
Journal of Magnetism and Magnetic Materials 530 (2021) 167916

Available online 15 March 2021
0304-8853/© 2021 Elsevier B.V. All rights reserved.

Chiral magnetic domain walls under transverse fields: A 
semi-analytical model 
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A B S T R A C T   

An analytical model for the domain wall structure in ultrathin films with perpendicular easy axis and interfacial 
Dzyaloshinskii-Moriya interaction, submitted to an arbitrary in-plane magnetic field, is presented. Its solution is 
simplified to the numerical minimization of an analytic function of just one variable. The model predictions are 
compared to numerical micromagnetic simulations, using parameters of existing samples, revealing a very good 
agreement. Remaining differences are analyzed, and partly corrected. Differences with the predictions of the 
simplest model, usually found in the literature, in which only the domain wall moment’s in-plane orientation can 
vary, are exemplified. The model allows accurate computations, as a function of in-plane field module and 
orientation, of the domain wall tension and width, quantities controlling the creep motion of domain walls in 
such films.   

1. Introduction 

The interfacial Dzyaloshinskii-Moriya (DMI) interaction was shown, 
in the last years, to have an important role on the magnetization statics 
and dynamics [1], especially in the case of magnetic domain walls. This 
holds not only for epitaxial atomic monolayers on single-crystal sub-
strates [2,3], but also for the polycrystalline ultrathin films which are at 
the heart of present spintronic devices [4]. The interfacial DMI, like the 
DMI introduced many years ago [5,6], is allowed only when spatial 
inversion symmetry is broken. Such symmetry breaking takes place 
naturally at interfaces [7]. DMI is expressed as an exchange interaction 
with an anti-symmetric matrix. The form of this matrix is dictated by the 
symmetry of the atomic arrangement, according to the Moriya rules [6]. 
Interfacial DMI, in the limiting case of maximal symmetry compatible 
with the presence of an interface (like for two amorphous materials on 
each side of the interface), and specializing to a film with perpendicular 
magnetization, applies to the moments in such domain walls a chiral in- 
plane effective field. As a consequence, the application of in-plane fields 
on such samples has become a very common experimental tool to study 
and control the effect of the interfacial DMI. 

As the applied fields can be large (because the DMI-induced effective 
field can also be), the effect of these fields on the domain wall structure 
and dynamics should be precisely appreciated. However, the complete 
re-calculation of the one-dimensional domain wall profile under an in- 
plane field has not been performed systematically (as the DMI was 

absent in the previous works [8,9]), and various approximations have 
been recently considered in the presence of DMI [4,10–12]. It is the goal 
of this paper to describe an accurate semi-analytical method to perform 
such calculations, based on the ‘small circle’ Ansatz employed by A. 
Hubert a long time ago [9], as we have found that this model describes 
rather well the situation. The accuracy of these calculations is indeed 
required for reliably estimating the domain wall surface tension [13], 
which is numerically very sensitive as it involves the second derivative 
of the domain wall energy. The importance of this parameter, different 
from the domain wall surface energy, for the domain wall motion in the 
creep regime was realized recently [13]. Moreover, the variations of the 
domain wall width, which have recently been shown to affect the 
pinning of domain walls [14], are also obtained by this model. 

Along the paper, semi-analytical results are compared to micro-
magnetic simulations, using as parameters those of several Pt/Co ul-
trathin films that were studied elsewhere [14]. They are also compared 
to the simplest model (called ‘constrained model’ hereafter) in which the 
domain wall profile is fixed, except for the in-plane angle of the domain 
wall magnetization [4,10,11,13] (note that less constrained variants 
exist, for example with a variable domain wall width [12]). After 
describing generally the small circle model (Section 2) [15], the case 
where the in-plane field is applied along the domain-wall normal is first 
treated, as it is the most considered configuration (Section 3). Then the 
general case of a field applied at an arbitrary angle with respect to the 
domain wall is treated, by the same method (Section 4). The obtained 
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solutions are used to evaluate the important parameters of the domain 
wall, namely its width (several definitions are considered, correspond-
ing to different physical meanings of this width), and energy. In the last 
section, the domain wall surface tension is also evaluated. 

2. Small circle model 

The reference frame used throughout is set by x the direction of the 
applied field, and z the normal to the film. The domain wall normal is the 
n→ direction, with m→= (0,0, 1) representing the unit magnetization 
vector in the domain for n < 0 (n is the abscissa along the n→ direction), 
far from the wall. In the presence of an in-plane field, magnitude H 
(positive by construction), the magnetization in the domains rotates 
from (0, 0,±1) to (h, 0,±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − h2

√
). We define h ≡ H/HK0 the reduced 

applied field, HK0 = 2K0/(μ0Ms) being the effective anisotropy field of 
the sample, with K0 = Ku − μ0M2

s /2 the effective anisotropy including 
the thin film demagnetzing effect for perpendicular magnetization, the 
uniaxial anisotropy constant Ku itself consisting of bulk crystalline and 
interface anisotropy. The interfacial DMI in the considered samples fa-
vors Néel walls, with a chirality fixed by the sign of the DMI constant. 
The samples considered for the numerical evaluations are Pt/Co/Pt, Pt/ 
Co/Au and Au/Co/Pt, with a nominal cobalt thickness of 0.9 nm, in 
which the DMI constant D varies widely. 

The ‘small circle’ Ansatz, is depicted in Fig. 1. Under the influence of 
the in-plane field, the magnetization in the domains rotates out of the 
poles to points denoted G and G′ . A domain wall is, quite generally, a 
path on the sphere that connects these two points. The internal 
magnetostatic energy of the domain wall favors equally the two paths 
that are parallel to the domain wall orientation, whereas DMI favors 
only one path orthogonal to the domain wall orientation, and applied 
field favors also only one path, through point E of Fig. 1(a). The idea of 
the Ansatz is to simplify the task by looking at paths that are contained 
within a plane, so moderately long. This restriction allows analytical 
calculations nearly up to the end, and we will show below that it cor-
responds well to numerical simulation results. The cut of the unit sphere 
by a plane gives, by definition, a small circle, hence the name of this 
Ansatz. The family of planes going through points G and G′ is described 
by a single parameter, the ‘cut angle’ φ, with − π/2 < φ < π/2. The 
magnetization position on the small circle is described by an angle θ. It 
increases from θ0 to π − θ0 for the short path C+, and decreases from θ0 to 
− π − θ0 for the long path C− . From the drawings, the radius of the small 

circle is r =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − h2sin2φ

√
, and the coordinates of the center C are OC̅→

=

(hsin2φ, − hsinφcosφ,0). Thus, the magnetization along the small circle 
reads 

m→=

⎛

⎝
hsin2φ + rcosφsinθ

− hsinφcosφ + rsinφsinθ
rcosθ

⎞

⎠ (1) 

The angle θ0 along the small circle that corresponds to the domains 
magnetization satisfies sinθ0 = hcosφ/r and cosθ0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − h2

√
/r. Note 

that by definition one has 0 < θ0 < π/2 and h > 0. 

3. Field normal to the domain wall 

This is a high symmetry situation (the x axis and the n axis coincide), 
where the applied field H and the DMI-induced effective field at the 
domain wall are collinear. When these two fields point in the same sense 
(and their sum is sufficiently large), the solution is the Néel wall of the 
corresponding chirality. When the applied field is opposite to the DMI 
field and sufficiently large, the solution is again a Néel wall, with 
reversed chirality. When the applied field is close to compensate the DMI 
effective field, an intermediate Bloch-Néel wall may appear. 

3.1. Semi-analytical model 

The densities for the exchange, DMI, effective uniaxial anisotropy, 
Zeeman and domain wall internal magnetostatic energy are, respec-
tively, 

E exc = Ar2
(

dθ
dn

)2

, (2a)  

E DMI = − D
dθ
dn

r
(

hsin2φsinθ+ rcosφ
)

, (2b)  

E anis = K0
(
h2sin2φ + r2sin2θ

)
, (2c)  

E Z = − μ0MsH
(
hsin2φ + rcosφsinθ

)
, (2d)  

E BN = Kcos2φ(hcosφ − rsinθ)2
. (2e) 

In the last expression, K is the effective magnetostatic term related to 
the domain wall, i.e. the magnetostatic cost of a Néel wall. In the ul-
trathin limit (sample thickness t≪domain wall width parameter Δ0 

where Δ0 =
̅̅̅̅̅̅̅̅̅̅̅
A/K0

√
), it reads K ≈ μ0M2

s tln2/(2πΔ) [16]. The DMI- 
induced effective field at the domain wall is HDMI = D/(μ0MsΔ0). 

The integral of the total energy density E has to be minimized with 
respect to the function θ(n), with the constrains θ( − ∞) = θ0,θ( + ∞) =

π − θ0. Inspection of the terms of Eq. (2) shows that (i) the DMI term is 
the x derivative of some function, hence will play no role in the profile 
θ(n); (ii) the energy density has the usual expression of domain walls, 
with a gradient squared plus a function of θ. Therefore, the associated 
first integral can be written, leading to the angle differential variation 
law 

dθ
dξ

=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + κcos2φ

√
(sinθ − sinθ0), (3)  

where the reduced variables ξ = n/Δ0 and κ = K/K0 have been intro-
duced. This relation can be integrated [8], a surprisingly simple 
formulation of this result being [9] 

sinθ = sinθ0 +
cos2θ0

sinθ0 + cosh
(

ξcosθ0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + κcos2φ

√ ) . (4) 

From Eq. (3), the energy of the domain wall can be evaluated. It is 
given by the integral of E + K0h2, the last term having been included to 
remove the energy density in the domains. Using the condition (3) to 

Fig. 1. The ‘small circle’ Ansatz. (a) Top view of the unit sphere for the 
magnetization vectors, under an in-plane field in the +x direction. Point G 
depicts the magnetization orientation in the n < 0 domain (and hides point G′

which corresponds to the n > 0 domain). A small circle of the unit sphere, that 
goes through G and G′ and is vertical, is defined by the cut angle φ, which has to 
be optimized for each situation. Point C is the center of this small circle. The in- 
plane angle of the domain wall magnetization, called ψ, is defined by the angle 
of OA with OE; it is thus different from φ. (b) Side view in the direction normal 
to the small circle, showing the two paths that connect G to G′, either through A 
(short path C+ where θ increases), or through B (long path C− where θ de-
creases). The great circle (radius 1) is also drawn in thin line. 
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simplify the calculations, one obtains finally 

σ+

σ0
= r2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + κcos2φ

√ [
cosθ0 −

(π
2
− θ0

)
sinθ0

]
− rδ

[
hsin2φcosθ0 +

(π
2

− θ0

)
rcosφ

]

(5a)  

σ−

σ0
= r2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + κcos2φ

√ [
cosθ0 +

(π
2
+ θ0

)
sinθ0

]
− rδ

[
hsin2φcosθ0 −

(π
2

+ θ0

)
rcosφ

]
.

(5b) 

In this expression, δ = D/(2
̅̅̅̅̅̅̅̅̅
AK0

√
) = (2/π)D/Dc is the reduced DMI 

constant, with Dc = (4/π)
̅̅̅̅̅̅̅̅̅
AK0

√
the well-known critical value of DMI 

[neglecting the Bloch-Néel anisotropy energy of Eq. (2e)] above which 
the uniform magnetic state is unstable. In the constrained model 
[4,10,11] where only the in-plane angle (called ψ) of the domain wall 
magnetization can vary, one simply has to minimize versus ψ the 
expression σ(ψ)/σ0 = 1 + (κ/2)cos2ψ − (π/2)(δ + h)cosψ . 

Let us now look at a few limiting cases. When H = 0, the small circle 
is a great circle so r = 1,θ0 = 0, and the cut angle φ is the angle of the 
domain wall magnetization (φ = ψ = 0 for Néel walls, π/2 for Bloch 
walls). The domain wall energy simplifies to 

σ±

σ0
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + κcos2φ

√
∓

π
2

δcosφ. (6) 

For δ > 0, the energy minimum is obtained with σ+, and at cos2φ =

(πδ/2)2
/
[
κ2 − κ(πδ/2)2

]
. This value reaches 1 for 

δ = δc ≡
2
π

κ
̅̅̅̅̅̅̅̅̅̅̅
1 + κ

√ . (7) 

This relation is a more general expression of the critical value of the 
DMI at which the uniform state becomes unstable, as it takes better into 
account the internal magnetostatic energy of Néel walls. The expression 
at leading order is δc = 2κ/π [4]; the practical difference is weak as κ 
vanishes in the limit of zero thickness (for the samples studied here one 
indeed has κ ≃ 0.1). 

Another limit is the a priori simple case with no DMI δ = 0. In-
spection of Eqns. 5a–5b shows that even in that case the minimization 
over φ is not simple. The numerical solution of the problem is depicted in 
Fig. 2, as a map of the cut angle φ in the (h, κ) plane. For small domain 
wall anisotropy κ, the solution agrees with the simple expectation in the 
case where the rotation of magnetization in the domains, and the 
deformation of the profile of the polar angle of the magnetization across 
the domain wall, are neglected, namely h = ±(2/π)κ for the field 
required to reach the Néel wall structure. 

This simple case stresses that, even if the small circle model is easy to 

write down, its full solution is not. Therefore here stops, in general, the 
analytical work; one has to continue by a numerical minimization with 
respect to the cut angle φ. It should be noted that, if the minimum is at 
φ = 0, then the solution is exact (within the assumption made for 
evaluating the energies). The corresponding expressions for the domain 
wall energies were already given in [17,18]. 

To illustrate the model outputs, Fig. 3 shows the results for the case 
κ = 0.3 and δ = ±0.1, with the field acting in the same sense as DMI 
when δ > 0, whereas at zero field the wall is in an intermediate Bloch- 
Néel state. The domain wall energies [Fig. 3(a)] mostly decrease with 
field, and reach 0 at the effective anisotropy field where the domain wall 
vanishes as the magnetization turns in-plane, parallel to the field. In the 
case where DMI and applied fields are parallel, the characteristic 
negative domain wall energy region [17] is obtained. In the anti-parallel 
case, the domain wall energy reaches a maximum, before decreasing to 
0. This maximum is not exactly located at h = − δ (i.e. H = − HDMI), 
because the domain wall magnetostatic energy is not negligible. 

Repeating this calculations for various values of κ, δ and h, phase 
diagrams can be constructed, as shown in Fig. 4. They illustrate that the 
switching of the domain wall from one polarity of Néel wall to the other 
takes place around h = − δ/

̅̅̅̅̅̅̅̅̅̅̅
1 + κ

√
, with a mixed Bloch-Néel region that 

gets larger as κ increases. The above switching field relation can be 
obtained by equating σ+ (Eq. 5a) to σ− (Eq. 5b) under the assumption 
that φ = 0 (i.e. Néel walls). The graphs show two switching processes, 
either continuous and through the Bloch wall in the vicinity of the center 
of the graphs, or discontinuous from one Néel wall to the opposite one 
far from the center of the graphs. One can obtain analytically the end-

points of the continuous region as (h,δ) = ±
(
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
κ/(1 + κ)

√
,

̅̅̅
κ

√ )
. 

Fig. 2. Results of the numerical minimization using the ‘small circle’ Ansatz, 
for the case of zero DMI, δ = 0. The color code of the map shows the small circle 
cut angle φ, it extends from 0 (blue) to π/2 (red). The two lines (also obtained in 
the constrained model) depict the linear relation valid at small κ, see text. 

Fig. 3. Results of the numerical minimization using the ‘small circle’ Ansatz, 
for a large domain wall relative magnetostatic energy (κ = 0.3), for two 
opposite and small values of the DMI (δ = ±0.1). (a) Normalized domain wall 
energy. The energy maximum in the antiparallel case occurs at h ≈ 0.0901. (b) 
Corresponding cut angle φ, and minimum energy contours C± (see Fig. 1). The 
value φ = π/2 is reached at h ≈ 0.0995. The zero-field value φ ≈ 1 radian 
means that the domain wall is in a mixed Bloch-Néel state with the chosen 
values of κ and δ. The results of the constrained model are drawn by 
dotted curves. 
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Once the domain wall profile is known, it is possible to compute 
some quantities of interest. The first one is the so-called Thiele domain 
wall width ΔT which governs the domain wall dynamics [19,20]. It is 
defined by 2/ΔT =

∫
(dm→/dx)2dx. One obtains 

Δ+
T

Δ0
=

1

r2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + κcos2φ

√ [
cosθ0 −

(
π
2 − θ0

)
sinθ0

] (8a)  

Δ−
T

Δ0
=

1

r2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + κcos2φ

√ [
cosθ0 +

(
π
2 + θ0

)
sinθ0

] (8b) 

Note that, in the presence of an in-plane field that tilts the magne-
tization in the domains, the famous steady-state velocity to easy-axis 
field (Hz) relation becomes 

vx =
γ0ΔT

α Hz
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − h2

√
, (9)  

(with γ0 ≡ μ0|γ| the gyromagnetic factor and α the Gilbert damping 
parameter, not to be confused with the angle of domain wall normal 
with field resp. the domain wall tension, both used in Section 4). Thus, 
the velocity increase due to that of the Thiele DW width is partly 
compensated by the decrease of the driving force due to the domain 
magnetization tilt, illustrating the fact that the in-plane field has con-
flicting influences on the domain wall mobility. 

The other domain wall width of interest is the ‘imaging’ width, 
introduced by A. Hubert [9,21], which measures the extension in 
physical space of the domain wall. It is anticipated that this width is the 
relevant one to evaluate the pinning of the domain wall by imperfections 
[14]. Using the general definition of Ref. [21], based on the value of mz 
at infinity, one gets 

Δ+
H

Δ0
=

cosθ0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + κcos2φ

√
[1 − sinθ0]

(10a)  

Δ−
H

Δ0
=

cosθ0
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + κcos2φ

√
[1 + sinθ0]

(10b) 

These two widths are plotted in Fig. 5; they globally increase with the 
in-plane field, as expected. The width smaller than Δ0 at zero field ex-
presses the contraction due to the magnetostatic cost of the non fully 
Bloch wall. Whereas the Thiele domain wall width diverges at H = HK0 

(as no magnetization gradient anymore exists at that field), the Hubert 
width increases less. In the intermediate field region (intermediate 
Bloch- state), the width differs for fields parallel and antiparallel to the 
DMI field. Moreover, in the case of large domain wall anisotropy and low 
DMI, the Thiele and Hubert widths can show opposite trends with field 
[Fig. 5(b)]. This is due to the behavior of the various factors entering the 
domain wall widths, see Eqs. (8,10). Especially, the DW width can 
decrease with field when the factor containing the DW anisotropy 
(parameter κ) is dominant, the DW magnetization turning from Bloch to 
Néel as field increases. 

Note also that, for this relatively small DMI compared to the domain 
wall internal magnetostatic energy, no minimum of the DW width oc-
curs at Hx = − HDMI, in contrast with what is predicted by simplified 
models. Thus, the small circle Ansatz allows an exploration of the 
complex physics of the statics of domain walls submitted to a transverse 
field, in which several effects are in competition. 

3.2. Comparison to numerical micromagnetics 

We now compare quantitatively the results of the model to those 
obtained by numerical micromagnetic calculations, using MuMax3 [22]. 
For these calculations, the sample was meshed in 1024 × 1 × 1 cells in 

Fig. 4. Type of domain wall as a function of in- 
plane field (scaled field h) and DMI (expressed by 
the scaled parameter δ), for increasing values of the 
domain wall magnetostatic energy (scaled param-
eter κ). For these drawings, a fixed direction in the 
plane is considered, so that negative fields are 
figured, and φ spreads over the [0, π] interval. The 
color code represents the cut angle φ, plotted over 
the extended range from 0 to π so as to differentiate 
the two chiralities of Néel walls. The constrained 
model predicts a switching at h = − δ, the ϕ iso-
values being parallels to that line.   
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the x, y resp. z directions, with a cell size 1 × 1 × 0.9 nm3 and periodic 
boundary conditions in the y direction, the magnetostatic interaction 
coefficients being summed over 100 000 repetitions (this value was 
reached by comparison with the analytical demagnetizing factor, for a 
uniform magnetization). To avoid edge effects, known to exist with DMI 
[23], the data for the domain wall were collected on the 400 central 
cells, this length being also well above the obtained domain wall widths. 
The magnetic parameters of the three samples considered in these 

calculations are provided in Table 1 (see Ref. [14] for details). Important 
parameters derived from these values are also given, in particular the 
numbers κ and δ. 

The profiles of the domain wall magnetization projected on the (mx,

my) plane (this plane was used to draw Fig. 1a) are shown in Fig. 6 (a), as 
obtained by the small circle model (dashes), and by numerical micro-
magnetics (continuous curves), for several values of the in-plane field 
that span the reversal of the domain wall magnetic moment. One first 
notes that the small circle approximation is very good, as the numerical 
profiles are extremely close to straight lines, the traces on the (mx,my)

plane of the vertical cut plane. Small deviations to this behavior are seen 
close to the origin of the plots, i.e. at the tails of the domain wall [see 
Fig. 6(b)]. However, the cut angles are found to differ. This is due to the 
model’s assumption of a purely local z-component of the demagnetizing 
field, namely Hd,z = − Msmz. Plot (c) shows that indeed the demagnet-
izing field perpendicular component falls below the − 1 ratio to the 
normal magnetization component mz, at the domain wall. As a result, 
the Thiele domain wall width in zero applied field, estimated to be 4.7 
nm in the model, is 4.37 nm in the numerical calculation. This leads to a 
larger demagnetizing cost of the Néel wall, so that the reversal of the 
domain wall x magnetic moment extends over a larger field region. 

Next we look at the energy of the domain wall, per unit surface [24]. 

Fig. 5. Results of the numerical minimization using the ‘small circle’ Ansatz, 
for a large domain wall relative magnetostatic energy (κ = 0.3), for two 
opposite and small values of the DMI (δ = ±0.1). (a) Thiele domain wall width 
ΔT normalized to Δ0, for the small fields. The inset shows the full curve, in log- 
lin scale. The dashed curves plot the product 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − h2

√
ΔT, the relevant quantity 

for the domain wall mobility. (b) Hubert domain wall width ΔH, normalized to 
Δ0, the inset showing the full curve, this time in lin-lin scale. The breaks of the 
curves correspond to the fields (h = 0.0664 for δ =+0.1 and h = 0.2334 for δ =

− 0.1) where the domain wall becomes of the Néel type, perfectly parallel to 
the field [φ = 0, see Fig. 3(b)]. The constrained model assumes that all widths 
are constant, equal to Δ0 (dotted lines). 

Table 1 
Parameters of the three samples investigated, all with a nominal 0.9 nm Co 
thickness (the name reflects the growth order). The exchange constant is 
assumed to be A = 16 pJ/m.  

Sample  Au/Co/Pt Pt/Co/Au Pt/Co/Pt 

Ms  (kA/m) 1610 1650 1621 
Ku  (MJ/m3) 2.36 2.35 2.12 
D (mJ/m2) 0.60 − 0.87 0  

μ0HK0  (T) 0.9 0.77 0.58 
Δ0  (nm) 4.7 5.0 5.8 
κ  () 0.10 0.11 0.12 
δ  () 0.09 − 0.20 0  

Fig. 6. Comparison of the small circle model with numerical simulations, for 
the Au/Co/Pt sample. (a) The in-plane magnetization components for an up–-
down domain wall under several in-plane fields, predicted by the small circle 
model (dashed lines) and computed by numerical micromagnetics (curves). (b) 
Zoom close to the origin, for the numerical profiles, to evidence the small de-
viations from linearity. (c) Profile of the local z demagnetizing factor as 
extracted from the micromagnetic calculation under zero applied field. 
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As visible in Fig. 7, the small circle model gives precisely the same trend 
as the numerical simulation, but lower values due to the neglect of the 
non-local magnetostatic term within the domain wall. A calculation 
detailed in the Appendix leads to a correction term, dependent on the 
width of the domain wall, which corrects most of this difference (see 
Fig. 7). 

Finally the widths of the domain wall, either relevant for dynamics 
(the Thiele domain wall width parameter ΔT) or for imaging (the Hubert 
domain wall width parameter ΔH) are investigated. The comparison of 
the numerical micromagnetic simulation results with those of the small 
circle model is detailed in Fig. 8. One sees that, generally, the widths are 
larger with the small circle model, due to the local approximation for the 
z component of the demagnetizing field, as well as for the x component 
[Eq. (2e)]. The computed variations of the domain wall width are 
important in relative terms. Even if it changes, in absolute terms, only 
between 4 and 6 nm, an effect on the domain wall pinning character-
istics has been experimentally observed [14]. 

One notices that the widths, in this case where DMI is comparable to 
or even larger than the domain wall internal magnetostatic energy, show 
a minimum for some field opposite to the DMI field. This field is however 
smaller, in absolute value, than the field where the domain wall energy 
is maximum. Therefore, the various methods based on domain walls to 
measure the interfacial DMI should be compared in detail. 

Globally, the small circle model is shown to be quite accurate, for the 
magnetization profile, its spatial extent and its energy. The biggest dif-
ference appears to lie in the domain wall energy. Most of it may be 
corrected by adding an estimate of the non-local magnetostatic energy of 
the domain wall. 

4. Field at an arbitrary angle 

For this general case, we proceed similarly to the previous part. Only 
what changes or was not present in the high symmetry case is given. 

4.1. Semi-analytical model 

The angle of the domain wall normal n→ with the field (x) axis is 
called α. The energy densities which depend on the domain wall 
orientation are the DMI and domain wall internal magnetostatic en-
ergies. They read 

E DMI = − D
dθ
dn

r[hsinφsin(φ − α)sinθ + rcos(φ − α)]

E BN = Kcos2( φ − α
)
(hcosφ − rsinθ)2

.

(11) 

The same analysis as before leads to the variation law of the angle θ 

dθ
dξ

=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + κcos2(φ − α)

√
(sinθ − sinθ0). (12) 

Similarly, the domain wall energies for both arcs are 

σ+

σ0
= r2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + κcos2(φ − α)

√ [
cosθ0 −

(π
2
− θ0

)
sinθ0

]
− rδ

[
hsinφsin

(
φ

− α
)

cosθ0 +
(π

2
− θ0

)
rcos

(
φ − α

)]
,

(13a)  

Fig. 7. Comparison of the small circle model with numerical simulations, for 
the Au/Co/Pt (a) and Pt/Co/Pt (b) samples, regarding the domain wall energy. 
The effect of the analytical domain wall energy correction (see Appendix) is 
shown. For Au/Co/Pt, the domain wall energy maximum is reached at μ0Hx =

− 75 mT. 

Fig. 8. Comparison of the small circle model with numerical simulations, for 
the AuCoPt (a) and PtCoPt (b) samples, regarding the domain wall widths (see 
text for definitions). For AuCoPt, all widths show a minimum at − 30 mT for the 
small circle model, and − 40 mT for the numerical calculation, values which are 
clearly lower from that where the domain wall energy is maximum [see 
Fig. 7(a)]. 
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σ−

σ0
= r2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + κcos2(φ − α)

√ [
cosθ0 +

(π
2
+ θ0

)
sinθ0

]
− rδ

[
hsinφsin

(
φ

− α
)

cosθ0 −
(π

2
+ θ0

)
rcos

(
φ − α

)]
.

(13b) 

Finally, the domain wall widths have similar expressions to the 
normal case [Eqs. (8,10)], only replacing φ by φ − α inside the square 
root with κ. These formulas illustrate the power of the model: treating a 
much more general problem is realized by a minor modification of the 
functions to use. For the constrained model, counting the domain wall 
magnetization angle ψ from the domain wall normal, the function to 
minimize, for each value of the angle α, reads now σ(ψ)/σ0 = 1 +

(κ/2)cos2ψ − (π/2)[δcosψ + hcos(ψ − α)]. 
The computed dependence of the domain wall energy on the domain 

wall orientation α allows evaluating another important parameter, the 
domain wall surface tension γ. It is defined by 

γ
(

α
)

= σ
(

α
)

+
d2σ
dα2 . (14) 

Indeed, in the case of a domain wall surface energy that depends on 
the domain wall orientation, the energy cost of a bulging of the domain 
wall consists of (i) the increase of the wall length, penalized by σ, and (ii) 
an energy variation due to the exploration of neighboring domain wall 
angles by the bulge, which leads to the second derivative. The distinc-
tion between energy and tension is a well-known concept in surface 
physics [25], and its relevance for magnetic domain wall creep motion 
was recently stressed [13,26]. 

For the demonstration sample with large domain wall internal 
magnetostatic energy (κ = 0.3) first, the variation of domain wall sur-
face energy and tension as a function of in-plane field and domain wall 
orientation is shown in Fig. 9. For large angles (α > 20∘), domain wall 
energy and tension follow similar evolutions with applied field. One 
should nevertheless note that the negative domain wall energies found 
close to saturation give positive tensions. At low angles however, things 
are much more complex, with the appearance of regions in the (α, h)
space where the domain wall tension is negative. This situation is well 
known in crystal growth [25]: such a domain wall orientation is 

unstable, and faceting appears (a phenomenon also called the zig-zag 
faceting in magnetism [9]). The faceting in the case where in-plane 
field is parallel to DMI field (δ > 0 here) is minute, as the domain wall 
tension is already postive at α = 1∘ [for h = 0.07 for example, the ten-
sion reaches 0 at α ≡ αc = 0.515∘ and the faceting occurs with angles (+
or − ) αf = 1.29∘]. It is larger in the antiparallel case: at h = 0.3 the 
angles are 5.25∘ and ±11.3∘, respectively. In the γ < 0 region (i.e. 
|α| < αc), the domain wall energy σ is replaced by σf(α) =

σ(αf)cosα/cosαf , with a discontinuity at α = αc. This relation moreover 
leads to a domain wall tension which is exactly zero. These conclusions 
hold, however, only in the infinite domain wall length limit, as the en-
ergy cost of the kinks of the faceted domain wall is not taken into 
account. 

Another noticeable feature is that, for moderate angles (|α| < 20∘), at 
non-negligible fields (h > 0.25) the favored domain wall has a lower 
energy, but a larger tension. 

The other way to look at the same data, in which the angle α varies 
continuously, is shown in Fig. 10. In addition, the results of the con-
strained model have been included in these graphs (dashed curves). The 
differences with the small circle model steadily increase as the field 
becomes larger, and they are more important for the domain wall ten-
sion γ, with larger variations with angle predicted by the constrained 
model. This should be expected, from the presence of the second de-
rivative of the domain wall energy versus angle, which is sensitive to the 
fine variations of the domain wall energy σ. The large differences of 
computed domain wall tension mean large differences of the domain 
wall mobility as a function of field orientation, hence for example big 
differences of shape of bubble domains when expanding in the creep 
regime in the presence of an in-plane field [13]. 

4.2. Comparison with numerical micromagnetics 

We now turn to the samples investigated in this study. Using the 
same procedure, the domain wall surface energy σ was numerically 
evaluated. In order to obtain the domain wall tension γ, a finite differ-
ences evaluation of the second derivative versus angle was performed. 
Due to the limited precision of the numerical values (single precision), 

Fig. 9. Results of the numerical minimization using the ‘small circle’ Ansatz, for a large domain wall relative magnetostatic energy (κ = 0.3), for two opposite and 
small values of the DMI (δ = ±0.1). The domain wall surface energy σ (lines) as well as surface tension γ (dash lines), normalized to the Bloch wall surface energy σ0, 
are plotted as a function of the normalized in-plane field h, for several values of the angle α between the domain wall normal and the applied field. 
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the angle step could not be reduced below 1 degree. For the small circle 
calculations, a much smaller angle step could be used (10− 5 degree), as 
the calculations are performed with double precision, resulting into a 
smaller numerical noise. The analytical correction of the domain wall 
energy (see Appendix) was added to the small circle model results, using 
for the domain wall width parameter the Hubert value. As the variation 
with angle of the Hubert domain wall width is small (for example, ±0.1 
nm around 5.7 nm for Au/Co/Pt at 200 mT), this correction amounts to 

the same offset for σ and γ. 
The comparison of the two models, for the case of the Au/Co/Pt 

sample, is shown in Fig. 11. The quantitative agreement is close to 
perfect. The two quantities σ and γ show a strikingly different behavior, 
even if the applied fields are all above the DMI field: whereas the energy 
σ monotonously varies with angle, by a small amount, and monoto-
nously decreases as more field is applied, the tension γ shows a marked 
decrease at intermediate fields, around the antiparallel orientation of 

Fig. 11. Comparison of the numerical micro-
magnetics results (open black symbols) to those 
of the semi-analytical small circle model (colored 
curves), for the Au/Co/Pt sample. (a) variation of 
the domain wall energy σ with angle of the 
applied in-plane field, for 3 values of the field 
μ0H = 100,200,300 mT. (b) variation of the 
domain wall tension γ in the same conditions. The 
analytical correction to the domain wall energy 
(and tension) is included in the small circle 
values. Note the absence of noise in the semi- 
analytical calculation of the tension, compared 
to the numerical procedure (see text for cause).   

Fig. 12. Comparison of the numerical micromagnetics results (open black symbols) to those of the semi-analytical small circle model (red curves), for the Au/Co/Pt 
sample. (a) variation of the domain wall energy σ with the in-plane field, applied at an angle α = 10 degrees. (b) variation of the domain wall tension γ in the same 
conditions. The analytical correction to the domain wall energy (and tension) is included in the small circle values. 

Fig. 10. Alternative view of the results shown in Fig. 9, for κ =+0.3 and δ = + 0.1, where the angle α of the domain wall normal with the in-plane field is varied, for 
selected values of the field. The results of the constrained model have been included (dotted curves) for comparison. 
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the applied field with respect to the DMI field. This difference comes 
from the strong sensitivity of γ to the σ(α) variation. Note for example 
that, if σ = Acosα then γ = 0. 

In order to see better the difference between domain wall tension and 
energy, the alternative plot where field is varied, for given values of the 
angle, is shown in Fig. 12. 

Now that the quantitative accuracy of the small circle Ansatz has 
been demonstrated, the model can be used to obtain detailed pre-
dictions. As an example, Fig. 13 shows the computed color-coded maps 

of the domain wall surface energy σ and tension γ, for the case of the Au/ 
Co/Pt sample. Whereas the σ-map (a) shows the expected larger energy 
when field is antiparallel to the DMI field (here, at α = 180∘), the γ-map 
(b) shows an energy reduction around that orientation, that depends 
strongly on the applied field. The cut at α = 180∘ (c) compares the 
variation of domain wall surface tension with that of the cut angle φ of 
the small circle, revealing that the deep troughs of γ occur when the 
domain wall magnetization reorients out of the Néel state. The corre-
sponding maps (not shown) for the symmetrical Pt/Co/Pt sample only 
show troughs in γ at α ≈ 0,180,360∘ and μ0H ≈ 26 mT. 

From these energy maps, maps of energy differences can be con-
structed, by comparing for the same angle the results for positive and 
negative fields. These are shown in Fig. 14, for the surface energy and for 
the surface tension. For Au/Co/Pt which has a positive DMI, and as 
up–down walls are considered, one expects that σ(H) < σ( − H) for 
positive fields. This is indeed obtained [Fig. 14(a)]. However, and as 
remarked for the large domain wall anisotropy sample, the domain wall 
tension difference changes sign twice as field is increased [Fig. 14(b)]. 
Therefore, if domain wall tension γ alone were determining the domain 
wall velocity, one would expect that the asymmetry of a circular-shape 
domain expanding in the presence of an in-plane field would reverse 
twice, giving a sign in accord with that of the energy difference only at 
intermediate fields. This directly relates to experimental observations 
[18,27], as qualitatively explained earlier [13]. 

Fig. 13. Computed domain wall surface energy σ (a) and tension γ (b) for the 
Au/Co/Pt sample, by the small circle model incorporating the additional 
demagnetizing energy. Note that such noiseless maps, containing 360x200 
pixels, would have required very long numerical micromagnetics calculation 
times, whereas a few seconds suffice to produce them using the small circle 
model, including the magnetostatic correction. The color scale spans the values 
0 to  + 14 mJ/m2 for (a), and − 14 to  + 14 mJ/m2 for (b), values outside of 
these boundaries having been clipped. Panel (c) compares a cut of (b) through 
α = 180∘ to the variation of the small circle cut angle φ. 

Fig. 14. Computed differences of domain wall surface energy σ (a) and tension 
γ (b) for the Au/Co/Pt sample, between positive and negative fields ∊(α,
H) − ∊(α, − H). The maps are derived from the data of Fig. 13. The color scale 
spans values − 5 to  + 5 mJ/m2 for (a), and − 10 to  + 10 mJ/m2 for (b), values 
outside of these boundaries having been clipped. 
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5. Conclusion 

We have developped a semi-analytical model for the one- 
dimensional domain wall structure in ultrathin films with perpendic-
ular magnetization, in the presence of arbitrary in-plane fields, in 
orientation and magnitude. The model is based on the ‘small circle’ 
Ansatz introduced by A. Hubert. It is semi-analytical, as an analytic 
expression needs to be minimized versus one variable, the ‘cut angle’ of 
the small circle. 

The model has been compared to the simplest model of the situation, 
in which only the orientation of the domain wall magnetic moment is 
allowed to vary. Clear differences have been observed, that increase as 
the in-plane field becomes larger. The model ouputs have also been 
compared to numerical micromagnetic calculations, for three samples 
having the Au/Co/Pt generic structure, the parameters of which coming 
from experiments. A very good quantitative agreement has been ob-
tained, with some systematic differences having been uncovered, linked 
to the magnetostatic energy. A correction to the domain wall energy has 
been worked out, which leads to much closer values. For the domain 
wall width however, this is not generally possible as the model computes 
the full structure of the domain wall. 

The model provides the energy and the complete profile of the 
domain wall, which allows computing the various domain wall widths 
that are relevant for its statics (Hubert domain wall width), or dynamics 
(Thiele domain wall width), or any other quantity dependent on the 
domain wall profile. The complete freedom on the in-plane field allows 
computing the domain wall surface tension, whose key role has been 
recently uncovered, with no fear from artefacts due to too restricted 
energy calculation hypotheses. In particular, the occurence of zero 
tension regions (in the field-angle space) has been confirmed, meaning 
that the one-dimensional picture breaks down there, and domain wall 
faceting occurs. To illustrate the power of semi-analytical means, maps 
of the domain wall properties as a function of the magnitude and angle 
of the in-plane field are shown. 

It is hoped that the refined calculation of the domain wall properties 
developed in this work will be useful in constructing a domain wall 
creep theory which fully incorporates the presence of the in-plane field 
(a first step being Ref. [26]), quantitatively explaining the surprising 
results of some experiments [28,18,27]. The extension of this method-
ology to the fast domain wall dynamics should also be investigated. 
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Appendix A. Analytical correction to the domain wall magnetostatic energy 

In the limit of a magnetization uniform across the sample thickness (t), which applies to ultrathin films, the demagnetizing energy Ed of a domain 
wall with a Bloch profile (domain wall width parameter Δ) can be analytically calculated, by going to Fourier space. This energy diverges, but the 
difference between two values of Δ is finite. One obtains Ed(Δ = 0) − Ed(Δ) = (μ0M2

s /2)tI(Δ/t), where the integral I reads 

I
(

p
)

=

∫ +∞

0

1 − e− x

x

[
4

πx2 −
πp2

sinh2( πpx
/

2
)

]

dx. (15) 

On the other hand, the assumption of a local demagnetizing field leads to Ed(Δ = 0) − Ed(Δ) = (μ0M2
s /2)(2Δ). Therefore, the small circle domain 

wall energy σ should be corrected by adding to it the quantity σd = (μ0M2
s /2)[2Δ − tI(Δ/t)]. The function involved is plotted in Fig. 15. Under an in- 

plane field, σd should be multiplied by m2
z = (1 − h2). 

This magnetostatic domain wall energy correction σd can be used to predict the domain wall width more accurately, in the case of zero applied field 
where the domain wall profile is known. Taking this domain wall width parameter Δ as a variable, one has to minimize the total energy of the domain 
wall, obtained by integrating the terms of Eq. (2), which reads 

σ
(

Δ
)

=
2A
Δ

+ 2K0Δ+
μ0M2

s

2
t
[
0.69 + 0.635ln

(Δ
t

)]
(16)  

(the Bloch-Néel magnetosatic cost, using the first order approximation for the demagnetizing factor of the Néel wall in an ultrathin film [16], is 
independent of the domain wall width parameter). This results in 

Fig. 15. Numerical evaluation of the function giving the demagnetizing energy 
correction σd to the domain wall energy. The large parameter (i.e. Δ≫t) 
asymptotic behavior 0.69+0.635ln(Δ/t) is also drawn. 
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Δ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Δ2
0 +

(
0.635t
4Q0

)2
√

−
0.635t
4Q0

, (17) 

where Q0 = 2K0/(μ0M2
s ) is the quality factor of the sample. As an example, for the Au/Co/Pt sample, one finds Δ = 4.385 nm, much closer to the 

numerical value. This calculation shows again the origin of the discrepancy between the small circle and the full micromagnetics. 
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K. Safeer, S. Auffret, G. Gaudin, A. Thiaville, Chirality-induced asymmetric 

magnetic nucleation in Pt/Co/AlOx ultrathin microstructures, Phys. Rev. Lett. 113 
(2014), 047203. 
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P. Géhanne et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S0304-8853(21)00192-X/h0005
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0005
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0005
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0005
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0005
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0005
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0010
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0010
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0010
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0015
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0015
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0015
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0020
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0020
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0025
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0025
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0030
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0030
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0035
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0035
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0040
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0040
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0045
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0045
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0050
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0050
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0050
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0055
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0055
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0055
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0060
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0060
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0065
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0065
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0070
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0070
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0070
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0080
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0080
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0085
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0085
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0085
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0085
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0090
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0090
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0090
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0090
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0095
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0095
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0100
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0100
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0100
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0105
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0105
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0105
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0105
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0110
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0110
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0115
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0115
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0125
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0125
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0130
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0130
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0135
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0135
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0140
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0140
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0140
http://refhub.elsevier.com/S0304-8853(21)00192-X/h0140

	Chiral magnetic domain walls under transverse fields: A semi-analytical model
	1 Introduction
	2 Small circle model
	3 Field normal to the domain wall
	3.1 Semi-analytical model
	3.2 Comparison to numerical micromagnetics

	4 Field at an arbitrary angle
	4.1 Semi-analytical model
	4.2 Comparison with numerical micromagnetics

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Analytical correction to the domain wall magnetostatic energy
	References


