- Antoine M13: BlRÉFRINGENCE ET POUVOIR ROTATOIRE

Lehéelel
Brigitte correctewn: Laculowieg
Li
En introduction, on peut placer un bloo de calcite our un th amsprarent dans un rétropn ojectem, et montren les 2 réfractions, ainss que leuss plari-s-ations orthegomales (demander à Jeam le monceau de calcite). Une autre pomibilité et d'éclainer un couted avec un laser et de faure les méneses remanques.
I-BTRÉ-R HGENCE LINÉARF

1-) Mesure de An avec le compensateun de
Babinet
An reut aussi x mesurer owec un speche cammeté. Copendant, on whilise déjà cette méthode poun la biréfrengence croulaire. AChacun de décider s'il trause ça redondant ou comp lémentaine.

Un croise polariseur et analypeur à 45° des asces mentres du complens atcun. Oe neperè la qraduetion qui conreppond à la frange achomatique, puis om ajoute la lame à caractériser, et on déplace le
compensatour pour remettre la frange achomatique au centre (les cesces neutres de la larne parallè)es à ceux du compenstes) nemarques: 1) peu importesiles graduations sur le compensateur sont en mm, il a été calibré péa lablement en nombre de franges à une lon queur d'onde bien chaisie (par escemple 589 mm , id faut juste ajouter un filtre).
2) on mesure e Am à la longueun d'onde de calibration.
3) la $1^{\text {nécision est de l'ondre de } 1110}$ de frange (assez gronier).
4) domner le résultat en nombre de λ (λ étant la lonqueur d'onde d'étalomnage). P'est plus rarlant et ça permet d'éniter des eneurs.

Ontrouve e $\Delta m=3,1 \lambda \quad(\lambda=589 \mathrm{~mm})$.
2-) At mélionation de la précision grâce à une lame $\times 14$

Pette naithode, utilisée dans un cadre plus lange pour canactériser une polarisation elliptique, va mous pemmetre de gagner un chiffre rignificatif sur Δm.

Il y a peu de choses à hanger par naypront au montage vnécédent.

Il faut placer l'asce lent de la lame x/4 mi vant C'asce passant du polaniseur, pues la lame à caracteriser à 45*.

L'angle " dont on tounve l'an dyyseun à pénombere est alons bel que

$$
\tan \left(\frac{\pi}{\lambda} \Delta n e\right)=\tan \psi
$$

ou encore $\frac{\pi}{\lambda} \Delta n e=\Psi+k \pi, k \in \mathbb{Z}$.

$$
\Delta m e=\frac{\lambda}{\pi} U+k \lambda, k \in \mathbb{Z}
$$

Cm choisit k pour que ça colle à la mesure précédente.

$$
\Delta m e=3,11 \lambda \text { (soit } \Delta_{m}=9,14 \text { à } 589 \mathrm{~mm} \text {) }
$$

$$
\text { pour une valeur tabulée à } 9,11 .
$$

Oa rembe quasiment dans les lar- nes d'ermein)
nemarques: 1) peut - ̂̀tre que ça vaut le coup de détailler un peus les difféerentes polaris-ations à l'ussue de chaque élément pour plus de clarté.
2) lire les graduations sur l'analypeur à pén ombre est une vonave torture, et en plus il faut faine attention au sens Lams lequel on toume poun soustraine ou ajouter les graduations du vernier laténal.
I B BIREFRRNGENCE CIRCULARE, POUNOIR BO ATOIRE

1-) Mesure avec un spectre camnelé

C'est un effet different du pécédent, beou-cour 1 lus faible (d' où la mécessité ici de prendre un banneau, et mon tlue une lame mince)

llanche calorique
Un place le Garneau entre polariseun et analypeur croisés. Il est ossentiel de l'éclairer bien rarallelement. Sour ça, on fait l' autocollimation avec le neffet sur la face d entrié (sinon on a des effets parasites de biréfpingence liñaine).

Gn veut éventuellenent faire l' unage du barreave avec une autre lentille. On deserve des inisa tions qui sont en fait des défourts dans la taille du cristal. Il faut placer le spectromètre dans une sone à peu pres uniforme.

L'aspect théorique consiste à rupposer que la différence $m_{\text {gouche }}-m$ droite $=\Delta m$ varie en $\frac{A}{\lambda}$ oni A est une constante.

Cn a alous des esctinctions tous les λ_{i} tels aue $\frac{A}{\lambda_{i}^{2}} e=(k+i-1) \pi$

droite de pente $\frac{\pi}{A e}$.

Gm houve $A=1,5 \cdot 10^{-10} \mathrm{minad}$
Cvaleur tabulée de 1,32.10-10 $\mathrm{m} . \mathrm{rad}$ Q'écart peut être die à des effets de biréfringunce livéaire parasites).
remanques: 1) prendre un petit diaphragme, et mouter eette espérien ce sur un petit banc de 1 m .
2) commanter les différences avec le spectre camnelé linéaive si on l' a fait, on an moins s'altendre à des questions là-desus.
3) quand nous avous fait nothe montage, le vectromètre était mal calibré (décalage d'une quinzaine de mun). Nomalement ce rena conizé.

2-) Effet Taraday mesure de la constonte de Verdet
Cette exapérience est très facile:

On fait varier le courant qui traverse l'dec tro-ainmant et on meoure l'angle dout il faut tourner l'analogeur n our rétablir l'exctinction.

Il y a une courbe de calibration qui donne B en fonction de i pour un écarterment de 39 mm . In ajuste la coulbe par une droite:

$$
\psi=e l B
$$

$$
\rho(532 \mathrm{~mm})=23,0 \mathrm{rad} \cdot \mathrm{~mm}^{-1} \cdot T^{-1}
$$

Q'est le bon ondre de apromdeur, méme si nous n'arous pas trouvé de valeur tabulée.
remarques: 1) on peut foire la mesure poun une outre longueur d' onde si on a le tamps (et aume obsenven que lons d' un double pansagge, les effets s'ajoutent au lieu de re compensen).
2) un laser He Ne est pent-être péférable car plus stalle en polarisation.

En con Dusion, on pent faire remarquer que ces effets qui parainsent assez anodins sont en réabité utilisés i $\underset{\text { an escenvle avec l'effet Jockels, }}{\text { an }}$ ou pour l'effet J̌araday en astropthysique).

CORRECTION
\rightarrow At utres expériences possibles:

- montrer les teintes de Nervtom.
- sectre cannelé en biréfringence livécure
- Effet Jockels.
\rightarrow Comment comnâ̂tre le sens du pouvoir rotatoire à partir du sens dans lequel se déplacent les comelreses quand on tourne l'analyseun?

