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Abstract

Dynamic Time Warping (DTW) methods have been widely used to recognize and match mod-
ified and disturbed data, such as graphs and audio files. This work analyzes the differences be-
tween several DTW variants for audio files realignment that have been produced by researchers
since 1978, date of the first reference article on DTW. By testing, comparing and understand-
ing those algorithms, we seek to design a method for audio files realignment, which is robust to
changes in rhythm, interpretation or speed.

1 Introduction
Two records of the same piece of music are always different. This might be due to changes in
interpretation, rhythm, intensity or speed but also to the random noise which appear in the recording
process. A natural question one could ask is : � How to be robust to thoses fluctuations ? �.

Let us illustrate this question with an example. Consider a musician working on several of his
records and wanting to mix them. Let say that in the first record, the drums start at 2’30” and
at 1’28” in the second record. If he wants to mix them, he needs the drums to be synchronized
and therefore needs to realign the records. The Dynamic Time Warping (DTW) algorithm might
help this musician, because it can find this corresponding time automatically and with a very good
precision [4]. In this case, we want to discover how the ”time flow” of a first time serie is transformed
to get the one of a second time serie.

A related problem is to evaluate how two time series are close to one another, independantly of
time fluctuations. This is especially useful for word recognition [10] where the speed and pronuncia-
tion might differ between speakers. DTW algorithms are also useful and widely used in this context,
as they output a time-normalized distance which is independant of time fluctuations.

We will present in this article an off-line method for realigning dynamic time series (in which both
series are completely known, in opposition to the on-line algorithm in which they are given sample
by sample to the algorithm, as in a live recording). This algorithm relies on dynamic programming
methods, as developped in [2]. Section 2 presents a warping function which transforms the time of
the first time serie in the time of the second one, and then suggests a simple algorithm to solve the
problem. Section 3 displays an overview of several variants for speed and performances improvement.
Section 4 describes the results obtained by the algorithm on several basic toy examples. Finally, in
Section 5, the algorithm and its variants are tested on several music extracts in order to study in
depth the influences of the method parameters.
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2 Dynamic Time Warping
This section describes the mathematical context and the details of the DTW algorithm.

2.1 Context
We consider two time series, U ∈ ΩM and V ∈ ΩN (where Ω is the space we work on, typically Rk).
M and N are the sizes of the two time series we are considering.

U = U1, · · · , UM (1)
V = V1, · · · , VN (2)

Given those two time series, the aim of the algorithm is to match them together, i.e. to build a
correspondance between the elements of U and those of V . Its output is a sequence of points, of a
certain length K, which represents the correspondance of the time line in the sequence U with the
one of sequence V . This path P is defined as:

P = ((i(1), j(1)), · · · , (i(K), j(K))) ∈ (N× N)K , K ∈ N (3)

Such an object is called ”path of length K”, and if (i(k), j(k)) ∈ P it means that Vj(k) has been
matched with Ui(k). To illustrate this, we can represent the time series in a plane, with V on the
horizontal axis, U on the vertical axis, and the path P as a sequence of points in this two-dimension
space (see Figure 1).

Figure 1: Two time series alignment: on the left the original signal U , at the bottom the signal V to
be rematched, in the middle the path P of realignement between the two signals.

Given a path P of length K, we introduce the following cost function W (P ), which evaluates the
accuracy of the correspondances induced by P .

W (P ) =
K∑
k=1

d(Ui(k), Vj(k)) (4)
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where d is a distance over Ω. Note that W (P ) is non-negative, and is decreasing with the intuitive
closeness of the time series. In particular, if U is equal to V then, we have N = M and the optimal
path is (1, 1), . . . , (M,M), and then W (P ) is equal to zero.

The best alignment between two time series corresponds to the optimal path P ∗ that minimizes
(4) over a finite set of paths P.

P ∗ = arg min
P∈P

W (P ) (5)

2.2 Application to sound signals
Since our task is audio files realignment, it induces some restrictions on the set of possible paths P,
because the path represents time fluctuation between the time series U and V . Since time variations
should be continuous, monotonic (time can’t go backward) and bounded, the path should respect the
same restrictions. We will say that a path P is:

Continuous if i(k)− i(k − 1) ≤ 1 and j(k)− j(k − 1) ≤ 1 (Imagining the plane as a chessboard,
we can only go to the positions a king could);

Monotonic if i(k − 1) ≤ i(k) and j(k − 1) ≤ j(k) (We can only go up and right, and diagonally
up and right);

Bounded (i(K), j(K)) = (M,N) (We impose that the path ends by matching together the last
element of both signals).

In the following, we limit P to the set of paths respecting those three restrictions.
For P = ((i(1), j(1)), . . . , (M,N)) ∈ P, we can easily see that there is only a limited set of

indexes to get to (i(k), j(k)): see Figure 2 and Equation (6).

Figure 2: Continuity and monotonicity conditions.

(i(k − 1), j(k − 1)) =


(i(k)− 1, j(k))

or (i(k), j(k)− 1)
or (i(k)− 1, j(k)− 1)

(6)
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2.3 DTW algorithm and implementation
Let us define the matrix of distances D = (d(i,j)), where d(i,j) = d(Ui, Vj): it contains all distances
between all elements of U and V .

In order to efficiently solve (5), we use a dynamic programming approach and build a ”cost
matrix” which will be used to trace back the path from the index (M,N). The cost matrix is build
recursively: the minimum cost to pay to go to the index (i, j) is the sum of the minimum cost to
reach the indexes (i− 1, j), (i− 1, j − 1), (i, j − 1) (the indexes where you can come from - see (6))
added with the cost of the move, i.e. d(i,j). The initial conditions are set on the bottom and left side
of the matrix, and initialized with the values of the distance matrix.

The cost matrix C is defined as follow:

C(i, 1) = d(i,1) (7)
C(1, j) = d(1,j) (8)

C(i, j) = d(i,j) + min


C(i, j − 1)
C(i− 1, j − 1)
C(i− 1, j)

(9)

Hence, the basic DTW algorithm is define as described in Algorithm 1.

Algorithm 1 Construction of the cost matrix
Require: D
C = matrix(M,N)
C(1 : end, 1) = D(1 : end, 1)
C(1, 1 : end) = D(1, 1 : end)
for i = 2 to M do

for j = 2 to N do
C(i, j) = D(i, j) + min (C(i− 1, j − 1), C(i, j − 1), C(i− 1, j))

end for
end for
return C

After constructing the cost matrix, the optimal path P ∗ that solves the problem is build recur-
sively: we start from (M,N) (because the two signals match here, by assumption), we look at the
minimum of the three cost values where we can move from ((M − 1, N), (M − 1, N − 1), (M,N − 1))
and add the corresponding indexes to the path, and do so until we hit the bottom or left side. The
algorithm is summarized in Algorithm 2.

3 Improvements and variants
This section describes several variants which allows to tune the algorithm, to increase its speed or
to loose some of the constraints put on the path.

3.1 Troncature method
Since the signals are supposed to represent the same data with time fluctuations, our path is likely
to stay near the diagonal, i.e. elements of V should be realigned with elements of U which are
close in time. It is therefore possible to reduce drastically the computation time, by only computing
coefficients of the matrix C which are near the diagonal (see Figure 3).
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Algorithm 2 Construction of the optimal path
Require: C
P ∗ = [M ;N ]
i = P ∗(1)
j = P ∗(2)
while i > 1 and j > 1 do
b = argmin(C(i− 1, j − 1), C(i, j − 1), C(i− 1, j))
if b = 1 then
P ∗ = [[i− 1; j − 1], P ∗]
i = i− 1
j = j − 1

else if b = 2 then
P ∗ = [[i; j − 1], P ∗]
j = j − 1

else
P ∗ = [[i− 1; j], P ∗]
i = i− 1

end if
end while
return P ∗

Figure 3: Illustration of the troncature method.

The upper and lower borders of the troncature are called respectively f1 and f2. Those two
functions depend on a parameter p ∈ [0, 1], which is the percentage of the coefficients of the total
matrix we actually wish to compute (see 5.4 for discussion on the value of p). The boundary functions
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f1 and f2 (J1,MK with values in J1, NK) are defined as:

w = 1−
√

1− p
m = bw ×Mc
n = bw ×Nc

f1 : k 7→ 1m≥k + 1k>m × (1 + bM/N × (k −m)c)
f2 : k 7→ 1M−m>k × bM/N × k +mc+M × 1k≥M−m

In the truncated method, the coefficients of C in Algorithm 1 will only be computed for i =
1, · · · ,M and j = f1(i), · · · , f2(i).

Note that the value of p should be chosen carrefully: if we reduce too drastically the acceptable
area for the path, the path may ”hit” the border of the zone, and it will not be possible to find the
proper path anymore.

3.2 No end constraint
The boundary constraint imposing that the path should end at (M,N) is actually not compulsary
for our algorithm to perform acurately. If we acknowledge the fact that there may be an offset at
the beginning of our two signals (i.e. that one signal starts a while after the other one), it is in fact
very likely that there might also be a shift at the end of the signals.

We modified the path algorithm for it to stop at the best possible indexes. However, in order to
prevent abberent results, we introduced a new parameter δ ∈ [0, 1], which controls the acceptable
ending zone. For example, if we set δ = 1

5 , we constraint the end of the path to lie in the last
fifth of the signals. If U finishes first (i(K) = M), we will contraint j(K) to stay in the interval
[(1− δ)N : N ]. Setting δ = 0 is equivalent to the original (i(K), j(K)) = (M,N) constraint.

In this variant, the last element of the path corresponds to the smallest cost value on either the
last row or column, constrained by parameter δ:

if min(C((1− δ)M,N), . . . , C(M,N)) < min(C(M, (1− δ)N), . . . , C(M,N)) then
j(K) = N
i(K) = arg min(C((1− δ)M,N), · · · , C(M,N))

else
i(K) = M
j(K) = arg min(C(M, (1− δ)N), · · · , C(M,N))

end if

3.3 Weigthed variants
In order to tune the algorithm to specific configurations, we can modify our definition of C in (9)
by introducing some weighting coefficients, α, β, γ, which are the respectives costs to pay for a
horizontal, diagonal or vertical move: the Figure 4 shows an illustration of this principle, introduced
in [10]. They can be used in order to induce difficulties for the path to go in one direction or another.
With these parameters, C is now defined as:

C(i, j) = min


C(i, j − 1) + αd(i,j)

C(i− 1, j − 1) + βd(i,j)

C(i− 1, j) + γd(i,j)

(10)

Our aim is now to minimize the new cost function W̃ defined by (11): we sum distances along
the path, impacted with some coefficient w(k) equal to α, β, or γ respectively if the path has made
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a horizontal, diagonal, or vertical move transition to position (i(k), j(k)).

W̃ (P ) =
K∑
k=1

d(Ui(k), Vj(k))w(k) (11)

Figure 4: αβγ coefficients

If for instance we change the value of β while keeping α = γ = 1: the greater β will be, the
more disavantaged the path will be if he makes a move in the diagonal direction, because the cost of
the transition will be affected by the value of β, and thus it will be incited to follow horizontal and
vertical directions. On the contrary, if we reduce the value of β (or increase the one of α and γ),
the path will be incited to follow the diagonal. By playing with those coefficients we can manage to
tune the basic DTW algorithm. We can also introduce some asymetry by setting different values for
α and γ. The DTW algorithm is the Algorithm 1 impacted with equation (10).

3.4 Final algorithm
The final algorithm relies on several parameters (see Algorithm 3):
• α, β, γ are the weight parameters for respectively a vertical, diagonal or horizontal move

• p is the truncature method parameter which controls the percentage of coefficients that are
computed

• δ is the end constraint parameter which controls the area where the path can end
In the following, we shall refer to the configuration α = β = γ = p = 1 − δ = 1 as the basic

algorithm.

4 Toy examples
The aim of this section is to understand how the basic algorithm (α = β = γ = p = 1− δ = 1) reacts
to several classical signal modifications. Let us study a basic example: our aim is to realign two sine
curves in the time domain (Ω = R).

The reference signal S1 (12) is a 512-sample sinusoidal signal sampled at Fs = 44100 Hz with
amplitude equal to 1 and fundamental frequency f0 = 100 Hz. The test signal S2 (13) is also a 512-
sample sinusoidal signal sampled at Fs = 44100 with initial time shift τ , amplitude A, fundamental
frequency f0 + ∆f and corrupted by additive Gaussian noise e(n) ∼ N (0, σ2).

S1(n) = sin(2πf0
n

Fs
) (12)
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Algorithm 3 Final complete algorithm
{Construction of the cost matrix}

Require: D,α, β, γ, p, f1, f2
C = infinity(M,N)
C(1, 1 : m) = D(1, 1 : m)
C(1 : n, 1) = D(1 : n, 1)
for i = 2 to M do

for j = f1(i) to f2(i) do
C(i, j) = min(C(i, j − 1) + αD(i, j), C(i− 1, j − 1) + βD(i, j), C(i− 1, j) + γD(i, j))

end for
end for

{Contruction of the optimal path}
Require: δ
A = [min{C(i, N), i ∈ Jb(1− δ)Mc,MK},min{C(M, j), j ∈ Jb(1− δ)Nc, NK}]
if argmin(A) = 1 then
P ∗ = [A(1);N ]

else
P ∗ = [M ;A(2)]

end if
while i > 1 and j > 1 do
b = argmin([C(i, j − 1) + αD(i, j), C(i− 1, j − 1) + βD(i, j), C(i− 1, j) + γD(i, j)])
if b = 1 then
P ∗ = [[i; j − 1], P ∗]
j = j − 1

else if b = 2 then
P ∗ = [[i− 1; j − 1], P ∗]
i = i− 1
j = j − 1

else
P ∗ = [[i− 1; j], P ∗]
i = i− 1

end if
end while

S2(n) = A sin(2π(f0 + ∆f)n− τ
Fs

) + e(t) (13)

By changing the values of τ , A, ∆f and σ2, we will be able to study different typical signal
modifications.

4.1 Influence of time shift
In this first experiment, we tried to realign the reference signal with the same sine curve, shifted by
τ = 100 samples. The results are presented on Figure 5: the path (in red), follows previsibly a line
parallel to the diagonal, with an offset at the beginning. This is expected: the algorithm decays one
of the two series to match the two together perfectly.
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(a) Cost matrix with path
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(b) Matched signals

Figure 5: Realignment of two sine curves: influence of time shift (τ = 100 ; σ2 = 0 ; A = 1 ;
∆f = 0)

4.2 Influence of noise
In this second experiment, we tried to realign the reference signal with the same sine curve corrupted
by Gaussian noise with zero mean and variance σ2=0.1. The results are displayed in Figure 6: the
algorithm correctly matched the signals together. The path is close to the diagonal which means
that the algorithm recognized that the two signals are ”close”.

(a) Cost matrix with path
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(b) Matched signals

Figure 6: Realignment of two sine curves: influence of noise (τ = 0 ; σ2 = 0.1 ; A = 1 ; ∆f = 0)

4.3 Influence of amplitude
In this third experiment, we tried to realign the reference signal with the same sine curve but with
amplitude A. In order to test the robustness of the algorithms, several values for A are tested (0.7,
1.3 and 2.0). The results are respectively displayed on Figure 7, 8 and 9. We see that for A = 0.7
and A = 1.3, the path is correctly determined. For greater amplitude values, the path is completly
wrong: this is simply due to the fact that if the two amplitudes are too different, since the signals we
use are periodic (sinusoidal), there might exist a position further in the signal that better minimizes
the distance to the coefficients far to the nods of the curves than the simple correspondances the
correct path does. And by increasing the ratio between amplitudes, we increase the possibility that
this happens.
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(a) Cost matrix with path
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(b) Matched signals

Figure 7: Realignment of two sine curves: influence of amplitude (τ = 0 ; σ2 = 0 ; A = 0.7 ;
∆f = 0)

(a) Cost matrix with path
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Figure 8: Realignment of two sine curves: influence of amplitude (τ = 0 ; σ2 = 0 ; A = 1.3 ; ∆f = 0)

(a) Cost matrix with path
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(b) Matched signals

Figure 9: Realignment of two sine curves: influence of amplitude (τ = 0 ; σ2 = 0 ; A = 2 ; ∆f = 0)

4.4 Influence of fundamental frequency
In this last experiment, we tried to realign the reference signal with the same sine curve but with a
different fundamental frequency (∆f is the frequency shift). We have tested several values for ∆f
(10, 50 and 100) and the results are respectively displayed on Figures 10, 11 and ??. The results
are quite similar to those with the variations of amplitude: passed a certain frequency shift value,
the slower signal has too many less periods over the sample we took than the reference one. Thus,
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it matches its beginning with one of the next of the other signal, creating a decay between them in
the rematch. For similar frequencies, the signals match more easily: the path establishes a direct
correspondance of time between the signals. The paths are noteworthy, because they follow a straight
line of a certain slope, which is exactly the accelaration factor of which frequency has been multiplied
by.

(a) Cost matrix with path
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(b) Matched signals

Figure 10: Realignment of two sine curves: influence of fundamental frequency (τ = 0 ; σ2 = 0 ;
A = 1 ; ∆f = 10)

(a) Cost matrix with path
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(b) Matched signals

Figure 11: Realignment of two sine curves: influence of fundamental frequency (τ = 0 ; σ2 = 0 ;
A = 1 ; ∆f = 50)

5 Results
This section provides a qualitative and quantitative analysis of the results provided by the algorithm
on several music sounds, as well as a study on the different variants.

5.1 Data
We recorded several vinyles of different pieces of music and spoken text (Le Concerto de la Mer,
Jean-Claude Borely; Symphony No 40 in G minor,K.550 -1. Molto allegro, W.A.Mozart; Le Petit
Prince, Saint-Exupéry) with a vinyle player, and applied some modifications while the vinyle was
playing. We used signals of approximately 30 seconds, with a sampling frequency of 44.1 khz. Tables
1, 2, 3 sum up our modifications.
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(a) Cost matrix with path
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(b) Matched signals

Figure 12: Realignment of two sine curves: influence of fundamental frequency (τ = 0 ; σ2 = 0 ;
A = 1 ; ∆f = 100)

Track Modifications
1 Our reference
2 Acceleration at 10”, deceleration at 20”
3 A jump in the record
4 With another vinyle disc of the same music
5 Played faster
6 Played louder
7 Played backward
8 Everything (except playing backward)

Table 1: Modifications on Le concerto de la mer

Track Modifications
1 Our reference
2 Deceleration at 15”
3 Acceleration at 15”
4 Played faster

5 & 6 With another vinyle disc of the same music

Table 2: Modifications on K.550 -1.

Track Modifications
1 Our reference

2 & 3 With another vinyle disc of the same music
4 Speed variations

Table 3: Modifications on Le petit prince

5.2 Signal representation
Considering audio signals sampled at 44.1 kHz, it is impossible to use the wave forms as inputs
because the number of samples would be prohibitive. Also, we want our algorithm to be robust to
fluctuations so we need to represent the signals in the best possible way. A classical and compact
representation of audio signals is the Short Time Fourier Transform (STFT), which consists of a
discrete Fourier transform calculated over overlapping frames (see Figure 13 for illustration). In
our case, we chose a Hann window of 1024 points and an overlap of 50%, where the Hann window
function is defined by equation (14) (W = 1024 here).
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h : J0,W − 1K −→ R
n 7−→ 0, 5.(1− cos(2πn)

W−1 ) (14)

The dimension of each STFT vector is 513 (the spectrum has Hermitian symmetry since signals
are real) and hence Ω = R513. The time series U and V are the modulus of the STFT of our audio
signals. As we see in section 4.3, problems might arise from amplitudes of signals. Indeed, in order
to be robust to variations of amplitudes, we will take as distance the normalized euclidian distance,
defined by:

d(U, V ) =
∥∥∥∥∥ U

‖U‖1
− V

‖V ‖1

∥∥∥∥∥
2

(15)

=

√√√√513∑
i=1

(
ui∑513

k=1 | uk |
− vi∑513

k=1 | vk |

)2

(16)
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Figure 13: STFT principle, and Hann window drawing

5.3 Analyze of paths
In this section, we seek to exhibit several typical paths corresponding to different types of signal
modifications such as changes in speed, jumps or offsets. The algorithm will be tested in its simplest
variant (α = β = γ = 1− δ = p = 1). The optimal path P ∗ is therefore the minimum of

W (P ) =
K∑
k=1

∥∥∥∥∥ U

‖U‖1
− V

‖V ‖1

∥∥∥∥∥
2

(17)
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Figure 14: U = Concerto de la mer 1, V = Concerto de la mer 3 ; α = β = γ = p = 1− δ = 1

Jumps Figure 14 presents the results obtained by realigning Concerto de la mer 1 and Concerto
de la mer 3. We can see an important jump in the middle of the picture. If we think in terms of
time fluctuation, it can easily be explained: while the time in the serie U do not pass, a few time in
the second serie V pass, and then they flow together again. This shows us the presence of a jump in
the record of the second track, which correspond to the time serie V .

Figure 15: U = K550-1 1, V = K550-1 4 ; α = β = γ = p = 1− δ = 1

Change in speed Figure 15 gives us another kind of typical path (K550-1 1 and K550-1 4 ): we
can see that one signal starts later than the other one, and also that it stops earlier. The path being
nearly a straight line, crossing the diagonal, we can deduce that this signal was played faster all
along, with an offset at the beginning, and that the acceleration it was submit to was constant.
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Figure 16: U = Le petit prince 1, V = Le petit prince 4 ; α = β = γ = p = 1− δ = 1

Multiple changes in speed Figure 16 presents us a very particular path (Le petit prince 1 and
Le petit prince 4 ): we immediatly see an offset between the two signals. But this time, the signal
starting first finishes first. Thus, if ever it is accelerated, it can’t be all along. What we can also
see is that the path is divided in two parts, forming two segments of straight line with different
gradients, both gradients being different from one (the straight lines cross the diagonal). Thereby,
we can deduce that there were two different changes of rythm in the second signal, and judging
by the gradients, that one is an acceleration, (the first), and the other one a deceleration nearly
compensating the first acceleration.

Summary These experiments allow us to exhibit and interpret some typical paths:

• When a path follows the diagonal or a parallel to the diagonal, there is a direct correspondance
between time in both series. In cases where the two signals are not quite different, the path is
close to the diagonal;

• When a path follow a straigth line with some slope, it means that one of the signals has been
accelerated (or decelerated) with respect to the other, with a factor equal to that slope;

• When a path has an horizontal or vertical part of great length, it means that during a certain
amount of time in one of the two signals, the time was stopped and thus a lot of frames from
one signal are matched with only one from the other signal. On a musical point of view it
means that either there has been a great slowing in one of the two signals, or a great fastening
(or even a jump) in the other one.

5.4 Influence of the troncature
We now propose to investigate the influence of the troncature parameter p on the algorithm perfor-
mances. Ideally, if parameter p is correctly chosen, the performances of the algorithm should remain
unchanged but the computation time should significantly decrease. We tested the influence of the
troncature by doing a DTW between the reference record and each of the records of the same piece of
music. We have run the algorithm with p = 0.5 and p = 0.2 while α = β = γ = 1− δ = 1, and Table
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4 shows our results, which is the percentage of paths that have been changed by the troncature, for
each set of records.

We verified that in each DTW where the path did not hit the troncature border, the path was
identical to the one made with a classic DTW. This validates the concept of the troncature method
for it gives (under this constraint) the same results that we owed to find.

• p = 0.5 (Figure 17(b)). The path rarely hits the border of the troncature and is hence exactly
the same as in a basic DTW. Thus we understand that we are allowed to make every further
DTW test with the troncature method at least with only half of the coefficients computed.

• p = 0.2 (Figure 17(c)). Some of the paths hit the border of the troncature, giving back an
incorrect path. The unchanged paths are the ones of the signals very close to each other.
Therefore, we can only get to such values of the coefficient p when we already know that the
signals we work with have few differences, otherwise we will not get the expected path.

Set of record Percentage of unchanged path
p = 0.5 p = 0.2

Concerto de la mer 100% 34%
K.550 -1. 66% 33%
Le petit prince 100% 60%
Total 92% 42%

Table 4: Influence of truncature parameter p

(a) p = 1 (b) p = 0.5 (c) p = 0.2

Figure 17: Influence of p. U = Concerto de la mer 1, V = Concerto de la mer 3 ; α = β = γ =
1− δ = 1

We timed the two kind of executions: the first, when we computed every coefficient, took on
average 15 seconds; when p = 0.5 it took 8 seconds on average, when p = 0.2 it took 4 seconds on
average. Thus, the reduction of the computation time is non neglictable.

5.5 No end constraint
We now investigate the influence of parameter δ, which controls the acceptable location for the end
of the path. In order to do so, we ran a DTW between Le petit prince 1 and Le petit prince 2, with
α = β = γ = p = 1, and δ = 0, δ = 0.2, δ = 0.5, and δ = 0.7. We see on Figure 18 that without
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the boundary condition, the path is no longer forced to take high cost steps, and that it is now the
expected path, the one of minimal cost. We verify with an audio reconstruction that with this path,
the longer signal stops at the end of the shorter.

(a) δ = 0 (b) δ = 0.2

(c) δ = 0.5 (d) δ = 0.7

Figure 18: Influence of δ. U = Le petit prince 1, V = Le petit prince 2 ; α = β = γ = p = 1

We ran tests on every signal that we had recorded in order to ensure that this improvement was
consistent with the result of the basic DTW at least for the major part of the path we found, and to
make sure that we did not find any irregular or inacceptable paths.

5.6 Weighted variants
In this section we test the influence of the weight coefficients α, β, γ to the output paths. We propose
to realign K550-1 1 and K550-1 3 with p = 1− δ = 1 and several values for α, β, γ. Figure 19 shows
the path obtained with the reference case where α = β = γ = 1.
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Figure 19: U = K550-1 1, V = K550-1 3; α = β = γ = p = 1− δ = 1

Influence of γ: variable γ, fixed α = β = 1 This variant is asymmetric since α and γ are not
equal. If we set γ ≥ 1, the path will be more likely to follow a horizontal or diagonal direction, as
seen in Figures 20(b) (γ = 2) and 20(c) (γ = 10). In the case of Figure 20(b) (γ = 2), it seems we
get a better path than the one of the reference case, because it is closer from the diagonal direction,
which was the expected result. With Figure 20(c) we can see the limits of this method, because if we
set γ to a large value, we do not improve our path anymore, and even get degenerated ones. On the
contrary, if we set γ ≤ 1, we put a lower cost on vertical moves, and thus the path will be incitated
to follow this direction as Figure 20(a) shows (γ = 0.5).

(a) γ = 0.5 (b) γ = 2 (c) γ = 10

Figure 20: Influence of γ. U = K550-1 1, V = K550-1 3; α = β = p = 1− δ = 1

Influence of β: variable β, fixed α = γ = 1 This variant is symmetric as α = γ. In this case,
when we set β ≤ 1, the resulting path is closer from diagonal direction, as Figure 21(a) (β = 0.5)
shows. This parameter can be used in order to prevent abberant paths which follow a straight vertical
or horizontal line. In the case of β ≥ 1, we put a higher cost on diagonal direction and hence the
path will be incitated to make vertical or diagonal moves, as Figure 21(b) (β = 2) shows. In fact in
this case, not only the path goes out of this way, but even the diagonal part of the path (at the end)
is in fact a composition of vertical and horizontal moves, as zoom in Figure 21(c) shows.
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(a) β = 0.5 (b) β = 2 (c) β = 2, zoom

Figure 21: Influence of β. U = K550-1 1, V = K550-1 3; α = γ = p = 1− δ = 1

Influence of α: variable α, fixed β = γ = 1 This variant is quite similar to the first one. Results
and interpretations are almost the same, vertical direction being replaced by horizontal direction.
Figure 22(a) (α = 0.5) shows the impact of a coefficient α ≤ 1, whereas Figure 22(b) (α = 2) and
Figure 22(c) (α = 4) show the impact of a coefficient α ≥ 1.

(a) α = 0.5 (b) α = 2 (c) α = 4

Figure 22: Influence of α. U = K550-1 1, V = K550-1 3; β = γ = p = 1− δ = 1

Summary Those variants show that coeffecients α, β, γ behave as expected on the algorithm:
they can be used to induce path to follow a given direction, and to manually prevent abberant
results, for the case where the path follows a straight line, for instance. However, the initial setting
α = β = γ = 1 is the only one really adapted to audio realignment, and modifying those coefficients
should be done only if this configuration fails. However, some of the variants are better match
recognizers than the classic DTW for speech recognition, for it provides a more fiable match score
index (see [9] and [10]).

5.7 Limits of the algorithm
In this section, we investigate the limits of the algorithm by raising the issue of precision, and showing
some failed examples.

5.7.1 Precision of the realignment

All tests presented in this article were computed with 1024-sample windows (23.2 ms). Provided
that we used 50% overlap, it means that the precision of the realignment is at most around 10 ms.
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We therefore decided to test the algorithm with smaller windows, hoping that the algorithm remains
robust and would be able to realign with a increased precision. We therefore tried to realign two
sentences pronunced by different speakers (Baudelaire T and Baudelaire P) with the basic algorithm
( α = β = γ = p = 1 − δ = 1) but different window lengths (1024, 512 and 256). Results are
presented on Figure 23 and can be summarized as follows:

• 512-sample window (11.6 ms) (Figure 23(b)): we notice that the path has the same shape that
the one of the one of the 1024-sample windows (Figure 23(a)): that means that we do not
get much more information by reducing window size. The drawback of this method is that
the computation time is mutiplied by four (the time series involved are twice longer with this
window, hence we need to compute four times more indexes in the cost matrix): the average
compution time of the algorithm for a signal of 30s gets from 15s to a minute.

• 256-sample window (5.8 ms) (Figure 23(c)): not only is the computation time multiplied by
16, but the paths may not be relevant anymore. This is probably due to the fact that when
using Fourier transform, the frequency resolution decreases when the window length decreases,
making it more difficult to correctly match the STFT frames.

The precision of the algorithm is therefore limited by two factors: computation time and frequency
resolution. If in theory it seems possible to use 512-sample window without degrading the path, we
noticed on listening tests that when reconstructing the audio signals, differences between realignments
using 512-sample window and 1024-sample window are nearly inaudible.

(a) Hann window size = 1024 (b) Hann window size = 512 (c) Hann window size = 256

Figure 23: Influence of the window length. U = Baudelaire T, V = Baudelaire P ; α = β = γ = p =
1− δ = 1

5.7.2 Failed examples and possible solutions

This section presents some examples which appear to be challenging for the algorithm. For instance,
with files Le petit prince 1 and Le petit prince 3 and the basic configuration α = β = γ = p =
1− δ = 1, we see on Figure 24(a) that the path is likely to be unrelevant. This happens mainly with
audio files where there is speech or with music presenting great variations in the amplitude of the
sound: for instance, it happened when we tried to rematch our voices, or in the K550-1, where the
amplitude of the sound can get from very low to very high. So we guess that this is due to the fact
that the algorithm considers times of silence as times of noise (noise is already present in every audio
file, but when the sound is very low, its amplitude is very close to the one of the noise), and that it
has a great difficulty to match noise with noise (or signals very noised with signals very noised).

In these specific cases, we found out that using different distances d may improve the results and
enable to find the right path.
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For instance, if we change the definition of our distance to the one of (18), we see an improvement
of the quality of the path for Le petit prince 1 and Le petit prince 3 (see Figure 24(b)).

d(U, V ) =
∥∥∥∥∥ U

‖U‖2
− V

‖V ‖2

∥∥∥∥∥
2

(18)

The same way we notice that using the cosine distance defined by (19) improve the results in this
case, as Figure 24(c) shows.

d(U, V ) = (U, V )2

‖U‖2‖V ‖2
(19)

In both cases, we guess that what really improved the results is the change in the type of normal-
ization (L-2 vs. L-1 in the basic algorithm), which was maybe more relevant for these low-amplitude
examples. So, changing the type of renormalization or testing with a different distance can lead to
find one more suited to the problem we are confronted to, but we miss a general improvement that
would solve all the cases at once.

(a) d(U, V ) =
∥∥∥ U

‖U‖1
− V

‖V ‖1

∥∥∥
2

(b) d(U, V ) =
∥∥∥ U

‖U‖2
− V

‖V ‖2

∥∥∥
2

(c) d(U, V ) = (U,V )2
‖U‖2‖V ‖2

Figure 24: U = Le petit prince 1, V = Le petit prince 3 ; α = β = γ = p = 1− δ = 1

6 Conclusion
In this article we have presented and tested several variants and improvements of the Dynamic Time
Warping algorithm for audio files realignment. We have seen on several exemples that it was often
possible to realign two audio signals with the basic DTW algorithm. More complex cases can be
dealt with by using the variants we have described in this article (for instance, penalisation on some
moves, change in the normalisation. . . ) In particular, when the user has an a priori on what he
expects to find, the methods presented here allows him to intuitively design the right setup to solve
his problem.

While the algorithm presented here is dedicated to audio files realignment, DTW has also been
used in different fields of sound processing (mainly speech recognition), and the algorithm and imple-
mentation presented here can also be used in this context. Moreover, as it is presented the algorithm
is easily adaptable to be applied to numerous different context not related to sound processing, if
the time series are submitted to the right process.
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