next enter a data generation for{} loop that can be reused for testing other algo-

rithms. For each cluster, we fi ll in the points array in successive chunks of size sample_
count/cluster_count. Each chunk is fi lled with a normal distribution, CV_RAND_NORMAL, of

2D (CV_32FC2) data points centered on a randomly chosen 2D center.

Th e next for{} loop merely shuffl es the resulting total “pack” of points. We then call

cvKMeans2(), which runs until the largest movement of a cluster center is less than 1 (but

allowing no more than ten iterations).

Th e fi nal for{} loop just draws the results. Th is is followed by de-allocating the allocated

arrays and displaying the results in the “clusters” image. Finally, we wait indefi nitely

(cvWaitKey(0)) to allow the user another run or to quit via the Esc key.

Naïve/Normal Bayes Classifier
Th e preceding routines are from cxcore. We’ll now start discussing the machine learn-

ing (ML) library section of OpenCV. We’ll begin with OpenCV’s simplest supervised

classifi er, CvNormalBayesClassifier, which is called both a normal Bayes classifi er and a

naïve Bayes classifi er. It’s “naïve” because it assumes that all the features are indepen-

dent from one another even though this is seldom the case (e.g., fi nding one eye usually

implies that another eye is lurking nearby). Zhang discusses possible reasons for the

sometimes surprisingly good performance of this classifi er [Zhang04]. Naïve Bayes is

not used for regression, but it’s an eff ective classifi er that can handle multiple classes,

not just two. Th is classifi er is the simplest possible case of what is now a large and grow-

ing fi eld known as Bayesian networks, or “probabilistic graphical models”. Bayesian net-

works are causal models; in Figure 13-6, for example, the face features in an image are

caused by the existence of a face. In use, the face variable is considered a hidden variable

and the face features—via image processing operations on the input image—constitute

the observed evidence for the existence of a face. We call this a generative model because

the face causally generates the face features. Conversely, we might start by assuming the

face node is active and then randomly sample what features are probabilistically gener-

ated given that face is active.* Th is top-down generation of data with the same statistics

as the learned causal model (here, the face) is a useful ability that a purely discriminative

model does not possess. For example, one might generate faces for computer graphics

display, or a robot might literally “imagine” what it should do next by generating scenes,

objects, and interactions. In contrast to Figure 13-6, a discriminative model would have

the direction of the arrows reversed.

* Generating a face would be silly with the naïve Bayes algorithm because it assumes independence of features.
But a more general Bayesian network can easily build in feature dependence as needed.

13-R4886-AT1.indd 48313-R4886-AT1.indd 483 9/15/08 4:25:30 PM9/15/08 4:25:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

484 | Chapter 13: Machine Learning

Bayesian networks are a deep and initially diffi cult fi eld to understand, but the naïve Bayes

algorithm derives from a simple application of Bayes’ law. In this case, the probability

(denoted p) of a face given the features (denoted, left to right in Figure 13-6, as LE, RE,

N, M, H) is:

p
p p

(| , , , ,)
(, , , , |) (

face LE RE N M H
LE RE N M H face fa= cce

LE RE N M H

)

(, , , ,)p

Just so you’ll know, in English this equation means:

posterior probability
likelihood prior prob= × aability

evidence

In practice, we compute some evidence and then decide what object caused it. Since

the computed evidence stays the same for the objects, we can drop that term. If we

have many models then we need only fi nd the one with the maximum numerator. Th e

numerator is exactly the joint probability of the model with the data: p(face, LE, RE,

N, M, H). We can then use the defi nition of conditional probability to derive the joint

probability:

p

p p p

(, , , , ,)

() (|) (|

face LE RE N M H

face LE face RE f= aace LE N face LE RE

M face LE RE N

,) (| , ,)

(| , , ,) (

p

p p× HH face LE RE N M| , , , ,)

Applying our assumption of independence of features, the conditional features drop

out. So, generalizing face to “object” and particular features to “all features”, we obtain

the reduced equation:

p p p
i

() () (object, all features object feature= ||)object
all features

i=
∏

1

Figure 13-6. A (naïve) Bayesian network, where the lower-level features are caused by the presence of
an object (the face)

13-R4886-AT1.indd 48413-R4886-AT1.indd 484 9/15/08 4:25:30 PM9/15/08 4:25:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Naïve/Normal Bayes Classifi er | 485

To use this as an overall classifi er, we learn models for the objects that we want. In

run mode we compute the features and fi nd the object that maximizes this equation.

We typically then test to see if the probability for that “winning” object is over a given

threshold. If it is, then we declare the object to be found; if not, we declare that no object

was recognized.

If (as frequently occurs) there is only one object of interest, then you
might ask: “Th e probability I’m computing is the probability relative
to what?” In such cases, there is always an implicit second object—
namely, the background—which is everything that is not the object of
interest that we’re trying to learn and recognize.

Learning the models is easy. We take many images of the objects; we then compute fea-

tures over those objects and compute the fraction of how many times a feature occurred

over the training set for each object. In practice, we don’t allow zero probabilities be-

cause that would eliminate the chance of an object existing; hence zero probabilities

are typically set to some very low number. In general, if you don’t have much data then

simple models such as naïve Bayes will tend to outperform more complex models, which

will “assume” too much about the data (bias).

Naïve/Normal Bayes Code
Th e training method for the normal Bayes classifi er is:

bool CvNormalBayesClassifier::train(
 const CvMat* _train_data,
 const CvMat* _responses,
 const CvMat* _var_idx = 0,
 const CvMat* _sample_idx = 0,
 bool update = false
);

Th is follows the generic method for training described previously, but it allows only

data for which each row is a training point (i.e., as if tflag=CV_ROW_SAMPLE). Also, the

input _train_data is a single-column CV_32FC1 vector that can only be of type ordered,

CV_VAR_ORDERED (numbers). Th e output label _responses is a vector column that can only

be of categorical type CV_VAR_CATEGORICAL (integers, even if contained in a fl oat vector).

Th e parameters _var_idx and _sample_idx are optional; they allow you to mark (re-

spectively) features and data points that you want to use. Mostly you’ll use all features

and data and simply pass NULL for these vectors, but _sample_idx can be used to divide

the training and test sets, for example. Both vectors are either single-channel integer

(CV_32SC1) zero-based indexes or 8-bit (CV_8UC1) mask values, where 0 means to skip. Fi-

nally, update can be set to merely update the normal Bayes learning rather than to learn

a new model from scratch.

Th e prediction for method for CvNormalBayesClassifier computes the most probable

class for its input vectors. One or more input data vectors are stored as rows of the

samples matrix. Th e predictions are returned in corresponding rows of the results

vector. If there is only a single input in samples, then the resulting prediction is returned

13-R4886-AT1.indd 48513-R4886-AT1.indd 485 9/15/08 4:25:31 PM9/15/08 4:25:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

486 | Chapter 13: Machine Learning

as a fl oat value by the predict method and the results array may be set to NULL (the

default). Th e format for the prediction method is:

float CvNormalBayesClassifier::predict(
 const CvMat* samples,
 CvMat* results = 0
) const;

We move next to a discussion of tree-based classifi ers.

Binary Decision Trees
We will go through decision trees in detail, since they are highly useful and use most

of the functionality in the machine learning library (and thus serve well as an instruc-

tional example). Binary decision trees were invented by Leo Breiman and colleagues,*

who named them classifi cation and regression tree (CART) algorithms. Th is is the deci-

sion tree algorithm that OpenCV implements. Th e gist of the algorithm is to defi ne an

impurity metric relative to the data in every node of the tree. For example, when using

regression to fi t a function, we might use the sum of squared diff erences between the

true value and the predicted value. We want to minimize the sum of diff erences (the

“impurity”) in each node of the tree. For categorical labels, we defi ne a measure that is

minimal when most values in a node are of the same class. Th ree common measures

to use are entropy, Gini index, and misclassifi cation (all are described in this section).

Once we have such a metric, a binary decision tree searches through the feature vector

to fi nd which feature combined with which threshold most purifi es the data. By conven-

tion, we say that features above the threshold are “true” and that the data thus classifi ed

will branch to the left ; the other data points branch right. Th is procedure is then used

recursively down each branch of the tree until the data is of suffi cient purity or until the

number of data points in a node reaches a set minimum.

Th e equations for node impurity i(N) are given next. We must deal with two cases, re-

gression and classifi cation.

Regression Impurity
For regression or function fi tting, the equation for node impurity is simply the square

of the diff erence in value between the node value y and the data value x. We want to

minimize:

i N y x
j j

j

() ()= −∑ 2

Classification Impurity
For classifi cation, decision trees oft en use one of three methods: entropy impurity, Gini

impurity, or misclassifi cation impurity. For these methods, we use the notation P(ωj) to

* L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classifi cation and Regression Trees (1984), Wadsworth.

13-R4886-AT1.indd 48613-R4886-AT1.indd 486 9/15/08 4:25:31 PM9/15/08 4:25:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Binary Decision Trees | 487

denote the fraction of patterns at node N that are in class ωj. Each of these impurities

has slightly diff erent eff ects on the splitting decision. Gini is the most commonly used,

but all the algorithms attempt to minimize the impurity at a node. Figure 13-7 graphs

the impurity measures that we want to minimize.

Entropy impurity

i N P P
j

j

j
() ()log ()= −∑ ω ω

Gini impurity

i N P P
i

j i

j
() () ()=

≠
∑ ω ω

Misclassification impurity

i N P
j

() max ()= −1 ω

Figure 13-7. Decision tree impurity measures

Decision trees are perhaps the most widely used classifi cation technology. Th is is due to

their simplicity of implementation, ease of interpretation of results, fl exibility with dif-

ferent data types (categorical, numerical, unnormalized and mixes thereof), ability to

handle missing data through surrogate splits, and natural way of assigning importance

to the data features by order of splitting. Decision trees form the basis of other algo-

rithms such as boosting and random trees, which we will discuss shortly.

Decision Tree Usage
In what follows we describe perhaps more than enough for you to get decision trees

working well. However, there are many more methods for accessing nodes, modifying

splits, and so forth. For that level of detail (which few readers are likely ever to need)

13-R4886-AT1.indd 48713-R4886-AT1.indd 487 9/15/08 4:25:31 PM9/15/08 4:25:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

488 | Chapter 13: Machine Learning

you should consult the user manual …/opencv/docs/ref/opencvref_ml.htm, particularly

with regard to the classes CvDTree{}, the training class CvDTreeTrainData{}, and the nodes

CvDTreeNode{} and splits CvDTreeSplit{}.

For a pragmatic introduction, we start by dissecting a specifi c example. In the …/opencv/

samples/c directory, there is a mushroom.cpp fi le that runs decision trees on the agaricus-

lepiota.data data fi le. Th is data fi le consists of a label “p” or “e” (denoting poisonous or

edible, respectively) followed by 22 categorical attributes, each represented by a single

letter. Observe that the data fi le is given in “comma separated value” (CSV) format,

where the features’ values are separated from each other by commas. In mushroom.cpp

there is a rather messy function mushroom_read_database() for reading in this particular

data fi le. Th is function is rather overspecifi c and brittle but mainly it’s just fi lling three

arrays as follows. (1) A fl oating-point matrix data[][], which has dimensions rows =

number of data points by columns = number of features (22 in this case) and where all

the features are converted from their categorical letter values to fl oating-point numbers.

(2) A character matrix missing[][], where a “true” or “1” indicates a missing value that is

indicated in the raw data fi le by a question mark and where all other values are set to 0.

(3) A fl oating-point vector responses[], which contains the poison “p” or edible “e” re-

sponse cast in fl oating-point values. In most cases you would write a more general data

input program. We’ll now discuss the main working points of mushroom.cpp, all of

which are called directly or indirectly from main() in the program.

Training the tree

For training the tree, we fi ll out the tree parameter structure CvDTreeParams{}:

struct CvDTreeParams {

 int max_categories; //Until pre-clustering
 int max_depth; //Maximum levels in a tree
 int min_sample_count; //Don’t split a node if less
 int cv_folds; //Prune tree with K fold cross-validation
 bool use_surrogates; //Alternate splits for missing data
 bool use_1se_rule; //Harsher pruning
 bool truncate_pruned_tree; //Don’t “remember” pruned branches
 float regression_accuracy; //One of the “stop splitting” criteria
 const float* priors; //Weight of each prediction category

 CvDTreeParams() : max_categories(10), max_depth(INT_MAX),
 min_sample_count(10), cv_folds(10), use_surrogates(true),
 use_1se_rule(true), truncate_pruned_tree(true),
 regression_accuracy(0.01f), priors(NULL) { ; }

 CvDTreeParams(
 int _max_depth,
 int _min_sample_count,
 float _regression_accuracy,
 bool _use_surrogates,
 int _max_categories,
 int _cv_folds,
 bool _use_1se_rule,

13-R4886-AT1.indd 48813-R4886-AT1.indd 488 9/15/08 4:25:32 PM9/15/08 4:25:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Binary Decision Trees | 489

 bool _truncate_pruned_tree,
 const float* _priors
);
}

In the structure, max_categories has a default value of 10. Th is limits the number of

categorical values before which the decision tree will precluster those categories so

that it will have to test no more than 2max_categories–2 possible value subsets.* Th is isn’t a

problem for ordered or numerical features, where the algorithm just has to fi nd a

threshold at which to split left or right. Th ose variables that have more categories than

max_categories will have their category values clustered down to max_categories pos-

sible values. In this way, decision trees will have to test no more than max_categories

levels at a time. Th is parameter, when set to a low value, reduces computation at the cost

of accuracy.

Th e other parameters are fairly self-explanatory. Th e last parameter, priors, can be cru-

cial. It sets the relative weight that you give to misclassifi cation. Th at is, if the weight of

the fi rst category is 1 and the weight of the second category is 10, then each mistake in

predicting the second category is equivalent to making 10 mistakes in predicting the

fi rst category. In the code we have edible and poisonous mushrooms, so we “punish”

mistaking a poisonous mushroom for an edible one 10 times more than mistaking an

edible mushroom for a poisonous one.

Th e template of the methods for training a decision tree is shown below. Th ere are two

methods: the fi rst is used for working directly with decision trees; the second is for en-

sembles (as used in boosting) or forests (as used in random trees).

// Work directly with decision trees:
 bool CvDTree::train(
 const CvMat* _train_data,
 int _tflag,
 const CvMat* _responses,
 const CvMat* _var_idx = 0,
 const CvMat* _sample_idx = 0,
 const CvMat* _var_type = 0,
 const CvMat* _missing_mask = 0,
 CvDTreeParams params = CvDTreeParams()
);

// Method that ensembles of decision trees use to call individual

* More detail on categorical vs. ordered splits: Whereas a split on an ordered variable has the form “if x �
a then go left , else go right”, a split on a categorical variable has the form “if x v v v v

k
∈ { , , , , }

1 2 3
… then go

left , else go right”, where the vi are some possible values of the variable. Th us, if a categorical variable has
N possible values then, in order to fi nd a best split on that variable, one needs to try 2N –2 subsets (empty
and full subset are excluded). Th us, an approximate algorithm is used whereby all N values are grouped into
K � max_categories clusters (via the K-mean algorithm) based on the statistics of the samples in the cur-
rently analyzed node. Th ereaft er, the algorithm tries diff erent combinations of the clusters and chooses
the best split, which oft en gives quite a good result. Note that for the two most common tasks, two-class
classifi cation and regression, the optimal categorical split (i.e., the best subset of values) can be found effi -
ciently without any clustering. Hence the clustering is applied only in n � 2-class classifi cation problems for
categorical variables with N � max_categories possible values. Th erefore, you should think twice before
setting max_categories to anything greater than 20, which would imply more than a million operations for
each split!

13-R4886-AT1.indd 48913-R4886-AT1.indd 489 9/15/08 4:25:32 PM9/15/08 4:25:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

490 | Chapter 13: Machine Learning

// training for each tree in the ensemble
bool CvDTree::train(
 CvDTreeTrainData* _train_data,
 const CvMat* _subsample_idx
);

In the train() method, we have the fl oating-point _train_data[][] matrix. In that ma-

trix, if _tflag is set to CV_ROW_SAMPLE then each row is a data point consisting of a vector

of features that make up the columns of the matrix. If tflag is set to CV_COL_SAMPLE, the

row and column meanings are reversed. Th e _responses[] argument is a fl oating-point

vector of values to be predicted given the data features. Th e other parameters are op-

tional. Th e vector _var_idx indicates features to include, and the vector _sample_idx in-

dicates data points to include; both of these vectors are either zero-based integer lists of

values to skip or 8-bit masks of active (1) or skip (0) values (see our general discussion of

the train() method earlier in the chapter). Th e byte (CV_8UC1) vector _var_type is a zero-

based mask for each feature type (CV_VAR_CATEGORICAL or CV_VAR_ORDERED*); its size is equal

to the number of features plus 1. Th at last entry is for the response type to be learned.

Th e byte-valued _missing_mask[][] matrix is used to indicate missing values with a 1

(else 0 is used). Example 13-2 details the creation and training of a decision tree.

Example 13-2. Creating and training a decision tree

float priors[] = { 1.0, 10.0}; // Edible vs poisonous weights

CvMat* var_type;

var_type = cvCreateMat(data->cols + 1, 1, CV_8U);

cvSet(var_type, cvScalarAll(CV_VAR_CATEGORICAL)); // all these vars
 // are categorical
CvDTree* dtree;
dtree = new CvDTree;
dtree->train(
 data,
 CV_ROW_SAMPLE,
 responses,
 0,
 0,
 var_type,
 missing,
 CvDTreeParams(
 8, // max depth
 10, // min sample count
 0, // regression accuracy: N/A here
 true, // compute surrogate split,
 // since we have missing data
 15, // max number of categories
 // (use suboptimal algorithm for
 // larger numbers)
 10, // cross-validations

* CV_VAR_ORDERED is the same thing as CV_VAR_NUMERICAL.

13-R4886-AT1.indd 49013-R4886-AT1.indd 490 9/15/08 4:25:32 PM9/15/08 4:25:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Binary Decision Trees | 491

Example 13-2. Creating and training a decision tree (continued)

 true, // use 1SE rule => smaller tree
 true, // throw away the pruned tree branches
 priors // the array of priors, the bigger
 // p_weight, the more attention
 // to the poisonous mushrooms
)
);

In this code the decision tree dtree is declared and allocated. Th e dtree->train() method

is then called. In this case, the vector of responses[] (poisonous or edible) was set to the

ASCII value of “p” or “e” (respectively) for each data point. Aft er the train() method

terminates, dtree is ready to be used for predicting new data. Th e decision tree may

also be saved to disk via save() and loaded via load() (each method is shown below).*

Between the saving and the loading, we reset and zero out the tree by calling the clear()

method.

dtree->save(“tree.xml”,“MyTree”);

dtree->clear();

dtree->load(“tree.xml”,“MyTree”);

Th is saves and loads a tree fi le called tree.xml. (Using the .xml extension stores an XML

data fi le; if we used a .yml or .yaml extension, it would store a YAML data fi le.) Th e

optional “MyTree” is a tag that labels the tree within the tree.xml fi le. As with other

statistical models in the machine learning module, multiple objects cannot be stored

in a single .xml or .yml fi le when using save(); for multiple storage one needs to use

cvOpenFileStorage() and write(). However, load() is a diff erent story: this function can

load an object by its name even if there is some other data stored in the fi le.

Th e function for prediction with a decision tree is:

CvDTreeNode* CvDTree::predict(
 const CvMat* _sample,
 const CvMat* _missing_data_mask = 0,
 bool raw_mode = false
) const;

Here _sample is a fl oating-point vector of features used to predict; _missing_data_mask is

a byte vector of the same length and orientation† as the _sample vector, in which non-

zero values indicate a missing feature value. Finally, raw_mode indicates unnormalized

data with “false” (the default) or “true” for normalized input categorical data values.

Th is is mainly used in ensembles of trees to speed up prediction. Normalizing data to

fi t within the (0, 1) interval is simply a computational speedup because the algorithm

then knows the bounds in which data may fl uctuate. Such normalization has no eff ect

on accuracy. Th is method returns a node of the decision tree, and you may access the

* As mentioned previously, save() and load() are convenience wrappers for the more complex functions
write() and read().

† By “same . . . orientation” we mean that if the sample is a 1-by-N vector the mask must be 1-by-N, and if the
sample is N-by-1 then the mask must be N-by-1.

13-R4886-AT1.indd 49113-R4886-AT1.indd 491 9/15/08 4:25:32 PM9/15/08 4:25:32 PM

www.it-ebooks.info

http://www.it-ebooks.info/

492 | Chapter 13: Machine Learning

predicted value using (CvDTreeNode *)->value which is returned by the dtree->predict()

method (see CvDTree::predict() described previously):

double r = dtree->predict(&sample, &mask)->value;

Finally, we can call the useful var_importance() method to learn about the importance

of the individual features. Th is function will return an N-by-1 vector of type double

(CV_64FC1) containing each feature’s relative importance for prediction, where the value

1 indicates the highest importance and 0 indicates absolutely not important or useful

for prediction. Unimportant features may be eliminated on a second-pass training. (See

Figure 13-12 for a display of variable importance.) Th e call is as follows:

const CvMat* var_importance = dtree->get_var_importance();

As demonstrated in the …/opencv/samples/c/mushroom.cpp fi le, individual elements of

the importance vector may be accessed directly via

double val = var_importance->data.db[i];

Most users will only train and use the decision trees, but advanced or research users

may sometimes wish to examine and/or modify the tree nodes or the splitting crite-

ria. As stated in the beginning of this section, the information for how to do this is

in the ML documentation that ships with OpenCV at …/opencv/docs/ref/opencvref_

ml.htm#ch_dtree, which can also be accessed via the OpenCV Wiki (http://opencvlibrary

.sourceforge.net/). Th e sections of interest for such advanced analysis are the class struc-

ture CvDTree{}, the training structure CvDTreeTrainData{}, the node structure CvDTree-
Node{}, and its contained split structure CvDTreeSplit{}.

Decision Tree Results
Using the code just described, we can learn several things about edible or poisonous

mushrooms from the agaricus-lepiota.data fi le. If we just train a decision tree without

pruning, so that it learns the data perfectly, we get the tree shown in Figure 13-8. Al-

though the full decision tree learns the training set of data perfectly, remember the les-

son of Figure 13-2 (overfi tting). What we’ve done in Figure 13-8 is to memorize the data

together with its mistakes and noise. Th us, it is unlikely to perform well on real data.

Th at is why OpenCV decision trees and CART type trees typically include an additional

step of penalizing complex trees and pruning them back until complexity is in balance

with performance. Th ere are other decision tree implementations that grow the tree only

until complexity is balanced with performance and so combine the pruning phase with

the learning phase. However, during development of the ML library it was found that

trees that are fully grown fi rst and then pruned (as implemented in OpenCV) performed

better than those that combine training with pruning in their generation phase.

Figure 13-9 shows a pruned tree that still does quite well (but not perfectly) on the

training set but will probably perform better on real data because it has a better balance

between bias and variance. Yet this classifi er has an serious shortcoming: Although it

performs well on the data, it still labels poisonous mushrooms as edible 1.23% of the

time. Perhaps we’d be happier with a worse classifi er that labeled many edible mush-

rooms as poisonous provided it never invited us to eat a poisonous mushroom! Such

13-R4886-AT1.indd 49213-R4886-AT1.indd 492 9/15/08 4:25:33 PM9/15/08 4:25:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Binary Decision Trees | 493

a classifi er can be created by intentionally biasing the classifi er and/or the data. Th is

is sometimes referred to as adding a cost to the classifi er. In our case, we want to add

a higher cost for misclassifying poisonous mushrooms than for misclassifying edible

mushrooms. Cost can be imposed “inside” a classifi er by changing the weighting of how

much a “bad” data point counts versus a “good” one. OpenCV allows you to do this

by adjusting the priors vector in the CvDTreeParams{} structure passed to the train()

method, as we have discussed previously. Even without going inside the classifi er code,

we can impose a prior cost by duplicating (or resampling from) “bad” data. Duplicating

“bad” data points implicitly gives a higher weight to the “bad” data, a technique that

can work with any classifi er.

Figure 13-10 shows a tree where a 10 × bias was imposed against poisonous mushrooms.

Th is tree makes no mistakes on poisonous mushrooms at a cost of many more mistakes

on edible mushrooms—a case of “better safe than sorry”. Confusion matrices for the

(pruned) unbiased and biased trees are shown in Figure 13-11.

Figure 13-8. Full decision tree for poisonous (p) or edible (e) mushrooms: this tree was built out to
full complexity for 0% error on the training set and so would probably suff er from variance problems
on test or real data (the dark portion of a rectangle represents the poisonous portion of mushrooms
at that phase of categorization)

13-R4886-AT1.indd 49313-R4886-AT1.indd 493 9/15/08 4:25:33 PM9/15/08 4:25:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

494 | Chapter 13: Machine Learning

Figure 13-9. Pruned decision tree for poisonous (p) and edible (e) mushrooms: despite being pruned,
this tree shows low error on the training set and would likely work well on real data

Figure 13-10. An edible mushroom decision tree with 10 × bias against misidentifi cation of poison-
ous mushrooms as edible; note that the lower right rectangle, though containing a vast majority of
edible mushrooms, does not contain a 10 × majority and so would be classifi ed as inedible

Finally, we can learn something more from the data by using the variable importance

machinery that comes with the tree-based classifi ers in OpenCV.* Variable importance

measurement techniques were discussed in a previous subsection, and they involve

successively perturbing each feature and then measuring the eff ect on classifi er perfor-

mance. Features that cause larger drops in performance when perturbed are more im-

portant. Also, decision trees directly show importance via the splits they found in the

* Variable importance techniques may be used with any classifi er, but at this time OpenCV implements them
only with tree-based methods.

13-R4886-AT1.indd 49413-R4886-AT1.indd 494 9/15/08 4:25:33 PM9/15/08 4:25:33 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Boosting | 495

Figure 13-11. Confusion matrices for (pruned) edible mushroom decision trees: the unbiased tree
yields better overall performance (top panel) but sometimes misclassifi es poisonous mushrooms as
edible; the biased tree does not perform as well overall (lower panel) but never misclassifi es poison-
ous mushrooms

data: the fi rst splits are presumably more important than later splits. Splits can be a use-

ful indicator of importance, but they are done in a “greedy” fashion—fi nding which split

most purifi es the data now. It is oft en the case that doing a worse split fi rst leads to better

splits later, but these trees won’t fi nd this out.* Th e variable importance for poisonous

mushrooms is shown in Figure 13-12 for both the unbiased and the biased trees. Note

that the order of important variables changes depending on the bias of the trees.

Boosting
Decision trees are extremely useful, but they are oft en not the best-performing classi-

fi ers. In this and the next section we present two techniques, boosting and random trees,

that use trees in their inner loop and so inherit many of the useful properties of trees

(e.g., being able to deal with mixed and unnormalized data types and missing features).

Th ese techniques typically perform at or near the state of the art; thus they are oft en the

best “out of the box” supervised classifi cation techniques† available in the library.

Within in the fi eld of supervised learning there is a meta-learning algorithm (fi rst de-

scribed by Michael Kerns in 1988) called statistical boosting. Kerns wondered whether

* OpenCV (following Breiman’s technique) computes variable importance across all the splits, including
surrogate ones, which decreases the possible negative eff ect that CART’s greedy splitting algorithm would
have on variable importance ratings.

† Recall that the “no free lunch” theorem informs us that there is no a priori “best” classifi er. But on many data
sets of interest in vision, boosting and random trees perform quite well.

13-R4886-AT1.indd 49513-R4886-AT1.indd 495 9/15/08 4:25:34 PM9/15/08 4:25:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

496 | Chapter 13: Machine Learning

Figure 13-12. Variable importance for edible mushroom as measured by an unbiased tree (left panel)
and a tree biased against poison (right panel)

it is possible to learn a strong classifi er out of many weak classifi ers.* Th e fi rst boosting

algorithm, known as AdaBoost, was formulated shortly thereaft er by Freund and Scha-

pire.† OpenCV ships with four types of boosting:

CvBoost :: DISCRETE• (discrete AdaBoost)

CvBoost :: REAL• (real AdaBoost)

CvBoost :: LOGIT• (LogitBoost)

CvBoost :: GENTLE• (gentle AdaBoost)

Each of these are variants of the original AdaBoost, and oft en we fi nd that the “real”

and “gentle” forms of AdaBoost work best. Real AdaBoost is a technique that utilizes

confi dence-rated predictions and works well with categorical data. Gentle AdaBoost

puts less weight on outlier data points and for that reason is oft en good with regression

data. LogitBoost can also produce good regression fi ts. Because you need only set a fl ag,

there’s no reason not to try all types on a data set and then select the boosting method

that works best.‡ Here we’ll describe the original AdaBoost. For classifi cation it should

* Th e output of a “weak classifi er” is only weakly correlated with the true classifi cations, whereas that of a
“strong classifi er” is strongly correlated with true classifi cations. Th us, weak and strong are defi ned in a sta-
tistical sense.

† Y. Freund and R. E. Schapire, “Experiments with a New Boosting Algorithm”, in Machine Learning: Proceed-
ings of the Th irteenth International Conference (Morgan Kauman, San Francisco, 1996), 148–156.

‡ Th is procedure is an example of the machine learning metatechnique known as voodoo learning or voodoo
programming. Although unprincipled, it is oft en an eff ective method of achieving the best possible perfor-
mance. Sometimes, aft er careful thought, one can fi gure out why the best-performing method was the best,
and this can lead to a deeper understanding of the data. Sometimes not.

13-R4886-AT1.indd 49613-R4886-AT1.indd 496 9/15/08 4:25:34 PM9/15/08 4:25:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Boosting | 497

be noted that, as implemented in OpenCV, boosting is a two-class (yes-or-no) classifi er*

(unlike the decision tree or random tree classifi ers, which can handle multiple classes at

once). Of the diff erent OpenCV boosting methods, LogitBoost and GentleBoost (refer-

enced in the “Boosting Code” subsection to follow) can be used to perform regression in

addition to binary classifi cation.

AdaBoost
Boosting algorithms are used to train T weak classifi ers ht, t T∈{ }1,..., . Th ese classifi ers

are generally very simple individually. In most cases these classifi ers are decision trees

with only one split (called decision stumps) or at most a few levels of splits (perhaps up to

three). Each of the classifi ers is assigned a weighted vote αt in the fi nal decision-making

process. We use a labeled data set of input feature vectors xi, each with scalar label yi

(where i = 1,...,M data points). For AdaBoost the label is binary, y
i
∈ − +{ , }1 1 , though it

can be any fl oating-point number in other algorithms. We initialize a data point weight-

ing distribution Dt(i) that tells the algorithm how much misclassifying a data point will

“cost”. Th e key feature of boosting is that, as the algorithm progresses, this cost will

evolve so that weak classifi ers trained later will focus on the data points that the earlier

trained weak classifi ers tended to do poorly on. Th e algorithm is as follows.

1. D1(i) = 1/m, i = 1,...,m.

2. For t = 1,...,T:

Find the classifi er a. ht that minimizes the Dt(i) weighted error:

h
t h H jj

= ∈arg min εb. , where ε
j ti

m

D i=
=∑ ()

1
 (for yi � hj(xi)) as long as ε

j
< 0 5. ;

else quit.

Set the c. ht voting weight α ε ε
t t t
= −1

2
1log[()/], where ε

t
 is the arg min error from

step 2b.

Update the data point weights: d. D i D i y h x Z
t t t i t i t+ = −

1
() [()exp(())]/α , where Zt

normalizes the equation over all data points i.

Note that, in step 2b, if we can’t fi nd a classifi er with less than a 50% error rate then we

quit; we probably need better features.

When the training algorithm just described is fi nished, the fi nal strong classifi er takes

a new input vector x and classifi es it using a weighted sum over the learned weak classi-

fi ers ht:

H x h x
t t

t

T

() ()=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=
∑sign α

1

* Th ere is a trick called unrolling that can be used to adapt any binary classifi er (including boosting) for
N-class classifi cation problems, but this makes both training and prediction signifi cantly more expensive.
See …/opencv/samples/c/letter_recog.cpp.

13-R4886-AT1.indd 49713-R4886-AT1.indd 497 9/15/08 4:25:34 PM9/15/08 4:25:34 PM

www.it-ebooks.info

http://www.it-ebooks.info/

498 | Chapter 13: Machine Learning

Here, the sign function converts anything positive into a 1 and anything negative into a

–1 (zero remains 0).

Boosting Code
Th ere is example code in …/opencv/samples/c/letter_recog.cpp that shows how to use

boosting, random trees and back-propagation (aka multilayer perception, MLP). Th e

code for boosting is similar to the code for decision trees but with its own control

parameters:

struct CvBoostParams : public CvDTreeParams {
 int boost_type; // CvBoost:: DISCRETE, REAL, LOGIT, GENTLE
 int weak_count; // How many classifiers
 int split_criteria; // CvBoost:: DEFAULT, GINI, MISCLASS, SQERR
 double weight_trim_rate;
 CvBoostParams();
 CvBoostParams(
 int boost_type,
 int weak_count,
 double weight_trim_rate,
 int max_depth,
 bool use_surrogates,
 const float* priors
);
};

In CvDTreeParams, boost_type selects one of the four boosting algorithms listed previ-

ously. Th e split_criteria is one of the following.

CvBoost :: DEFAULT• (use the default for the particular boosting method)

CvBoost :: GINI• (default option for real AdaBoost)

CvBoost :: MISCLASS• (default option for discrete AdaBoost)

CvBoost :: SQERR• (least-square error; only option available for LogitBoost and gentle

AdaBoost)

Th e last parameter, weight_trim_rate, is for computational savings and is used as de-

scribed next. As training goes on, many data points become unimportant. Th at is,

the weight Dt(i) for the ith data point becomes very small. Th e weight_trim_rate is a

threshold between 0 and 1 (inclusive) that is implicitly used to throw away some train-

ing samples in a given boosting iteration. For example, suppose weight_trim_rate is set

to 0.95. Th is means that samples with summary weight � 1.0–0.95 = 0.05 (5%) do not

participate in the next iteration of training. Note the words “next iteration”. Th e sam-

ples are not discarded forever. When the next weak classifi er is trained, the weights are

computed for all samples and so some previously insignifi cant samples may be returned

back to the next training set. To turn this functionality off , set the weight_trim_rate

value to 0.

Observe that CvBoostParams{} inherits from CvDTreeParams{}, so we may set other pa-

rameters that are related to decision trees. In particular, if we are dealing with features

13-R4886-AT1.indd 49813-R4886-AT1.indd 498 9/15/08 4:25:35 PM9/15/08 4:25:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Boosting | 499

that may be missing* then we can set use_surrogates to CvDTreeParams::use_surrogates,

which will ensure that alternate features on which the splitting is based are stored at

each node. An important option is that of using priors to set the “cost” of false positives.

Again, if we are learning edible or poisonous mushrooms then we might set the priors

to be float priors[] = {1.0, 10.0}; then each error of labeling a poisonous mushroom

edible would cost ten times as much as labeling an edible mushroom poisonous.

Th e CvBoost class contains the member weak, which is a CvSeq* pointer to the weak clas-

sifi ers that inherits from CvDTree decision trees.† For LogitBoost and GentleBoost, the

trees are regression trees (trees that predict fl oating-point values); decision trees for the

other methods return only votes for class 0 (if positive) or class 1 (if negative). Th is con-

tained class sequence has the following prototype:

class CvBoostTree: public CvDTree {

public:
 CvBoostTree();
 virtual ~CvBoostTree();
 virtual bool train(
 CvDTreeTrainData* _train_data,
 const CvMat* subsample_idx,
 CvBoost* ensemble
);
 virtual void scale(double s);
 virtual void read(
 CvFileStorage* fs,
 CvFileNode* node,
 CvBoost* ensemble,
 CvDTreeTrainData* _data
);
 virtual void clear();

protected:
 ...
 CvBoost* ensemble;

};

Training is almost the same as for decision trees, but there is an extra parameter called

update that is set to false (0) by default. With this setting, we train a whole new ensemble

of weak classifi ers from scratch. If update is set to true (1) then we just add new weak clas-

sifi ers onto the existing group. Th e function prototype for training a boosted classifi er is:

* Note that, for computer vision, features are computed from an image and then fed to the classifi er; hence
they are almost never “missing”. Missing features arise oft en in data collected by humans—for example, for-
getting to take the patient’s temperature one day.

† Th e naming of these objects is somewhat nonintuitive. Th e object of type CvBoost is the boosted tree classi-
fi er. Th e objects of type CvBoostTree are the weak classifi ers that constitute the overall boosted strong clas-
sifi er. Presumably, the weak classifi ers are typed as CvBoostTree because they derive from CvDTree (i.e., they
are little trees in themselves, albeit possibly so little that they are just stumps). Th e member variable weak of
CvBoost points to a sequence enumerating the weak classifi ers of type CvBoostTree.

13-R4886-AT1.indd 49913-R4886-AT1.indd 499 9/15/08 4:25:35 PM9/15/08 4:25:35 PM

www.it-ebooks.info

http://www.it-ebooks.info/

500 | Chapter 13: Machine Learning

bool CvBoost::train(
 const CvMat* _train_data,
 int _tflag,
 const CvMat* _responses,
 const CvMat* _var_idx = 0,
 const CvMat* _sample_idx = 0,
 const CvMat* _var_type = 0,
 const CvMat* _missing_mask = 0,
 CvBoostParams params = CvBoostParams(),
 bool update = false
);

An example of training a boosted classifi er may be found in …/opencv/samples/c/

letter_recog.cpp. Th e training code snippet is shown in Example 13-3.

Example 13-3. Training snippet for boosted classifi ers

var_type = cvCreateMat(var_count + 2, 1, CV_8U);

cvSet(var_type, cvScalarAll(CV_VAR_ORDERED));

// the last indicator variable, as well
// as the new (binary) response are categorical
//
cvSetReal1D(var_type, var_count, CV_VAR_CATEGORICAL);
cvSetReal1D(var_type, var_count+1, CV_VAR_CATEGORICAL);

// Train the classifier
//
boost.train(
 new_data,
 CV_ROW_SAMPLE,
 responses,
 0,
 0,
 var_type,
 0,
 CvBoostParams(CvBoost::REAL, 100, 0.95, 5, false, 0)
);

cvReleaseMat(&new_data);
cvReleaseMat(&new_responses);

Th e prediction function for boosting is also similar to that for decision trees:

float CvBoost::predict(
 const CvMat* sample,
 const CvMat* missing = 0,
 CvMat* weak_responses = 0,
 CvSlice slice = CV_WHOLE_SEQ,
 bool raw_mode = false
) const;

To perform a simple prediction, we pass in the feature vector sample and then predict()

returns the predicted value. Of course, there are a variety of optional parameters. Th e

fi rst of these is the missing feature mask, which is the same as it was for decision trees;

13-R4886-AT1.indd 50013-R4886-AT1.indd 500 9/15/08 4:25:36 PM9/15/08 4:25:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Random Trees | 501

it consists of a byte vector of the same dimension as the sample vector, where nonzero val-

ues indicate a missing feature. (Note that this mask cannot be used unless you have trained

the classifi er with the use_surrogates parameter set to CvDTreeParams::use_surrogates.)

If we want to get back the responses of each of the weak classifi ers, we can pass in a

fl oating-point CvMat vector, weak_responses, with length equal to the number of weak

classifi ers. If weak_responses is passed, CvBoost::predict will fi ll the vector with the re-

sponse of each individual classifi er:

CvMat* weak_responses = cvCreateMat(
 1,
 boostedClassifier.get_weak_predictors()->total,
 CV_32F
);

Th e next prediction parameter, slice, indicates which contiguous subset of the weak

classifi ers to use; it can be set by

inline CvSlice cvSlice(int start, int end);

However, we usually just accept the default and leave slice set to “every weak classifi er”

(CvSlice slice=CV_WHOLE_SEQ). Finally, we have the raw_mode, which is off by default but

can be turned on by setting it to true. Th is parameter is exactly the same as for decision

trees and indicates that the data is prenormalized to save computation time. Normally

you won’t need to use this. An example call for boosted prediction is

boost.predict(temp_sample, 0, weak_responses);

Finally, some auxiliary functions may be of use from time to time. We can remove a

weak classifi er from the learned model via

void CvBoost::prune(CvSlice slice);

We can also return all the weak classifi ers for examination:

CvSeq* CvBoost::get_weak_predictors();

Th is function returns a CvSeq of pointers to CvBoostTree.

Random Trees
OpenCV contains a random trees class, which is implemented following Leo Breiman’s

theory of random forests.* Random trees can learn more than one class at a time simply

by collecting the class “votes” at the leaves of each of many trees and selecting the class

receiving the maximum votes as the winner. Regression is done by averaging the values

across the leaves of the “forest”. Random trees consist of randomly perturbed decision

trees and are among the best-performing classifi ers on data sets studied while the ML li-

brary was being assembled. Random trees also have the potential for parallel implemen-

tation, even on nonshared memory systems, a feature that lends itself to increased use in

the future. Th e basic subsystem on which random trees are built is once again a decision

tree. Th is decision tree is built all the way down until it’s pure. Th us (cf. the upper right

* Most of Breiman’s work on random forests is conveniently collected on a single website (http://www.stat
.berkeley.edu/users/breiman/RandomForests/cc_home.htm).

13-R4886-AT1.indd 50113-R4886-AT1.indd 501 9/15/08 4:25:36 PM9/15/08 4:25:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

502 | Chapter 13: Machine Learning

panel of Figure 13-2), each tree is a high-variance classifi er that nearly perfectly learns

its training data. To counterbalance the high variance, we average together many such

trees (hence the name random trees).

Of course, averaging trees will do us no good if the trees are all very similar to each

other. To overcome this, random trees cause each tree to be diff erent by randomly se-

lecting a diff erent feature subset of the total features from which the tree may learn at

each node. For example, an object-recognition tree might have a long list of potential

features: color, texture, gradient magnitude, gradient direction, variance, ratios of val-

ues, and so on. Each node of the tree is allowed to choose from a random subset of these

features when determining how best to split the data, and each subsequent node of the

tree gets a new, randomly chosen subset of features on which to split. Th e size of these

random subsets is oft en chosen as the square root of the number of features. Th us, if we

had 100 potential features then each node would randomly choose 10 of the features

and fi nd a best split of the data from among those 10 features. To increase robustness,

random trees use an out of bag measure to verify splits. Th at is, at any given node, train-

ing occurs on a new subset of the data that is randomly selected with replacement,* and

the rest of the data—those values not randomly selected, called “out of bag” (or OOB)

data—are used to estimate the performance of the split. Th e OOB data is usually set to

have about one third of all the data points.

Like all tree-based methods, random trees inherit many of the good properties of trees:

surrogate splits for missing values, handling of categorical and numerical values, no

need to normalize values, and easy methods for fi nding variables that are important for

prediction. Random trees also used the OOB error results to estimate how well it will do

on unseen data. If the training data has a similar distribution to the test data, this OOB

performance prediction can be quite accurate.

Finally, random trees can be used to determine, for any two data points, their proximity

(which in this context means “how alike” they are, not “how near” they are). Th e algo-

rithm does this by (1) “dropping” the data points into the trees, (2) counting how many

times they end up in the same leaf, and (3) dividing this “same leaf” count by the total

number of trees. A proximity result of 1 is exactly similar and 0 means very dissimilar.

Th is proximity measure can be used to identify outliers (those points very unlike any

other) and also to cluster points (group close points together).

Random Tree Code
We are by now familiar with how the ML library works, and random trees are no excep-

tion. It starts with a parameter structure, CvRTParams, which it inherits from decision

trees:

struct CvRTParams : public CvDTreeParams {

 bool calc_var_importance;
 int nactive_vars;

* Th is means that some data points might be randomly repeated.

13-R4886-AT1.indd 50213-R4886-AT1.indd 502 9/15/08 4:25:36 PM9/15/08 4:25:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Random Trees | 503

 CvTermCriteria term_crit;

 CvRTParams() : CvDTreeParams(
 5, 10, 0, false,
 10, 0, false, false,
 0
), calc_var_importance(false), nactive_vars(0) {

 term_crit = cvTermCriteria(
 CV_TERMCRIT_ITER | CV_TERMCRIT_EPS,
 50,
 0.1
);
 }

 CvRTParams(
 int _max_depth,
 int _min_sample_count,
 float _regression_accuracy,
 bool _use_surrogates,
 int _max_categories,
 const float* _priors,
 bool _calc_var_importance,
 int _nactive_vars,
 int max_tree_count,
 float forest_accuracy,
 int termcrit_type,
);

};

Th e key new parameters in CvRTParams are calc_var_importance, which is just a switch

to calculate the variable importance of each feature during training (at a slight cost in

additional computation time). Figure 13-13 shows the variable importance computed on

a subset of the mushroom data set that ships with OpenCV in the …/opencv/samples/c/

agaricus-lepiota.data fi le. Th e nactive_vars parameter sets the size of the randomly se-

lected subset of features to be tested at any given node and is typically set to the square

root of the total number of features; term_crit (a structure discussed elsewhere in this

chapter) is the control on the maximum number of trees. For learning random trees, in

term_crit the max_iter parameter sets the total number of trees; epsilon sets the “stop

learning” criteria to cease adding new trees when the error drops below the OOB error;

and the type tells which of the two stopping criteria to use (usually it’s both: CV_TERMCRIT_
ITER | CV_TERMCRIT_EPS).

Random trees training has the same form as decision trees training (see the deconstruc-

tion of CvDTree::train() in the subsection on “Training the Tree”) except that is uses the

CvRTParam structure:

bool CvRTrees::train(
 const CvMat* train_data,
 int tflag,
 const CvMat* responses,
 const CvMat* comp_idx = 0,

13-R4886-AT1.indd 50313-R4886-AT1.indd 503 9/15/08 4:25:36 PM9/15/08 4:25:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

504 | Chapter 13: Machine Learning

Figure 13-13. Variable importance over the mushroom data set for random trees, boosting, and
decision trees: random trees used fewer signifi cant variables and achieved the best prediction (100%
correct on a randomly selected test set covering 20% of data)

 const CvMat* sample_idx = 0,
 const CvMat* var_type = 0,
 const CvMat* missing_mask = 0,
 CvRTParams params = CvRTParams()
);

An example of calling the train function for a multiclass learning problem is provided

in the samples directory that ships with OpenCV; see the …/opencv/samples/c/letter_

recog.cpp fi le, where the random trees classifi er is named forest.

forest.train(
 data,
 CV_ROW_SAMPLE,
 responses,
 0,
 sample_idx,
 var_type,
 0,
 CvRTParams(10,10,0,false,15,0,true,4,100,0.01f,CV_TERMCRIT_ITER)
);

Random trees prediction has a form similar to that of the decision trees prediction

function CvDTree::predict, but rather than return a CvDTreeNode* pointer it returns the

13-R4886-AT1.indd 50413-R4886-AT1.indd 504 9/15/08 4:25:36 PM9/15/08 4:25:36 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Random Trees | 505

average return value over all the trees in the forest. Th e missing mask is an optional

parameter of the same dimension as the sample vector, where nonzero values indicate a

missing feature value in sample.

double CvRTrees::predict(
 const CvMat* sample,
 const CvMat* missing = 0
) const;

An example prediction call from the letter_recog.cpp fi le is

double r;
CvMat sample;

cvGetRow(data, &sample, i);

r = forest.predict(&sample);
r = fabs((double)r - responses->data.fl[i]) <= FLT_EPSILON ? 1 : 0;

In this code, the return variable r is converted into a count of correct predictions.

Finally, there are random tree analysis and utility functions. Assuming that

CvRTParams::calc_var_importance is set in training, we can obtain the relative impor-

tance of each variable by

const CvMat* CvRTrees::get_var_importance() const;

See Figure 13-13 for an example of variable importance for the mushroom data set from

random trees. We can also obtain a measure of the learned random trees model prox-

imity of one data point to another by using the call

float CvRTrees::get_proximity(
 const CvMat* sample_1,
 const CvMat* sample_2
) const;

As mentioned previously, the returned proximity is 1 if the data points are identical and

0 if the points are completely diff erent. Th is value is usually between 0 and 1 for two

data points drawn from a distribution similar to that of the training set data.

Two other useful functions give the total number of trees or the data structure contain-

ing a given decision tree:

int get_tree_count() const; // How many trees are in the forest
CvForestTree* get_tree(int i) const; // Get an individual decision tree

Using Random Trees
We’ve remarked that the random trees algorithm oft en performs the best (or among the

best) on the data sets we tested, but the best policy is still to try many classifi ers once

you have your training data defi ned. We ran random trees, boosting, and decision trees

on the mushroom data set. From the 8,124 data points we randomly extracted 1,624 test

points, leaving the remainder as the training set. Aft er training these three tree-based

classifi ers with their default parameters, we obtained the results shown in Table 13-4 on

the test set. Th e mushroom data set is fairly easy and so—although random trees did the

13-R4886-AT1.indd 50513-R4886-AT1.indd 505 9/15/08 4:25:37 PM9/15/08 4:25:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

506 | Chapter 13: Machine Learning

best—it wasn’t such an overwhelming favorite that we can defi nitively say which of the

three classifi ers works better on this particular data set.

Table 13-4. Results of tree-based methods on the OpenCV mushroom data set (1,624 randomly cho-
sen test points with no extra penalties for misclassifying poisonous mushrooms)

Classifier Performance Results

Random trees 100%

AdaBoost 99%

Decision trees 98%

What is more interesting is the variable importance (which we also measured from the

classifi ers), shown in Figure 13-13. Th e fi gure shows that random trees and boosting

each used signifi cantly fewer important variables than required by decision trees. Above

15% signifi cance, random trees used only three variables and boosting used six whereas

decision trees needed thirteen. We could thus shrink the feature set size to save com-

putation and memory and still obtain good results. Of course, for the decision trees

algorithm you have just a single tree while for random trees and AdaBoost you must

evaluate multiple trees; thus, which method has the least computational cost depends

on the nature of the data being used.

Face Detection or Haar Classifier
We now turn to the fi nal tree-based technique in OpenCV: the Haar classifi er, which

builds a boosted rejection cascade. It has a diff erent format from the rest of the ML li-

brary in OpenCV because it was developed earlier as a full-fl edged face-recognition ap-

plication. Th us, we cover it in detail and show how it can be trained to recognize faces

and other rigid objects.

Computer vision is a broad and fast-changing fi eld, so the parts of OpenCV that imple-

ment a specifi c technique—rather than a component algorithmic piece—are more at

risk of becoming out of date. Th e face detector that comes with OpenCV is in this “risk”

category. However, face detection is such a common need that it is worth having a base-

line technique that works fairly well; also, the technique is built on the well-known and

oft en used fi eld of statistical boosting and thus is of more general use as well. In fact,

several companies have engineered the “face” detector in OpenCV to detect “mostly

rigid” objects (faces, cars, bikes, human body) by training new detectors on many thou-

sands of selected training images for each view of the object. Th is technique has been

used to create state-of-the-art detectors, although with a diff erent detector trained for

each view or pose of the object. Th us, the Haar classifi er is a valuable tool to keep in

mind for such recognition tasks.

OpenCV implements a version of the face-detection technique fi rst developed by Paul

Viola and Michael Jones—commonly known as the Viola-Jones detector*—and later

* P. Viola and M. J. Jones, “Rapid Object Detection Using a Boosted Cascade of Simple Features,” IEEE CVPR
(2001).

13-R4886-AT1.indd 50613-R4886-AT1.indd 506 9/15/08 4:25:37 PM9/15/08 4:25:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Face Detection or Haar Classifi er | 507

extended by Rainer Lienhart and Jochen Maydt* to use diagonal features (more on

this distinction to follow). OpenCV refers to this detector as the “Haar classifi er” be-

cause it uses Haar features† or, more precisely, Haar-like wavelets that consist of adding

and subtracting rectangular image regions before thresholding the result. OpenCV

ships with a set of pretrained object-recognition fi les, but the code also allows you to

train and store new object models for the detector. We note once again that the train-

ing (createsamples(), haartraining()) and detecting (cvHaarDetectObjects()) code works

well on any objects (not just faces) that are consistently textured and mostly rigid.

Th e pretrained objects that come with OpenCV for this detector are in …/opencv/data/

haarcascades, where the model that works best for frontal face detection is haarcascade_

frontalface_alt2.xml. Side face views are harder to detect accurately with this technique

(as we shall describe shortly), and those shipped models work less well. If you end up

training good object models, perhaps you will consider contributing them as open

source back to the community.

Supervised Learning and Boosting Theory
Th e Haar classifi er that is included in OpenCV is a supervised classifi er (these were dis-

cussed at the beginning of the chapter). In this case we typically present histogram- and

size-equalized image patches to the classifi er, which are then labeled as containing (or

not containing) the object of interest, which for this classifi er is most commonly a face.

Th e Viola-Jones detector uses a form of AdaBoost but organizes it as a rejection cascade

of nodes, where each node is a multitree AdaBoosted classifi er designed to have high

(say, 99.9%) detection rate (low false negatives, or missed faces) at the cost of a low (near

50%) rejection rate (high false positives, or “nonfaces” wrongly classifi ed). For each

node, a “not in class” result at any stage of the cascade terminates the computation, and

the algorithm then declares that no face exists at that location. Th us, true class detection

is declared only if the computation makes it through the entire cascade. For instances

where the true class is rare (e.g., a face in a picture), rejection cascades can greatly re-

duce total computation because most of the regions being searched for a face terminate

quickly in a nonclass decision.

Boosting in the Haar cascade

Boosted classifi ers were discussed earlier in this chapter. For the Viola-Jones rejection

cascade, the weak classifi ers that it boosts in each node are decision trees that oft en are

only one level deep (i.e., “decision stumps”). A decision stump is allowed just one deci-

sion of the following form: “Is the value v of a particular feature f above or below some

threshold t”; then, for example, a “yes” indicates face and a “no” indicates no face:

* R. Lienhart and J. Maydt, “An Extended Set of Haar-like Features for Rapid Object Detection,” IEEE ICIP
(2002), 900–903.

† Th is is technically not correct. Th e classifi er uses the threshold of the sums and diff erences of rectangular
regions of data produced by any feature detector, which may include the Haar case of rectangles of raw (gray-
scale) image values. Henceforth we will use the term “Haar-like” in deference to this distinction.

13-R4886-AT1.indd 50713-R4886-AT1.indd 507 9/15/08 4:25:37 PM9/15/08 4:25:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

508 | Chapter 13: Machine Learning

f
v t

v ti

i i

i i

=
+ ≥
− <

⎧
⎨
⎪

⎩⎪
1

1

Th e number of Haar-like features that the Viola-Jones classifi er uses in each weak clas-

sifi er can be set in training, but mostly we use a single feature (i.e., a tree with a single

split) or at most about three features. Boosting then iteratively builds up a classifi er as a

weighted sum of these kinds of weak classifi ers. Th e Viola-Jones classifi er uses the clas-

sifi cation function:

F w f w f w f
n n

= + + +sign()
1 1 2 2

�

Here, the sign function returns –1 if the number is less than 0, 0 if the number equals

0, and �1 if the number is positive. On the fi rst pass through the data set, we learn the

threshold t l of f1 that best classifi es the input. Boosting then uses the resulting errors to

calculate the weighted vote w1. As in traditional AdaBoost, each feature vector (data

point) is also reweighted low or high according to whether it was classifi ed correctly or

not* in that iteration of the classifi er. Once a node is learned this way, the surviving data

from higher up in the cascade is used to train the next node and so on.

Viola-Jones Classifier Theory
Th e Viola-Jones classifi er employs AdaBoost at each node in the cascade to learn a high

detection rate at the cost of low rejection rate multitree (mostly multistump) classifi er at

each node of the cascade. Th is algorithm incorporates several innovative features.

It uses Haar-like input features: a threshold applied to sums and diff erences of rect-1.

angular image regions.

Its 2. integral image technique enables rapid computation of the value of rectangular

regions or such regions rotated 45 degrees (see Chapter 6). Th is data structure is

used to accelerate computation of the Haar-like input features.

It uses statistical boosting to create binary (face–not face) classifi cation nodes char-3.

acterized by high detection and weak rejection.

It organizes the weak classifi er nodes of a rejection cascade. In other words: the 4.

fi rst group of classifi ers is selected that best detects image regions containing an

object while allowing many mistaken detections; the next classifi er group† is the

second-best at detection with weak rejection; and so forth. In test mode, an object is

detected only if it makes it through the entire cascade.‡

* Th ere is sometimes confusion about boosting lowering the classifi cation weight on points it classifi es cor-
rectly in training and raising the weight on points it classifi ed wrongly. Th e reason is that boosting attempts
to focus on correcting the points that it has “trouble” on and to ignore points that it already “knows” how to
classify. One of the technical terms for this is that boosting is a margin maximize.

† Remember that each “node” in a rejection cascade is an AdaBoosted group of classifi ers.

‡ Th is allows the cascade to run quickly, because it almost immediately rejects image regions that don’t con-
tain the object (and hence need not process through the rest of the cascade).

13-R4886-AT1.indd 50813-R4886-AT1.indd 508 9/15/08 4:25:37 PM9/15/08 4:25:37 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Face Detection or Haar Classifi er | 509

Th e Haar-like features used by the classifi er are shown in Figure 13-14. At all scales,

these features form the “raw material” that will be used by the boosted classifi ers. Th ey

are rapidly computed from the integral image (see Chapter 6) representing the original

grayscale image.

Viola and Jones organized each boosted classifi er group into nodes of a rejection cas-

cade, as shown in Figure 13-15. In the fi gure, each of the nodes Fj contains an entire

boosted cascade of groups of decision stumps (or trees) trained on the Haar-like fea-

tures from faces and nonfaces (or other objects the user has chosen to train on). Typi-

cally, the nodes are ordered from least to most complex so that computations are mini-

mized (simple nodes are tried fi rst) when rejecting easy regions of the image. Typically,

the boosting in each node is tuned to have a very high detection rate (at the usual cost

of many false positives). When training on faces, for example, almost all (99.9%) of the

faces are found but many (about 50%) of the nonfaces are erroneously “detected” at each

node. But this is OK because using (say) 20 nodes will still yield a face detection rate

(through the whole cascade) of 0.99920 � 98% with a false positive rate of only 0.520 �

0.0001%!

During the run mode, a search region of diff erent sizes is swept over the original image.

In practice, 70–80% of nonfaces are rejected in the fi rst two nodes of the rejection cas-

cade, where each node uses about ten decision stumps. Th is quick and early “attentional

reject” vastly speeds up face detection.

Works well on . . .

Th is technique implements face detection but is not limited to faces; it also works fairly

well on other (mostly rigid) objects that have distinguishing views. Th at is, front views

Figure 13-14. Haar-like features from the OpenCV source distribution (the rectangular and rotated
regions are easily calculated from the integral image): in this diagrammatic representation of the
wavelets, the light region is interpreted as “add that area” and the dark region as “subtract that
area”

13-R4886-AT1.indd 50913-R4886-AT1.indd 509 9/15/08 4:25:38 PM9/15/08 4:25:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

510 | Chapter 13: Machine Learning

Figure 13-15. Rejection cascade used in the Viola-Jones classifi er: each node represents a multitree
boosted classifi er ensemble tuned to rarely miss a true face while rejecting a possibly small fraction of
nonfaces; however, almost all nonfaces have been rejected by the last node, leaving only true faces

of faces work well; backs, sides, or fronts of cars work well; but side views of faces or

“corner” views of cars work less well—mainly because these views introduce variations

in the template that the “blocky” features (see next paragraph) used in this detector can-

not handle well. For example, a side view of a face must catch part of the changing back-

ground in its learned model in order to include the profi le curve. To detect side views of

faces, you may try haarcascade_profi leface.xml, but to do a better job you should really

collect much more data than this model was trained with and perhaps expand the data

with diff erent backgrounds behind the face profi les. Again, profi le views are hard for

this classifi er because it uses block features and so is forced to attempt to learn the back-

ground variability that “peaks” through the informative profi le edge of the side view of

faces. In training, it’s more effi cient to learn only (say) right profi le views. Th en the test

procedure would be to (1) run the right-profi le detector and then (2) fl ip the image on its

vertical axis and run the right-profi le detector again to detect left -facing profi les.

As we have discussed, detectors based on these Haar-like features work well with

“blocky” features—such as eyes, mouth, and hairline—but work less well with tree

branches, for example, or when the object’s outline shape is its most distinguishing

characteristic (as with a coff ee mug).

All that being said, if you are willing to gather lots of good, well-segmented data on fairly

rigid objects, then this classifi er can still compete with the best, and its construction as

a rejection cascade makes it very fast to run (though not to train, however). Here “lots of

data” means thousands of object examples and tens of thousands of nonobject examples.

13-R4886-AT1.indd 51013-R4886-AT1.indd 510 9/15/08 4:25:38 PM9/15/08 4:25:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Face Detection or Haar Classifi er | 511

By “good” data we mean that one shouldn’t mix, for instance, tilted faces with upright

faces; instead, keep the data divided and use two classifi ers, one for tilted and one for

upright. “Well-segmented” data means data that is consistently boxed. Sloppiness in box

boundaries of the training data will oft en lead the classifi er to correct for fi ctitious vari-

ability in the data. For example, diff erent placement of the eye locations in the face data

location boxes can lead the classifi er to assume that eye locations are not a geometrically

fi xed feature of the face and so can move around. Performance is almost always worse

when a classifi er attempts to adjust to things that aren’t actually in the real data.

Code for Detecting Faces
Th e detect_and_draw() code shown in Example 13-4 will detect faces and draw their

found locations in diff erent-colored rectangles on the image. As shown in the fourth

through seventh (comment) lines, this code presumes that a previously trained classifi er

cascade has been loaded and that memory for detected faces has been created.

Example 13-4. Code for detecting and drawing faces

// Detect and draw detected object boxes on image
// Presumes 2 Globals:
// Cascade is loaded by:
// cascade = (CvHaarClassifierCascade*)cvLoad(cascade_name,
// 0, 0, 0);
// AND that storage is allocated:
// CvMemStorage* storage = cvCreateMemStorage(0);
//
void detect_and_draw(
 IplImage* img,
 Double scale = 1.3
){
 static CvScalar colors[] = {
 {{0,0,255}}, {{0,128,255}},{{0,255,255}},{{0,255,0}},
 {{255,128,0}},{{255,255,0}},{{255,0,0}}, {{255,0,255}}
 }; //Just some pretty colors to draw with

 // IMAGE PREPARATION:
 //
 IplImage* gray = cvCreateImage(cvSize(img->width,img->height), 8, 1);
 IplImage* small_img = cvCreateImage(
 cvSize(cvRound(img->width/scale), cvRound(img->height/scale)), 8, 1
);
 cvCvtColor(img, gray, CV_BGR2GRAY);
 cvResize(gray, small_img, CV_INTER_LINEAR);
 cvEqualizeHist(small_img, small_img);

 // DETECT OBJECTS IF ANY
 //
 cvClearMemStorage(storage);
 CvSeq* objects = cvHaarDetectObjects(
 small_img,
 cascade,
 storage,

13-R4886-AT1.indd 51113-R4886-AT1.indd 511 9/15/08 4:25:38 PM9/15/08 4:25:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

512 | Chapter 13: Machine Learning

Example 13-4. Code for detecting and drawing faces (continued)

 1.1,
 2,
 0 /*CV_HAAR_DO_CANNY_PRUNING*/,
 cvSize(30, 30)
);

 // LOOP THROUGH FOUND OBJECTS AND DRAW BOXES AROUND THEM
 //
 for(int i = 0; i < (objects ? objects->total : 0); i++) {
 CvRect* r = (CvRect*)cvGetSeqElem(objects, i);
 cvRectangle(
 img,
 cvPoint(r.x,r.y),
 cvPoint(r.x+r.width,r.y+r.height),
 colors[i%8]
)
 }
 cvReleaseImage(&graygray);
 cvReleaseImage(&small_img);
}

For convenience, in this code the detect_and_draw() function has a static array of color

vectors colors[] that can be indexed to draw found faces in diff erent colors. Th e clas-

sifi er works on grayscale images, so the color BGR image img passed into the function

is converted to grayscale using cvCvtColor() and then optionally resized in cvResize().

Th is is followed by histogram equalization via cvEqualizeHist(), which spreads out the

brightness values—necessary because the integral image features are based on diff er-

ences of rectangle regions and, if the histogram is not balanced, these diff erences might

be skewed by overall lighting or exposure of the test images. Since the classifi er returns

found object rectangles as a sequence object CvSeq, we need to clear the global storage

that we’re using for these returns by calling cvClearMemStorage(). Th e actual detection

takes place just above the for{} loop, whose parameters are discussed in more detail

below. Th is loop steps through the found face rectangle regions and draws them in dif-

ferent colors using cvRectangle(). Let us take a closer look at detection function call:

CvSeq* cvHaarDetectObjects(
 const CvArr* image,
 CvHaarClassifierCascade* cascade,
 CvMemStorage* storage,
 double scale_factor = 1.1,
 int min_neighbors = 3,
 int flags = 0,
 CvSize min_size = cvSize(0,0)
);

CvArr image is a grayscale image. If region of interest (ROI) is set, then the function will

respect that region. Th us, one way of speeding up face detection is to trim down the im-

age boundaries using ROI. Th e classifi er cascade is just the Haar feature cascade that we

loaded with cvLoad() in the face detect code. Th e storage argument is an OpenCV “work

buff er” for the algorithm; it is allocated with cvCreateMemStorage(0) in the face detection

13-R4886-AT1.indd 51213-R4886-AT1.indd 512 9/15/08 4:25:38 PM9/15/08 4:25:38 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Face Detection or Haar Classifi er | 513

code and cleared for reuse with cvClearMemStorage(storage). Th e cvHaarDetectObjects()

function scans the input image for faces at all scales. Setting the scale_factor parameter

determines how big of a jump there is between each scale; setting this to a higher value

means faster computation time at the cost of possible missed detections if the scaling

misses faces of certain sizes. Th e min_neighbors parameter is a control for preventing

false detection. Actual face locations in an image tend to get multiple “hits” in the same

area because the surrounding pixels and scales oft en indicate a face. Setting this to the

default (3) in the face detection code indicates that we will only decide a face is present

in a location if there are at least three overlapping detections. Th e flags parameter has

four valid settings, which (as usual) may be combined with the Boolean OR operator.

Th e fi rst is CV_HAAR_DO_CANNY_PRUNING. Setting flags to this value causes fl at regions (no

lines) to be skipped by the classifi er. Th e second possible fl ag is CV_HAAR_SCALE_IMAGE,

which tells the algorithm to scale the image rather than the detector (this can yield

some performance advantages in terms of how memory and cache are used). Th e next

fl ag option, CV_HAAR_FIND_BIGGEST_OBJECT, tells OpenCV to return only the largest object

found (hence the number of objects returned will be either one or none).* Th e fi nal fl ag

is CV_HAAR_DO_ROUGH_SEARCH, which is used only with CV_HAAR_FIND_BIGGEST_OBJECT.
Th is fl ag is used to terminate the search at whatever scale the fi rst candidate is found

(with enough neighbors to be considered a “hit”). Th e fi nal parameter, min_size, is the

smallest region in which to search for a face. Setting this to a larger value will reduce

computation at the cost of missing small faces. Figure 13-16 shows results for using the

face-detection code on a scene with faces.

Learning New Objects
We’ve seen how to load and run a previously trained classifi er cascade stored in an XML

fi le. We used the cvLoad() function to load it and then used cvHaarDetectObjects() to

fi nd objects similar to the ones it was trained on. We now turn to the question of how

to train our own classifi ers to detect other objects such as eyes, walking people, cars, et

cetera. We do this with the OpenCV haartraining application, which creates a classifi er

given a training set of positive and negative samples. Th e four steps of training a clas-

sifi er are described next. (For more details, see the haartraining reference manual sup-

plied with OpenCV in the opencv/apps/HaarTraining/doc directory.)

Gather a data set consisting of examples of the object you want to learn (e.g., front 1.

views of faces, side views of cars). Th ese may be stored in one or more directories

indexed by a text fi le in the following format:

<path>/img_name_1 count_1 x11 y11 w11 h11 x12 y12 . . .
<path>/img_name_2 count_2 x21 y21 w21 h21 x22 y22 . . .
 . . .

Each of these lines contains the path (if any) and fi le name of the image containing the

object(s). Th is is followed by the count of how many objects are in that image and then

* It is best not to use CV_HAAR_DO_CANNY_PRUNING with CV_HAAR_FIND_BIGGEST_OBJECT. Using both will sel-
dom yield a performance gain; in fact, the net eff ect will oft en be a performance loss.

13-R4886-AT1.indd 51313-R4886-AT1.indd 513 9/15/08 4:25:39 PM9/15/08 4:25:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

514 | Chapter 13: Machine Learning

Figure 13-16. Face detection on a park scene: some tilted faces are not detected, and there is also a
false positive (shirt near the center); for the 1054-by-851 image shown, more than a million sites and
scales were searched to achieve this result in about 1.5 seconds on a 2 GHz machine

a list of rectangles containing the objects. Th e format of the rectangles is the x- and

y-coordinates of the upper left corner followed by the width and height in pixels.

To be more specifi c, if we had a data set of faces located in directory data/faces/,

then the index fi le faces.idx might look like this:

data/faces/face_000.jpg 2 73 100 25 37 133 123 30 45
data/faces/face_001.jpg 1 155 200 55 78
 . . .

If you want your classifi er to work well, you will need to gather a lot of high-quality

data (1,000–10,000 positive examples). “High quality” means that you’ve removed

all unnecessary variance from the data. For example, if you are learning faces, you

should align the eyes (and preferably the nose and mouth) as much as possible. Th e

intuition here is that otherwise you are teaching the classifi er that eyes need not

appear at fi xed locations in the face but instead could be anywhere within some re-

gion. Since this is not true of real data, your classifi er will not perform as well. One

strategy is to fi rst train a cascade on a subpart, say “eyes”, which are easier to align.

Th en use eye detection to fi nd the eyes and rotate/resize the face until the eyes are

13-R4886-AT1.indd 51413-R4886-AT1.indd 514 9/15/08 4:25:39 PM9/15/08 4:25:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Face Detection or Haar Classifi er | 515

aligned. For asymmetric data, the “trick” of fl ipping an image on its vertical axis

was described previously in the subsection “Works well on . . .”.

Use the utility application 2. createsamples to build a vector output fi le of the positive

samples. Using this fi le, you can repeat the training procedure below on many runs,

trying diff erent parameters while using the same vector output fi le. For example:

createsamples –vec faces.vec –info faces.idx –w 30 –h 40

Th is reads in the faces.idx fi le described in step 1 and outputs a formatted train-

ing fi le, faces.vec. Th en createsamples extracts the positive samples from the im-

ages before normalizing and resizing them to the specifi ed width and height (here,

30-by-40). Note that createsamples can also be used to synthesize data by apply-

ing geometric transformations, adding noise, altering colors, and so on. Th is pro-

cedure could be used (say) to learn a corporate logo, where you take just one image

and put it through various distortions that might appear in real imagery. More de-

tails can be found in the OpenCV reference manual haartraining located in /apps/

HaarTraining/doc/.

Th e Viola-Jones cascade is a binary classifi er: It simply decides whether or not 3.

(“yes” or “no”) the object in an image is similar to the training set. We’ve de-

scribed how to collect and process the “yes” samples that contained the object of

choice. Now we turn to describing how to collect and process the “no” samples

so that the classifi er can learn what does not look like our object. Any image that

doesn’t contain the object of interest can be turned into a negative sample. It is

best to take the “no” images from the same type of data we will test on. Th at is, if

we want to learn faces in online videos, for best results we should take our nega-

tive samples from comparable frames (i.e., other frames from the same video).

However, respectable results can still be achieved using negative samples taken

from just about anywhere (e.g., CD or Internet image collections). Again we put

the images into one or more directories and then make an index fi le consisting

of a list of image fi lenames, one per line. For example, an image index fi le called

backgrounds.idx might contain the following path and fi lenames of image

collections:

data/vacations/beach.jpg
data/nonfaces/img_043.bmp
data/nonfaces/257-5799_IMG.JPG
 . . .

Training4. . Here’s an example training call that you could type on a command line or

create using a batch fi le:

Haartraining /
 –data face_classifier_take_3 /
 –vec faces.vec –w 30 –h 40 /
 –bg backgrounds.idx /
 –nstages 20 /
 –nsplits 1 /
 [–nonsym] /
 –minhitrate 0.998 /
 –maxfalsealarm 0.5

13-R4886-AT1.indd 51513-R4886-AT1.indd 515 9/15/08 4:25:39 PM9/15/08 4:25:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

516 | Chapter 13: Machine Learning

In this call the resulting classifi er will be stored in face_classifi er_take_3.xml. Here

faces.vec is the set of positive samples (sized to width-by-height = 30-by-40), and

random images extracted from backgrounds.idx will be used as negative samples.

Th e cascade is set to have 20 (-nstages) stages, where every stage is trained to have

a detection rate (-minhitrate) of 0.998 or higher. Th e false hit rate (-maxfalsealarm)

has been set at 50% (or lower) each stage to allow for the overall hit rate of 0.998.

Th e weak classifi ers are specifi ed in this case as “stumps”, which means they can

have only one split (-nsplits); we could ask for more, and this might improve the

results in some cases. For more complicated objects one might use as many as six

splits, but mostly you want to keep this smaller and use no more than three splits.

Even on a fast machine, training may take several hours to a day, depending on the

size of the data set. Th e training procedure must test approximately 100,000 fea-

tures within the training window over all positive and negative samples. Th is search

is parallelizable and can take advantage of multicore machines (using OpenMP via

the Intel Compiler). Th is parallel version is the one shipped with OpenCV.

Other Machine Learning Algorithms
We now have a good feel for how the ML library in OpenCV works. It is designed so

that new algorithms and techniques can be implemented and embedded into the library

easily. In time, it is expected that more new algorithms will appear. Th is section looks

briefl y at four machine learning routines that have recently been added to OpenCV.

Each implements a well-known learning technique, by which we mean that a substan-

tial body of literature exists on each of these methods in books, published papers, and

on the Internet. For more detailed information you should consult the literature and

also refer to the …/opencv/docs/ref/opencvref_ml.htm manual.

Expectation Maximization
Expectation maximization (EM) is another popular clustering technique. OpenCV sup-

ports EM only with Gaussian mixtures, but the technique itself is much more general. It

involves multiple iterations of taking the most likely (average or “expected”) guess given

your current model and then adjusting that model to maximize its chances of being

right. In OpenCV, the EM algorithm is implemented in the CvEM{} class and simply in-

volves fi tting a mixture of Gaussians to the data. Because the user provides the number

of Gaussians to fi t, the algorithm is similar to K-means.

K-Nearest Neighbors
One of the simplest classifi cation techniques is K-nearest neighbors (KNN), which

merely stores all the training data points. When you want to classify a new point, look

up its K nearest points (for K an integer number) and then label the new point according

to which set contains the majority of its K neighbors. Th is algorithm is implemented in

the CvKNearest{} class in OpenCV. Th e KNN classifi cation technique can be very ef-

fective, but it requires that you store the entire training set; hence it can use a lot of

13-R4886-AT1.indd 51613-R4886-AT1.indd 516 9/15/08 4:25:39 PM9/15/08 4:25:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 517

memory and become quite slow. People oft en cluster the training set to reduce its size

before using this method. Readers interested in how dynamically adaptive nearest

neighbor type techniques might be used in the brain (and in machine learning) can

see Grossberg [Grossberg87] or a more recent summary of advances in Carpenter and

Grossberg [Carpenter03].

Multilayer Perceptron
Th e multilayer perceptron (MLP; also known as back-propagation) is a neural network

that still ranks among the top-performing classifi ers, especially for text recognition. It

can be rather slow in training because it uses gradient descent to minimize error by

adjusting weighted connections between the numerical classifi cation nodes within the

layers. In test mode, however, it is quite fast: just a series of dot products followed by a

squashing function. In OpenCV it is implemented in the CvANN_MLP{} class, and its use

is documented in the …/opencv/samples/c/letter_recog.cpp fi le. Interested readers will

fi nd details on using MLP eff ectively for text and object recognition in LeCun, Bot-

tou, Bengio, and Haff ner [LeCun98a]. Implementation and tuning details are given in

LeCun, Bottou, and Muller [LeCun98b]. New work on brainlike hierarchical networks

that propagate probabilities can be found in Hinton, Osindero, and Teh [Hinton06].

Support Vector Machine
With lots of data, boosting or random trees are usually the best-performing classifi ers.

But when your data set is limited, the support vector machine (SVM) oft en works best.

Th is N-class algorithm works by projecting the data into a higher-dimensional space

(creating new dimensions out of combinations of the features) and then fi nding the op-

timal linear separator between the classes. In the original space of the raw input data,

this high-dimensional linear classifi er can become quite nonlinear. Hence we can use

linear classifi cation techniques based on maximal between-class separation to produce

nonlinear classifi ers that in some sense optimally separate classes in the data. With

enough additional dimensions, you can almost always perfectly separate data classes.

Th is technique is implemented in the CvSVM{} class in OpenCV’s ML library.

Th ese tools are closely tied to many computer vision algorithms that range from fi nd-

ing feature points via trained classifi cation to tracking to segmenting scenes and also

include the more straightforward tasks of classifying objects and clustering image data.

Exercises
Consider trying to learn the next stock price from several past stock prices. Suppose 1.

you have 20 years of daily stock data. Discuss the eff ects of various ways of turning

your data into training and testing data sets. What are the advantages and disad-

vantages of the following approaches?

Take the even-numbered points as your training set and the odd-numbered a.

points as your test set.

13-R4886-AT1.indd 51713-R4886-AT1.indd 517 9/15/08 4:25:39 PM9/15/08 4:25:39 PM

www.it-ebooks.info

http://www.it-ebooks.info/

518 | Chapter 13: Machine Learning

Figure 13-17. A Gaussian distribution of two classes, “ false” and “true”

Randomly select points into training and test sets.b.

Divide the data in two, where the fi rst half is for training and the second half c.

for testing.

Divide the data into many small windows of several past points and one pre-d.

diction point.

Figure 13-17 depicts a distribution of “false” and “true” classes. Th e fi gure also 2.

shows several potential places (a, b, c, d, e, f, g) where a threshold could be set.

Draw the points a–g on an ROC curve.a.

If the “true” class is poisonous mushrooms, at which letter would you set the b.

threshold?

How would a decision tree split this data?c.

Refer to Figure 13-1.3.

Draw how a decision tree would approximate the true curve (the dashed line) a.

with three splits (here we seek a regression, not a classifi cation model).

Th e “best” split for a regression takes the average value of the data val-
ues contained in the leaves that result from the split. Th e output values
of a regression-tree fi t thus look like a staircase.

Draw how a decision tree would fi t the true data in seven splits.b.

Draw how a decision tree would fi t the noisy data in seven splits.c.

Discuss the diff erence between (b) and (c) in terms of overfi tting.d.

Why do the splitting measures (e.g., Gini) still work when we want to learn multiple 4.

classes in a single decision tree?

Review Figure 13-4, which depicts a two-dimensional space with unequal variance 5.

at left and equalized variance at right. Let’s say that these are feature values related

to a classifi cation problem. Th at is, data near one “blob” belongs to one of two

13-R4886-AT1.indd 51813-R4886-AT1.indd 518 9/15/08 4:25:40 PM9/15/08 4:25:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises | 519

classes while data near another blob belongs to the same or another of two classes.

Would the variable importance be diff erent between the left or the right space for:

decision trees?a.

K-nearest neighbors?b.

naïve Bayes?c.

Modify the sample code for data generation in Example 13-1—near the top of the 6.

outer for{} loop in the K-means section—to produce a randomly generated labeled

data set. We’ll use a single normal distribution of 10,000 points centered at pixel

(63, 63) in a 128-by-128 image with standard deviation (img->width/6, img->height/6).
To label these data, we divide the space into four quadrants centered at pixel

(63, 63). To derive the labeling probabilities, we use the following scheme. If x � 64

we use a 20% probability for class A; else if x � 64 we use a 90% factor for class A.

If y � 64 we use a 40% probability for class A; else if y � 64 we use a 60% factor for

class A. Multiplying the x and y probabilities together yields the total probability for

class A by quadrant with values listed in the 2-by-2 matrix shown. If a point isn’t la-

beled A, then it is labeled B by default. For example, if x � 64 and y � 64, we would

have an 8% chance of a point being labeled class A and a 92% chance of that point

being labeled class B. Th e four-quadrant matrix for the probability of a point being

labeled class A (and if not, it’s class B) is:

0.2 � 0.6 = 0.12 0.9 � 0.6 = 0.54

0.2 � 0.4 = 0.08 0.9 � 0.4 = 0.36

Use these quadrant odds to label the data points. For each data point, determine

its quadrant. Th en generate a random number from 0 to 1. If this is less than or

equal to the quadrant odds, label that data point as class A; else label it class B. We

will then have a list of labeled data points together with x and y as the features. Th e

reader will note that the x-axis is more informative than the y-axis as to which class

the data might be. Train random forests on this data and calculate the variable im-

portance to show x is indeed more important than y.

Using the same data set as in exercise 6, use discrete AdaBoost to learn two mod-7.

els: one with weak_count set to 20 trees and one set to 500 trees. Randomly select a

training and a test set from the 10,000 data points. Train the algorithm and report

test results when the training set contains:

150 data points;a.

500 data points;b.

1,200 data points;c.

5,000 data points.d.

Explain your results. What is happening?e.

13-R4886-AT1.indd 51913-R4886-AT1.indd 519 9/15/08 4:25:40 PM9/15/08 4:25:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

520 | Chapter 13: Machine Learning

Repeat exercise 7 but use the random trees classifi er with 50 and 500 trees.8.

Repeat exercise 7, but this time use 60 trees and compare random trees versus SVM.9.

In what ways is the random tree algorithm more robust against overfi tting than 10.

decision trees?

Refer to Figure 13-2. Can you imagine conditions under which the test set error 11.

would be lower than the training set error?

Figure 13-2 was drawn for a regression problem. Label the fi rst point on the graph 12. A,

the second point B, the third point A, the forth point B and so on. Draw a separa-

tion line for these two classes (A and B) that shows:

bias;a.

variance.b.

Refer to Figure 13-3.13.

Draw the generic best-possible ROC curve.a.

Draw the generic worst-possible ROC curve.b.

Draw a curve for a classifi er that performs randomly on its test data.c.

Th e “no free lunch” theorem states that no classifi er is optimal over all distribu-14.

tions of labeled data. Describe a labeled data distribution over which no classifi er

described in this chapter would work well.

What distribution would be hard for naïve Bayes to learn?a.

What distribution would be hard for decision trees to learn?b.

How would you preprocess the distributions in parts a and b so that the classi-c.

fi ers could learn from the data more easily?

Set up and run the Haar classifi er to detect your face in a web camera.15.

How much scale change can it work with?a.

How much blur?b.

Th rough what angles of head tilt will it work?c.

Th rough what angles of chin down and up will it work?d.

Th rough what angles of head yaw (motion left and right) will it work?e.

Explore how tolerant it is of 3D head poses. Report on your fi ndings.f.

Use blue or green screening to collect a fl at hand gesture (static pose). Collect ex-16.

amples of other hand poses and of random backgrounds. Collect several hundred

images and then train the Haar classifi er to detect this gesture. Test the classifi er in

real time and estimate its detection rate.

Using your knowledge and what you’ve learned from exercise 16, improve the re-17.

sults you obtained in that exercise.

13-R4886-AT1.indd 52013-R4886-AT1.indd 520 9/15/08 4:25:40 PM9/15/08 4:25:40 PM

www.it-ebooks.info

http://www.it-ebooks.info/

521

14CHAPTER

OpenCV’s Future

Past and Future
In Chapter 1 we saw something of OpenCV’s past. Th is was followed by Chapters 2–13,

in which OpenCV’s present state was explored in detail. We now turn to OpenCV’s fu-

ture. Computer vision applications are growing rapidly, from product inspection to im-

age and video indexing on the Web to medical applications and even to local navigation

on Mars. OpenCV is also growing to accommodate these developments.

OpenCV has long received support from Intel Corporation and has more recently re-

ceived support from Willow Garage (www.willowgarage.com), a privately funded new

robotics research institute and technology incubator. Willow Garage’s intent is to jump-

start civilian robotics by developing open and supported hardware and soft ware infra-

structure that now includes but goes beyond OpenCV. Th is has given OpenCV new

resources for more rapid update and support, with several of the original developers of

OpenCV now recontracted to help maintain and advance the library. Th ese renewed

resources are also intended to support and enable greater community contribution to

OpenCV by allowing for faster code assessment and integration cycles.

One of the key new development areas for OpenCV is robotic perception. Th is eff ort

focuses on 3D perception as well as 2D plus 3D object recognition since the combina-

tion of data types makes for better features for use in object detection, segmentation and

recognition. Robotic perception relies heavily on 3D sensing, so eff orts are under way to

extend camera calibration, rectifi cation and correspondence to multiple cameras and to

camera + laser rangefi nder combinations (see Figure 14-1).*

Should commercially available hardware warrant it, the “laser + camera calibration” ef-

fort will be generalized to include devices such as fl ash LIDAR and infrared wavefront

devices. Additional eff orts are aimed at developing triangulation with structured or la-

ser light for extremely accurate depth sensing. Th e raw output of most depth-sensing

* At the time of this writing, these methods remain under development and are not yet in OpenCV.

14-R4886-AT1.indd 52114-R4886-AT1.indd 521 9/15/08 4:25:58 PM9/15/08 4:25:58 PM

www.it-ebooks.info

http://www.it-ebooks.info/

522 | Chapter 14: OpenCV’s Future

methods is in the form of a 3D point cloud. Complementary eff orts are thus planned

to support turning the raw point clouds resulting from 3D depth perception into 3D

meshes. 3D meshes will allow for 3D model capture of objects in the environment, seg-

menting objects in 3D and hence the ability for robots to grasp and manipulate such

objects. Th ree-dimensional mesh generation can also be used to allow robots to move

seamlessly from external 3D perception to internal 3D graphics representation for plan-

ning and then back out again for object registration, manipulation, and movement.

Along with sensing 3D objects, robots will need to recognize 3D objects and their 3D

poses. To support this, several scalable methods of 2D plus 3D object recognition are

being pursued. Creating capable robots subsumes most fi elds of computer vision and

artifi cial intelligence, from accurate 3D reconstruction to tracking, identifying humans,

object recognition, and image stitching and on to learning, control, planning, and deci-

sion making. Any higher-level task, such as planning, is made much easier by rapid and

accurate depth perception and recognition. It is in these areas especially that OpenCV

hopes to enable rapid advance by encouraging many groups to contribute and use ever

better methods to solve the diffi cult problems of real-world perception, recognition, and

learning.

OpenCV will, of course, support many other areas as well, from image and movie in-

dexing on the web to security systems and medical analysis. Th e wishes of the general

community will heavily infl uence OpenCV’s direction and growth.

Directions
Although OpenCV does not have an absolute focus on real-time algorithms, it will con-

tinue to favor real-time techniques. No one can state future plans with certainty, but the

following high-priority areas are likely to be addressed.

Figure 14-1. New 3D imager combinations: calibrating a camera (left) with the brightness return
from a laser depth scanner (right). (Images courtesy of Hai Nguyen and Willow Garage)

14-R4886-AT1.indd 52214-R4886-AT1.indd 522 9/15/08 4:25:59 PM9/15/08 4:25:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Directions | 523

Applications

Th ere are more “consumers” for full working applications than there are for low-

level functionality. For example, more people will make use of a fully automatic ste-

reo solution than a better subpixel corner detector. Th ere will be several more full

applications, such as extensible single-to-many camera calibration and rectifi cation

as well as 3D depth display GUI.

3D

As already mentioned, you can expect to see better support for 3D depth sensors

and combinations of 2D cameras with 3D measurement devices. Also expect better

stereo algorithms. Support for structured light is also likely.

Dense Optical Flow

Because we want to know how whole objects move (and partially to support 3D),

OpenCV is long overdue for an effi cient implementation of Black’s [Black96] dense

optical fl ow techniques.

Features

In support of better object recognition, you can expect a full-function tool kit that

will have a framework for interchangeable interest-point detection and interchange-

able keys for interest-point identifi cation. Th is will include popular features such as

SURF, HoG, Shape Context, MSER, Geometric Blur, PHOG, PHOW, and others.

Support for 2D and 3D features is planned.

Infrastructure

Th is includes things like a wrapper class,* a good Python interface, GUI improve-

ments, documentation improvements, better error handling, improved Linux sup-

port, and so on.

Camera Interface

More seamless handling of cameras is planned along with eventual support for

cameras with higher dynamic range. Currently, most cameras support only 8 bits

per color channel (if that), but newer cameras can supply 10 or 12 bits per channel.†

Th e higher dynamic range of such cameras allows for better recognition and ste-

reo registration because it enables them to detect the subtle textures and colors to

which older, more narrow-range cameras are blind.

* Daniel Filip and Google have donated the fast, lightweight image class wrapper, WImage, which they devel-
oped for internal use, to OpenCV. It will be incorporated by the time this book is published, but too late for
documentation in this version.

† Many expensive cameras claim up to 16 bits, but the authors have yet to see more than 10 actual bits of
resolution, the rest being noise.

14-R4886-AT1.indd 52314-R4886-AT1.indd 523 9/15/08 4:25:59 PM9/15/08 4:25:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

524 | Chapter 14: OpenCV’s Future

Specific Items
Many object recognition techniques in computer vision detect salient regions that

change little between views. Th ese salient regions* can be tagged with some kind of

key—for example, a histogram of image gradient directions around the salient point.

Although all the techniques described in this section can be built with existing OpenCV

primitives, OpenCV currently lacks direct implementation of the most popular interest-

region detectors and feature keys.

OpenCV does include an effi cient implementation of the Harris corner interest-point

detectors, but it lacks direct support for the popular “maximal Laplacian over scale”

detector developed by David Lowe [Lowe04] and for maximally stable extremal region

(MSER) [Matas02] detectors and others.

Similarly, OpenCV lacks many of the popular keys, such as SURF gradient histogram

grids [Bay06], that identify the salient regions. Also, we hope to include features such as

histogram of oriented gradients (HoG) [Dalai05], Geometric Blur [Berg01], off set image

patches [Torralba07], dense rapidly computed Gaussian scale variant gradients (DAISY)

[Tola08], gradient location and orientation histogram (GLOH) [Mikolajczyk04], and,

though patented, we want to add for reference the scale invariant feature transform

(SIFT) descriptor [Lowe04] that started it all. Other learned feature descriptors that

show promise are learned patches with orientation [Hinterstoisser08] and learned ratio

points [Ozuysal07]. We’d also like to see contextual or meta-features such as pyramid

match kernels [Grauman05], pyramid histogram embedding of other features, PHOW

[Bosch07], Shape Context [Belongie00; Mori05], or other approaches that locate features

by their probabilistic spatial distribution [Fei-Fei98]. Finally, some global features give

the gist of an entire scene, which can be used to boost recognition by context [Oliva06].

All this is a tall order, and the OpenCV community is encouraged to develop and do-

nate code for these and other features.

Other groups have demonstrated encouraging results using frameworks that employ

effi cient nearest neighbor matching to recognize objects using huge learned databases

of objects [Nister06; Philbin07; Torralba08]. Putting in an effi cient nearest neighbor

framework is therefore suggested.

For robotics, we need object recognition (what) and object location (where). Th is sug-

gests adding segmentation approaches building on Shi and Malik’s work [Shi00] per-

haps with faster implementations [Sharon06]. Recent approaches, however, use learning

to provide recognition and segmentation together [Oppelt08; Schroff 08; Sivic08]. Direc-

tion of lighting [Sun98] and shape cues may be important [Zhang99; Prados05].

Along with better support for features and for 3D sensing should come support for vi-

sual odometry and visual SLAM (simultaneous localization and mapping). As we ac-

quire more accurate depth perception and feature identifi cation, we’ll want to enable

better navigation and 3D object manipulation. Th ere is also discussion about creating

* Th ese are also known as interest points.

14-R4886-AT1.indd 52414-R4886-AT1.indd 524 9/15/08 4:25:59 PM9/15/08 4:25:59 PM

www.it-ebooks.info

http://www.it-ebooks.info/

OpenCV for Artists | 525

a specialized vision interface to a ray-tracing package (e.g., perhaps the Manta open

source ray-tracing soft ware [Manta]) in order to generate better 3D object training sets.

Robots, security systems, and Web image and video search all need the ability to recog-

nize objects; thus, OpenCV must refi ne the pattern-matching techniques in its machine

learning library. In particular, OpenCV should fi rst simplify its interface to the learn-

ing algorithms and then to give them good defaults so that they work “out of the box”.

Several new learning techniques may arise, some of which will work with two or more

object classes at a time (as random forest does now in OpenCV). Th ere is a need for scal-

able recognition techniques so that the user can avoid having to learn a completely new

model for each object class. More allowances should also be made to enable ML classi-

fi ers to work with depth information and 3D features.

Markov random fi elds (MRFs) and conditional random fi elds (CRFs) are becoming quite

popular in computer vision. Th ese methods are oft en highly problem-specifi c, yet we

would like to fi gure how they might be supported in a fl exible way.

We’ll also want methods of learning web-sized or automatically collected via moving

robot databases, perhaps by incorporating Zisserman’s suggestion for “approximate

nearest neighbor” techniques as mentioned previously when dealing with millions or

billions of data points. Similarly, we need much-accelerated boosting and Haar feature

training support to allow scaling to larger object databases. Several of the ML library

routines currently require that all the data reside in memory, severely limiting their use

on large datasets. OpenCV will need to break free of such restrictions.

OpenCV also requires better documentation than is now available. Th is book helps of

course, but the OpenCV manual needs an overhaul together with improved search ca-

pability. A high priority is incorporating better Linux support and a better external lan-

guage interface—especially to allow easy vision programming with Python and Numpy.

We’ll also want to make sure that the machine learning library can be directly called

from Python and its SciPy and Numpy packages.

For better developer community interaction, developer workshops may be held at major

vision conferences. Th ere are also eff orts underway that propose vision “grand chal-

lenge” competitions with commensurate prize money.

OpenCV for Artists
Th ere is a worldwide community of interactive artists who use OpenCV so that view-

ers can interact with their art in dynamic ways. Th e most commonly used routines for

this application are face detection, optical fl ow, and tracking. We hope this book will

enable artists to better understand and use OpenCV for their work, and we believe that

the addition of better depth sensing will make interaction richer and more reliable. Th e

focused eff ort on improving object recognition will allow diff erent modes of interacting

with art, because objects can then be used as modal controls. With the ability to capture

3D meshes, it may also be possible to “import” the viewer into the art and so allow the

artist to gain a better feel for recognizing user action; this, in turn, could be used to

14-R4886-AT1.indd 52514-R4886-AT1.indd 525 9/15/08 4:26:00 PM9/15/08 4:26:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

526 | Chapter 14: OpenCV’s Future

enhance dynamic interaction. Th e needs and desires of the artistic community for using

computer vision will receive enhanced priority in OpenCV’s future.

Afterword
We’ve covered a lot of theory and practice in this book, and we’ve described some of the

plans for what comes next. Of course, as we’re developing the soft ware, the hardware

is also changing. Cameras are now cheaper and have proliferated from cell phones to

traffi c lights. A group of manufacturers are aiming to develop cell-phone projectors—

perfect for robots, because most cell phones are lightweight, low-energy devices whose

circuits already include an embedded camera. Th is opens the way for close-range por-

table structured light and thereby accurate depth maps, which are just what we need for

robot manipulation and 3D object scanning.

Both authors participated in creating the vision system for Stanley, Stanford’s robot

racer that won the 2005 DARPA Grand Challenge. In that eff ort, a vision system coupled

with a laser range scanner worked fl awlessly for the seven-hour desert road race [Dahl-

kamp06]. For us, this drove home the power of combining vision with other perception

systems: the previously unsolved problem of reliable road perception was converted into

a solvable engineering challenge by merging vision with other forms of perception. It is

our hope that—by making vision easier to use and more accessible through this book—

others can add vision to their own problem-solving tool kits and thus fi nd new ways

to solve important problems. Th at is, with commodity camera hardware and OpenCV,

people can start solving real problems such as using stereo vision as an automobile

backup safety system, new game controls, and new security systems. Get hacking!

Computer vision has a rich future ahead, and it seems likely to be one of the key en-

abling technologies for the 21st century. Likewise, OpenCV seems likely to be (at least

in part) one of the key enabling technologies for computer vision. Endless opportuni-

ties for creativity and profound contribution lie ahead. We hope that this book encour-

ages, excites, and enables all who are interested in joining the vibrant computer vision

community.

14-R4886-AT1.indd 52614-R4886-AT1.indd 526 9/15/08 4:26:00 PM9/15/08 4:26:00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

527

Bibliography

[Acharya05] T. Acharya and A. Ray, Image Processing: Principles and Applications, New

York: Wiley, 2005.

[Adelson84] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden,

“Pyramid methods in image processing,” RCA Engineer 29 (1984): 33–41.

[Ahmed74] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE

Transactions on Computers 23 (1974): 90–93.

[Al-Haytham1038] I. al-Haytham, Book of Optics, circa 1038.

[AMI] Applied Minds, http://www.appliedminds.com.

[Antonisse82] H. J. Antonisse, “Image segmentation in pyramids,” Computer Graphics

and Image Processing 19 (1982): 367–383.

[Arfk en85] G. Arfk en, “Convolution theorem,” in Mathematical Methods for Physicists,

3rd ed. (pp. 810–814), Orlando, FL: Academic Press, 1985.

[Bajaj97] C. L. Bajaj, V. Pascucci, and D. R. Schikore, “Th e contour spectrum,” Proceed-

ings of IEEE Visualization 1997 (pp. 167–173), 1997.

[Ballard81] D. H. Ballard, “Generalizing the Hough transform to detect arbitrary

shapes,” Pattern Recognition 13 (1981): 111–122.

[Ballard82] D. Ballard and C. Brown, Computer Vision, Englewood Cliff s, NJ: Prentice-

Hall, 1982.

[Bardyn84] J. J. Bardyn et al., “Une architecture VLSI pour un operateur de fi ltrage me-

dian,” Congres reconnaissance des formes et intelligence artifi cielle (vol. 1, pp. 557–

566), Paris, 25–27 January 1984.

[Bay06] H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: Speeded up robust features,”

Proceedings of the Ninth European Conference on Computer Vision (pp. 404–417),

May 2006.

[Bayes1763] T. Bayes, “An essay towards solving a problem in the doctrine of chances.

By the late Rev. Mr. Bayes, F.R.S. communicated by Mr. Price, in a letter to John

15-R4886-AT1.indd 52715-R4886-AT1.indd 527 9/15/08 4:27:05 PM9/15/08 4:27:05 PM

www.it-ebooks.info

http://www.it-ebooks.info/

528 | Bibliography

Canton, A.M.F.R.S.,” Philosophical Transactions, Giving Some Account of the Pres-

ent Undertakings, Studies and Labours of the Ingenious in Many Considerable Parts

of the World 53 (1763): 370–418.

[Beauchemin95] S. S. Beauchemin and J. L. Barron, “Th e computation of optical fl ow,”

ACM Computing Surveys 27 (1995): 433–466.

[Belongie00] S. Belongie, J. Malik, and J. Puzicha, “Shape context: A new descriptor for

shape matching and object recognition,” NIPS 2000, Computer Vision Group, Uni-

versity of California, Berkeley, 2000.

[Berg01] A. C. Berg and J. Malik, “Geometric blur for template matching,” IEEE Con-

ference on Computer Vision and Pattern Recognition (vol. 1, pp. 607–614), Kauai,

Hawaii, 2001.

[Bhattacharyya43] A. Bhattacharyya, “On a measure of divergence between two statisti-

cal populations defi ned by probability distributions,” Bulletin of the Calcutta Math-

ematical Society 35 (1943): 99–109.

[Bishop07] C. M. Bishop, Pattern Recognition and Machine Learning, New York: Springer-

Verlag, 2007.

[Black92] M. J. Black, “Robust incremental optical fl ow” (YALEU-DCS-RR-923), Ph.D.

thesis, Department of Computer Science, Yale University, New Haven, CT, 1992.

[Black93] M. J. Black and P. Anandan, “A framework for the robust estimation of

optical fl ow,” Fourth International Conference on Computer Vision (pp. 231–236),

May 1993.

[Black96] M. J. Black and P. Anandan, “Th e robust estimation of multiple motions:

Parametric and piecewise-smooth fl ow fi elds,” Computer Vision and Image Under-

standing 63 (1996): 75–104.

[Bobick96] A. Bobick and J. Davis, “Real-time recognition of activity using tempo-

ral templates,” IEEE Workshop on Applications of Computer Vision (pp. 39–42),

December 1996.

[Borgefors86] G. Borgefors, “Distance transformations in digital images,” Computer

Vision, Graphics and Image Processing 34 (1986): 344–371.

[Bosch07] A. Bosch, A. Zisserman, and X. Muñoz, “Image classifi cation using ran-

dom forests and ferns,” IEEE International Conference on Computer Vision, Rio de

Janeiro, October 2007.

[Bouguet] J.-Y. Bouguet, “Camera calibration toolbox for Matlab,” retrieved June 2,

2008, from http://www.vision.caltech.edu/bouguetj/calib_doc/index.html.

[BouguetAlg] J.-Y. Bouguet, “Th e calibration toolbox for Matlab, example 5: Stereo rec-

tifi cation algorithm” (code and instructions only), http://www.vision.caltech.edu/

bouguetj/calib_doc/htmls/example5.html.

15-R4886-AT1.indd 52815-R4886-AT1.indd 528 9/15/08 4:27:05 PM9/15/08 4:27:05 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Bibliography | 529

[Bouguet04] J.-Y. Bouguet, “Pyramidal implementation of the Lucas Kanade feature

tracker description of the algorithm,” http://robots.stanford.edu/cs223b04/algo_

tracking.pdf.

[Bracewell65] R. Bracewell, “Convolution” and “Two-dimensional convolution,” in

Th e Fourier Transform and Its Applications (pp. 25–50 and 243–244), New York:

McGraw-Hill, 1965.

[Bradski00] G. Bradski and J. Davis, “Motion segmentation and pose recognition with

motion history gradients,” IEEE Workshop on Applications of Computer Vision,

2000.

[Bradski98a] G. R. Bradski, “Real time face and object tracking as a component of a

perceptual user interface,” Proceedings of the 4th IEEE Workshop on Applications of

Computer Vision, October 1998.

[Bradski98b] G. R. Bradski, “Computer video face tracking for use in a perceptual user

interface,” Intel Technology Journal Q2 (1998): 705–740.

[Breiman01] L. Breiman, “Random forests,” Machine Learning 45 (2001): 5–32.

[Breiman84] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classifi cation

and Regression Trees, Monteray, CA: Wadsworth, 1984.

[Bresenham65] J. E. Bresenham, “Algorithm for computer control of a digital plotter,”

IBM Systems Journal 4 (1965): 25–30.

[Bronshtein97] I. N. Bronshtein, and K. A. Semendyayev, Handbook of Mathematics, 3rd

ed., New York: Springer-Verlag, 1997.

[Brown66] D. C. Brown, “Decentering distortion of lenses,” Photogrammetric Engineer-

ing 32 (1966): 444–462.

[Brown71] D. C. Brown, “Close-range camera calibration,” Photogrammetric Engineer-

ing 37 (1971): 855–866.

[Burt81] P. J. Burt, T. H. Hong, and A. Rosenfeld, “Segmentation and estimation of

image region properties through cooperative hierarchical computation,” IEEE

Transactions on Systems, Man, and Cybernetics 11 (1981): 802–809.

[Burt83] P. J. Burt and E. H. Adelson, “Th e Laplacian pyramid as a compact image code,”

IEEE Transactions on Communications 31 (1983): 532–540.

[Canny86] J. Canny, “A computational approach to edge detection,” IEEE Transactions

on Pattern Analysis and Machine Intelligence 8 (1986): 679–714.

[Carpenter03] G. A. Carpenter and S. Grossberg, “Adaptive resonance theory,” in

M. A. Arbib (Ed.), Th e Handbook of Brain Th eory and Neural Networks, 2nd ed.

(pp. 87–90), Cambridge, MA: MIT Press, 2003.

[Carr04] H. Carr, J. Snoeyink, and M. van de Panne, “Progressive topological

simplification using contour trees and local spatial measures,” 15th Western Com-

puter Graphics Symposium, Big White, British Columbia, March 2004.

15-R4886-AT1.indd 52915-R4886-AT1.indd 529 9/15/08 4:27:06 PM9/15/08 4:27:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

530 | Bibliography

[Chen05] D. Chen and G. Zhang, “A new sub-pixel detector for x-corners in camera

calibration targets,” WSCG Short Papers (2005): 97–100.

[Chetverikov99] D. Chetverikov and Zs. Szabo, “A simple and effi cient algorithm for

detection of high curvature points in planar curves,” Proceedings of the 23rd Work-

shop of the Austrian Pattern Recognition Group (pp. 175–184), 1999.

[Chu07] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Y. Yu, G. Bradski, A. Y. Ng, and K. Olukotun,

“Map-reduce for machine learning on multicore,” Proceedings of the Neural Infor-

mation Processing Systems Conference (vol. 19, pp. 304–310), 2007.

[Clarke98] T. A. Clarke and J. G. Fryer, “Th e Development of Camera Calibration Meth-

ods and Models,” Photogrammetric Record 16 (1998): 51–66.

[Colombari07] A. Colombari, A. Fusiello, and V. Murino, “Video objects segmentation

by robust background modeling,” International Conference on Image Analysis and

Processing (pp. 155–164), September 2007.

[Comaniciu99] D. Comaniciu and P. Meer, “Mean shift analysis and applications,” IEEE

International Conference on Computer Vision (vol. 2, p. 1197), 1999.

[Comaniciu03] D. Comaniciu, “Nonparametric information fusion for motion esti-

mation,” IEEE Conference on Computer Vision and Pattern Recognition (vol. 1,

pp. 59–66), 2003.

[Conrady1919] A. Conrady, “Decentering lens systems,” Monthly Notices of the Royal

Astronomical Society 79 (1919): 384–390.

[Cooley65] J. W. Cooley and O. W. Tukey, “An algorithm for the machine calculation of

complex Fourier series,” Mathematics of Computation 19 (1965): 297–301.

[Dahlkamp06] H. Dahlkamp, A. Kaehler, D. Stavens, S. Th run, and G. Bradski, “Self-

supervised monocular road detection in desert terrain,” Robotics: Science and Sys-

tems, Philadelphia, 2006.

[Dalai05] N. Dalai, and B. Triggs, “Histograms of oriented gradients for human detec-

tion,” Computer Vision and Pattern Recognition (vol. 1, pp. 886–893), June 2005.

[Davis97] J. Davis and A. Bobick, “Th e representation and recognition of action using

temporal templates” (Technical Report 402), MIT Media Lab, Cambridge, MA,

1997.

[Davis99] J. Davis and G. Bradski, “Real-time motion template gradients using Intel

CVLib,” ICCV Workshop on Framerate Vision, 1999.

[Delaunay34] B. Delaunay, “Sur la sphère vide,” Izvestia Akademii Nauk SSSR, Otdelenie

Matematicheskikh i Estestvennykh Nauk 7 (1934): 793–800.

[DeMenthon92] D. F. DeMenthon and L. S. Davis, “Model-based object pose in 25 lines

of code,” Proceedings of the European Conference on Computer Vision (pp. 335–343),

1992.

15-R4886-AT1.indd 53015-R4886-AT1.indd 530 9/15/08 4:27:06 PM9/15/08 4:27:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Bibliography | 531

[Dempster77] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incom-

plete data via the EM algorithm,” Journal of the Royal Statistical Society, Series B 39

(1977): 1–38.

[Det] “History of matrices and determinants,” http://www-history.mcs.st-and.ac.uk/

history/HistTopics/Matrices_and_determinants.html.

[Douglas73] D. Douglas and T. Peucker, “Algorithms for the reduction of the number of

points required for represent a digitized line or its caricature,” Canadian Cartogra-

pher 10(1973): 112–122.

[Duda72] R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines

and curves in pictures,” Communications of the Association for Computing Machin-

ery 15 (1972): 11–15.

[Duda73] R. O. Duda and P. E. Hart, Pattern Recognition and Scene Analysis, New York:

Wiley, 1973.

[Duda00] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classifi cation, New York:

Wiley, 2001.

[Farin04] D. Farin, P. H. N. de With, and W. Eff elsberg, “Video-object segmentation

using multi-sprite background subtraction,” Proceedings of the IEEE International

Conference on Multimedia and Expo, 2004.

[Faugeras93] O. Faugeras, Th ree-Dimensional Computer Vision: A Geometric Viewpoint,

Cambridge, MA: MIT Press, 1993.

[Fei-Fei98] L. Fei-Fei, R. Fergus, and P. Perona, “A Bayesian approach to unsupervised

one-shot learning of object categories,” Proceedings of the Ninth International

Conference on Computer Vision (vol. 2, pp. 1134–1141), October 2003.

[Felzenszwalb63] P. F. Felzenszwalb and D. P. Huttenlocher, “Distance transforms of

sampled functions” (Technical Report TR2004-1963), Department of Computing

and Information Science, Cornell University, Ithaca, NY, 1963.

[FFmpeg] “Ffmpeg summary,” http://en.wikipedia.org/wiki/Ffmpeg.

[Fischler81] M. A. Fischler and R. C. Bolles, “Random sample concensus: A paradigm

for model fi tting with applications to image analysis and automated cartography,”

Communications of the Association for Computing Machinery 24 (1981): 381–395.

[Fitzgibbon95] A. W. Fitzgibbon and R. B. Fisher, “A buyer’s guide to conic fi tting,”

Proceedings of the 5th British Machine Vision Conference (pp. 513–522), Birming-

ham, 1995.

[Fix51] E. Fix, and J. L. Hodges, “Discriminatory analysis, nonparametric discrimina-

tion: Consistency properties” (Technical Report 4), USAF School of Aviation Medi-

cine, Randolph Field, Texas, 1951.

[Forsyth03] D. Forsyth and J. Ponce, Computer Vision: A Modern Approach, Englewood

Cliff s, NJ: Prentice-Hall, 2003.

15-R4886-AT1.indd 53115-R4886-AT1.indd 531 9/15/08 4:27:06 PM9/15/08 4:27:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

532 | Bibliography

[FourCC] “FourCC summary,” http://en.wikipedia.org/wiki/Fourcc.

[FourCC85] J. Morrison, “EA IFF 85 standard for interchange format fi les,” http://www

.szonye.com/bradd/iff .html.

[Fourier] “Joseph Fourier,” http://en.wikipedia.org/wiki/Joseph_Fourier.

[Freeman67] H. Freeman, “On the classifi cation of line-drawing data,” Models for the

Perception of Speech and Visual Form (pp. 408–412), 1967.

[Freeman95] W. T. Freeman and M. Roth, “Orientation histograms for hand gesture

recognition,” International Workshop on Automatic Face and Gesture Recognition

(pp. 296–301), June 1995.

[Freund97] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line

learning and an application to boosting,” Journal of Computer and System Sciences

55 (1997): 119–139.

[Fryer86] J. G. Fryer and D. C. Brown, “Lens distortion for close-range photogram-

metry,” Photogrammetric Engineering and Remote Sensing 52 (1986): 51–58.

[Fukunaga90] K. Fukunaga, Introduction to Statistical Pattern Recognition, Boston:

Academic Press, 1990.

[Galton] “Francis Galton,” http://en.wikipedia.org/wiki/Francis_Galton.

[GEMM] “Generalized matrix multiplication summary,” http://notvincenz.blogspot

.com/2007/06/generalized-matrix-multiplication.html.

[Göktürk01] S. B. Göktürk, J.-Y. Bouguet, and R. Grzeszczuk, “A data-driven model

for monocular face tracking,” Proceedings of the IEEE International Conference on

Computer Vision (vol. 2, pp. 701–708), 2001.

[Göktürk02] S. B. Göktürk, J.-Y. Bouguet, C. Tomasi, and B. Girod, “Model-based face

tracking for view-independent facial expression recognition,” Proceedings of the

Fift h IEEE International Conference on Automatic Face and Gesture Recognition

(pp. 287–293), May 2002.

[Grauman05] K. Grauman and T. Darrell, “Th e pyramid match kernel: Discriminative

classifi cation with sets of image features,” Proceedings of the IEEE International

Conference on Computer Vision, October 2005.

[Grossberg87] S. Grossberg, “Competitive learning: From interactive activation to adap-

tive resonance,” Cognitive Science 11 (1987): 23–63.

[Harris88] C. Harris and M. Stephens, “A combined corner and edge detector,” Proceed-

ings of the 4th Alvey Vision Conference (pp. 147–151), 1988.

[Hartley98] R. I. Hartley, “Th eory and practice of projective rectifi cation,” International

Journal of Computer Vision 35 (1998): 115–127.

[Hartley06] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,

Cambridge, UK: Cambridge University Press, 2006.

15-R4886-AT1.indd 53215-R4886-AT1.indd 532 9/15/08 4:27:06 PM9/15/08 4:27:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Bibliography | 533

[Hastie01] T. Hastie, R. Tibshirani, and J. Friedman, Th e Elements of Statistical Learn-

ing: Data Mining, Inference and Prediction, New York: Springer-Verlag, 2001.

[Heckbert90] P. Heckbert, A Seed Fill Algorithm (Graphics Gems I), New York:

Academic Press, 1990.

[Heikkila97] J. Heikkila and O. Silven, “A four-step camera calibration procedure with

implicit image correction,” Proceedings of the 1997 Conference on Computer Vision

and Pattern Recognition (p. 1106), 1997.

[Hinterstoisser08] S. Hinterstoisser, S. Benhimane, V. Lepetit, P. Fua, and N. Navab,

“Simultaneous recognition and homography extraction of local patches with a sim-

ple linear classifier,” British Machine Vision Conference, Leeds, September 2008.

[Hinton06] G. E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep

belief nets,” Neural Computation 18 (2006): 1527–1554.

[Ho95] T. K. Ho, “Random decision forest,” Proceedings of the 3rd International Confer-

ence on Document Analysis and Recognition (pp. 278–282), August 1995.

[Homma85] K. Homma and E.-I. Takenaka, “An image processing method for feature

extraction of space-occupying lesions,” Journal of Nuclear Medicine 26 (1985):

1472–1477.

[Horn81] B. K. P. Horn and B. G. Schunck, “Determining optical fl ow,” Artifi cial Intel-

ligence 17 (1981): 185–203.

[Hough59] P. V. C. Hough, “Machine analysis of bubble chamber pictures,” Proceedings

of the International Conference on High Energy Accelerators and Instrumentation

(pp. 554–556), 1959.

[Hu62] M. Hu, “Visual pattern recognition by moment invariants,” IRE Transactions on

Information Th eory 8 (1962): 179–187.

[Huang95] Y. Huang and X. H. Zhuang, “Motion-partitioned adaptive block match-

ing for video compression,” International Conference on Image Processing (vol. 1,

p. 554), 1995.

[Iivarinen97] J. Iivarinen, M. Peura, J. Särelä, and A. Visa, “Comparison of combined

shape descriptors for irregular objects,” 8th British Machine Vision Conference,

1997.

[Intel] Intel Corporation, http://www.intel.com/.

[Inui03] K. Inui, S. Kaneko, and S. Igarashi, “Robust line fi tting using LmedS cluster-

ing,” Systems and Computers in Japan 34 (2003): 92–100.

[IPL] Intel Image Processing Library (IPL), www.cc.gatech.edu/dvfx/readings/iplman.pdf.

[IPP] Intel Integrated Performance Primitives, http://www.intel.com/cd/soft ware/

products/asmo-na/eng/219767.htm.

15-R4886-AT1.indd 53315-R4886-AT1.indd 533 9/15/08 4:27:06 PM9/15/08 4:27:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

534 | Bibliography

[Isard98] M. Isard and A. Blake, “CONDENSATION: Conditional density propagation

for visual tracking,” International Journal of Computer Vision 29 (1998): 5–28.

[Jaehne95] B. Jaehne, Digital Image Processing, 3rd ed., Berlin: Springer-Verlag, 1995.

[Jaehne97] B. Jaehne, Practical Handbook on Image Processing for Scientifi c Applications,

Boca Raton, FL: CRC Press, 1997.

[Jain77] A. Jain, “A fast Karhunen-Loeve transform for digital restoration of images

degraded by white and colored noise,” IEEE Transactions on Computers 26 (1997):

560–571.

[Jain86] A. Jain, Fundamentals of Digital Image Processing, Englewood Cliff s, NJ:

Prentice-Hall, 1986.

[Johnson84] D. H. Johnson, “Gauss and the history of the fast Fourier transform,” IEEE

Acoustics, Speech, and Signal Processing Magazine 1 (1984): 14–21.

[Kalman60] R. E. Kalman, “A new approach to linear fi ltering and prediction problems,”

Journal of Basic Engineering 82 (1960): 35–45.

[Kim05] K. Kim, T. H. Chalidabhongse, D. Harwood, and L. Davis, “Real-time

foreground-background segmentation using codebook model,” Real-Time Imaging

11 (2005): 167–256.

[Kimme75] C. Kimme, D. H. Ballard, and J. Sklansky, “Finding circles by an array of

accumulators,” Communications of the Association for Computing Machinery 18

(1975): 120–122.

[Kiryati91] N. Kiryati, Y. Eldar, and A. M. Bruckshtein, “A probablistic Hough trans-

form,” Pattern Recognition 24 (1991): 303–316.

[Konolige97] K. Konolige, “Small vision system: Hardware and implementation,”

Proceedings of the International Symposium on Robotics Research (pp. 111–116),

Hayama, Japan, 1997.

[Kreveld97] M. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. R. Schikore,

“Contour trees and small seed sets for isosurface traversal,” Proceedings of the 13th

ACM Symposium on Computational Geometry (pp. 212–220), 1997.

[Lagrange1773] J. L. Lagrange, “Solutions analytiques de quelques problèmes sur les

pyramides triangulaires,” in Oeuvres (vol. 3), 1773.

[Laughlin81] S. B. Laughlin, “A simple coding procedure enhances a neuron’s informa-

tion capacity,” Zeitschrift für Naturforschung 9/10 (1981): 910–912.

[LeCun98a] Y. LeCun, L. Bottou, Y. Bengio, and P. Haff ner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE 86 (1998): 2278–2324.

[LeCun98b] Y. LeCun, L. Bottou, G. Orr, and K. Muller, “Effi cient BackProp,” in G. Orr

and K. Muller (Eds.), Neural Networks: Tricks of the Trade, New York: Springer-

Verlag, 1998.

[Lens] “Lens (optics),” http://en.wikipedia.org/wiki/Lens_(optics).

15-R4886-AT1.indd 53415-R4886-AT1.indd 534 9/15/08 4:27:06 PM9/15/08 4:27:06 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Bibliography | 535

[Liu07] Y. Z. Liu, H. X. Yao, W. Gao, X. L. Chen, and D. Zhao, “Nonparametric back-

ground generation,” Journal of Visual Communication and Image Representation 18

(2007): 253–263.

[Lloyd57] S. Lloyd, “Least square quantization in PCM’s” (Bell Telephone Laborato-

ries Paper), 1957. [“Lloyd’s algorithm” was later published in IEEE Transactions on

Information Th eory 28 (1982): 129–137.]

[Lowe04] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”

International Journal of Computer Vision 60 (2004): 91–110.

[LTI] LTI-Lib, Vision Library, http://ltilib.sourceforge.net/doc/homepage/index.shtml.

[Lucas81] B. D. Lucas and T. Kanade, “An iterative image registration technique with an

application to stereo vision,” Proceedings of the 1981 DARPA Imaging Understand-

ing Workshop (pp. 121–130), 1981.

[Lucchese02] L. Lucchese and S. K. Mitra, “Using saddle points for subpixel feature de-

tection in camera calibration targets,” Proceedings of the 2002 Asia Pacifi c Confer-

ence on Circuits and Systems (pp. 191–195), December 2002.

[Mahal] “Mahalanobis summary,” http://en.wikipedia.org/wiki/Mahalanobis_distance.

[Mahalanobis36] P. Mahalanobis, “On the generalized distance in statistics,” Proceed-

ings of the National Institute of Science 12 (1936): 49–55.

[Manta] Manta Open Source Interactive Ray Tracer, http://code.sci.utah.edu/Manta/

index.php/Main_Page.

[Maron61] M. E. Maron, “Automatic indexing: An experimental inquiry,” Journal of the

Association for Computing Machinery 8 (1961): 404–417.

[Marr82] D. Marr, Vision, San Francisco: Freeman, 1982.

[Martins99] F. C. M. Martins, B. R. Nickerson, V. Bostrom, and R. Hazra, “Implementa-

tion of a real-time foreground/background segmentation system on the Intel archi-

tecture,” IEEE International Conference on Computer Vision Frame Rate Workshop,

1999.

[Matas00] J. Matas, C. Galambos, and J. Kittler, “Robust detection of lines using the

progressive probabilistic Hough transform,” Computer Vision Image Understanding

78 (2000): 119–137.

[Matas02] J. Matas, O. Chum, M. Urba, and T. Pajdla, “Robust wide baseline stereo from

maximally stable extremal regions,” Proceedings of the British Machine Vision Con-

ference (pp. 384–396), 2002.

[Meer91] P. Meer, D. Mintz, and A. Rosenfeld, “Robust regression methods for computer

vision: A review,” International Journal of Computer Vision 6 (1991): 59–70.

[Merwe00] R. van der Merwe, A. Doucet, N. de Freitas, and E. Wan, “Th e unscented

particle fi lter,” Advances in Neural Information Processing Systems, December

2000.

15-R4886-AT1.indd 53515-R4886-AT1.indd 535 9/15/08 4:27:07 PM9/15/08 4:27:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

536 | Bibliography

[Meyer78] F. Meyer, “Contrast feature extraction,” in J.-L. Chermant (Ed.), Quantita-

tive Analysis of Microstructures in Material Sciences, Biology and Medicine [Special

issue of Practical Metallography], Stuttgart: Riederer, 1978.

[Meyer92] F. Meyer, “Color image segmentation,” Proceedings of the International

Conference on Image Processing and Its Applications (pp. 303–306), 1992.

[Mikolajczyk04] K. Mikolajczyk and C. Schmid, “A performance evaluation of local

descriptors,” IEEE Transactions on Pattern Analysis and Machine Intelligence 27

(2004): 1615–1630.

[Minsky61] M. Minsky, “Steps toward artifi cial intelligence,” Proceedings of the Institute

of Radio Engineers 49 (1961): 8–30.

[Mokhtarian86] F. Mokhtarian and A. K. Mackworth, “Scale based description and rec-

ognition of planar curves and two-dimensional shapes,” IEEE Transactions on Pat-

tern Analysis and Machine Intelligence 8 (1986): 34–43.

[Mokhtarian88] F. Mokhtarian, “Multi-scale description of space curves and three-

dimensional objects,” IEEE Conference on Computer Vision and Pattern Recogni-

tion (pp. 298–303), 1988.

[Mori05] G. Mori, S. Belongie, and J. Malik, “Effi cient shape matching using shape con-

texts,” IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (2005):

1832–1837.

[Morse53] P. M. Morse and H. Feshbach, “Fourier transforms,” in Methods of Th eoreti-

cal Physics (Part I, pp. 453–471), New York: McGraw-Hill, 1953.

[Neveu86] C. F. Neveu, C. R. Dyer, and R. T. Chin, “Two-dimensional object recogni-

tion using multiresolution models,” Computer Vision Graphics and Image Process-

ing 34 (1986): 52–65.

[Ng] A. Ng, “Advice for applying machine learning,” http://www.stanford.edu/class/

cs229/materials/ML-advice.pdf.

[Nistér06] D. Nistér and H. Stewénius, “Scalable recognition with a vocabulary tree,”

IEEE Conference on Computer Vision and Pattern Recognition, 2006.

[O’Connor02] J. J. O’Connor and E. F. Robertson, “Light through the ages: Ancient

Greece to Maxwell,” http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/

Light_1.html.

[Oliva06] A. Oliva and A. Torralba, “Building the gist of a scene: Th e role of global im-

age features in recognition visual perception,” Progress in Brain Research 155 (2006):

23–36.

[Opelt08] A. Opelt, A. Pinz, and A. Zisserman, “Learning an alphabet of shape and

appearance for multi-class object detection,” International Journal of Computer

Vision (2008).

[OpenCV] Open Source Computer Vision Library (OpenCV), http://sourceforge.net/

projects/opencvlibrary/.

15-R4886-AT1.indd 53615-R4886-AT1.indd 536 9/15/08 4:27:07 PM9/15/08 4:27:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Bibliography | 537

[OpenCV Wiki] Open Source Computer Vision Library Wiki, http://opencvlibrary

.sourceforge.net/.

[OpenCV YahooGroups] OpenCV discussion group on Yahoo, http://groups.yahoo

.com/group/OpenCV.

[Ozuysal07] M. Ozuysal, P. Fua, and V. Lepetit, “Fast keypoint recognition in ten lines

of code,” Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2007.

[Papoulis62] A. Papoulis, Th e Fourier Integral and Its Applications, New York: McGraw-

Hill, 1962.

[Pascucci02] V. Pascucci and K. Cole-McLaughlin, “Efficient computation of the topol-

ogy of level sets,” Proceedings of IEEE Visualization 2002 (pp. 187–194), 2002.

[Pearson] “Karl Pearson,” http://en.wikipedia.org/wiki/Karl_Pearson.

[Philbin07] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object retrieval

with large vocabularies and fast spatial matching,” Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2007.

[Pollefeys99a] M. Pollefeys, “Self-calibration and metric 3D reconstruction from uncali-

brated image sequences,” Ph.D. thesis, Katholieke Universiteit, Leuven, 1999.

[Pollefeys99b] M. Pollefeys, R. Koch, and L. V. Gool, “A simple and effi cient rectifi cation

method for general motion,” Proceedings of the 7th IEEE Conference on Computer

Vision, 1999.

[Porter84] T. Porter and T. Duff , “Compositing digital images,” Computer Graphics 18

(1984): 253–259.

[Prados05] E. Prados and O. Faugeras, “Shape from shading: A well-posed problem?”

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2005.

[Ranger07] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis,

“Evaluating mapreduce for multi-core and multiprocessor systems,” Proceedings

of the 13th International Symposium on High-Performance Computer Architecture

(pp. 13–24), 2007.

[Reeb46] G. Reeb, “Sur les points singuliers d’une forme de Pfaff completement inte-

grable ou d’une fonction numerique,” Comptes Rendus de l’Academie des Sciences

de Paris 222 (1946): 847–849.

[Rodgers88] J. L. Rodgers and W. A. Nicewander, “Th irteen ways to look at the correla-

tion coeffi cient,” American Statistician 42 (1988): 59–66.

[Rodrigues] “Olinde Rodrigues,” http://en.wikipedia.org/wiki/Benjamin_Olinde_

Rodrigues.

[Rosenfeld73] A. Rosenfeld and E. Johnston, “Angle detection on digital curves,” IEEE

Transactions on Computers 22 (1973): 875–878.

15-R4886-AT1.indd 53715-R4886-AT1.indd 537 9/15/08 4:27:07 PM9/15/08 4:27:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

538 | Bibliography

[Rosenfeld80] A. Rosenfeld, “Some Uses of Pyramids in Image Processing and Segmen-

tation,” Proceedings of the DARPA Imaging Understanding Workshop (pp. 112–120),

1980.

[Rousseeuw84] P. J. Rousseeuw, “Least median of squares regression,” Journal of the

American Statistical Association, 79 (1984): 871–880.

[Rousseeuw87] P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detec-

tion, New York: Wiley, 1987.

[Rubner98a] Y. Rubner, C. Tomasi, and L. J. Guibas, “Metrics for distributions with

applications to image databases,” Proceedings of the 1998 IEEE International Con-

ference on Computer Vision (pp. 59–66), Bombay, January 1998.

[Rubner98b] Y. Rubner and C. Tomasi, “Texture metrics,” Proceeding of the IEEE Inter-

national Conference on Systems, Man, and Cybernetics (pp. 4601–4607), San Diego,

October 1998.

[Rubner00] Y. Rubner, C. Tomasi, and L. J. Guibas, “Th e earth mover’s distance as a met-

ric for image retrieval,” International Journal of Computer Vision 40 (2000): 99–121.

[Rumelhart88] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal

representations by error propagation,” in D. E. Rumelhart, J. L. McClelland, and

PDP Research Group (Eds.), Parallel Distributed Processing. Explorations in the Mi-

crostructures of Cognition (vol. 1, pp. 318–362), Cambridge, MA: MIT Press, 1988.

[Russ02] J. C. Russ, Th e Image Processing Handbook, 4th ed. Boca Raton, FL: CRC Press,

2002.

[Scharr00] H. Scharr, “Optimal operators in digital image processing,” Ph.D. thesis,

Interdisciplinary Center for Scientifi c Computing, Ruprecht-Karls-Universität,

Heidelberg, http://www.fz-juelich.de/icg/icg-3/index.php?index=195.

[Schiele96] B. Schiele and J. L. Crowley, “Object recognition using multidimensional

receptive fi eld histograms,” European Conference on Computer Vision (vol. I,

pp. 610–619), April 1996.

[Schmidt66] S. Schmidt, “Applications of state-space methods to navigation problems,”

in C. Leondes (Ed.), Advances in Control Systems (vol. 3, pp. 293–340), New York:

Academic Press, 1966.

[Schroff 08] F. Schroff , A. Criminisi, and A. Zisserman, “Object class segmentation

using random forests,” Proceedings of the British Machine Vision Conference, 2008.

[Schwartz80] E. L. Schwartz, “Computational anatomy and functional architecture

of the striate cortex: A spatial mapping approach to perceptual coding,” Vision

Research 20 (1980): 645–669.

[Schwarz78] A. A. Schwarz and J. M. Soha, “Multidimensional histogram normalization

contrast enhancement,” Proceedings of the Canadian Symposium on Remote Sensing

(pp. 86–93), 1978.

15-R4886-AT1.indd 53815-R4886-AT1.indd 538 9/15/08 4:27:07 PM9/15/08 4:27:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Bibliography | 539

[Semple79] J. Semple and G. Kneebone, Algebraic Projective Geometry, Oxford, UK:

Oxford University Press, 1979.

[Serra83] J. Serra, Image Analysis and Mathematical Morphology, New York: Academic

Press, 1983.

[Sezgin04] M. Sezgin and B. Sankur, “Survey over image thresholding techniques and

quantitative performance evaluation,” Journal of Electronic Imaging 13 (2004):

146–165.

[Shapiro02] L. G. Shapiro and G. C. Stockman, Computer Vision, Englewood Cliff s, NJ:

Prentice-Hall, 2002.

[Sharon06] E. Sharon, M. Galun, D. Sharon, R. Basri, and A. Brandt, “Hierarchy and

adaptivity in segmenting visual scenes,” Nature 442 (2006): 810–813.

[Shaw04] J. R. Shaw, “QuickFill: An effi cient fl ood fi ll algorithm,” http://www.codeproject

.com/gdi/QuickFill.asp.

[Shi00] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence 22 (2000): 888–905.

[Shi94] J. Shi and C. Tomasi, “Good features to track,” 9th IEEE Conference on

Computer Vision and Pattern Recognition, June 1994.

[Sivic08] J. Sivic, B. C. Russell, A. Zisserman, W. T. Freeman, and A. A. Efros, “Unsu-

pervised discovery of visual object class hierarchies,” Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, 2008.

[Smith78] A. R. Smith. “Color gamut transform pairs,” Computer Graphics 12 (1978):

12–19.

[Smith79] A. R. Smith, “Painting tutorial notes,” Computer Graphics Laboratory, New

York Institute of Technology, Islip, NY, 1979.

[Sobel73] I. Sobel and G. Feldman, “A 3 × 3 Isotropic Gradient Operator for Image Pro-

cessing,” in R. Duda and P. Hart (Eds.), Pattern Classifi cation and Scene Analysis

(pp. 271–272), New York: Wiley, 1973.

[Steinhaus56] H. Steinhaus, “Sur la division des corp materiels en parties,” Bulletin of

the Polish Academy of Sciences and Mathematics 4 (1956): 801–804.

[Sturm99] P. F. Sturm and S. J. Maybank, “On plane-based camera calibration: A gen-

eral algorithm, singularities, applications,” IEEE Conference on Computer Vision

and Pattern Recognition, 1999.

[Sun98] J. Sun and P. Perona, “Where is the sun?” Nature Neuroscience 1 (1998):

183–184.

[Suzuki85] S. Suzuki and K. Abe, “Topological structural analysis of digital binary

images by border following,” Computer Vision, Graphics and Image Processing 30

(1985): 32–46.

[SVD] “SVD summary,” http://en.wikipedia.org/wiki/Singular_value_decomposition.

15-R4886-AT1.indd 53915-R4886-AT1.indd 539 9/15/08 4:27:07 PM9/15/08 4:27:07 PM

www.it-ebooks.info

http://www.it-ebooks.info/

540 | Bibliography

[Swain91] M. J. Swain and D. H. Ballard, “Color indexing,” International Journal of

Computer Vision 7 (1991): 11–32.

[Tanguay00] D. Tanguay, “Flying a Toy Plane,” IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (p. 2231), 2000.

[Teh89] C. H. Teh, R. T. Chin, “On the detection of dominant points on digital curves,”

IEEE Transactions on Pattern Analysis and Machine Intelligence 11 (1989): 859–872.

[Telea04] A. Telea, “An image inpainting technique based on the fast marching method,”

Journal of Graphics Tools 9 (2004): 25–36.

[Th run05] S. Th run, W. Burgard, and D. Fox, Probabilistic Robotics: Intelligent Robotics

and Autonomus Agents, Cambridge, MA: MIT Press, 2005.

[Th run06] S. Th run, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,

P. Fong, J. Gale, M. Halpenny, G. Hoff mann, K. Lau, C. Oakley, M. Palatucci,

V. Pratt, P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek, C. Koelen, C. Mar-

key, C. Rummel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies,

S. Ettinger, A. Kaehler, A. Nefi an, and P. Mahoney. “Stanley, the robot that won the

DARPA Grand Challenge,” Journal of Robotic Systems 23 (2006): 661–692.

[Titchmarsh26] E. C. Titchmarsh, “Th e zeros of certain integral functions,” Proceedings

of the London Mathematical Society 25 (1926): 283–302.

[Tola08] E. Tola, V. Lepetit, and P. Fua, “A fast local descriptor for dense matching,”

Proceedings of the IEEE International Conference on Computer Vision and Pattern

Recognition, June 2008.

[Tomasi98] C. Tomasi and R. Manduchi, “Bilateral fi ltering for gray and color images,”

Sixth International Conference on Computer Vision (pp. 839–846), New Delhi, 1998.

[Torralba07] A. Torralba, K. P. Murphy, and W. T. Freeman, “Sharing visual features for

multiclass and multiview object detection,” IEEE Transactions on Pattern Analysis

and Machine Intelligence 29 (2007): 854–869.

[Torralba08] A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large databases for

recognition,” Proceedings of the IEEE International Conference on Computer Vision

and Pattern Recognition, June 2008.

[Toyama99] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallfl ower: Principles

and practice of background maintenance,” Proceedings of the 7th IEEE International

Conference on Computer Vision (pp. 255–261), 1999.

[Trace] “Matrix trace summary,” http://en.wikipedia.org/wiki/Trace_(linear_algebra).

[Trucco98] E. Trucco and A. Verri, Introductory Techniques for 3-D Computer Vision,

Englewood Cliff s, NJ: Prentice-Hall, 1998.

[Tsai87] R. Y. Tsai, “A versatile camera calibration technique for high accuracy 3D ma-

chine vision metrology using off -the-shelf TV cameras and lenses,” IEEE Journal of

Robotics and Automation 3 (1987): 323–344.

15-R4886-AT1.indd 54015-R4886-AT1.indd 540 9/15/08 4:27:08 PM9/15/08 4:27:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Bibliography | 541

[Vandevenne04] L. Vandevenne, “Lode’s computer graphics tutorial, fl ood fi ll,” http://

student.kuleuven.be/~m0216922/CG/fl oodfi ll.html.

[Vapnik95] V. Vapnik, Th e Nature of Statistical Learning Th eory, New York: Springer-

Verlag, 1995.

[Videre] Videre Design, “Stereo on a chip (STOC),” http://www.videredesign.com/

templates/stoc.htm.

[Viola04] P. Viola and M. J. Jones, “Robust real-time face detection,” International Jour-

nal of Computer Vision 57 (2004): 137–154.

[VXL] VXL, Vision Library, http://vxl.sourceforge.net/.

[Welsh95] G. Welsh and G. Bishop, “An introduction to the Kalman fi lter” (Technical

Report TR95-041), University of North Carolina, Chapel Hill, NC, 1995.

[Werbos74] P. Werbos, “Beyond regression: New tools for prediction and analysis in the

behavioural sciences,” Ph.D. thesis, Economics Department, Harvard University,

Cambridge, MA, 1974.

[WG] Willow Garage, http://www.willowgarage.com.

[Wharton71] W. Wharton and D. Howorth, Principles of Television Reception, London:

Pitman, 1971.

[Xu96] G. Xu and Z. Zhang, Epipolar Geometry in Stereo, Motion and Object Recogni-

tion, Dordrecht: Kluwer, 1996

[Zhang96] Z. Zhang, “Parameter estimation techniques: A tutorial with application to

conic fi tting,” Image and Vision Computing 15 (1996): 59–76.

[Zhang99] R. Zhang, P.-S. Tsi, J. E. Cryer, and M. Shah, “Shape form shading: A survey,”

IEEE Transactions on Pattern Analysis and Machine Intelligence 21 (1999): 690 –706.

[Zhang99] Z. Zhang, “Flexible camera calibration by viewing a plane from unknown

orientations,” Proceedings of the 7th International Conference on Computer Vision

(pp. 666–673), Corfu, September 1999.

[Zhang00] Z. Zhang, “A fl exible new technique for camera calibration,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence 22 (2000): 1330–1334.

[Zhang04] H. Zhang, “Th e optimality of naive Bayes,” Proceedings of the 17th Interna-

tional FLAIRS Conference, 2004.

15-R4886-AT1.indd 54115-R4886-AT1.indd 541 9/15/08 4:27:08 PM9/15/08 4:27:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

15-R4886-AT1.indd 54215-R4886-AT1.indd 542 9/15/08 4:27:08 PM9/15/08 4:27:08 PM

www.it-ebooks.info

http://www.it-ebooks.info/

543

Index

A
absolute value, 48, 49–50, 57
accumulation functions, 276, 278
accumulator plane, 154, 156
AdaBoost, 496–498, 506–508
affine transforms, 163–169, 173, 407
allocation of memory, 222, 472
alpha blending, 50–52
AMD processors, 15
anchor points, 115, 144–145
aperture problem, 327, 328
arrays, 54

accessing members of, 36, 37
merging, 67–68
norm, total, computing, 69
operators, table of, 48–49
of points, 40–41
row/column index, reversing, 76
sequences and, 233
setting elements of, 72–73, 77
splitting, 73–74
square, 60

artistic community, OpenCV needs of, 525
averaging background method, 271–278

B
background

defined, 266
learning, 275, 282
statistical model, 273
subtraction (differencing), 265–267,

270, 278
versus foreground, 267

background-foreground segmentation, 14
back projection, 209–213, 386
back-propagation (MLP), 498, 517
barrel (fish-eye) effect, 375, 376

Bayer pattern, 59
Bayes classifier, naïve (normal), 462, 474,

483–486
Bayesian network, 461–462, 483, 484
Bayes’ theorem, 210
Bhattacharyya matching, 202, 206
bias (underfitting)

intentional, 493–495, 496
overview of, 466–468

bilateral filter, 110–115
bird’s-eye view transform, 408–412
bitwise AND operation, 52
bitwise OR operation, 71
bitwise XOR operation, 77
Black Hat operation, 120, 123–124, 127
block matching method, 322, 336, 439, 443–444
blurring (see smoothing)
Boolean images, 120, 121, 153
Boolean mask, 135
boosted rejection cascade, 506
boosting classifiers, 463, 495–501, 506, 508
bootstrapping, 469
Borgefors (Gunilla) method, 186
Bouguet, Jean-Yves, website, 378
Bouguet algorithm, 433–436, 445
boundaries

box, 279
convolution, 146
exterior, 234
interior, 234

Breiman binary decision trees, 486
Breiman random forests theory, 501
Breiman variable importance algorithm,

465, 495
Bresenham algorithm, 77
brightness constancy, 324, 325, 326, 335
Brown method, 376, 389
buttons (simulating), 101

16-R4886-AT1.indd 54316-R4886-AT1.indd 543 9/15/08 4:27:29 PM9/15/08 4:27:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

544 | Index

C
calibration, 14, 320, 370, 378, 397–401
callback, defined, 95–96
cameras

artifact reduction, 109
CVCAM interface, 12
domains, 103
focal length, 371, 373
format reversed, 107
identifiers, 103
input from, 16, 19, 26, 102–105
intrinsics matrix, defined, 373, 392, 454
manufacturing defects, 375–377, 467
path, reconstructing, 320
pinhole model, 370, 371–373, 391
projection matrix, 385
properties, checking and setting, 104
stereo imaging, overview of, 415
whiteouts, avoiding, 186
(see also calibration)

camshift tracking, 337, 341
Canny edge detector, 25, 151–160, 187, 234
Canny, J., 151
Cartesian to polar coordinates, 172–174
CCH (chain code histogram), 262
cell-phone projectors, 525
center of projection, 371, 407
chain code histogram (CCH), 262
channel of interest (COI), 44, 45
channel, defined, 41
chessboards (calibration object)

corners, drawing, 383
corners, finding, 382–384, 388, 392
overview of, 381, 428
stereo rectification, 439

chi-square method, histograms, 202
Chinese wiki site, 12
circles, 78–79, 249
circle transform (Hough), 158–161
circum-circle property, 300
classification and regression tree (CART)

algorithms, 486, 492, 495
classification, machine learning, 459–461
classifiers

Bayes, 483–486
Haar, 506–509
strong, 496, 499
Viola-Jones, 506–511, 515
weak, 463, 496–501, 507, 516

clone functions, defined, 34
clustering algorithms, 459–461, 479

codebook method, 266, 278–287
codecs, 28, 92, 102, 105, 106
COI (channel of interest), 44, 45
color conversions, 48, 58–60, 106
color histograms, 205, 206
color similarity, 298
color space, 58–60, 278
compilers, 14
compression codecs, 102, 105, 106
computer vision (see vision, computer;

vision, human)
Concurrent Versions System (CVS), 10–11
condensation algorithm, 349–350, 364–367
conditional random field (CRF), 525
configuration and log files, reading and

writing, 83
confusion matrices, 469–471, 493, 495
connected components

closing and, 121
defined, 117, 126, 135
foreground cleanup and, 287–293, 294

constructor methods, defined, 31
container class templates (see sequences)
containment, 235
contour

area, computing, 248
bounding, 248, 249
Canny and, 152
convexity, 258–260
drawing, 241, 243
finding, 234–238, 243
foreground cleanup and, 287
length, computing, 247
matching, 251–258
moments, 247, 252–256
tree, 235–237, 256, 257

control motion, 354
convex hull, defined, 259
convexity defects, 258–260
convolutions, 144–147
convolution theorem, 180–182
correlation methods, 201–202, 215–219
correspondence

calibration and, 445–452
defined, 415, 416
stereo, 438–445

covariance matrix, computing, 54
CRF (conditional random field), 525
cross-validation, 469
cumulative distribution function, 188, 189
CV, component of OpenCV, 13

16-R4886-AT1.indd 54416-R4886-AT1.indd 544 9/15/08 4:27:29 PM9/15/08 4:27:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index | 545

CVaux, component of OpenCV, 13–14
Cvcore, 29
CVS (Concurrent Versions System), 10–11
CvXX OpenCV classes

CvANN_MLP, 517
CvBoost, 498–501
CvDTree, 488, 493, 498
CvKNearest, 516
CvStatModel, 472, 472–475
CvSVM, 517

CvXX OpenCV data structures
CvArr, 33
CvBox2D, 249
CvConDensation, 364
CvConnectedComponent, 135
CvConvexityDefect, 260
CvFileStorage, 83
CvHistogram, 195
CvKalman, 358
CvMat, 33–41, 44, 83
CvMoments, 252
CvPointXXX, 31, 32, 41, 77
CvRect, 31, 32
CvScalar, 31, 32, 77, 78
CvSeq, 224
CvSize, 23, 31, 32
CvStereoBMState, 443–444
CvTermCriteria, 475
CvTrackbarCallback, 100
CvVideoWriter, 105–106

cvXX OpenCV functions
cv2DRotationMatrix(), 168, 407
cvAbs(), cvAbsDiff(), cvAbsDiffS(), 49–50,

270–273
cvAcc(), 138, 271, 276
cvAdaptiveThreshold(), 138–141, 234
cvADD(), 138
cvAdd(), cvAddS(), cvAddWeighted(),

50–52
cvAddWeighted(), 138
cvAnd(), cvAndS(), 52
cvApproxChains(), 240
cvApproxPoly(), 245, 246, 258
cvArcLength(), 247
cvAvg(), 53
cvBoundingRect(), 248
cvBoxPoints(), 221
cvCalcBackProject(), cvCalcBack

ProjectPatch(), 209–215
cvCalcCovarMatrix(), 54, 61, 66, 476, 478
cvCalcEMD2(), 207

cvCalcGlobalOrientation(), 344, 347
cvCalcHist(), 200–201, 205, 209, 212
cvCalcMotionGradient(), 343–344, 346–347
cvCalcOpticalFlowBM(), 337
cvCalcOpticalFlowHS(), 335–336
cvCalcOpticalFlowLK(), 329
cvCalcOpticalFlowPyrLK(), 329–332, 454
cvCalcPGH(), 262
cvCalcSubdivVoronoi2D(), 304, 309
cvCalibrateCamera2(), 371, 378, 387,

392–397, 403, 406, 427–430
cvCamShift(), 341
cvCanny(), 25, 152–154, 158–160, 234
cvCaptureFromCamera(), 19
cvCartToPolar(), 172–174
cvCheckContourConvexity(), 260
cvCircle(), 78–79
cvClearMemoryStorage, cvClearMem

Storage(), 223, 226, 512
cvClearSeq(), 226
cvClearSubdivVoronoi2D(), 304
cvCloneImage(), 200
cvCloneMat(), 34
cvCloneSeq(), 227
cvCmp(), cvCmpS(), 55–56
cvCompareHist(), 201, 213
cvComputeCorrespondEpilines(),

426–427, 445
cvConDensInitSampleSet(), 365
cvCondensUpdateByTime(), 366
cvContourArea(), 248
cvContourPerimeter(), 247
cvContoursMoments(), 252–253
cvConvert(), 56
cvConvertImage(), 106
cvConvertPointsHomogenious(), 374
cvConvertScale(), 56, 69, 274
cvConvertScaleAbs(), 57
cvConvexHull2(), 259
cvConvexityDefects(), 260
cvCopy(), 57
cvCopyHist(), 200
cvCopyMakeBorder(), 146
cvCreateBMState(), 445
cvCreateCameraCapture(), 26, 102
cvCreateConDensation(), 365
cvCreateData(), 34
cvCreateFileCapture(), 19, 23, 26, 102
cvCreateHist(), 195
cvCreateImage(), 24, 81
cvCreateKalman(), 358

16-R4886-AT1.indd 54516-R4886-AT1.indd 545 9/15/08 4:27:29 PM9/15/08 4:27:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

546 | Index

cvXX OpenCV functions (continued)
cvCreateMat(), 34
cvCreateMatHeader(), 34
cvCreateMemoryStorage(), cvCreate

MemStorage(), 223, 236, 243
cvCreatePOSITObject(), 413
cvCreateSeq(), 224, 232–234
cvCreateStereoBMState(), 444
cvCreateStructuringElementEx(), 118
cvCreateTrackbar(), 20, 22, 100
cvCreateVideoWriter(), 27, 106
cvCrossProduct(), 57
cvCvtColor(), 58–60, 512
cvCvtScale(), 273, 275
cvCvtSeqToArray(), 233
cvDCT(), 182
cvDestroyAllWindows(), 94
cvDestroyWindow(), 18, 91
cvDet(), 60, 61
cvDFT(), 173, 177–178, 180–182
cvDilate(), 116, 117
cvDistTransform(), cvDistance

Transform(), 185
cvDiv(), 60
cvDotProduct(), 60–61
cvDrawChessboardCorners(), 383, 384
cvDrawContours(), 241, 253
cvDTreeParams(), 488
cvEigenVV(), 61
cvEllipse(), 78–79
cvEndFindContour(), 239
cvEndWriteSeq(), 231
cvEndWriteStruct(), 84
cvEqualizeHist(), 190, 512
cvErode(), 116, 117, 270
cvFillPoly(), cvFillConvexPoly(), 79–80
cvFilter2D(), 145, 173
cvFindChessboardCorners(), 381–384, 393
cvFindContours(), 152, 222–226,

234–243, 256
cvFindCornerSubPix(), 321, 383
cvFindDominantPoints(), 246
cvFindExtrinsicCameraParameters2(),

cvFindExtrinsicCameraParams2(),
395, 403

cvFindFundamentalMat(), 424–426, 431
cvFindHomography(), 387
cvFindNearestPoint2D(), 311
cvFindNextContour(), 239
cvFindStereoCorrespondenceBM(), 439,

443, 444, 454
cvFitEllipse2(), 250

cvFitLine(), 455–457
cvFloodFill(), 124–129, 135
cvFlushSeqWriter(), 232
cvGEMM(), 62, 69
cvGet*D() family, 37–38
cvGetAffineTransform(), 166–167, 407
cvGetCaptureProperty(), 21, 28, 104
cvGetCentralMoment(), 253
cvGetCol(), cvGetCols(), 62–63, 65
cvGetDiag(), 63
cvGetDims(), cvGetDimSize(), 36, 63–64
cvGetElemType(), 36
cvGetFileNodeByName(), 85
cvGetHistValue_XX(), 198
cvGetHuMoments(), 253
cvGetMinMaxHistValue(), 200, 205
cvGetModuleInfo(), 87
cvGetNormalizedCentralMoment(), 253
cvGetOptimalDFTSize(), 179
cvGetPerspectiveTransform(), 170, 407, 409
cvGetQuadrangleSubPix(), 166, 407
cvGetRow(), cvGetRows(), 64, 65
cvGetSeqElem(), 134, 226
cvGetSeqReaderPos(), 233
cvGetSize(), 23, 34, 64
cvGetSpatialMoment(), 253
cvGetSubRect(), 65, 179
cvGetTrackbarPos(), 100
cvGetWindowHandle(), 91
cvGetWindowName(), 91
cvGoodFeaturesToTrack(), 318–321,

329, 332
cvGrabFrame(), 103
cvHaarDetectObjects(), 507, 513
cvHistogram(), 199
cvHoughCircles(), 159–161
cvHoughLines2(), 156–160
cvInitFont(), 81
cvInitLineIterator(), 268
cvInitMatHeader(), 35
cvInitSubdivDelaunay2D(), 304, 310
cvInitUndistortMap(), 396
cvInitUndistortRectifyMap(), 436–437
cvInpaint(), 297
cvInRange(), cvInRangeS(), 65, 271, 275
cvIntegral(), 182–183
cvInvert(), 65–66, 73, 75–76, 478
cvKalmanCorrect(), 359
cvKalmanPredict(), 359
cvKMeans2(), 481–483
cvLaplace(), 151
cvLine(), 77

16-R4886-AT1.indd 54616-R4886-AT1.indd 546 9/15/08 4:27:29 PM9/15/08 4:27:29 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index | 547

cvLoad(), 83, 85, 512
cvLoadImage(), 17, 19, 92
cvLogPolar(), 172, 175
cvMahalonobis(), 66, 478
cvMakeHistHeaderForArray(), 197
cvMakeSeqHeaderForArray(), 234
cvMat(), 35
cvMatchShapes(), 255, 256
cvMatchTemplate(), 214, 215, 218
cvMatMul(), cvMatMulAdd(), 62
cvMax(), cvMaxS(), 66–67
cvMaxRect(), 251
cvMean(), 53
cvMean_StdDev(), 53–54
cvMeanShift(), 298, 340, 479
cvMemStorageAlloc(), 223
cvMerge(), 67–68, 178
cvmGet(), 39
cvMin(), cvMinS(), 68
cvMinAreaRect2(), 248
cvMinEnclosingCircle(), 249
cvMinMaxLoc(), 68, 213, 217
cvMoments(), 253
cvMorphologyEx(), 120
cvMouseCallback(), 96
cvMoveWindow(), 94
cvmSet(), 39, 209
cvMul(), 68–69
cvMulSpectrums(), 179, 180
cvMultiplyAcc(), 277
cvNamedWindow(), 17, 22, 91
cvNorm(), 69–70
cvNormalBayesClassifier(), 485–486
cvNormalize(), 70–71, 218
cvNormalizeHist(), 199, 213
cvNot(), 69
cvOpenFileStorage(), 83, 491
cvOr(), cvOrS(), 71, 270
cvPerspectiveTransform(), 171, 407, 453
cvPoint(), 32, 146
cvPoint2D32f(), cvPointTo32f(), 304
cvPointPolygonTest(), 251
cvPointSeqFromMat(), 251
cvPolarToCart(), 172
cvPolyLine(), 80
cvPOSIT(), 413
cvPow(), 218
cvProjectPoints2(), 406
cvPtr*D() family, 37–38
cvPutText(), 80, 81
cvPyrDown(), 24, 131, 299
cvPyrMeanShiftFiltering(), 298, 299, 300

cvPyrSegmentation(), 132–135, 298
cvPyrUp(), 131, 132, 299
cvQueryFrame(), 19, 28, 104
cvQueryHistValue_XX(), 198
cvRead(), 85
cvReadByName(), 85
cvReadInt(), 85
cvReadIntByName(), 85
cvRealScalar(), 31, 32
cvRect(), 32, 45
cvRectangle(), 32, 78, 512
cvReduce(), 71–72
cvReleaseCapture(), 19, 104
cvReleaseFileStorage(), 84
cvReleaseHist(), 197
cvReleaseImage(), 18, 19, 24, 25
cvReleaseKalman(), 358
cvReleaseMat(), 34
cvReleaseMemoryStorage(), cvRelease

MemStorage(), 223
cvReleasePOSITObject(), 413
cvReleaseStructuringElementEx(), 118
cvReleaseVideoWriter(), 27, 106
cvRemap(), 162, 396, 438, 445
cvRepeat(), 72
cvReprojectImageTo3D(), 453, 454
cvResetImageROI(), 45
cvReshape(), 374
cvResize(), 129-130, 512
cvResizeWindow(), 92
cvRestoreMemStoragePos(), 223
cvRetrieveFrame(), 104
cvRodrigues2(), 394, 402
cvRunningAverage(), 276
cvSampleLine(), 270
cvSave(), 83
cvSaveImage(), 92
cvScalar(), 32, 209
cvScalarAll(), 31, 32
cvScale(), 69, 72
cvSegmentMotion(), 346
cvSeqElemIdx(), 226, 227
cvSeqInsert(), 231
cvSeqInsertSlice(), 227
cvSeqInvert(), 228
cvSeqPartition(), 228
cvSeqPop(), cvSeqPopFront(),

cvSeqPopMulti(), 229
cvSeqPush(), cvSeqPushFront(),

cvSeqPushMulti(), 229, 231
cvSeqRemove(), 231
cvSeqRemoveSlice(), 227

16-R4886-AT1.indd 54716-R4886-AT1.indd 547 9/15/08 4:27:30 PM9/15/08 4:27:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

548 | Index

cvXX OpenCV functions (continued)
cvSeqSearch(), 228
cvSeqSlice(), 227
cvSeqSort(), 228
cvSet(), cvSetZero(), 72–73
cvSet2D(), 209
cvSetCaptureProperty(), 21, 105
cvSetCOI(), 68
cvSetHistBinRanges(), 197
cvSetHistRanges(), 197
cvSetIdentity(), 73
cvSetImageROI(), 45
cvSetMouseCallback(), 97
cvSetReal2D(), 39, 209
cvSetSeqBlockSize(), 231
cvSetSeqReaderPos(), 233
cvSetTrackbarPos(), 100
cvShowImage(), 17, 22, 93, 94
cvSize(), 32, 212
cvSlice(), 248
cvSobel(), 148–150, 158–160, 173
cvSolve(), 73, 75–76
cvSplit(), 73–74, 201, 275
cvSquareAcc(), 277
cvStartAppendToSeq(), 232
cvStartFindContours(), 239
cvStartReadChainPoints(), 240, 241
cvStartReadSeq(), 233, 241
cvStartWindowThread(), 94
cvStartWriteSeq(), 231
cvStartWriteStruct(), 84
cvStereoCalibrate(), 407, 427–431, 436, 445
cvStereoRectify(), 397, 436–438, 445
cvStereoRectifyUncalibrated(), 433, 437,

445, 454
cvSub(), 74
cvSubdiv2DGetEdge(), 306, 307
cvSubdiv2DLocate(), 309, 310–311
cvSubdiv2DNextEdge(), 308–310
cvSubdiv2DPoint(), 307
cvSubdiv2DRotateEdge(), 306, 306,

310–312
cvSubdivDelaunay2DInsert(), 304
cvSubS(), cvSubRS function, 74, 275
cvSubstituteContour(), 239
cvSum(), 74–75
cvSVBkSb(), 75–76
cvSVD(), 75
cvTermCriteria(), 258, 299–300, 321, 331
cvThreshHist(), 199
cvThreshold(), 135–141, 199, 234, 270

cvTrace(), 76
cvTransform(), 169, 171, 407
cvTranspose(), cvT(), 76
cvTriangleArea(), 312
cvUndistort2(), 396
cvUndistortPoints(), 396, 445
cvUpdateMotionHistory(), 343–346
cvWaitKey(), 18, 19, 95, 482
cvWarpAffine(), 162–170, 407
cvWarpPerspective(), 170, 407, 409
cvWatershed(), 295
cvWrite(), 84
cvWriteFrame(), 27, 106
cvWriteInt(), 84
cvXor(), cvXorS(), 76–77
cvZero(), 77, 178

CxCore, OpenCV component, 11, 13, 83, 85

D
DAISY (dense rapidly computed Gaussian scale

variant gradients), 524
DARPA Grand Challenge race, 2, 313–314, 526
data persistence, 82–86
data structures

constructor methods, defined, 31
converting, 72
handling of, 24
image, 32, 42–44
matrix, 33–41
primitive, 31
serializing, 82
(see also CvXX OpenCV data structures)

data types (see CvXX OpenCV data structures;
data structures)

DCT (discrete cosine transform), 182
de-allocation of memory, 222, 472
debug builds, 9, 16
debugging, 267, 383
decision stumps, 497, 507–509, 516
decision trees

advanced analysis, 492
binary, 486–495
compared, 506
creating and training, 487–491
predicting, 491
pruning, 492–495
random, 463, 465, 474, 501–506

deep copy, 227
deferred (reinforcement) learning, 461
degenerate configurations, avoiding, 274, 426

16-R4886-AT1.indd 54816-R4886-AT1.indd 548 9/15/08 4:27:30 PM9/15/08 4:27:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index | 549

Delaunay triangulation, 14, 301–304, 310–312
dense rapidly computed Gaussian scale variant

gradients (DAISY), 524
depth maps, 415, 452, 453
deque, 223
detect_and_draw() code, 511
dilation, 115–121
directories, OpenCV, 16
discrete cosine transform (DCT), 182
discriminative models, 462, 483
disparity effects, 405
disparity maps, 415
distance transforms, 185, 187
distortion

coefficients, defined, 392
lens, 375–377, 378

documentation, OpenCV, 11–13, 471, 525
dominant point, 246
Douglas-Peucker approximation, 245, 246,

290–292
download and installation, OpenCV, 8–11
dynamical motion, 354

E
earth mover’s distance (EMD), 203, 207–209
edges

Delaunay, 304–312
detection, 5, 25, 151–154
Voronoi, 304–312
walking on, 306

edible mushrooms example, 470, 488–495, 496,
499, 503–506

Eigen objects, 13
eigenvalues/eigenvectors, 48, 61, 318–321, 329,

425
ellipses, 78–79, 120, 248–250
EM (expectation maximization), 462, 463,

479, 516
EMD (earth mover’s distance), 203, 207–209
entropy impurity, 487
epipolar geometry, overview of, 419–421
epipolar lines, 426–427
erosion, 115–121
Eruhimov, Victor, 6
essential matrices, 421–423, 445, 454
estimators (see condensation algorithm;

Kalman filter)
Euclidean distance, 208, 462
expectation maximization (EM), 462, 463,

479, 516

F
face recognition

Bayesian algorithm, 484
Delaunay points, 303
detector classifier, 463, 506, 511
eigenfaces, 55
Haar classifier, 183, 463, 471, 506–510
template matching, 214
training and test set, 459

face recognition tasks, examples of
shape, clustering by, 461
orientations, differing, 509, 514
sizes, differing, 341, 513
emotions, 303
eyes, 14, 510, 513, 514
features, using, 483
samples, learning from, 515
mouth, 14, 467, 510, 514
age, predicting, 460, 467
temperature difference, using, 342

fast PCA, 54, 55
file

configuration (logging), 83
disk, writing to, 27, 105
header, 16, 31
information about file, reading, 19
moving within, 19
playing video, 18, 27, 105
pointers, checking, 102
properties, checking and setting, 104
querying, 36
reading images from, 16, 19, 27, 103–105
signature, 92

Filip, Daniel, 523
filter pipeline, 25
fish-eye (barrel) effect, 375, 376
fish-eye camera lenses, 429
flood fill, 124–129
fonts, 80–82
foreground

finding objects, 285
overview of, 265
segmentation into, 274

foreground versus background, 267
forward projection, problems, 163
forward transform, 179
FOURCC (four-character code), 28, 105
Fourier, Joseph, 177
Fourier transforms, 144, 177–182
frame differencing, 270, 292–294
Freeman chains, 240, 261

16-R4886-AT1.indd 54916-R4886-AT1.indd 549 9/15/08 4:27:30 PM9/15/08 4:27:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

550 | Index

Freund, Y., 496
frontal parallel configuration, 416, 417–418,

438, 453
functions (see cvXX OpenCV functions)
fundamental matrix, 405, 421, 423–426, 454

G
Galton, Francis, 216
Gauss, Carl, 177
Gaussian elimination, 60, 65, 66
Gaussian filter, 110–114
Gaussian smooth, 22, 24
GEMM (generalized matrix multiplication),

48, 62, 69
generalized matrix multiplication (GEMM),

48, 62, 69
generative algorithms, 462, 483
geometrical checking, 250
Geometric Blur, 523, 524
geometric manipulations, 163–171
gesture recognition, 14, 193, 194, 342
Gini index (impurity), 487
GLOH (gradient location and orientation

histogram), 524
Google, 1, 523
gradient location and orientation histogram

(GLOH), 524
gradients

Hough, 158
morphological, 120, 121–122, 123, 124, 125
Sobel derivatives and, 148

grayscale morphology, 124
grayscale, converting to/from color, 27, 58–60,

92, 106

H
Haar classifier, 183, 463, 471, 506–510
haartraining, 12, 513–515
Harris corners, 317–319, 321, 329, 383, 524
Hartley’s algorithm, 431–433, 439
Hessian image, 317
HighGUI, OpenCV component, 11, 13, 16–19,

21, 90
high-level graphical user interface

(see HighGUI)
hill climbing algorithm, 337
histogram of oriented gradients (HoG),

523, 524
histograms, 193–213

accessing, 198
assembling, 150, 199

chain code (CCH), 262
color, 205, 206
comparing, 201–203, 205
converting to signatures, 208
data structure, 194, 195
defined, 193
dense, 199
equalization, 186–190
grid size problems, 194
intersection, 202
matching methods, 201–202, 206
overview of, 193
pairwise geometrical (PGH), 261–262

homogeneous coordinates, 172, 373, 385–387
homographies

defined, 163, 371
dense, 170
flexibility of, 164, 169
map matrix, 170, 453
overview of, 407
planar, 384–387
sparse, 171

Horn-Schunk dense tracking method, 316,
322, 335

horopter, 440–442
Hough transforms, 153–160
Hu moments, 253–256, 347, 348
hue saturation histogram, 203–205
human vision (see vision, human)

I
illuminated grid histogram, 203–205
image (projective) planes, 371, 407
Image Processing Library (IPL), 42
image pyramids, 25, 130–135
images

copying, 57
creating, 23
data types, 43
data types, converting, 56
displaying, 17, 23, 93
flipping, 61–62, 107
formats, 17, 62, 106
loading, 17, 92
operators, table of, 48–49

impurity metrics, 486–487
inpainting, 297
installation of OpenCV, 8–11, 16, 31, 87
integral images, 182–185, 508
Integrated Performance Primitives (IPP),

1, 7–10, 86, 179

16-R4886-AT1.indd 55016-R4886-AT1.indd 550 9/15/08 4:27:30 PM9/15/08 4:27:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index | 551

Intel Compiler, 516
Intel Corporation, 521
Intel Research, 6
Intel website for IPP, 9
intensity bumps/holes, finding, 115
intentional bias, 493–495, 496
interpolation, 130, 162, 163, 176
intersection method, histograms, 202
intrinsic parameters, defined, 371
intrinsics matrix, defined, 373, 392
inverse transforms, 179
IPAN algorithm, 246, 247
IPL (Image Processing Library), 42
IplImage data structure

compared with RGB, 32
element functions, 38, 39
overview of, 42
variables, 17, 42, 45–47

IPP (Integrated Performance Primitives),
1, 7–10, 86, 179

J
Jacobi’s method, 61, 406
Jaehne, B., 132
Jones, M. J., 506–511, 515

K
K-means algorithm, 462, 472, 479–483
K-nearest neighbor (KNN), 463, 471, 516
Kalman filter, 350–363

blending factor (Kalman gain), 357
extended, 363
limitations of, 364
mathematics of, 351–353, 355–358
OpenCV and, 358–363
overview of, 350

kernel density estimation, 338
kernels

convolution, 144
custom, 118–120
defined, 115, 338
shape values, 120
support of, 144

Kerns, Michael, 495
key-frame, handling of, 21
Konolige, Kurt, 439
Kuriakin, Valery, 6

L
Lagrange multiplier, 336
Laplacian operator, 150–152

Laplacian pyramid, defined, 131, 132
learning, 459
Lee, Shinn, 6
lens distortion model, 371, 375–377, 378,

391, 416
lenses, 370
Levenberg-Marquardt algorithm, 428
licensing terms, 2, 8
Lienhart, Rainer, 507
linear transformation, 56
lines

drawing, 77–78
epipolar, 454–457
finding, 25, 153
(see also Delaunay triangulation)

link strength, 298
Linux systems, 1, 8, 9, 15, 94, 523, 525
Lloyd algorithm, 479
LMedS algorithm, 425
log-polar transforms, 174–177
Lowe, David, 524
Lowe SIFT demo, 464
Lucas-Kanade (sparse) method, 316, 317,

323–334, 335

M
Machine Learning Library (MLL), 1, 11–13,

471–475
machine learning, overview of, 459–466
MacOS systems, 1, 10, 15, 92, 94
MacPowerPC, 15
Mahalonobis distance, 49, 66, 462–471,

476–478
malloc() function, 223
Manhattan distance, 208
Manta open source ray-tracing, 524
Markov random fields (MRFs), 525
masks, 47, 120, 124, 135
matching methods

Bhattacharyya, 202
block, 322, 336, 439, 443–444
contours, 251–259
hierarchical, 256–259
histogram, 201–206
Hu moments, 253–256, 347, 348
template, 214–219

Matlab interface, 1, 109, 431
matrix

accessing data in, 34, 36–41
array, comparison with, 40
creating, 34, 35

16-R4886-AT1.indd 55116-R4886-AT1.indd 551 9/15/08 4:27:30 PM9/15/08 4:27:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

552 | Index

matrix (continued)
data types, 32–41
element functions, 38, 39
elements of, 33
essential, 421–423, 445, 454
fundamental, 405, 421, 423–426, 454
header, 34
inverting, 65–66
multiplication, 48, 62, 68–69
operators, table of, 48–49

maximally stable external region (MSER),
523, 524

Maydt, Jochen, 507
mean-shift segmentation/tracking, 278,

298–300, 337–341, 479
mechanical turk, 464
median filter, 110–112
memory

allocation/de-allocation, 222, 472
layout, 40, 41
storage, 222–234

misclassification, cost of, 470–471, 487
missing values, 474, 499
MIT Media Lab, 6, 341
MJPG (motion jpeg), 28
MLL (Machine Learning Library), 1, 11–13,

471–475
MLP (multilayer perceptron), 463, 498, 517
moments

central, 254
defined, 252
Hu, 253–256, 347, 348
normalized, 253

morphological transformations, 115–129
Black Hat operation, 120, 123–124, 127
closing operation, 120–121, 123
custom kernels, 118–120
dilation, 115–121
erosion, 115–121
gradient operation, 120–123, 124, 125
intensity images, 116
opening operation, 120–121, 122
Top Hat operation, 123–124, 126

motion
control, 354
dynamical, 354
random, 354

motion jpeg (MJPG), 28
motion templates, 341–348
mouse events, 95–99
MRFs (Markov random fields), 525

MSER (maximally stable external region), 523,
524

multilayer perception (MLP), 463, 498, 517
mushrooms example, 470, 488–495, 496, 499,

503–506

N
Newton’s method, 326
Ng, Andrew (web lecture), 466
nonpyramidal Lucas-Kanade dense optical

flow, 329
normalized template matching, 216
Numpy, 525

O
object silhouettes, 342–346
offset image patches, 524
onTrackbarSlide() function, 20
OOB (out of bag) measure, 502
OpenCV

definition and purpose, 1, 5
directories, 16
documentation, 11–13, 471, 525
download and installation, 8–11, 16, 31, 87
future developments, 7, 14, 521–526
header files, 16, 31
history, 1, 6, 7
how to use, 5
libraries, 16, 23
license, 2, 8
optimization with IPP, 7, 8, 86
portability, 14–15
programming languages, 1, 7, 14
setup, 16
structure and content, 13
updates, most recent, 11
user community, 2, 6–7

OpenMP, 516
operator functions, 48–49
optical flow, 322–334, 335, 454, 523
order constraint, 440
out of bag (OOB) measure, 502
overfitting (variance), 466–468, 471, 493

P
pairwise geometrical histogram (PGH),

261–262
Pearson, Karl, 202
Peleg, S., 207

16-R4886-AT1.indd 55216-R4886-AT1.indd 552 9/15/08 4:27:30 PM9/15/08 4:27:30 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index | 553

perspective transformations
(see homographies)

PGH (pairwise geometrical histogram),
261–262

PHOG, 523
PHOW (pyramid histogram embedding of

other features), 523, 524
pinhole camera model, 370, 371–373, 391
pipeline, filter, 25
Pisarevsky, Vadim, 6
pixel types, 43
pixels, virtual, 109, 146
planar homography, defined, 384
plumb bob model, 376
point, dominant, 246
pointer arithmetic, 38–41, 44
polar to Cartesian coordinates, 172–174
polygons, 79–80, 245
portability guide, 14
pose, 379, 405, 413
POSIT (Pose from Orthography and Scaling

with Iteration), 412–414
PPHT (progressive probabilistic Hough

transform), 156
prediction, 349
primitive data types, 31
principal points, 372, 415
principal rays, 415
probabilistic graphical models, 483
progressive probabilistic Hough transform

(PPHT), 156
projections, overview of, 405
projective planes, 371, 407
projective transforms, 172, 373, 407
pyramidal Lucas-Kanade optical flow, 329–334,

335
pyramid histogram embedding of other fea-

tures (PHOW), 523, 524
pyramids, image, 25, 130–135
Python, 1, 9, 523, 525

R
radial distortions, 375–377, 392, 429
random forests, 501
random motion, 354
RANSAC algorithm, 425
receiver operating characteristic (ROC), 469,

470
recognition, defined, 461
recognition by context, 524

recognition tasks, examples of
blocky features, 510
car in motion, 356
copy detection, 193
depth perception, 522
edible mushrooms, 470, 488–495, 496, 499,

503–506
flesh color, 205, 209–213
flight simulator, 414
flowers, yellow, 469
gestures, 14, 193, 194
hand, 271
local navigation on Mars, 521
microscope slides, processing, 121, 124, 471
novel information from video stream,

56, 265
object, 175, 212, 214
person, identity of, 467
person, motion of, 348–349
person, presence of, 464, 522
product inspection, 218, 521
road, 526
shape, 262
text/letter, 463, 517
tree, windblown, 266–268
(see also face recognition tasks, examples of;

robot tasks, examples of)
rectangles

bounding, 248
drawing, 78, 107
parallelogram, converting to, 164
trapezoid, converting to, 164

rectification, 430–438
region of interest (ROI), 43–46, 52
regression, defined, 461
regularization constant, 335
reinforcement (deferred) learning, 461
remapping, 162
reprojection, 428, 433–436, 452
resizing, 129-130, 163
RGB images, 44, 269
robot tasks, examples of

camera on arm, 431
car on road, 408
cart, bird’s-eye view, 409
objects, grasping, 452, 522
office security, 5
planning, 483, 522
scanning a scene, 475
staples, finding and picking up, 4

robotics, 2, 7, 405, 453, 521, 524–526

16-R4886-AT1.indd 55316-R4886-AT1.indd 553 9/15/08 4:27:31 PM9/15/08 4:27:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

554 | Index

ROC (receiver operating characteristic),
469, 470

Rodrigues, Olinde, 402
Rodrigues transform, 401–402, 406
ROI (region of interest), 43–46, 52
Rom, H., 207
Rosenfeld-Johnson algorithm, 245
rotation matrix, defined, 379–381
rotation vector, defined, 392
Ruby interface, 1
running average, 276

S
SAD (sum of absolute difference), 439, 443
salient regions, 523
scalable recognition techniques, 524
scalar tuples, 32
scale-invariant feature transform (SIFT), 321,

464, 524
scene modeling, 267
scene transitions, 193
Schapire, R. E., 496
Scharr filter, 150, 343
SciPy, 525
scrambled covariance matrix, 54–55
seed point, 124
segmentation, overview of, 265
self-cleaning procedure, 25
sequences, 134, 223–234

accessing, 134, 226
block size, 231
converting to array, 233
copying, 227–229
creating, 224–226
deleting, 226
inserting and removing elements from, 231
moving, 227–229
partitioning, 229, 230
readers, 231–233
sorting, 228
stack, using as, 229
writers, 231–233

setup, OpenCV, 16
Shape Context, 523, 524
Shi and Tomasi corners, 318, 321
SHT (standard Hough transform), 156
SIFT (scale-invariant feature transform), 321,

464, 524
silhouettes, object, 342–346
simultaneous localization and mapping

(SLAM), 524

singularity threshold, 76
singular value decomposition, 60, 61, 75, 391
SLAM (simultaneous localization and

mapping), 524
slider trackbar, 20–22, 99–102, 105, 242
smoothing, 22–24, 109–115
Sobel derivatives, 145, 148–151, 158, 318, 343
software, additional needed, 8
Software Performance Libraries group, 6
SourceForge site, 8
spatial coherence, 324
speckle noise, 117, 443
spectrum multiplication, 179
square differences matching method, 215
stack, sequence as a, 229
standard Hough transform (SHT), 156
Stanford’s “Stanley” robot, 2, 526
statistical machine learning, 467
stereo imaging

calibration, 427–430, 445–452
correspondence, 438–445
overview of, 415
rectification, 427, 433, 438, 439, 452

stereo reconstruction ambiguity, 432
strong classifiers, 496, 499
structured light, 523
subpixel corners, 319–321, 383, 523
summary characteristics, 247
sum of absolute difference (SAD), 439, 443
Sun systems, 15
superpixels, 265
supervised/unsupervised data, 460
support vector machine (SVM), 463, 470, 517
SURF gradient histogram grids, 523, 524
SVD (singular value decomposition), 60, 61,

75, 391
SVM (support vector machine), 463, 470, 517
switches, 101

T
tangential distortions, 375–377, 378
Taylor series, 375
Teh-Chin algorithm, 245
temporal persistence, 324
test sets, 460–464
text, drawing, 80–82
texture descriptors, 14
textured scene, high and low, 439
thresholds

actions above/below, 135
adaptive, 138–141

16-R4886-AT1.indd 55416-R4886-AT1.indd 554 9/15/08 4:27:31 PM9/15/08 4:27:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Index | 555

binary, 139
hysteresis, 152
image pyramids, 133–135
singularity, 76
types, 135

timer function (wait for keystroke), 18, 19
Top Hat operation, 123–124, 126
trackbar slider, 20–22, 99–102, 105, 242
tracking

corner finding, 316–321
CvAux, features in, 14
Horn-Schunk dense method, 316, 322, 335
identification, defined, 316
modeling, defined, 316

training sets, 459–464
transforms

distance, 185–187
forward, 179
inverse, 179
overview of, 144
perspective, 163
remapping, 162
(see also individual transforms)

translation vectors, overview of, 379–381, 392
trees, contour, 235–237, 256, 257
triangulation, 301–304, 310–312, 415–418, 419

U
underfitting (see bias)
undistortion, 396, 445
Unix systems, 95
updates, latest OpenCV, 11
user community, 2, 6–7
user input

marked objects, 296
mouse, 95–98
trackbar, 99–103
wait for keyboard, 17–21, 95, 483
window functions, 91

V
validation sets, 460
variable importance, 465, 492–495, 496,

503–506
variables

global, naming convention, 21
IplImage, 17, 42, 45–47

variance, finding, 277
variance (overfitting), 466–468, 471, 493

Viola, Paul, 506–511, 515
Viola-Jones rejection cascade (detector),

506–511, 515
virtual pixels, 109, 146
vision, computer

applications of, 1–5, 121, 265, 267
challenges of, 2–5, 370, 464
defined, 2
(see also recognition tasks, examples of)

vision, human, 2–3, 14, 174, 370, 517
Visual Studio, 16
Voronoi iteration, 479
Voronoi tessellation, 301–312

W
walking on edges, 306
warping, 163–166
watercolor effect, 114
watershed algorithm, 295–297
weak classifiers, 463, 496–501, 507, 516
weak-perspective approximation, 413
Werman, M., 207
whitening, data, 471
widthStep image parameter, 43–47
Wiki sites, OpenCV, 8, 12, 471
Willow Garage, 7, 521
Win32 systems, 62, 92, 95
Windows

OpenCV installation, 8–11
portability, 15

windows
clean up, 18, 91, 94
closing, 18, 91, 94
creating, 17, 22, 91, 242
moving, 94
names versus handles, 92
properties of, defining, 17
resizing, 92

wrapper function, 24

Y
Yahoo groups forum, 2

Z
Zhang’s method, 389
Zisserman’s approximate nearest neighbor

suggestion, 525
zooming in/out, 129

16-R4886-AT1.indd 55516-R4886-AT1.indd 555 9/15/08 4:27:31 PM9/15/08 4:27:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

16-R4886-AT1.indd 55616-R4886-AT1.indd 556 9/15/08 4:27:31 PM9/15/08 4:27:31 PM

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors
Dr. Gary Rost Bradski is a consulting professor in the CS department at the Stanford

University AI Lab, where he mentors robotics, machine learning, and computer vision

research. He is also senior scientist at Willow Garage (http://www.willowgarage.com), a

recently founded robotics research institute/incubator. He holds a B.S. in EECS from

UC Berkeley and a Ph.D. from Boston University. He has 20 years of industrial experi-

ence applying machine learning and computer vision, spanning option-trading opera-

tions at First Union National Bank, to computer vision at Intel Research, to machine

learning in Intel Manufacturing, and several startup companies in between.

Gary started the Open Source Computer Vision Library (OpenCV, http://sourceforge.net/

projects/opencvlibrary), which is used around the world in research, in government, and

commercially; the statistical Machine Learning Library (which comes with OpenCV);

and the Probabilistic Network Library (PNL). Th e vision libraries helped develop a no-

table part of the commercial Intel Performance Primitives Library (IPP, http://tinyurl

.com/36ua5s). Gary also organized the vision team for Stanley, the Stanford robot that won

the DARPA Grand Challenge autonomous race across the desert for a $2M team prize,

and he helped found the Stanford AI Robotics project at Stanford (http://www.cs.stanford

.edu/group/stair) working with Professor Andrew Ng. Gary has more than 50 publica-

tions and 13 issued patents with 18 pending. He lives in Palo Alto, CA, with his wife and

three daughters and bikes road or mountain as much as he can.

Dr. Adrian Kaehler is a senior scientist at Applied Minds Corporation. His current re-

search includes topics in machine learning, statistical modeling, computer vision, and

robotics. Adrian received his Ph.D. in Th eoretical Physics from Columbia University in

1998. He has since held positions at Intel Corporation and the Stanford University AI

Lab and was a member of the winning Stanley race team in the DARPA Grand Chal-

lenge. He has a variety of published papers and patents in physics, electrical engineer-

ing, computer science, and robotics.

Colophon
Th e image on the cover of Learning OpenCV is a giant, or great, peacock moth (Saturnia

pyri). Native to Europe, the moth’s range includes southern France and Italy, the Ibe-

rian Peninsula, and parts of Siberia and northern Africa. It inhabits open landscapes

with scattered trees and shrubs and can oft en be found in parklands, orchards, and

vineyards, where it rests under shade trees during the day.

Th e largest of the European moths, giant peacock moths have a wingspan of up to six

inches; their size and nocturnal nature can lead some observers to mistake them for

bats. Th eir wings are gray and grayish-brown with accents of white and yellow. In the

center of each wing, giant peacock moths have a large eyespot, a distinctive pattern most

commonly associated with the birds they are named for.

Th e cover image is from Cassell’s Natural History, Volume 5. Th e cover font is Adobe-

ITC Garamond. Th e text font is Linotype Birka; the heading font is Adobe Myriad Con-

densed; and the code font is LucasFont’s Th eSansMonoCondensed.

17-R4886-AT1.indd 55717-R4886-AT1.indd 557 9/15/08 4:27:51 PM9/15/08 4:27:51 PM

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents
	Preface
	Purpose
	Who This Book Is For
	What This Book Is Not

	About the Programs in This Book
	Prerequisites
	How This Book Is Best Used
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	We’d Like to Hear from You
	Acknowledgments
	Thanks for Help on OpenCV
	Thanks for Help on the Book
	Gary Adds . . .
	Adrian Adds . . .

	CHAPTER 1: Overview
	What Is OpenCV?
	Who Uses OpenCV?
	What Is Computer Vision?
	The Origin of OpenCV
	Speeding Up OpenCV with IPP
	Who Owns OpenCV?

	Downloading and Installing OpenCV
	Install
	Windows
	Linux
	MacOS X

	Getting the Latest OpenCV via CVS
	More OpenCV Documentation
	Documentation Available in HTML
	Documentation via the Wiki

	OpenCV Structure and Content
	Portability
	Exercises

	CHAPTER 2: Introduction to OpenCV
	Getting Started
	First Program—Display a Picture
	Second Program—AVI Video
	Moving Around
	A Simple Transformation
	A Not-So-Simple Transformation
	Input from a Camera
	Writing to an AVI File
	Onward
	Exercises

	CHAPTER 3: Getting to Know OpenCV
	OpenCV Primitive Data Types
	Matrix and Image Types

	CvMat Matrix Structure
	Accessing Data in Your Matrix
	The easy way
	The hard way
	The right way

	Arrays of Points

	IplImage Data Structure
	Accessing Image Data
	More on ROI and widthStep

	Matrix and Image Operators
	cvAbs, cvAbsDiff, and cvAbsDiffS
	cvAdd, cvAddS, cvAddWeighted, and alpha blending
	cvAnd and cvAndS
	cvAvg
	cvAvgSdv
	cvCalcCovarMatrix
	cvCmp and cvCmpS
	cvConvertScale
	cvConvertScaleAbs
	cvCopy
	cvCountNonZero
	cvCrossProduct
	cvCvtColor
	cvDet
	cvDiv
	cvDotProduct
	cvEigenVV
	cvFlip
	cvGEMM
	cvGetCol and cvGetCols
	cvGetDiag
	cvGetDims and cvGetDimSize
	cvGetRow and cvGetRows
	cvGetSize
	cvGetSubRect
	cvInRange and cvInRangeS
	cvInvert
	cvMahalonobis
	cvMax and cvMaxS
	cvMerge
	cvMin and cvMinS
	cvMinMaxLoc
	cvMul
	cvNot
	cvNorm
	cvNormalize
	cvOr and cvOrS
	cvReduce
	cvRepeat
	cvScale
	cvSet and cvSetZero
	cvSetIdentity
	cvSolve
	cvSplit
	cvSub
	cvSub, cvSubS, and cvSubRS
	cvSum
	cvSVD
	cvSVBkSb
	cvTrace
	cvTranspose and cvT
	cvXor and cvXorS
	cvZero

	Drawing Things
	Lines
	Circles and Ellipses
	Polygons
	Fonts and Text

	Data Persistence
	Integrated Performance Primitives
	Verifying Installation

	Summary
	Exercises

	CHAPTER 4: HighGUI
	A Portable Graphics Toolkit
	Creating a Window
	Loading an Image
	Displaying Images
	WaitKey
	Mouse Events
	Sliders, Trackbars, and Switches
	No Buttons

	Working with Video
	Reading Video
	Writing Video

	ConvertImage
	Exercises

	CHAPTER 5: Image Processing
	Overview
	Smoothing
	Image Morphology
	Dilation and Erosion
	Making Your Own Kernel
	More General Morphology
	Opening and closing
	Morphological gradient
	Top Hat and Black Hat

	Flood Fill
	Resize
	Image Pyramids
	Threshold
	Adaptive Threshold

	Exercises

	CHAPTER 6: Image Transforms
	Overview
	Convolution
	Convolution Boundaries

	Gradients and Sobel Derivatives
	Scharr Filter

	Laplace
	Canny
	Hough Transforms
	Hough Line Transform
	Hough Circle Transform

	Remap
	Stretch, Shrink, Warp, and Rotate
	Affine Transform
	Dense affine transformations
	cVWarpAffine performance
	Computing the affine map matrix
	Sparse affine transformations

	Perspective Transform
	Dense perspective transform
	Computing the perspective map matrix
	Sparse perspective transformations

	CartToPolar and PolarToCart
	LogPolar
	Discrete Fourier Transform (DFT)
	Spectrum Multiplication
	Convolution and DFT

	Discrete Cosine Transform (DCT)
	Integral Images
	Distance Transform
	Histogram Equalization
	Exercises

	CHAPTER 7: Histograms and Matching
	Basic Histogram Data Structure
	Accessing Histograms
	Basic Manipulations with Histograms
	Comparing Two Histograms
	Correlation (method = CV_COMP_CORREL)
	Chi-square (method = CV_COMP_CHISQR)
	Intersection (method = CV_COMP_INTERSECT)
	Bhattacharyya distance (method = CV_COMP_BHATTACHARYYA)

	Histogram Usage Examples

	Some More Complicated Stuff
	Earth Mover’s Distance
	Back Projection
	Patch-based back projection

	Template Matching
	Square difference matching method (method = CV_TM_SQDIFF)
	Correlation matching methods (method = CV_TM_CCORR)
	Correlation coefficient matching methods (method = CV_TM_CCOEFF)
	Normalized methods

	Exercises

	CHAPTER 8: Contours
	Memory Storage
	Sequences
	Creating a Sequence
	Deleting a Sequence
	Direct Access to Sequence Elements
	Slices, Copying, and Moving Data
	Using a Sequence As a Stack
	Inserting and Removing Elements
	Sequence Block Size
	Sequence Readers and Sequence Writers
	Sequences and Arrays

	Contour Finding
	Contours Are Sequences
	Freeman Chain Codes
	Drawing Contours
	A Contour Example

	Another Contour Example
	More to Do with Contours
	Polygon Approximations
	Summary Characteristics
	Length
	Bounding boxes
	Enclosing circles and ellipses

	Geometry

	Matching Contours
	Moments
	More About Moments
	Matching with Hu Moments
	Hierarchical Matching
	Contour Convexity and Convexity Defects
	Pairwise Geometrical Histograms

	Exercises

	CHAPTER 9: Image Parts and Segmentation
	Parts and Segments
	Background Subtraction
	Weaknesses of Background Subtraction
	Scene Modeling
	A Slice of Pixels
	Frame Differencing
	Averaging Background Method
	Accumulating means, variances, and covariances

	Advanced Background Method
	Structures
	Learning the background
	Learning with moving foreground objects
	Background differencing: Finding foreground objects
	Using the codebook background model
	A few more thoughts on codebook models

	Connected Components for Foreground Cleanup
	A quick test

	Comparing Background Methods

	Watershed Algorithm
	Image Repair by Inpainting
	Mean-Shift Segmentation
	Delaunay Triangulation, Voronoi Tesselation
	Creating a Delaunay or Voronoi Subdivision
	Navigating Delaunay Subdivisions
	Walking on edges
	Points from edges
	Method 1: Use an external point to locate an edge or vertex
	Method 2: Step through a sequence of points or edges
	Identifying the bounding triangle or edges on the convex hull and walking the hull

	Usage Examples

	Exercises

	CHAPTER 10: Tracking and Motion
	The Basics of Tracking
	Corner Finding
	Subpixel Corners
	Invariant Features
	Optical Flow
	Lucas-Kanade Method
	How Lucas-Kanade works
	Lucas-Kanade code
	Pyramid Lucas-Kanade code

	Dense Tracking Techniques
	Horn-Schunck method
	Block matching method

	Mean-Shift and Camshift Tracking
	Mean-Shift
	Camshift

	Motion Templates
	Estimators
	The Kalman Filter
	Some Kalman math
	Systems with dynamics
	Kalman equations
	OpenCV and the Kalman filter
	Kalman filter example code

	A Brief Note on the Extended Kalman Filter

	The Condensation Algorithm
	Exercises

	CHAPTER 11: Camera Models and Calibration
	Camera Model
	Basic Projective Geometry
	Lens Distortions

	Calibration
	Rotation Matrix and Translation Vector
	Chessboards
	Subpixel corners
	Drawing chessboard corners

	Homography
	Camera Calibration
	How many chess corners for how many parameters?
	What’s under the hood?
	Calibration function
	Computing extrinsics only

	Undistortion
	Putting Calibration All Together
	Rodrigues Transform
	Exercises

	CHAPTER 12: Projection and 3D Vision
	Projections
	Affine and Perspective Transformations
	Bird’s-Eye View Transform Example

	POSIT: 3D Pose Estimation
	Stereo Imaging
	Triangulation
	Epipolar Geometry
	The Essential and Fundamental Matrices
	Essential matrix math
	Fundamental matrix math
	How OpenCV handles all of this

	Computing Epipolar Lines
	Stereo Calibration
	Stereo Rectification
	Uncalibrated stereo rectification: Hartley’s algorithm
	Calibrated stereo rectification: Bouguet’s algorithm
	Rectification map

	Stereo Correspondence
	Stereo Calibration, Rectification, and Correspondence Code
	Depth Maps from 3D Reprojection

	Structure from Motion
	Fitting Lines in Two and Three Dimensions
	Exercises

	CHAPTER 13: Machine Learning
	What Is Machine Learning
	Training and Test Set
	Supervised and Unsupervised Data
	Generative and Discriminative Models
	OpenCV ML Algorithms
	Using Machine Learning in Vision
	Variable Importance
	Diagnosing Machine Learning Problems
	Cross-validation, bootstrapping, ROC curves, and confusion matrices

	Common Routines in the ML Library
	Training
	Prediction
	Controlling Training Iterations

	Mahalanobis Distance
	K-Means
	Problems and Solutions
	K-Means Code

	Naïve/Normal Bayes Classifier
	Naïve/Normal Bayes Code

	Binary Decision Trees
	Regression Impurity
	Classification Impurity
	Entropy impurity
	Gini impurity
	Misclassification impurity

	Decision Tree Usage
	Training the tree

	Decision Tree Results

	Boosting
	AdaBoost
	Boosting Code

	Random Trees
	Random Tree Code
	Using Random Trees

	Face Detection or Haar Classifier
	Supervised Learning and Boosting Theory
	Boosting in the Haar cascade

	Viola-Jones Classifier Theory
	Works well on . . .

	Code for Detecting Faces
	Learning New Objects

	Other Machine Learning Algorithms
	Expectation Maximization
	K-Nearest Neighbors
	Multilayer Perceptron
	Support Vector Machine

	Exercises

	CHAPTER 14: OpenCV’s Future
	Past and Future
	Directions
	Specific Items

	OpenCV for Artists
	Afterword

	Bibliography
	Index
	About the Authors
	Colophon

