
Recent progress on the Boltzmann equation without angular
cutoff

Julie Gauthier

March - August 2013

Abstract

In this report, I will present the three papers I read during my Master 1 internship at Tsinghua University
(Beijing) from march to august 2013. Thus, I will introduce some recent results about the Boltzmann equation
without angular cutoff. The papers where chosen by my internship supervisor He LingBing.

In particular, I worked on the Boltzmann collision operator itself in a first paper Entropy dissipation and
long-range interactions by R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg (2000). In this paper, some
general results are given on the collision operator. I will present them. Once we will know more about this
operator, we will be able to get to the point: showing the existence of solutions under some assumptions.

Then, I focused on the existence of weak solutions in a second paper: On the Boltzmann equation for long-
range interactions by R. Alexandre and C. Villani (2002). Weak is not to be taken in its classical sense. They
define the notion of renormalised solution to the Boltzmann equation with defect mesure. The idea is to take a
sequence (Bn) of cross sections that converge (in some sense) to the targeted cross section B. Calling f n a weak
solution for cross section Bn, they show some appearance of strong compacity of ( f n) and that the limit is a weak
solution to the Boltzmann equation.

And, to finish, I worked on a norm, called non-isotropic by the authors, which was useful to them in order to
get the existence of classical solutions. The paper I worked on is: The Boltzmann equation without angular cutoff
in the whole space: I, Global existence for soft potential, part 2 Non-isotropic norm and estimates of linearized
collision operators by R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang (2011). They present the new
norm, compare it to wheighted Sobolev norms, and use it to bound the linearized collision operator which is
obtained by looking for a solution close to the static solution:

µ(v) = (2π)−
3
2 e−

|v|2
2

The equation I’m working on, the Boltzmann equation, is a partial diffential equation. It can be written, with
unknown f , as:

∂ f
∂t

+ ∇x f .v = Q( f , f )

whith
Q(g, f ) =

∫
RN

∫
S N−1

B(v − v∗, σ)(g′∗ f ′ − g∗ f )dσdv∗

Q is the Boltzmann collision operator and I used the notation: g′∗ = g(v′∗), f ′ = f (v′) and g∗ = g(v∗) with

v′ =
v + v∗

2
+
|v − v∗|

2
σ

v′∗ =
v + v∗

2
−
|v − v∗|

2
σ

the precollisional velocities.
The Boltzmann equation modelizes the collision between particles in a gaz.
It is assumed that the cross section B depends only on |v − v∗| and the scalar product k.σ where k = v−v∗

|v−v∗ |
and

is supported in k.σ ≥ 0. The non-cutoff assumption consists in taking∫
S N−1

B(z, σ)dσ = +∞

As my work consisted only in reading (and understanding) those papers, I present them one by one, insisting
on the points I found hard to understand.

The main idea is to use the work done earlier for the cutoff case by getting rid of the irregularities due to the
cross section. So, I insist on some results, such as the cancellation lemma or the truncation, which were useful
for that matter.
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One of the important tools they all used is the Fourier transform.
I will introduce those tools during the study of the first paper. For the two last papers, I will go faster on the

computations, as to me, the used tools are more important than the computation itself. Moreover, the computations
can be found in the papers.
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Introduction
I have been working on the Boltzmann equation without angular cutoff under the supervision of He LingBing from
the departement of mathematical sciences of Tsinghua University (Beijing) for about five months.

Figure 1: Yuanming Yuan : the ruins in the old summer palace, Haidian district, Beijing

Beijing is an gigantic city. Paris is a village compared to it. I was living close to the old summer palace in
Haidian District. The summer palace was destroyed by the french and british armies during the Second Opium
War. It’s all ruins now. Though, the chinese built a new one after the war. When the pollution was not too high,
I could see it from my window on the 22nd floor of a building that must have been built in the 70s and that was
really looking like a wreck. I would spend fifteen minutes to get to the nearest subway station by bike or bus and
more than one hour to go to the forbidden city by subway. If I wanted to go to Beijing Trade Center (Guomao)
where all the skyscrapers are very modern and beautiful, I would spend more than one hour in the subway. This is
just to give you an idea of how big the city is.

As every chinese city I’ve been to, Beijing is animated 24 hours a day. If you wait for a taxi at 4am to go to
the airport, you will find one in less than 10 minutes. And it’s cheap! You would pay the same price for a cab in
France in euros as you do in Beijing in RMB (1€≈ 8RMB). Life in China is very comfortable. And you feel safe
all the time, day or night. Yet, I have to acknowledge that speaking chinese made my life there easier than it is for
any foreigner, as most of my foreign friends would often call me to be their interpret.

Tsinghua University is one of the two best universities in mainland China. Every chinese student dreams of
getting into Tsinghua. It’s an honor for me to have been working there and I know my experience in Tsinghua will
make a difference when I want to get a job in China.

Tsinghua University has the biggest campus of all chinese universities and is located in the North-West of
Beijing. Actually, the campus is so big that every student needs a bike to cross it. I was amazed by the beauty of
this campus which is inside the city but full of parks where the students can hang out. I got the chance to see it
under the snow, it was really marvelous. Unfortunately, I didn’t take a picture.

Most of the students live in dormitories inside the campus, and I could have chosen to. But, I was afraid of
sharing my room with seven other students and chose to live outside. I was fifteen minutes away by bike from the
main gate of the university and had fifteen more minutes biking to get to my supervisor’s office. Actually, they did
not have an office for me in the departement and I was working outside. I used to meet with He LingBing once a
week and work in some cafetarias or at home.

Not having a fixed place and time to work can have its pros and cons. Because I was free to travel, visit China
whenever I would want to, I found it hard to get to work and have a regular schedule.
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Figure 2: Me in front of the old gate of Tsinghua University, Haidian District, Beijing

He LingBing had me work on three papers about the Boltzmann equation without angular cutoff. When I got to
Tsinghua, I knew nothing about this equation. The point of my work was to understand and sum up those papers.
As they are very specific, I spent quite a lot of time understanding results that would appear obvious to the authors
or anyone that would have been working on this topic for years.

The Boltzmann equation is a partial differential equation from statistical physics:

∂ f
∂t

+ ∇x f .v = Q( f , f ) (1)

where
Q(g, f ) =

∫
RN

∫
S N−1

B(v − v∗, σ)(g′∗ f ′ − g∗ f )dσdv∗ (2)

is the Boltzmann collision operator.
g′∗ = g(v′∗), f ′ = f (v′) and g∗ = g(v∗) with

v′ =
v + v∗

2
+
|v − v∗|

2
σ

v′∗ =
v + v∗

2
−
|v − v∗|

2
σ

We assume that B depends only on |v − v∗| and the scalar product k.σ where k = v−v∗
|v−v∗ |

and is supported in
k.σ ≥ 0.

The non-cutoff assumption consists in taking
∫

S N−1 B(z, σ)dσ = +∞.
Most results for the cut-off case dates from the late 80’s. Most of the recent work has been done for the

non-cutoff case which appears to be more interesting for physics.
The three papers I have worked on are:

• Entropy dissipation and long-range interactions by R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg
(2000)

• On the Boltzmann equation for long-range interactions by R. Alexandre and C. Villani (2002)

• The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential,
part 2 Non-isotropic norm and estimates of linearized collision operators by R. Alexandre, Y. Morimoto, S.
Ukai, C.-J. Xu and T. Yang (2011)

The first paper gives some general results on the Boltzmann collision operator in the non-cutoff case, some
of which are used in the second one to show the existence of weak solutions to the Boltzmann equation without
angular cutoff. The third paper is about the existence of classical solutions. The part I studied introduces a new
norm and compares it to wheighed Sobolev norms. This new norm will be used later in the paper to get the targeted
result.
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Part I

About the paper Entropy dissipation and long-range
interactions
This article deals with the study of Boltzmann’s collision operator.

1 Definitions and aim
Definition 1.1 (Boltzmann’s collision operator). Is called Boltzmann’s collision operator every operator Q :
L1(RN) × L1(RN)→ L1(RN) with N ≥ 2 et

Q(g, f )(v) =

∫
RN

∫
S N−1

B(v − v∗, σ)(g(v′∗) f (v′) − g(v∗) f (v))dσdv∗

where v′ = v+v∗
2 +

|v−v∗ |
2 σ et v′∗ = v+v∗

2 −
|v−v∗ |

2 σ. S N−1 is unity sphere of RN . Moreover, B(z, σ) is non-negative-valued
and depends only of |z| and z

|z| .σ where . is the scalar product. B(z, σ) = 0 when this scalar product is negative.

In reality, f and g are non-negative-valued.
Let us name θ the angle (v − v∗, σ): v−v∗

|v−v∗ |
.σ = cos θ. Note that θ actually lives between 0 and π

2 .
In order to be more clear, we state g′∗ = g(v′∗), and so on... as a consequence,

Q(g, f ) =

∫
B(g′∗ f ′ − g∗ f )dσdv∗ (3)

Let also k =
v − v∗
|v − v∗|

.

Figure 3: The variables

1.1 Assumptions on B

We assume that B satisfies the following property:

B(z, σ) ≥ Φ(|z|)b(k.σ) (4)

Φ is the kinetic part of B, it is continuous and positive, except in 0 where it may be null.
b is the angular part, it satisfies the following singularity assumption for a ν > 0:

sinN−2 θ b(cos(θ)) ∼
θ→0

K
θ1+ν

(5)

We assume ν < 2, otherwise it has been proven that Q defined by 3 doesn’t make sense.
Without loss of generality, b is supported on cos θ ≥ 0.
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1.2 Other tools
Let

D(g, f ) = −

∫
RN

Q(g, f ) log( f )dv (6)

be the generalized entropy dissipation functional.

Let also: Λ(|z|) =
∫

S N−1 B(z, σ)(1−k.σ)dσ and Λ′(|z|) =
∫

S N−1 B′(z, σ)(1−k.σ)dσwith B′(z, σ) = sup
1<λ≤

√
2

|B(λz, σ) − B(z, σ)|
(λ − 1)|z|

.

And, let ‖ f ‖L1
α

=
∫
RN f (v)(1 + |v|)αdv and ‖ f ‖L log L =

∫
RN f log(1 + f )dv.

Moreover, we assume that there exists C0 such that

Λ(|z|) + |z|Λ′(|z|) ≤ C0(1 + |z|)2 (7)

1.3 Aim
This article gives a proof of the following result: under the assumptions 4, 5 and 7, for all R > 0, there exists a
constant Cg,R dependending only on b, ‖g‖L1

1
, ‖g‖L log L, R and Φ such that:

‖
√

f ‖2Hν/2(|v|<R) ≤ Cg,R

(
D(g, f ) + ‖g‖L1

2
‖ f ‖L1

2

)
(8)

2 Two useful changes of variables

2.1 Pre-post-collisional change of variables
The idea is to inverse the role of (v, v∗) and (v′, v′∗). The change of variables we do is the following: (v, v∗, σ) →
(v′, v′∗, k). It is involutive. Thus it’s jacobian has 1 as absolute value. See fig. 3.

A first use of it on the first term in the expression of D(g, f ) 6 gives:

D−(g, f ) =

∫
B(v − v∗, σ)g′∗ f ′ log f dvdv∗dσ =

∫
B(v − v∗, σ)g′∗ f ′ log f dv′dv′∗dk

But, B(v − v∗, σ) = B(v′ − v′∗, k) as |v − v∗| = |v′ − v′∗| and
v − v∗
|v − v∗|

.σ = k.σ = k.
v′ − v′∗
|v′ − v′∗|

.

In addition to that, we notice that v =
v′ + v′∗

2
+

v′ − v′∗
2

k. It’s the same formula as for v′ in function of v, v∗ and
σ.

Therefore,

D−(g, f ) =

∫
B(v′ − v′∗, k)g(v′∗) f (v′) log f

(
v′ + v′∗

2
+

v′ − v′∗
2

k
)

dkdv′∗dv′

=

∫
B(v − v∗, σ)g(v∗) f (v) log f

(v + v∗
2

+
v − v∗

2
σ
)

dσdv∗dv

=

∫
Bg∗ f log f ′dσdv∗dv

As a consequence, we obtain a new formula for D:

D(g, f ) =

∫
Bg∗ f log

f
f ′

dvdv∗dσ (9)

And, we can write:

D(g, f ) =

∫
Bg∗

(
f log

f
f ′
− f + f ′

)
dvdv∗dσ +

∫
Bg∗( f − f ′)dvdv∗dσ (10)

We will deal with the two terms of this equality one by one. So, we set:

D1(g, f ) =

∫
Bg∗

(
f log

f
f ′
− f + f ′

)
dvdv∗dσ (11)

D2(g, f ) =

∫
Bg∗( f − f ′)dvdv∗dσ (12)
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2.2 v→ v′ change of variables
To deal with both of them, we will use an other change of variables, more complicated, which consist in replacing
v by v′ and leaving v∗ and σ as before.

Remind the formula for v′:
v′ =

v + v∗
2

+
|v − v∗|

2
σ (13)

Let us compute the jacobian of this change of variables
∂v′

∂v
.

∂v′

∂v
=

1
2

(
I +

∂

∂v

√
|v − v∗|2σ

)
=

1
2

(
I + gradv(

√
|v − v∗|2) × σt

)
=

1
2

(
I +

1
|v − v∗|

(v − v∗) × σt
)

=
1
2

(
I + k × σt

)
Thus, we have

∣∣∣∣∣∂v′

∂v

∣∣∣∣∣ =
1

2N |I + k × σt| =
1

2N |I + σt × k| =
1

2N (1 + k.σ).

But, k.σ = cos θ entails 1 + k.σ = 2 cos2 θ
2 .

We define k′ =
v′ − v∗
|v′ − v∗|

, and we notice that (σ, k) = 2(σ, k′) (angles at the centre and on the circle).

Figure 4: v→ v′ change of variables

Given that θ ∈
]
0, π2

[
, it entails θ

2 ∈
]
− π4 ,

π
4

[
. We get:∣∣∣∣∣ ∂v
∂v′

∣∣∣∣∣ =
(k′.σ)2

2N−1 ≥
1

2N (14)

As a consequence, this change of variables is valid.
We denote ψσ : v′ 7→ v the inverse transformation. It is bijective! In the article, they give a geometrical

definition of ψσ: " Draw the hyperplane which bisects the segment [v∗, v′] (hyperplan), let w be the intersection of
this hyperplane with the line through v′, parallel to σ, then v is the velocity which is symetric to v∗ with respect to
w. "

Let us check that this affirmation is accurate.
We work in the plane P = (v∗, v, σ). Given its definition, v′ ∈ P. We can deduce w ∈ P, then ψσ(v′) ∈ P.
Remind that w =

ψσ(v′)+v∗
2 . We have v′ = w + |v′ − w|σ. But, |v′ − w| = |v∗ − w| = |ψσ(v′)−v∗ |

2 . Therefore,

v′ =
v + v∗

2
+
|v − v∗|

2
σ =

ψσ(v′) + v∗
2

+
|ψσ(v′) − v∗|

2
σ

v 7→ v′ being bijective, we can conclude v = ψσ(v′).
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We notice the following: k′.σ = k.k′ =
|v′ − v∗|
|ψσ(v′) − v∗|

. This formula is the same as:

|v∗ − ψσ(v)| =
|v − v∗|

k.σ
(15)

Use for those formula will be seen later.

3 Cancellation lemma: D2

This part deals with D2 defined by 12: D2 =
∫

Bg∗( f − f ′)dvdv′dσ. For θ next to 0, B goes to infinity, still, f and
f ′ as nearly the same value. This will allow us to minore the term D2.

Theorem 3.1 (Cancellation lemma). Let

S (z) = |S N−2|

∫ π
2

0
sinN−2 θ

 1
cosN θ

2

B
 |z|

cos θ
2

, cos θ
 − B(|z|, cos θ)

 dθ (16)

? is the convolution product. We have:

1. |S (z)| ≤ CN (Λ(|z|) + |z|Λ′(|z|))

2.
∫

B( f ′ − f )dvdσ = ( f ? S ) (v∗)

We first do the change of variables (Part 2.2) v→ v′ in
∫

B f ′dvdσ:∫
B f ′dvdσ =

∫
k′.σ≥ 1

√
2

B(ψσ(v′) − v∗, σ) f (v′)
2N−1

(k′.σ)2 dv′dσ

=

∫
k.σ≥ 1

√
2

B(ψσ(v) − v∗, σ) f (v′)
2N−1

(k.σ)2 dvdσ

But,

B(ψσ(v) − v∗, σ) = B
(
|ψσ(v) − v∗|, σ.

ψσ(v) − v∗
|ψσ(v) − v∗|

)
= B(|ψσ(v) − v∗|, cos(2θ))

= B(|ψσ(v) − v∗|, 2 cos2 θ − 1)

= B(|ψσ(v) − v∗|, 2(k.σ)2 − 1)

Therefore,∫
B( f ′ − f )dvdσ =

∫
k.σ≥ 1

√
2

2N−1

(k.σ)2 B(|v∗ − ψσ(v)|, 1 − (k.σ)2) f dvdσ −
∫

k.σ≤0
B(|v − v∗|, k.σ) f dvdσ

In the first term, we use the formula 16:

∫
k.σ≥ 1

√
2

2N−1

(k.σ)2 B(|v∗ − ψσ(v)|, 2(k.σ)2 − 1) f dvdσ =

∫
k.σ≥ 1

√
2

2N−1

(k.σ)2 B
(
|v − v∗|

k.σ
, 2(k.σ)2 − 1

)
f dvdσ

= |S N−2|

∫ π
4

0
sinN−2 θ

2N−1

cos2θ
B

(
|v − v∗|
cos θ

, cos(2θ)
)

f dθdv

= |S N−2|

∫ π
2

0
sinN−2(θ/2)

2N−2

cos2(θ/2)
B

(
|v − v∗|

cos(θ/2)
, cos θ

)
f dθdv

= |S N−2|

∫ π
2

0

sinN−2 θ

cosN(θ/2)
B

(
|v − v∗|

cos(θ/2)
, cos θ

)
f dθdv

Then, we obtain
∫

B( f ′ − f )dvdσ =
∫ π

2

0 sinN−2 θ
(

1
cosN (θ/2) B

(
|v−v∗ |

cos(θ/2) , cos θ
)
− B(|v − v∗|, cos θ)

)
f dvdθ, which is

the expected formula.

10



Still remains the majoration of |S (|z|)|. To do that, we use the formulas of part 1.2 and the fact that cos θ
2 ≥

1
√

2
.

In addition to that, we use the majoration 1 − cosN α ≤ N(1 − cosα) for α ∈
]
0; π4

[
.

|S (|z|)| ≤ |S N−2|

∫ /pi
2

0

sinN−2 θ

cosN
(
θ
2

)
∣∣∣∣∣∣∣∣B

 |z|

cos
(
θ
2

)  − B(|z, cos θ)

∣∣∣∣∣∣∣∣ dθ + |S N−2|

∫ π
2

0
sinN−2 θ

 1

cosN
(
θ
2

)  B(|z|, cos θ)dθ

≤ |S N−2|2
N
2

[∫ π
2

0
sinN−2

(
1 − cos

θ

2

)
|z|B′(|z|, cos θ)dθ +

∫ π
2

0
sinN−2

(
1 − cosN θ

2

)
B(|z|, cos θ)dθ

]
≤ 2

N
2 N

(
|z|Λ′(|z|) + Λ(|z|)

)
And the theorem is proven!
This entails the following result:

Corollary 3.1. There exists C depending only on N and B such that:∣∣∣∣∣∫ Bg∗( f ′ − f )dvdv∗dσ
∣∣∣∣∣ ≤ C‖g‖L1

2
‖ f ‖L1

2
(17)

Actually, we have∣∣∣∣∣∫ Bg∗( f ′ − f )dvdv∗dσ
∣∣∣∣∣ =

∣∣∣∣∣∫ ( f ? S )(v∗)g(v∗)dv∗
∣∣∣∣∣

=

∣∣∣∣∣∫ ∫
f (v)S (v − v∗)dvg(v∗)dv

∣∣∣∣∣
≤

∫
f (v)g(v∗)|S (v − v∗)|dvdv∗

≤ CN

∫
f (v)g(v∗)

(
|v − v∗|Λ′(|v − v∗|) + Λ(|v − v∗|)

)
dvdv∗

≤ CNC0

∫
f g∗(1 + |v − v∗|)2dvdv∗

thanks to the assumption 7.
Still,

(1 + |v|)(1 + |v∗|) ≥ 1 + |v| + |v∗| = 1 + |(v − v∗) + v∗)| + |v∗| ≥ 1 + |v − v∗| − |v∗| + |v∗| = 1 + |v − v∗| (18)

Then, ∣∣∣∣∣∫ Bg∗( f ′ − f )dvdv∗dσ
∣∣∣∣∣ ≤ C

∫
f (v)(1 + |v|)2 g(v∗)(1 + |v∗|)2dvdv∗

≤ C‖g‖L1
2
‖ f ‖L1

2

4 Fourier analysis and truncature: D1

Here, we deal with D1 defined by 11: D1(g, f ) =
∫

Bg∗
(

f log f
f ′ − f + f ′

)
dvdv∗dσ.

Let us first consider a simple case.
Let F =

√
f .

Let h(x) = log x−1 + 1
x −

(
1
√

x − 1
)2

= log x−2 + 2
√

x . We have h′(x) = 1
x + 1

√
x3 = 1

√
x3

(√
x − 1

)
. Then h′ is null

in 1 and only there, it is negative before, positive after. This entails that h is minimum in 1. But, h(1) = 0. Then,

∀x > 0, log(x) − 1 + 1
x ≥

(
1
√

x − 1
)
. With x =

f
f ′ , this entails:

D1 ≥

∫
Bg∗(F′ − F)2dvdv∗dσ ≥

∫
Φ(|v − v∗|)b(k.σ)g∗(F′ − F)2dvdv∗dσ (19)

So, we set M =
∫

Φ(|v − v∗|)b(k.σ)g∗(F′ − F)2dvdv∗dσ and it’s this expression that we will try to minore.
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4.1 First case: Φ = 1, Fourier analysis
As a first case, we assume that Φ(|z|) = 1. Then

M =

∫
b(k.σ)g∗(F′ − F)2dvdv∗dσ =

∫
b(k.σ)g∗(F′2 − 2FF′ + F2)dvdv∗dσ

We cut M into three parts: M = M1 − 2M2 + M3 where:

M1 =

∫
b(k.σ)g∗F′2dvdv∗dσ (20)

M2 =

∫
b(k.σ)g∗FF′dvdv∗dσ (21)

M3 =

∫
b(k.σ)g∗F2dvdv∗dσ (22)

4.1.1 M2

We denote F̂(ξ) = F F(ξ) =
∫
RN e−iv.ξF(v)dv the Fourier transform of F ∈ L2(RN).

Let Q+(g, F)(v) =
∫

b(k.σ)g′∗F
′dv∗dσ.

We obtain M2 =
∫

Q+(g, F)Fdv by using the pre-post-collisional change of variables (part 2.1). F,Q+(g, F) ∈
L2 so we can use Parseval’s identity:

M2 =
1

(2π)N

∫
F (Q+(g, F))F̂dξ

Remains to compute F (Q+(g, F)).
Let ϕ be a test function.
In

∫
Q+(g, F)ϕdv =

∫
b(k.σ)g′∗F

′ϕdvdv∗dσ, we use the pre-post-collisional introduced in part 2.1.
It entails

∫
Q+(g, F)ϕdv =

∫
b(k.σ)g∗Fϕ′dvdv∗dσ. Given that ϕ(v) = e−iv.ξ, we obtain:

F (Q+(g, F))(ξ) =

∫
b(k.σ)g∗ f eiv′.ξdv

=

∫
b(k.σ)g∗ f e−i v+v∗

2 .ξe−i |v−v∗|
2 σ.ξdvdv∗dσ

=

∫ (∫
b(k.σ)e−i|v−v∗ |

|ξ|
2

ξ
|ξ| .σdσ

)
g∗ f e−i v+v∗

2 .ξdvdv∗

Let H be the hyperplan that bisects ξ
|ξ|

et k. Let s be the symetry wit respect to H, it is an isometry of S N−1.
Now, we do the change of variables σ 7→ τ = s(σ):∫

b(k.σ)e−i|v−v∗ |
|ξ|
2

ξ
|ξ| .σdσ =

∫
b(k.s(τ))e−i|v−v∗ |

|ξ|
2

ξ
|ξ| .s(τ)dτ =

∫
b
(
ξ

|ξ|
.τ

)
e−i|v−v∗ |

|ξ|
2 k.τdτ

Then,

F (Q+(g, F))(ξ) =

∫
g∗Fb

(
ξ

|ξ|
.σ

)
e−i(ξ. v+v∗

2 +|ξ|σ. v−v∗
2 )dvdv∗dσ

=

∫
g∗Fb

(
ξ

|ξ|
.σ

)
e−iv.ξ+

e−iv∗.ξ−dvdv∗dσ

with ξ+ =
ξ+|ξ|σ

2 and ξ− =
ξ−|ξ|σ

2 .
Thus,

F (Q+(g, F))(ξ) =
1

(2π)N

∫
(̂g)(η∗)eiη∗.v∗ F̂(η)eiη.vb

(
ξ

|ξ|
.σ

)
e−iv.ξ+

e−iv∗.ξ−dη∗dηdvdv∗dσ

=
1

(2π)N

∫
ĝ(η∗)F̂(η)b

(
ξ

|ξ|
.σ

) ∫
eiv.(η−ξ+)dv

∫
eiv∗.(η∗−ξ−)dv∗dηdη∗dσ

=

∫
ĝ(η∗)F̂(η)b

(
ξ

|ξ|
.σ

)
δ
ξ+

η δ
ξ−

η∗ dη∗dηdσ

12



So,

F (Q+(g, F))(ξ) =

∫
ĝ(ξ−)F̂(ξ+)b

(
ξ

|ξ|
.σ

)
dσ (23)

This entails:

M2 =
1

(2π)N

∫
b
(
ξ

|ξ|
.σ

)
ĝ(ξ−)F̂(ξ+)F̂(ξ)dξdσ =

∫
b
(
ξ

|ξ|
.σ

)
ĝ(ξ−)F̂(ξ+)F̂(ξ)dξdσ (24)

4.1.2 M3∫
b(k.σ)dσ does not depend on the unit vector k.

So, we write:

M3 =

∫
g∗dv∗

∫
F2dv

∫
b(k.σ)dσ

= ĝ(0)
∫

F2
∫

b
(
ξ

|ξ
.σ

)
dσ

To conclude,

M3 =
1

(2π)N ĝ(0)
∫

b
(
ξ

|ξ|
.σ

)
|F̂|2(ξ)dσdξ (25)

4.1.3 M1

Let us first do the change of variables v 7→ q = v − v∗. v′ = v+v∗
2 +

|v−v∗ |
2 σ =

q+|q|σ
2 + v∗. This entails:

M1 =

∫
g(v∗)b

(
q
|q|
.σ

)
F

(
v∗ +

q + |q|σ
2

)
dqdv∗dσ

Now, we use the change of variables q 7→ v′ =
q+|q|σ

2 which is actually the change of variables introduced in
part 2.2 with v∗ = 0.

M1 =

∫
g∗b

2 (
v′

|v′|
.σ

)2

− 1

 2N−1(
v′
|v′ | .σ

)2 F(v∗ + v′)2dv′dv∗dσ

As before,
∫

b
(
2
(

v′
|v′ | .σ

)2
− 1

)
dσ does not depend on v′

|v′ | unit vector. In addition,
∫

F(v∗ + v′)2dv′ does not

depend on v∗ and is equal to
∫

F(v′)2dv′ = 1
(2π)N

∫ ∣∣∣F̂∣∣∣2 (ξ)dξ. The only factor in the integrand that depend on v∗ is
actually g∗ and we have

∫
g∗dv∗ = ĝ(0). This entails:

M1 =
1

(2π)N ĝ(0)
∫

b

2 (
ξ

|ξ|
.σ

)2

− 1

 ∣∣∣F̂∣∣∣2 (ξ)dξdσ

We use again q 7→ v′ in the opposite sense. It gives:

M1 =
1

(2π)N ĝ(0)
∫

b
(
ξ

|ξ|
.σ

) ∣∣∣∣∣∣F̂
(
ξ + |ξ|σ

2

)∣∣∣∣∣∣2 dσdξ (26)

4.1.4 Conclusion

From the formula 26, 24 and 25, we get:

M =
1

(2π)N

∫
b
(
ξ

|ξ|

) [
ĝ(0)

∣∣∣F̂(ξ)
∣∣∣2 + ĝ(0)

∣∣∣F̂(ξ+)
∣∣∣2 − ĝ(ξ−)F̂(ξ+)F̂(ξ) − ĝ(ξ−)F̂(ξ+)F̂(ξ)

]
dξdσ (27)

13



Still, ∀ε > 0, ĝ(ξ−)F̂(ξ+)F̂(ξ) + ĝ(ξ−)F̂(ξ+)F̂(ξ) ≤ ε
∣∣∣F̂(ξ)

∣∣∣2 + 1
ε

∣∣∣ĝ(ξ−)F̂(ξ+)
∣∣∣2. As a consequence, with ε =

|ĝ(ξ−)|,

M ≥
1

(2π)N

∫
b
(
ξ

|ξ|

) [
ĝ(0)

∣∣∣F̂(ξ)
∣∣∣2 + ĝ(0)

∣∣∣F̂(ξ+)
∣∣∣2 − ∣∣∣ĝ(ξ−)

∣∣∣ ∣∣∣F̂(ξ)
∣∣∣2 − ∣∣∣ĝ(ξ−)

∣∣∣ ∣∣∣F̂(ξ+)
∣∣∣2] dξdσ

≥
1

(2π)N

∫
b
(
ξ

|ξ|

) (
ĝ(0) −

∣∣∣ĝ(ξ−)
∣∣∣) (∣∣∣F̂(ξ)

∣∣∣2 +
∣∣∣F̂(ξ+)

∣∣∣2) dξdσ

M ≥
1

(2π)N

∫ ∣∣∣F̂(ξ)
∣∣∣2 (∫

b
(
ξ

|ξ|
.σ

) (
ĝ(0) −

∣∣∣ĝ(ξ−)
∣∣∣) dσ

)
dξ

We want to minore the factor into parenthesis. To do so, we first focus on the factor ĝ(0) − |ĝ(ξ−)|. Fix-
ing ξ−, there exists α ∈ R such that g(ξ−) = |g(ξ−)| eiα. Then ĝ(0) − |ĝ(ξ−)| =

∫
g(v)dv −

∫
g(v)e−i(v.ξ−+α)dv =∫

g(v) (1 − cos(v.ξ− + α)) as it’s a real number. Then, we get, for r > 0 and ε > 0:

ĝ(0) −
∣∣∣ĝ(ξ−)

∣∣∣ = 2
∫

g(v) sin2
(

v.ξ− + α

2

)
dv

≥ 2
∫
{|v|≤r,∀p∈Z,|v.ξ−+α−2pπ|≥2ε}

g(v) sin2
(

v.ξ− + α

2

)
dv

≥ 2 sin2 ε

∫
{|v|≤r,∀p∈Z,|v.ξ−+α−2pπ|≥2ε}

g(v)dv

≥ 2 sin2 ε

(∫
R

g(v)dv −
∫
{|v|>r}

g(v)dv −
∫
{|v|≤r,∃p∈Z,|v.ξ−+α−2pπ|<2ε}

g(v)dv
)

Still,
∫
{|v|>r} g(v)dv ≤

∫
{|v|>r} g(v)

(
1+|v|

r

)
dv because for |v| > r, 1+|v|

r > 1. As a consequence,∫
{|v|>r}

g(v)dv <
1
r

∫
R

g(v)(1 + |v|) =
‖g‖L1

1(RN )

r

This entails:

ĝ(0) −
∣∣∣ĝ(ξ−)

∣∣∣ ≥ 2 sin2 ε

‖g‖L1
1(RN ) −

‖g‖L1
1(RN )

r
−

∫
{|v|≤r,∃p∈Z,|v.ξ−+α−2pπ|<2ε}

g(v)dv


Let A = {|v| ≤ r,∃p ∈ Z, |v.ξ− + α − 2pπ| < 2ε}.

Figure 5: A

It is clear on the figure 5 that A est made of less than 1 +
r|ξ− |
π

colums of width 4 ε
|ξ− |

and of surface less than

(2r)N−1. Then |A| ≤ 4ε
|ξ− |

(2r)N−1
(
1 +

r|ξ− |
π

)
.

Therefore,

ĝ(0) −
∣∣∣ĝ(ξ−)

∣∣∣ ≥ 2 sin2 ε

‖g‖L1
1(RN ) −

‖g‖L1
1(RN )

r
− sup
|A|≤ 4ε

|ξ−|
(2r)N−1

(
1+

r|ξ−|
π

)
∫

A
g(v)dv

 (28)
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First case: |ξ−| ≥ 1 Here, we assume that |ξ−| ≥ 1.
Then, 4ε

|ξ− |
(2r)N−1

(
1 +

r|ξ− |
π

)
= 4ε(2r)N−1

(
1
|ξ− |

+ r
π

)
≤ 4ε(2r)N−1

(
1 + r

π

)
.

Let C′g = 2 sin2 ε

‖g‖L1
1(RN ) −

‖g‖L1
1(RN )

r − sup
|A|≤4ε(2r)N−1(1+ r

π )

∫
A g(v)dv

. First, we choose r such that
‖g‖L1

1(RN )

r ≤

1
3‖g‖L1(RN ). Then, we can adjust ε such that sup

|A|≤4ε(2r)N−1(1+ r
π )

∫
A g(v)dv ≤ 1

3 ‖g‖L1(RN ). With those choices, C′g > 0

et on a ĝ(0) − |ĝ(ξ−)| ≥ cg.

Second case: |ξ−| ≤ 1 Here, we assume that |ξ−| ≤ 1.
Let δ = ε

|ξ− |
. We rewrite 28 in function of δ instead of ε.

ĝ(0) −
∣∣∣ĝ(ξ−)

∣∣∣ ≥ 2 sin2(|ξ−|δ)

‖g‖L1
1(RN ) −

‖g‖L1
1(RN )

r
− sup
|A|≤4δ(2r)N−1

(
1+

r|ξ−|
π

)
∫

A
g(v)dv


≥ 2|ξ−|2δ2 sin2(|ξ−|δ)

|ξ−|2δ2

‖g‖L1
1(RN ) −

‖g‖L1
1(RN )

r
− sup
|A|≤4δ(2r)N−1(1+ r

π )

∫
A

g(v)dv


≥ 2|ξ−|2δ2 inf

|ξ|≤1

∣∣∣sinc2(δ|ξ|)
∣∣∣ ‖g‖L1

1(RN ) −
‖g‖L1

1(RN )

r
− sup
|A|≤4δ(2r)N−1(1+ r

π )

∫
A

g(v)dv


We choose r as in the first case. Then, we choose δ < π as we did for ε in the first case.
To conclude, ĝ(0) − |ĝ(ξ−)| ≥ |ξ−|2c′g, where c′g > 0 depends only on N and g.

Conclusion There exists C′g > 0 depending only on N and g such that:

ĝ(0) −
∣∣∣ĝ(ξ−)

∣∣∣ ≥ C′g min(1, |ξ−|2) (29)

Therefore,
∫

b
(
ξ
|ξ|
.σ

)
(ĝ(0) − |ĝ(ξ−)|) dσ ≥ C′g

∫
b
(
ξ
|ξ|
.σ

)
min(1, |ξ−|2)dσ. Or, |ξ−|2 =

|ξ|2

2

(
1 − ξ

|ξ|
.σ

)
. Then,∫

b
(
ξ

|ξ|
.σ

) (
ĝ(0) −

∣∣∣ĝ(ξ−)
∣∣∣) dσ ≥ C′g|S

N−2|

∫ π
2

0
sinN−2 θb(cos θ) min

(
|ξ|2

2
(1 − cos θ), 1

)
dθ

≥ C′g
K
2
|S N−2|

∫ α
|ξ|

0
min

(
|ξ|2

2
(1 − cos θ), 1

)
dθ
θ1+ν

≥ C′g
K
2
|S N−2||ξ|ν

∫ α

0
min

(
|ξ|2

2
(1 − cos τ), 1

)
dτ
τ1+ν

for an α > 0, small, and given the formula 5.
This entails the existence of a constant Cg depending only on N, b and g such that:∫

b
(
ξ

|ξ|
.σ

) (
ĝ(0) −

∣∣∣ĝ(ξ−)
∣∣∣) dσ ≥ Cg|ξ|

ν (30)

And so, there exists C depending only on N, b and g such that:

M ≥ C‖
√

f ‖2
H

ν
2 (RN )

(31)

In particular, D1 ≥ C‖
√

f ‖H ν
2 (RN ).

Then, as D(g, f ) = D1(g, f ) + D2(g, f ), we have D(g, f ) − D2(g, f ) ≥ C‖
√

f ‖H ν
2
(RN). And, given 17,

D(g, f ) + C1‖g‖L1
2
‖ f ‖L1

2
≥ C‖

√
f ‖H ν

2 (RN ) (32)

We proved what we wanted to.
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4.2 Second case: Φ(0) , 0

4.2.1 Truncation

Let A and B be two parts of RN . We denote by χA and χB the mollified (C∞) characteristic functions of A and B.
When A ∩ B = ∅, we shall take SuppA ∩ SuppB = ∅.

We wish to replace f and g by fχA and gχB respectively.
First of all, g∗(F′−F)2 ≥ g∗χB∗(F′−F)2χ2

A. We also notice that (F′χ′A−FχA)2 ≤ 2F′2(χ′A−χA)+2(F−F′)2χ2
A.

As a consequence,

Φ(|v − v∗|)b(k.σ)g∗(F − F′)2 ≥ Φ(|v − v∗|)b(k.σ)g∗χB∗(F − F′)2χ2
A

≥
1
2

min(1,Φ(|v − v∗|))b(k.σ)g∗χB∗(F′χ′A − FχA)2 − b(k.σ)g∗χB∗F′2(χ′A − χA)2

But, (χ′A − χA)2 ≤ ‖∇χA‖
2
L∞ |v − v′|2 ≤ CA max(1, diamA)−2|v − v∗|2 sin2 θ

2 with a suitable choice for χA.
Then,

∫
g∗χB∗b(k.σ) f ′(χ′A − χA)2dvdv∗dσ ≤ CA

∫
g∗b(cos θ) f ′|v − v∗|2 sin2 θ

2
dvdv∗dσ

≤ CA

∫
g∗b(cos θ) f ′

|v′ − v∗|2

cos2 θ
2

sin2 θ

2
dvdv∗dσ

≤ CA

∫
|θ|≤ π

2

g∗b(cos θ) f ′
|v′ − v∗|2

cos2 θ
2

sin2 θ

2
2N−1

cos2 θ
2

dv′dv∗dσ

Noticing that sin2 θ
2

cos4 θ
2
≤ 1 given |θ| ≤ π

2 , and using 18, we conclude :∫
g∗χB∗b(k.σ) f ′(χ′A − χA)2dvdv∗dσ ≤ C′A‖g‖L1

2
‖ f ‖L1

2
(33)

Thus, we have:

∫
Φ(|v−v∗|)b(k.σ)g∗(F−F′)2dvdv∗dσ+C′A‖g‖L1

2
‖ f ‖L1

2
≥

1
2

∫
min(1,Φ(|v−v∗|))b(k.σ)g∗χB∗(F′χ′A−FχA)2dvdv∗dσ

(34)

4.2.2 Use of troncature in this case

In this case, we chose A = B = BR the RN-ball centered in 0 of radius R. The integrande in the left-hand side of
inequality 34 is not null when χB∗ , 0 and χA or χ′A is not null that is |v∗| ≤ R and min(|v|, |v′|) ≤ R. Given that
|v′ − v∗| ≤ |v − v∗| ≤

√
2|v′ − v∗|, this integrande is null when |v − v∗| > 8R2.

This entails,∫
Φ(|v−v∗|)b(k.σ)g∗(F−F′)2dvdv∗dσ+C′A‖g‖L1

2
‖ f ‖L1

2
≥

1
2

min
|z|≤2

√
2R

(Φ(|z|), 1)
∫

b(k.σ)g∗χBR∗(F
′χ′BR
−FχBR )2dvdv∗dσ

(35)
We recognise M associated to gχBR and fχBR on the left-hand side, which gives thanks to inequality 31 :

∫
Φ(|v − v∗|)b(k.σ)g∗(F − F′)2dvdv∗dσ + C′A‖g‖L1

2
‖ f ‖L1

2
≥

1
2

min
|z|≤2

√
2R

(Φ(|z|), 1)C‖
√

fχBR‖
2
H

ν
2

≥ C′‖
√

f ‖2
H

ν
2 (BR)

That is D1 + C′A‖g‖L1
2
‖ f ‖L1

2
≥ C′‖

√
f ‖2

H
ν
2 (BR)

. Remembering the cancellation lemma, in particular inequality 17
we conclude

‖
√

f ‖2Hν/2(|v|<R) ≤ Cg,R

(
D(g, f ) + ‖g‖L1

2
‖ f ‖L1

2

)
We have proven the theorem in this case. Remains the study of the general case when Φ(0) can be 0.
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4.3 General case : Φ(0) may be null !
The idea is to use the results of part 4.2.1 with a well-chosen set of A j, B j such that Φ would not be null.

Let r0 > 0 be a small radius. As BR is compact, there exist a finite set J such that BR ⊂
⋃
j∈J

B
(
v j,

r0
4

)
with

v j ∈ BR,∀ j ∈ J. We set A j = BR ∩ B
(
v j,

r0
4

)
and B j = BR ∩ B(v j, r0).

Figure 6: A j and B j

Let us first notice that
‖
√

f ‖2
H

ν
2 (BR)

≤
∑
j∈J

‖FχA j‖
2
H

ν
2

(36)

Reasoning as before, given that v∗ ∈ B j, v ∈ A j =⇒ |v − v∗| >
r0
2

v∗ ∈ B j, v′ ∈ A j =⇒ |v − v∗| >
r0
2

we obtain:

2
∫

Φ(|v − v∗|)b(k.σ)g∗(F′ − F)2dvdv∗dσ

+C′A j
‖g‖L1

2
‖ f ‖L1

2
≥ min

r0
2 <|z|<2

√
2R

(1,Φ(|z|))
∫

b(k.σ)g∗χB j∗(F
′χ′A j
− FχA j )

2dvdv∗dσ

≥ Cg∗χB j∗
‖
√

fχA j‖
2
H

nu
2

This inequality combined with inequality 36 hences the conclusion:

‖
√

f ‖2Hν/2(|v|<R) ≤ Cg,R

(
D(g, f ) + ‖g‖L1

2
‖ f ‖L1

2

)
And the theorem is proven in all cases!
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Part II

About the paper On the Boltzmann Equation for
Long-Range Interactions
This work comes after the work of DiPerna and Lions about the compactness of a set of weak solutions of the
Boltzmann equation with angular cutoff called renormalized solutions. Here Alexandre and Villani go further.
They define the notion of renormalized solution with a defect measure (RSDM) which is weaker than the one
defined by DiPerna and Lions and show compactness results with less assumptions than DiPerna and Lions did. In
particular, their result holds for the non-cutoff case.

5 Definitions, assumptions and aim
As before, we shall write f (t, x, v) and we work in dimension N.

H( f ) =
∫
RN

x ×R
N
v

f log f dxdv denotes the entropy.
And they define the nonnegative entropy dissipation

D( f ) =
1
4

∫
RN

v ×R
N
v∗×S N−1

σ

B(v − v∗, σ)( f ′ f ′∗ − f f∗) log
f ′ f ′∗
f f∗

dvdv∗dσ

5.1 Notion of RSDM
Definition 5.1. Let f ∈ C(R+;D′(RN

x × R
N
v )) ∩ L∞(R+; L1((1 + |v|2 + |x|2)dxdv)). We say that f is a renormalized

solution to the Boltzmann equation with defect measure (RSDM) when for all β ∈ C2(R+,R+) non-linear such that
:

β(0) = 0, 0 < β′( f ) ≤
C

1 + f
, β′′( f ) < 0 (37)

the following inequality 38 in the sense of distributions and the mass conservation assumption 39 hold.

∂β( f )
∂t

+ v.∇xβ( f ) ≥ β′( f )Q( f , f ) (38)

∀t ≥ 0,
∫
RN×RN

f (t, x, v)dxdv =

∫
RN×RN

f (0, x, v)dxdv (39)

For more lisibility, we set D f = C(R+;D′(RN
x × R

N
v )) ∩ L∞(R+; L1((1 + |v|2 + |x|2)dxdv)).

Remark 5.1. The “defect measure” corresponds to the difference between the two sides of the inequality 38.

A notion of weak solutions has been defined here, because the inequality 38 holds in the sense of distributions.

5.2 Assumptions on the cross-section B

As in the previous paper, we assume that B(v − v∗, σ) depends only on cos θ = v−v∗
|v−v∗ |

.σ and is nonnegative, a.e.
finite and supported in θ ∈ [0 ; π2 ].

As before, we denote k := v−v∗
|v−v∗ |

They do three assumptions on the behavior of B.

5.2.1 At most borderline singularity

B is assumed to be of the following shape :

B(z, σ) =
β0(k.σ)
|z|N

+ B1(z, σ) (40)

where β0 and B1 are nonnegative measurable functions.
We also assume that

µ0 :=
∫

S N−1
β0(k.σ)(1 − k.σ)dσ < +∞ (41)
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M1(|z|) :=
∫

S N−1
B1(z, σ)(1 − k.σ)dσ ∈ L1

loc(RN) (42)

M′1(|z|) :=
∫

S N−1
B′1(z, σ)(1 − k.σ)dσ ∈ L1

loc(RN) (43)

where B′1 := sup
1<λ≤

√
2

|B1(λz,σ)−B1(z,σ)|
(λ−1)|z| .

5.2.2 Behavior at infinity

For α ∈ [0 ; 2], let Mα(|z|) :=
∫

S N−1 B(z, σ)(1 − k.σ)
α
2 dσ. It is easy to see, as we did for the previous paper, that

Mα(|z|) does not depend on the direction of z but only of its norm.
We assume that for one α,

Mα(|z|) = o
|z|→∞

(|z|2−α) (44)

Defining M′ similarily to M′1 in 43 with B instead of B1, we aslo assume that

|z|M′(|z|) = o
|z|→∞

(|z|2) (45)

Remark 5.2. M, M1 and their primed versions play the same role as Λ in previous paper.

5.2.3 Angular singularity condition

As in the previous paper, they make the assumption that B(z, σ) ≥ Φ0(|z|)b0(k.σ) where Φ0 is a continuous function
that may be null only in |z| = 0.

We make the non-cutoff assumption, that is∫
S N−1

b0(k.σ)dσ = +∞ (46)

so that they can use the results from the previous paper.

5.3 Definitions for sequences of RSDM
As the aim is to show a compactness result, we will be working with sequences of RSDM for cross-section (Bn).

5.3.1 Bn approximates B

Remind the result from previous paper called cancellation lemma. We will show in section 6.1 that we have a
similar result for a cross-section B that satisfies the assumptions of section 5.2.1:

∫
B( f ′∗ − f∗)dv∗dσ = f ?v S a.e.

where S is a distribution. We denote S n the S -quantity associated to Bn.
For cross-section B and fixed v∗, let

T : φ 7→
∫

S N−1
B(φ′ − φ)dσ (47)

Similarily, for Bn, we set T n : φ 7→
∫

S N−1 Bn(φ′ − φ)dσ.

Definition 5.2. We say that Bn approximates B (Bn → B) when

• ∀n, Bn satisfies the at most borderline singularity assumption (section 5.2.1),

• S n ⇀ S locally in the weak-measure sense,

• T n ⇀ T ,

• Bn → B a.e. and,

• we have the assumption of behaviour at infinity (section 5.2.2) uniformly in n.
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5.3.2 Overall angular singularity condition

It is assumed that there exist Φ0 and bn
0 as in section 5.2.3 such that

• ∀n, Bn(z, σ) ≥ Φ0(|z|)bn
0(k.σ) and,

•
∫

S N−1 lim
n→∞

bn
0(k.σ)dσ = +∞.

5.4 Aim: a result of compactness and existence of weak solution
They prove the following theorem of stability and appearance of strong compactness.

Theorem 5.1. Under assumptions of parts 5.2.1, 5.2.2 and 5.2.3, for ( fn) a sequence of RSDM satisfying

sup
n∈N

sup
T∈[0;T ]

∫
RN×RN

f n(1 + |v|2 + |x|2 + log f n)dxdv < +∞ (48)

which basically corresponds to the finite mass, energy, entropy assumptions, and the assumption on entropy dissi-
pation ∫ T

0

∫
RN

x

D( f n(t, x, .))dxdT ≤ H( f n(0, ., .)) − H( f n(T, ., .)) (49)

such that f n ⇀ f weakly in LP([0 ; T ], L1(RN
x × R

N
v )) for one p ∈ [1 ; +∞[. Then,

1. f is a RSDM,

2. f n → f strongly.

This theorem leads to the following corrollary which states the existence of RSDM to the Boltzmann equation.

Corollary 5.1. Under the same assumptions as theorem 5.1, let f0 be an initial datum such that∫
RN

x ×R
N
v

f0(1 + |v|2 + |x|2 + log f0)dxdv < +∞ (50)

Then there exist f a RSDM with initial datum f (0, ., .) = f0. Moreover, this solution satisfies ∀t ∈ [0 ; T ] :∫
R2N

f (t, x, v)dxdv =

∫
R2N

f0dxdv

∫
R2N

f (t, x, v)vdxdv =

∫
R2N

f0vdxdv∫
R2N

f (t, x, v)
|v|2

2
dxdv =

∫
R2N

f0
|v|2

2
dxdv

H( f (T, ., .)) +

∫ T

0

∫
RN

D( f (t, x, .))dxdt ≤ H( f0)

Actually, theorem 5.1 is a consequence of the more general result:

Theorem 5.2. Let B be a cross section satisfying assumptions of part 5.2 and (Bn) be a sequence of cross sections
such that Bn → B and that satisfies assumption of part 5.3.2.

Let ( f n) be a sequence of RSDM with cross section (Bn) such that:

1. sup
n∈N

sup
t∈[0;T ]

∫
f n(1 + |v|2 + |x|2 + log f n)dxdv < +∞,

2. ∀n ∈ N,
∫ T

0

∫
Dn( f n(t, x, ·)) ≤ Hn( f n

0 ) − Hn( f n(T, ·, ·)),

3. f n → f in w − LP([0 ; T ], L1(RN
x × R

N
v )) for all 1 ≤ p < +∞.

Then,

1. f n → f strongly,
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2. f is a RSDM with cross section B,

3. ∀t ∈ [0 ; T ],
∫

f (t, x, v)dxdv =
∫

f0(x, v)dxdv (mass conservation),

4. ∀t ∈ [0 ; T ],
∫

f (t, x, v)vdxdv =
∫

f0(x, v)vdxdv (momentum conservation),

5. ∀t ∈ [0 ; T ],
∫

f (t, x, v) |v|
2

2 dxdv ≤
∫

f0(x, v) |v|
2

2 dxdv (energy dissipation),

6. H( f (T, ·, ·)) +
∫ T

0

∫
D( f (t, x, ·))dxdt ≤ H( f0) (entropy inequality).

6 An useful decomposition of β′( f )Q( f , f )

Lets consider β satisfying 37. They introduce

Γ( f , f ′) := β( f ′) − β( f ) − β′( f )( f ′ − f ) (51)

Using Taylor’s formula, we know that there exists ξ ∈ ] f ; f ′[ or ] f ′ ; f [ such that Γ( f , f ′) = 1
2 ( f ′ − f )2β′′(ξ) < 0

for f , f ′.
As suggered by inequation 38, lets compute β′( f )Q( f , f ).

β′( f )Q( f , f ) =

∫
Bβ′( f )( f ′ f ′∗ − f f∗)dv∗dσ

=

∫
B[β′( f ) f ′∗ ( f ′ − f ) + β′( f ) f ( f ′∗ − f∗)]dv∗dσ

=

∫
B[ f ′∗ (β( f ′) − β( f ) − Γ( f , f ′)) + β′( f ) f ( f ′∗ − f∗)]dv∗dσ

=

∫
B( f ′∗ − f∗)( fβ′( f ) − β( f )) + B(β( f )( f ′∗ − f∗) + f ′∗ (β( f ′) − β( f )))dv∗dσ −

∫
B f ′∗Γ( f , f ′)dv∗dσ

=

∫
B( fβ′( f ) − β( f ))( f ′∗ − f∗)dv∗dσ +

∫
B( f ′∗β( f ′) − f∗β( f ))dv∗dσ −

∫
B f ′∗Γ( f , f ′)dv∗dσ

= R1 + R2 + R3

For the moment, it is not proven that R1, R2 and R3 make sense. This is the point of sections 6.1, 6.2 and 6.3
respectively. It will be shown that they make sense for

f ∈ D′([0 ; T ] × RN
x × R

N
v ) (52)

and such that
sup

t∈[0;T ]

∫
f (t, x, v)(1 + |v|2)dxdv < +∞ (53)

6.1 Integrability of R1: use of the cancellation lemma
Recall R1 = ( fβ′( f ) − β( f ))

∫
B( f ′∗ − f∗)dv∗dσ. Thus, we have to prove that

∫
B( f ′∗ − f∗)dv∗dσ converges.

We want to apply the cancellation lemma from previous paper and get :
∫

B( f ′∗ − f∗)dv∗dσ = f ?v S almost
everywhere with

S (|z|) = |S N−2|

∫ π
2

0
sinN−2 θ

 1
cosN θ

2

B
 |z|

cos θ
2

, cos θ
 − B(|z|, cos θ)

 dθ (54)

We consider that B satisfy assumption of part 5.2.1: B(z, σ) =
β0(k.σ)
|z|N + B1(z, σ). With obvious notations, we

have S (z) = S 0(z) + S 1(z). Thus, we need to compute S 0 and show that the formula given in first paper does

make sense for B0(z, σ) =
β0(cos θ)
|z|N : S 0(z) = |S N−2|

∫ pi
2

0 sinN−2 θ
[

1
cosN θ

2
B0

(
|z|

cosN θ
2
, cos θ

)
− B0(|z|, cos θ)

]
dθ. Actually,

S 0 = lim
ε→0+

S ε for S ε obtained with the same formula using Bε(z, σ) := B0(z, σ)1|z|≥ε instead of B0(z, σ).
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S ε(z) = |S N−2|

∫ π
2

0
sinN−2 θ

 1
cosN θ

2

β0(cos θ)
cosN θ

2

|z|N
1 |z|

cos θ2
≥ε − β0(cos θ)

1
|z|N

1|z|≥ε
 dθ

=
|S N−2|

|z|N

∫ π
2

0
sinN−2 θβ0(cos θ)(1|z|≥ε cos θ

2
− 1|z|≥ε)dθ

=
|S N−2|

|z|N

∫ π
2

0
sinN−2 θβ0(cos θ)1ε cos θ

2≤|z|<ε
dθ

=
|S N−2|

εN

(
|z|
ε

)−N

1 |z|
ε <1

∫ π
2

2 cos−1 |z|
ε

sinN−2 θβ0(cos θ)dθ

= ε−N J
(
|z|
ε

)
with obvious notations. From this, we get that

∫
z S ε(z)dz does not depend on ε. Moreover, S ε is supported in

B(0, ε). As a consequence, S 0(z) =
∫

z J(z)dzδ0(z) where δ0 is the Dirac distribution in 0.
Yet, ∫

J(z)dz = |S N−2|

∫
z

∫
2 cos−1 |z|

sinN−2 θβ0(cos θ)dθdz

= |S N−2||S N−1|

∫ 1

0

1
r

∫ π
2

2 cos−1 r
sinN−2 θβ0(cos θ)dθdr

= |S N−2||S N−1|

∫ π
2

0

∫ 1

cos θ
2

dr
r

sinN−2 θβ0(cos θ)dθ

= |S N−2||S N−1|

∫ π
2

0
ln

(
cos

θ

2

)
sinN−2 θβ0(cos θ)dθ

To conclude,

S 0(z) = −|S N−2||S N−1|

∫ π
2

0
ln

(
cos

θ

2

)
sinN−2 θβ0(cos θ)dθδ0(z) = λδ0(z) (55)

Still, we need to show that λ , ∞ which is not difficult noticing that − log u ≤ 1
u − 1:

0 ≤ λ .
∫ π

2

0

 1
cos θ

2

− 1
 β0(cos θ) sinN−2 θdθ

.

∫ π
2

0

1
2 cos θ

2

(
2 − 2 cos2 θ

2

)
β0(cos θ) sinN−2 θdθ

.

∫ π
2

0
(1 − cos θ)β0(cos θ) sinN−2 θdθ

. µ0 < ∞

thanks to the at most borderline singularity assumption (equation 41).
Moreover, as in previous paper, we have

|S 1(z)| ≤ CN
(
M1(|z|) + |z|M′1(|z|)

)
< +∞ (56)

because of the same assumption (equations 42 and 43).
fβ′( f ) − β( f ) = fβ′( f ) − (β( f ) − β(0)) = − f 2β′′(ξ f f ) > 0 for some ξ f ∈ ]0 ; 1[. So it’s in L∞([0 ; T ]; L1(R2N))

as f satisfies 52 and β′′ is continuous.
Remains to prove that f ?v S makes sense. I will do it my own way.
First, let’s notice that Mα as defined in section 5.2.2 is such that M ≤ Mα where M =

∫
B(1 − k.σ)dσ. And,

obviously M1 ≤ M. We also have M′1 ≤ M′. Remind that assumption of section 5.2.2 gives us Mα(|z|)+ |z|M′(|z|) =

|z|2−αε1(|z|) + |z|2ε2(|z|) ≤ |z|2ε(|z|) where ε(|z|)→ 0 when |z| → ∞. We can choose ε decreasing.
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Then, for R > 0,

‖ f ?v S ‖L1(RN
x ×Bv(0,R)) = ‖ f ?v (λδ0 + S 1)‖L1

= ‖λ f + f ?v S 1‖L1

≤ λ‖ f ‖L1(R2N ) + ‖ f ?v S 1‖L1(RN
x ×Bv(0,R))

≤ ‖ f ‖L1(R2N )(λ + CN sup
|z|≤R

(M1(|z|) + |z|M′1(|z|)))

≤ ‖ f ‖L1 (λ + CN sup
|z|<R
|z|2ε(|z|))

≤ ‖ f ‖L1 (λ + CNε(0)R2)

Taking the sup for T ∈ [0 ; T ] on both side of this inequality, we can conclude that R1 is well-defined almost
everywhere and is a in L∞([0 ; T ]; L1(RN

x × Bv(0,R))) for any R > 0.

6.2 Integrability of R2

First, notice that R2 = Q( f , β( f )). We will define it as a distribution and then show that it is actually an element of
L∞([0 ; T ]; L1(RN

x ; W−2,1(Bv(0,R)))) for any R < 0.
Let φ be a test function. Using the pre-postcollisional change of variables in the first term of

∫
R2φ(v)dv =∫

B( f ′∗β( f ′) − f∗β( f ))φdσdv∗dv, we get:∫
R2φ(v)dv =

∫ (∫
B(φ′ − φ)dσ

)
f∗β( f )dv∗dv =

∫
Tφ f∗β( f )dv∗dv

where T is defined by equation 47.
T is to be seen as a linear operator. We will now show that it’s bounded as a linear operator of W2,∞ → L∞

when B satisfies assumptions of part 5.2.1.

Proposition 6.1. ∀φ ∈ W2,∞(RN
v ),

|Tφ(v)| ≤
1
2
‖φ‖W2,∞ |v − v∗|

(
1 +
|v − v∗|

2

)
M(|v − v∗|) (57)

And, for all α ∈ [0 ; 2], ∀φ ∈ W2,∞(RN
v ),

|Tφ(v)| ≤ 2‖φ‖W2,∞ (1 + |v − v∗|)α/2Mα(|v − v∗|) (58)

The proof of this result is given in the paper. It uses Taylor’s decomposition of φ′ − φ in the formula for Tφ.
And the fact that I =

∫
B(v− v∗, σ)(v′ − v)dσ does not depend on the direction of v′ − v but only of its norm. Thus,

we have I =
∫

B(v − v∗, σ)(v′v.k)kdσ.
From this proposition, they deduce, when B satisfies assumptions of part 5.2.2 and f ∈ D f , that R2 is well-

defined and is in L∞([0 ; T ]; L1(RN
x ; W−2,1(Bv(0,R)))).

They first bound ‖R2‖W−2,1
v (Bv(0,R)) = sup

{
R2φdv, φ ∈ (W−2,1)∗ = W2,∞(Bv(0,R)), ‖phi‖W2,∞ ≤ 1

}
and then inte-

grate the obtained bound w.r.t. x.

6.3 Integrability of R3

They assume that f is a RSDM with cross-sections B satisfying assumptions of parts 5.2.1 and 5.2.2. They show
that R3 = −

∫
B f ′∗Γ( f , f ′)dv∗dσ ∈ L1([0 ; T ]; L1(RN

x × Bv(0,R))).
Noticing that the integrand in R3 is nonnegative, they can rewrite the fact that f is a RSDM as:

∂β( f )
∂t

+ v.∇xβ( f ) ≥ R1 + R2 + R3

which gives for φ(v) ∈ W ,∞ a nonnegative compact-supported test function such that φ = 1 in Bv(0,R) and φ = 0
outside of Bv(0, 2R) and ‖φ‖W2∞ ≤ CR−2:∫

∂β( f )
∂t

φ(v)dtdxdv +

∫
v.∇xβ( f )φ(v)dtdxdv ≥

∫
R1φ(v)dtdxdv +

∫
R2φ(v)dtdxdv +

∫
R3φ(v)dtdxdv

=⇒

∫
[β( f (., x, v))]T

0 φ(v)dxdv + 0 (by integration by parts w.r.t. v) ≥ some bounded things +

∫ T

0

∫
RN

x

∫
Bv(0,R)

R3dvdxdt
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Remains to deal with the first term of this inequality.∫
[β( f (., x, v))]T

0 φ(v)dxdv ≤
∫

β( f (T, x, v))φvdxdv

≤

∫
RN

x ×Bv(0,2R)
β( f (T, x, v))dxdv

≤ C
∫
RN

x ×Bv(0,2R)
f (T, x, v)dxdv thanks to assumption 37 on β

≤ C
∫
RN

x ×R
N
v

f (T, x, v)dxdv

≤ C‖ f0‖L1(RN
x ×R

N
v ) by mass conservation (equation 39)

With this decompotisition (that makes sense) in hands, we can now get to the point and show theorem 5.2. I
will only give the idea of the proof, which is not entirely given in the paper.

7 How to get strong compactness appearance ?
For more clearness, here is the theorem we are about to prove:

Let B be a cross section satisfying assumptions of part 5.2 and (Bn) be a sequence of cross sections such that
Bn → B and that satisfies assumption of part 5.3.2.

Let ( f n) be a sequence of RSDM with cross section (Bn) such that:

1. sup
n∈N

sup
t∈[0;T ]

∫
f n(1 + |v|2 + |x|2 + log f n)dxdv < +∞,

2. ∀n ∈ N,
∫ T

0

∫
Dn( f n(t, x, ·)) ≤ Hn( f n

0 ) − Hn( f n(T, ·, ·)),

3. f n → f in w − LP([0 ; T ], L1(RN
x × R

N
v )) for all 1 ≤ p < +∞.

Then,

1. f n → f strongly,

2. f is a RSDM with cross section B,

3. ∀t ∈ [0 ; T ],
∫

f (t, x, v)dxdv =
∫

f0(x, v)dxdv (mass conservation),

4. ∀t ∈ [0 ; T ],
∫

f (t, x, v)vdxdv =
∫

f0(x, v)vdxdv (momentum conservation),

5. ∀t ∈ [0 ; T ],
∫

f (t, x, v) |v|
2

2 dxdv ≤
∫

f0(x, v) |v|
2

2 dxdv (energy dissipation),

6. H( f (T, ·, ·)) +
∫ T

0

∫
D( f (t, x, ·))dxdt ≤ H( f0) (entropy inequality).

7.1 Strong compactness for convolution products
In this section, I will present Step 1 of the paper. I won’t insist on this part because it’s mostly the use of DiPerna
and Lions’ results. I didn’t read their work.

They use the averaging lemmas given by DiPerna and Lions to show that exctracting a subsequence
∫
β( f n)φ(v)dv→∫

β( f )φ(v)dv strongly with respect to (t, x) for any smooth compact-supported test function φ.
Actually, using also the bounds on f n, they can get strong compactness of β( f n) ?v φ in L1([0 ; T ] × RN

x × R
N
v ).

Using this and other analysis arguments, they obtain L1 strong compacity for
√

f n ?v φ.
To finish, they also show that

∫
f ndv is strongly compact w.r.t. (t, x). The limit can only be

∫
f dv.

7.2 How to get strong compactness for f n?
In this section, I will present Step 2, 3 and 4 of the paper. The point is to show that ( f n) is strongly compact in L1.
To get this result, we will fisrt show that (

√
f n) is strongly compact in L2 by truncating it.
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7.2.1 Truncation: velocity smoothness

Here they use the truncation results from previous paper. They denote f n
R = f nχR where χR is smooth, supported

in Bv(0, 3R) and such that χR = 1 in Bv(0, 2R).
Let Zn(a) = |S N−2|

∫ π
2

a bn
0(cos θ) sinN−2 θdθ.

The result they use is the following.

Theorem 7.1. ∀L, ε ∈ ]0 ; +∞[, for almost every (t, x) such that:

• Hn(t, x) ≤ L and

• ρn(t, x) ≥ ε,

we have pointwisely with C( f n,R,Φ0) depending only on R, Φ0, L and ε,∫
|ξ|≥1
|F

√
f n
R |

2Zn

(
1
|ξ|

)
dξ ≤ C( f n,R,Φ0)(D( f n) + ‖ f n‖2L1

2
) (59)

Let us denote g ∈ L2 the weak-limit of
√

f n. It exists. We now want to prove that the convergence is actually
strong in L2([0 ; T ] × Bx(0,R) × Bv(0,R)).

We will actually show that the convergence is strong almost everywhere in every Wε × Bv(0,R) where Wε ={
(t, x) ∈ [0 ; T ] × BN

R ,
∫

F2dv > ε
}

for ε > 0.
So, for fixed ε > 0, we have, by convexity of f → f 2,

ε <

∫
g2dv ≤ lim

n→∞

∫ √
f n2dv = lim

n→∞

∫
f ndv =

∫
f dv

using the strong convergence of
∫

f ndv to
∫

f dv obtained previously in part 7.1.
Remind Egorov’s theorem:

Theorem 7.2 (Egorov). Let (M, d) denote a separable metric space. Given a sequence ( f n) of M-valued mea-
surable functions on some measure space (X,Σ, µ), and a measurable subset A of finite µ-measure such that ( f n)
converges µ-almost everywhere on A to a limit function f , the following result holds: for every δ > 0, there exists a
measurable subset B of A such that µ(B) < δ, and ( f n) converges to f uniformly on the relative complement A\B.

In this case, we get for every δ > 0 the existance of Uδ a Borel set such that µ(Uδ) ≤ δ and
∫

f ndv →
∫

f dv
uniformly on Wε\Uδ. As a consequence, for n large enough,

∫
f dv ≥ ε

2 on Wε\Uδ.
Now, they introduce Vn

L(t, x) : Hn(t, x) > L. Remind that
∫

0≤t≤T
Hn(t, x)dx < +∞.

Let us prove that there exists C independent of n such that L|Vn
L | ≤ C. First of all we know that sup

n
sup

t

∫
Hn(t, x)dx ≤

D < +∞. This, prove that ∃RL > 0,∀n,∀t,Hn(t, x) > L =⇒ x ∈ Bx(0,RL). Then, |Vn
L | ≤ C0TRN

L with C0 inde-
pendant of n and T . And we can choose RN

L ≤
1
L otherwise the integrale would not converge, thanks to Riemann’s

criterion.
On Wε\(Uδ ∪ Vn

L), we have:

•
∫

f ndv ≥ ε
2 for n large enough and

• Hn(t, x) ≤ L.

So, we can apply theorem 7.1:∫
|ξ|≥1
|F

√
f n
R |

2Zn

(
1
|ξ|

)
dξ ≤ C(R,Φ0, L, ε)(Dn( f n) + ‖ f n‖2L1

2
)

Then, Zn being decreasing, for A ≥ 1, we have:

Zn

(
1
A

) ∫
|ξ|≥A
|F

√
f n
R |

2dξ ≤
∫
|ξ|≥A
|F

√
f n
R |

2Zn

(
1
|ξ|

)
dξ

≤

∫
|ξ|≥1
|F

√
f n
R |

2Zn

(
1
|ξ|

)
dξ

≤ C(R,Φ0, L, ε)(Dn( f n) + ‖ f n‖2L1
2
)
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Then, ∫
Wε\(Uδ∪Vn

L)

∫
|ξ|≥A
|F

√
f n
R |

2dξdxdv ≤
C(R,Φ0, L, ε)

Zn(1/A)

∫
[0;T ]×RN

x

Dn( f n) + ‖ f n‖2L1
2
dxdt

≤
C(R,Φ0, L, ε)

Zn(1/A)
T

(
sup
t,n

∫
f n(1 + |v|2)dvdx + sup

n
Hn( f n

0 )
)

≤
C′

Zn(1/A)

where C′ does not depend on n. Here we have used the first and the second assumptions on the sequence ( f n) in
theorem 5.2.

Now, let us pass to the lim sup for n→ ∞.

lim
n→∞

∫
Wε\(Uδ∪Vn

L)

∫
|ξ|≥A
|F

√
f n
R |

2dξdxdv ≤
C′

lim
n→∞

Zn(1/A)
=

C′

Z∞(1/A)

with

Z∞(1/A) = lim
n→∞
|S N−2|

∫ pi
2

1
A

bn
0(cos θ) sinN−2 θdθ

≥ |S N−2|

∫ pi
2

1
A

lim
n→∞

bn
0(cos θ) sinN−2 θdθ

Now, having the overall singularity assumption (part 5.3.2), we know that Zn(1/A)
A→+∞
−−−−−→ +∞. Thus,

∀L, ε, δ, lim
A→∞

lim
n→∞

∫
Wε\(Uδ∪Vn

L)

∫
|ξ|≥A
|F

√
f n
R |

2dξdxdv = 0

Now, reminding that |Uδ ∪ Vn
L | ≤ δ + C

L , and |F
√

f n
R |

2 being uniformly equi-integrable, we have

lim
δ→0
L→∞

sup
n

∫
Uδ∪Vn

L

∫
|F

√
f n
R |

2dξdxdv = 0

Combining those two results, we get:

lim
A→∞

lim
n→∞

∫
Wε

∫
|ξ|≥A
|F

√
f n
R |

2dξdxdv = 0 (60)

7.2.2 Strong compactness of
√

f n in L2

The idea consists in using the convolution with mollifiers. Let ρ be a smooth, nonnegative, compactly supported
fonction such that

∫
ρ = 1. We define ρδ = δ−Nρ(•/δ). It is also smooth, nonnegative and compactly supported.

Moreover,
∫
ρδ = 1. Its support it smaller and smaller when δ→ 0.

Proposition 7.1. lim
δ→0

lim
n→∞

∥∥∥√
f n −

√
f n ?v ρδ

∥∥∥
L2(Wε×Bv(0,R)) = 0

Remark 7.1. From proposition 7.1, we get that (
√

f n) is strongly compact in L2 using the results of section 7.1.

Proof. First of all, using the truncation results, we know that proposition 7.1 is the same as:

lim
δ→0

lim
n→∞

∥∥∥∥∥√
f n
R −

√
f n
R ?v ρδ

∥∥∥∥∥2

L2(Wε×Bv(0,R))
= 0 (61)

First of all, using Parseval identity, we easily get:∥∥∥∥∥√
f n
R −

√
f n
R ?v ρδ

∥∥∥∥∥2

L2(Wε×Bv(0,R))
≤

∫
Wε

∫
|F (

√
f n
R )|2|1 − F ρδ|2dξdxdt

≤

∫
Wε

∫
|F (

√
f n
R )|2|F (δ0 − ρδ)|2dξdxdt
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Then,

lim
δ→0

lim
n→∞

∥∥∥∥∥√
f n
R −

√
f n
R ?v ρδ

∥∥∥∥∥2

L2(Wε×Bv(0,R))
≤ lim

δ→0
lim
n→∞

∫
Wε

∫
|F (

√
f n
R )|2|F (δ0 − ρδ)|2dξdxdt

≤ lim
δ→0

lim
A→∞

lim
n→∞

∫
Wε

∫
|ξ|≥A
|F (

√
f n
R )|2|F (δ0 − ρδ)|2dξdxdt

+ lim
δ→0

lim
A→∞

lim
n→∞

∫
Wε

∫
|xi|≤A

|F (
√

f n
R )|2|F (δ0 − ρδ)|2dξdxdt

≤ lim
δ→0

lim
A→∞

sup
|ξ|≥A
|1 − F ρδ|2 lim

A→∞
lim
n→∞

∫
Wε

∫
|ξ|≥A
|F (

√
f n
R )|2dξdxdt

+ lim
A→∞

lim
n→∞

sup
|ξ|≤A

∫
Wε

|F (
√

f n
R )|2dxdtlim

δ→0
lim
A→∞

∫
|ξ|≤A
|F (δ0 − ρδ)|2dξ

Using the fact that ρδ −→ δ→ 0δ0 and equation 60, and that the two sup factors are bounded, we can conclude
that:

lim
δ→0

lim
n→∞

∥∥∥∥∥√
f n
R −

√
f n
R ?v ρδ

∥∥∥∥∥2

L2(Wε×Bv(0,R))
= 0

�

Now, they can conclude, given that from part 7.1 (
√

f n ? ρδ) is strongly convergent in L2 (after extraction).
Then, (

√
f n) is strongly compact in L2.

7.2.3 Strong compactness of f n in L1

Following the idea of DiPerna and Lions, they can get the strong convergence of f n in L1.
They use the strong compactness of (

√
f n) in L2 to get the almost everywhere convergence of ( f n) in L1 as it

was done by Lions. Combining this and the weak convergence of ( f n) towards f they get the L1-convergence.

7.3 Use of previous decomposition: f is a RSDM
In this section, I will present Step 5 of the paper. The point is now to show that f is a RSDM. We will here use the
previous decomposition we did in part 6.

In the weak sense, it is clear that
∂β( f n)
∂t

→
∂β( f )
∂t

and v.∇xβ( f n)→ v.∇xβ( f ).

Now, we need to show that
∂β( f n)
∂t

+ ∇x( f ) ≥ β′( f )Q( f , f ) = R1 + R2 + R3 in the sense of distribution.
We denote Rn

i the quantity Ri associated to f n for i ∈ {1, 2, 3}. Let ϕ be a test function.
We have

∫
Rn

1ϕdv =
∫

( f nβ′( f n) − β( f n)) f n
∗ S n(v − v∗)ϕ(v)dv∗dv. The first factor being relatively compact in

weak-∗ L∞, we just need to use the srong convergence of ( f n ?v S n) in L1 to prove that Rn
1 → R1 in the sense of

distribution. Actually, the strong convergence of the convolution product comes from the bounds of f n and S n at
∞, the weak local convergence of (S n) and the strong convergence of f n.

Because we made the assumption that T n → T weakly, and because we know that f n
∗ β( f n)→ f∗β( f ) strongly

in L1
loc, we can conclude easily that Rn

2 → R2 in the sense of distributions.
R3 ≤ limRn

3 in the weak sense is a consequence of Fatou’s lemma and of the convergences f n → f and Bn → B
(and of the fact that Γ is positive).

From those three results they can easily conclude.

7.4 Conclusion
In this section, I will present Step 6 of the paper and conclude. Actually, in step 6, it is shown that they have all
the conservation inequalities and equalities they expect. The use of Fatou’s lemma when needed let them conclude
easily.

So, here they proved that the Boltzmann equation with angular cutoff does have weak solutions, in the sense of
RSDM.
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Part III

About the section Non-isotropic norm and estimates
of linearized collision operator
I’m presenting here a section of a more general paper: The Boltzmann equation without angular cutoff in the whole
space: I, Global existence for soft potential by R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang. As
suggested by the title of the paper, it gives a result of existence of classical solutions to the Boltzmann equation in
the non-cutoff case. In particular, they use a new norm that they call “non-isotropic norm”. I’ll introduce this norm
and present some useful results to use this norm in order to prove the existence of classical solutions.

8 Definitions and assumptions on the cross section
Here, the assumptions they make on cross-section are basically the same as in the two previous papers. Still, they
did prove their results only in three dimensions. Following them, I will also focus on the v ∈ R3 and x ∈ R3 case.

8.1 Non-cutoff case for soft potential
As previously, we are in the non-cutoff case, so we assume:

B(z, cos θ) = Φ(|z|)b(cos θ) (62)

Remark 8.1. Here it is an equality, whereas for the two previous paper, it was an inequality.

Moreover, we will take Φ(|z|) = Φγ(|z|) = |z|γ, and of course, for the cross-section to be non-cutoff, b(cos θ) ∼
θ→0+

Kθ−2−2s.
We are in the soft potential case when γ + 2s ≤ 0.

Remark 8.2. The γ + 2s > 0 case is called hard potential.

We will especially focus on the case when:

0 < s < 1, γ > −3 (63)

which is clearly soft potential.

8.2 Linearized Boltzmann operator

Remember the Boltzmann equation:
∂ f
∂t

+ v.∇x f = Q( f , f ).

The static solution is the Maxwellian distribution: µ(v) = (2π)−
3
2 e−

|v|2
2 . Actually, Q(µ, µ) = 0. We are looking

for solutions “close to” µ: f = µ +
√
µg.

We rewrite Q( f , f ) = Q(µ +
√
µg, µ +

√
µg) = Q(µ,

√
µg) + Q(

√
µg, µ) + Q(

√
µg,
√
µg).

And, the Boltzmann equation is rewritten:

√
µ
∂g
∂t

+
√
µv.∇xg = Q(µ,

√
µg) + Q(

√
µg, µ) + Q(

√
µg,
√
µg)

Let us set Γ(g, h) = 1
√
µ

Q(
√
µg,
√
µh). Then, Lg = L1g + L2g = −Γ(

√
µ, g) − Γ(g,

√
µ) is the linearized

Boltzmann operator.
We can rewrite the Boltzmann equation w.r.t. g:

∂g
∂t

+ v.∇xg +Lg = Γ(g, g), t > 0

g|t=0 = g0

(64)
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8.3 “New norm”
In this part, I will introduce the norm they use to get existence of classical solution. This norm is the following:

‖|g‖|2 =

∫ ∫ ∫
Φ(|v−v∗|)b(cos θ)µ∗(g′−g)2dvdv∗dσ+

∫ ∫ ∫
Φ(|v−v∗|)b(cos θ)g2

∗(
√
µ′−
√
µ)2dvdv∗dσ = J1+J2

(65)
This norm is called by the authors non-istropic. We will just call it new norm.

8.4 Other tools
We call N the null space of L and P the orthogonal projection on N .

We denote W = 〈v〉 = (1 + |v|2)
1
2 , Wl = 〈v〉l.

Moreover, we denote W̃ = 〈v〉|2s+γ| and W̃l = 〈v〉|2s−γ|l

Also, as we will work with smoothed versions of the cross section, let Φ̃(|z|) = (1 + |z|2)
γ
2 be the smoothed

version of Φ(|z|) = Φγ(|z|) = |z|γ. When needed, we will denote QΦ the Boltzmann collision operator for Φ and QΦ̃

the one for Φ̃. Similarily, we denote ‖| • ‖|Φ the new norm for Φ and ‖| • ‖|Φ̃ the one for Φ̃.
We also will not a ∼ b when there exist two positive constant c1 and c2 such that c1a ≤ b ≤ c2b.

9 Working with smoothed versions of the cross section

One of the most important idea they use it to remplace Φγ(z) = |z|γ by it’s smoothed version Φ̃γ(z) = (1 + |z|2)
γ
2 so

as to get rid of the problem in z = 0 (for γ ≤ 0). They show some equivalence result for the “new norm” with Φγ

and Φ̃γ. Actually, we can later work with both cross-sections, smoothed or not, which is very convenient.

9.1 Aim
We will prove here that under the assumptions of part 8.1, ‖|g‖|Φ ∼ ‖|g‖|Φ̃.

9.2 Idea of the proof

First, we will show that JΦ
2 ∼ ‖g‖

2
L2

s+ γ
2

∼ JΦ̃
2 . Then, we will show that JΦ

1 + ‖g‖2
L2

s+ γ
2

∼ JΦ̃
1 + ‖g‖2

L2
s+ γ

2

. Combining

those two results, we can conclude.

9.2.1 J2

Remember
J2 =

∫ ∫ ∫
Φ(|v − v∗|)b(cos θ)g2

∗(
√
µ′ −

√
µ)2dvdv∗dσ (66)

Let’s first show that J2 ≤ C‖g‖2
L2

s+ γ
2

.

We set A = (µ′1/4−µ1/4)2(µ′1/2 +µ1/2). Some basic comptutation gives 2A− (µ′1/2−µ1/2)2 = (µ′1/4−µ1/4)4 ≥ 0.
Thus, we have J2 ≤ F1 +F2 with F1 =

∫ ∫ ∫
Φ(|v−v∗|)b(cos θ)g2

∗(µ
′1/4−µ1/4)2µ′1/2dvdv∗dσ and F2 =

∫ ∫ ∫
Φ(|v−

v∗|)b(cos θ)g2
∗(µ
′1/4−µ1/4)2µ1/2dvdv∗dσ. We can see by direct computation that there is some constant C2 for which

F2 ≤ C2‖g‖2L2
s+ γ

2

. We have also C1 such that F1 ≤ C1‖g‖2L2
s+ γ

2

. But, to get this, we need to use the v → v′ change of

variables that was introduced for the first paper.
This result is valid either with Φ or Φ̃ as the computation can be done with both.
Now, they show that there exists some C′ such that J2 ≥ C′‖g‖2

L2
s+ γ

2

.

The proof given in the paper (proof of lemma 2.8) is well-developped. I shall not copy it here. Still, remember
that various change of variables were used. and that, as before, the computations are valid both for Φ and Φ̃.
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9.2.2 J1

Remember J1 =
∫ ∫ ∫

Φ(|v − v∗|)b(cos θ)µ∗(g′ − g)2dvdv∗dσ.
Here the fact that γ > −3 will play a role. The idea is also to use various change of variables and projections.

One can look at the proof of proposition 2.10 in the paper, which is complete enough. Actually, one of the important
that was used is the following:

Proposition 9.1. In a N-dimension problem, let ρ > 0, δ ∈ R. Then, for all α > −N, β ∈ R,∫
|w|α〈w〉β〈w + u〉δe−ρ|w+u|2 dw ∼ 〈u〉α+β (67)

10 “New norm” compared to wheighted Sobolev norms
So as to have the reader understand more the meaning of this new norm, they compare it to weighted Sobolev
norms. Actually, one of the reason why this norm is said to be non-isotropic is because it cannot be compared to
(regular) Sobolev norms, result I won’t show.

10.1 Aim
Here, B also satisfies assumptions of part 8.1. In this case, there exist two positives constants D1 and D2 such that:

D1

(
‖g‖2Hs

γ
2

+ ‖g‖2L2
s+ γ

2

)
≤ ‖|g‖|2 ≤ D2‖g‖2Hs

s+ γ
2

(68)

as long as it makes sense for g.

10.2 Idea of the proof
We know from part 9 that we can work with the smoothed version of the cross section. We also know that

J2 ∼ ‖g‖2L2
s+ γ

2

(69)

First, we need to show that J1 ≥ A1‖〈v〉γ/2g‖2Hs − A2‖g‖2L2
s+ γ

2

for some positive constants A1 and A2. To get this

result they use the Fourier transform results from the first paper. They also can get the same result with µρ instead
of µ making the same computation. This is the proof of lemma 2.12 of the paper.

Actually, using 69, we get ‖|g‖|2 ≥ D1

‖g‖2Hs
γ
2

+ ‖g‖2
L2

s+ γ
2

.
They after show the second inequality by using a result they showed in a paper they wrote together: Regular-

izing effect and local existence for non-cutoff Boltzmann equation and which I didn’t read.

11 The linearized collision operator is bounded by the “new norm”
The point of this section of the paper was to bounded the linearized collision operator with the “new norm”. Here
is what they did.

11.1 Aim
If the cross section B satisfies the assumptions of part 8.1, then there exist two positive constants C1 and C2 such
that:

C1‖|(I − P)g‖|2 ≤ (Lg, g)L2(R3
v ) ≤ 2(L1g, g)L2(R3

v ) ≤ C2‖|g‖|2 (70)

for any g for which it makes sense.
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11.2 Idea of the proof
Using the pre-post-collisional change of variables several times, they get

(L1g, g)L2 =
1
4

∫
B((

√
µ′∗g

′ −
√
µ∗g)2 + (

√
µ′g′∗ − sqrtµg∗)2)dvdv∗dσ

and
(Lg, g)L2 =

1
4

∫
B((

√
µ′∗g

′ −
√
µ∗g) + (

√
µ′g′∗ − sqrtµg∗))2dvdv∗dσ

which allow them to conclude easily that

(Lg, g)L2 ≤ 2(L1g, g)L2

Some basic computation (see proof of proposition 2.16 of the paper) give ‖|g‖|2 ≥ (L1g, g)L2 .
Remains to prove that C1‖|(I − P)g‖|2 ≤ (Lg, g)L2(R3

v ). Actually, this a consequence of an other result proven by
Mouhot in Explicit coercivity estimates for the Boltzmann and Landau operators. I didn’t read his paper.

Conclusion
This bound result will after be used to show the existence of classical solutions to the Boltzmann equation without
angular cut-off in the soft potential case.

I think if I have to remember one thing about this section, it would be the use of the smoothed version of the
cross-section.

31



Conclusion
Those three papers present recent results on the Boltzmann equations without angular cut-off. As you have read,
the two first papers are linked together. The third paper, which gives the existence of classical solutions, gave me
a really hard time to understand. That is why I didn’t go further in its reading.

As I said in the introduction, I knew nothing about the equation before my arriving in Beijing. After five
months, I think I still know very little. Yet, if I have the opportunity, I may continue working on it.

To sum up, most of the work on the Boltzmann equation for the cutoff case had been done in the late 80’s,
especially by DiPerna and Lions. And some of their results and ideas were re-used for the non-cutoff case, for both
classical and weak solutions.

To treat the non-cutoff case, the idea was to get rid of the irregulairities due to the cross section. For that matter,
the cancellation lemma and the truncation were very useful, in particular for the existence of weak solutions. As
for classical solutions, we should remember to use smoothed versions of the cross section instead of its original
versions.

I also noticed that a big part of their work consisted in finding a suitable cutting out of the quantities they
needed to bound. After cutting it out, they would deal with each term of the cutting and bound them separately,
using different tools to get rid of the irregularities in 0 and∞.

To my mind, the time I have spent in Tsinghua University working on this equation was too short. I couldn’t
understand deeply the problems and the solutions that were recently brought to solve them.

On a personal point of view, the opportunity to spend five months in Beijing taught me a lot.
One of the most important things I had to learn there was how to work by myself. It has been hard to keep

the motivation. I also noticed that when I’m not feeling good, it is very hard for me to focus on my math. So the
question was how to balance working-time and free-time so that I would feel happy enough and that my amount
of work would be big enough.

I was feeling so lonely at the beginning of my internship. Living abroad alone is quite hard. As soon as I met
some good friends, I could do maths again. This was amazing.

One of the best experience to me was attending the PRIMA 2013 Congress in june in Shanghai Jiatong Uni-
versity. I had the opportunity to exchange a few words with Cedric Villani and to attend various lectures on kinetic
equations. I realised how far I was from the specialists in this field and I got motivated again. It became clear to
me that I needed to work on my english so that one day I can give a good talk in english. Actually, we barely have
the chance to practice our english by giving a math talk in English. That’s the reason why I decided to give my
oral defense in ENS de Cachan in English rather than in French.

Figure 7: Cedric Villani, a friend of mine and I during PRIMA 2013 Congress, Shanghai

In Shanghai, I had the chance to meet Andrea Bertozzi who works in University of California Los Angeles
(UCLA). I had dinner with her and Christina, a friend of mine who knew her. Meeting her also helped me a lot
with my motivation. I was kind of lost, maybe I wanted to stop studying math and to finish my chinese learning
so as to become interpret in China. She made me change my mind back to math studies, and I thank her (and
Christina) a lot for that.
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Figure 8: Andrea Bertozzi, Christina Frederick and I during PRIMA 2013 Congress, Shanghai

From now on, I’m sure that I’m a “math girl” as Christina would say. Spending a lot of time with this texan
girl in Shanghai and then in Beijing helped me a lot with my English in everyday life and math topics.

I also worked on my Chinese. Actually, I chose to do my internship in Tsinghua University so as to be in China
again. But, this experience was not the same as the one I had before. I spent ten months in Nanjing in 2008 in
order to learn chinese (mandarin). At the end of the programm, I didn’t want to go back to France, I would have
liked to stay there forever. Yet, I went back to France. Still, as soon as I had the chance to go abroad again, I chose
to go wherever I could as long as it would be in China. Unfortunately, the 4 years and a half I’ve spent in France
made me forget all my Chinese.

I had to re-learn it in Beijing. I was astonished how fast that was. Re-activating old knowledge is really faster
than learning new knowledge. I’m proud to say that now my chinese is even better than it used to be in 2008, even
though I didn’t spend that much time working on it. Actually, all I did was speaking it whenever I would have the
chance. My chinese reading and writing have improved too, as there are almost always chinese subtitles on chinese
TV channels. I’ve espescially been watching “Xi Yangyang yu Hui Tailang” which is a comic for little kids where
a wolf (Hui Tailang) tries to catch some sheep amongst Xi Yangyang who always makes the wolf’s plans fail. I’m
deeply convinced that the best way to learn a foreign language is to go where it is spoken and to live there, to get
used to the local culture.

Figure 9: Xi Yangyang yu Hui Tailang

One would not expect it, but using three languages a day and toogling all the time between them is really tiring.
Actually, when you master enough a language and speak it, you would use this very language to think. And, when
you switch languages, you have to switch all your brain. I found that espescially hard when I was translating
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between Chinese and English or French, because the way to make the sentences and think an idea through is not
the same at all.

I’m in love with China again. I hope I can work there as a mathematician later. Still, I would never be a true
beijinger or shanghaier, I belong in Nanjing.
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