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Abstract

Modelling and assumptions
• We study the axisymmetric case. The magnetic

field B and the velocity field v can be written
as

B =
1

rsinθ
∇Ψ(r, θ)êφ ×

1

rsinθ
F (r, θ)êφ

and

v =
1

rsinθ
∇Π(r, θ)êφ ×

1

rsinθ
E(r, θ)êφ

where Ψ and Π are the poloidal fluxs and F
and E are the toroidal potentials.

• Unlike the article written by Duez and Mathis,
ρ is constant (Pendergast 1956).

• We work with the usual spherical coordinate
system (r, θ, φ) and {êk}k=r,θ,φ.

State of the art

• Poloidal and toroidal fields are instable in the radiative zone (e.g. Tayler 1973; Markey and Tayler 1973).

• The best candidates for stable geometries are mixed poloidal-toroidal fields as it was shown numerically
by Braithwaite.

• These mixed fields are stable when Emag,P
Emag,T

> 2a
Emag,T
Egrav

(Reisenegger 2013).

• The axisymmetric case was studied in magneto-hydrostatic by Duez and Mathis. The poloidal flux of
B is given by

∆∗Ψ +
λ2

1

R2
Ψ = −µ0ρr

2sin2θβ0

where ∆∗Ψ ≡ ∂rrΨ + sinθ
r2 ∂θ

(
1

sinθ∂θΨ

)
and the values of the real coefficients λ1 and β0 are controled by

the helicity and the mass conservation in each axisymmetric tube of flux.

Relaxation of the magnetic field
• We study the relaxation of the magnetic

field B during the apparition of a radiative
zone in a purely convective star.

• We are looking for stable equilibrium states
thanks to the variational problem

δE − a11I11 − a21I21 − a31I31 − a40I40 = 0.

where I11, I21, I31 and I40 represent the con-
servation of the mass in each flux tube, the
helicity, the cross-helicity and the angular
momentum.

• Equation - The variational problem gives us
the equation that governs Ψ

∆∗Ψ + aΨ = b

.

Figure 1: Relaxation of the magnetic field during the apparition of
the internal radiative zone in a purely convective star.

• First results - This equation has the same form than the equation of the article written by Duez and
Mathis. Hence we can deduce that

– The mode l = 1 is still the mode of lowest energy.

– The geometry of the magnetic field at the surface will be the same, i.e. it does not depend on the
rotation rate. This result is consistent with the observations.

Ratio Emag,P/Emag,T

• The fossil magnetic field can be fully determined thanks to the properties of the convective progenitor
and the boudary conditions.

• These conditions are
B.êr = 0 and B.êθ = 0

.

• The whole determination of B and v gives us the ratio between the toroidal and the poloidal compo-
nents of Emag

Emag,P
Emag,T

=
a21Hc + 2a11

a21Hc − 2
a231a40
ρ I40 + 2a21a31a40ρ I11

.

Summary
We have studied the properties of the fossil magnetic
field in radiative zones considering the rotation of
the star.

• The mode l = 1 is the mode of the lowest en-
ergy.

• Since the equation that gives us Ψ is the same
in both magneto-hydrostatic and magneto-
hydrodynamic cases, the geometry of B does
not depend on the rotation rate of the star.

• The magnetic field B and the velocity field v in
the radiative zone are fully determined by the
properties of the convective progenitor and the
boundary conditions.
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