
Randomized Strategies in Concurrent Games

Daniel Stan

Supervisors: Patricia Bouyer, Nicolas Markey

1 / 31



Introduction

Formal methods

3 7 7 33

Formal models of complex systems;

To check safety properties;

To optimize quantitative properties.

; In this thesis: fundamental work, insights on these models.

2 / 31



Introduction

Formal methods

3

7

7

33

Formal models of complex systems;

To check safety properties;

To optimize quantitative properties.

; In this thesis: fundamental work, insights on these models.

2 / 31



Introduction

Formal methods

3 7 7 33

Formal models of complex systems;

To check safety properties;

To optimize quantitative properties.

; In this thesis: fundamental work, insights on these models.

2 / 31



Introduction

Formal methods

3 7 7 33

Formal models of complex systems;

To check safety properties;

To optimize quantitative properties.

; In this thesis: fundamental work, insights on these models.

2 / 31



Introduction

Turn-based games

3 / 31



Introduction

Turn-based games

3 / 31



Introduction

Multi-agent systems

0, 0, 0

3, 0, 0

3, 2, 0

3, 2, 1

pww

•pw

••p

www

•ww

••w

3,−10,−10 3, 1, 2

•pp

1
4

1
4

1
4

1
4

3, 0, 2

•wp

••p

••w

. . .

. . .

4 / 31



Introduction

Multi-agent systems

0, 0, 0

3, 0, 0

3, 2, 0

3, 2, 1

pww

•pw

••p

www

•ww

••w

3,−10,−10 3, 1, 2

•pp

1
4

1
4

1
4

1
4

3, 0, 2

•wp

••p

••w

. . .

. . .

4 / 31



Introduction

Multi-agent systems

0, 0, 0

3, 0, 0

3, 2, 0

3, 2, 1

pww

•pw

••p

www

•ww

••w

3,−10,−10 3, 1, 2

•pp

1
4

1
4

1
4

1
4

3, 0, 2

•wp

••p

••w

. . .

. . .

4 / 31



Introduction

Multi-agent systems

(3, 2, 0)

0, 0, 0

3, 0, 0

3, 2, 0

3, 2, 1

pww

•pw

••p

www

•ww

••w

3,−10,−10 3, 1, 2

•pp

1
4

1
4

1
4

1
4

3, 0, 2

•wp

••p

••w

. . .

. . .

4 / 31



Introduction

Multi-agent systems

(3, 2, 0)

0, 0, 0

3, 0, 0

3, 2, 0

3, 2, 1

pww

•pw

••p

www

•ww

••w

3,−10,−10 3, 1, 2

•pp

1
4

1
4

1
4

1
4

3, 0, 2

•wp

••p

••w

. . .

. . .

4 / 31



Introduction

Multi-agent systems

(3, 2, 0)

0, 0, 0

3, 0, 0

3, 2, 0

3, 2, 1

pww

•pw

••p

www

•ww

••w

3,−10,−10 3, 1, 2

•pp

1
4

1
4

1
4

1
4

3, 0, 2

•wp

••p

••w

. . .

. . .

4 / 31



Introduction

Multi-agent systems

0, 0, 0

3, 0, 0

3, 2, 0

3, 2, 1

pww

•pw

••p

www

•ww

••w

3,−10,−10 3, 1, 2

•pp

1
4

1
4

1
4

1
4

3, 0, 2

•wp

••p

••w

. . .

. . .

4 / 31



Introduction

Multi-agent systems

0, 0, 0

3, 0, 0

3, 2, 0

3, 2, 1

pww

•pw

••p

www

•ww

••w

3,−10,−10 3, 1, 2

•pp

1
4

1
4

1
4

1
4

3, 0, 2

•wp

••p

••w

. . .

. . .

4 / 31



Introduction

Concurrent games

A finite graph, played concurrently

by agents:
Agt = {1, 2 . . .};

Each agent i has a strategy:
σi : States+ → Dist(Act)

and an objective:
Φi : Statesω → R

Φ is a terminal-reward objective if it depends only on the final
visited state:

3,−10,−10 , (0, . . . , 0) otherwise

Terminal-reachability if 0 and 1 values.

Opposed to safety objectives ((0, . . . , 0) whenever a final state is
reached).
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Introduce a global
scheduler.

Randomize the
decisions.

Here:

Agents are devices, computer,
processes;

Communication collisions,
cooperation for common
objectives.
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Outline

Two forms of uncertainties:

Non-determinism: “Does there exist a correct scheduler?”

Stochasticity: “What is the probability mass of correct runs?”

; What is the contribution of stochasticity to the system?

Simple objectives: terminal reachability and safety.

; Main contributions to:

Concurrent games on graphs: fixed number of agents;

Parametrized verification of protocols: arbitrary number of processes.
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Concurrent Games

Summary
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Player i wants to maximize Eσ(Φi )
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Nash Equilibrium

Definition

σ is a Nash Equilibrium (NE) if for all agent i and any other strategy for i
(deviation) σ′i ,

Eσ[i/σ′i ] (φi ) ≤ Eσ (φi )

No incentive to deviate to increase its own expected reward.

Example
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Concurrent Games

Existence of NE in concurrent games

Problem

Input: a game G with terminal-reachability and safety objectives.

Output: YES if there exists a NE σ for G, NO otherwise.

Preliminary problem before considering the computation of strategies.
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Concurrent Games

Existence of NE in concurrent games

T. Reachability Safety Both

Existence

Unknown
3 ε-NE [CJM04]

3 [SS01]
3 one-stage-game [Nas50]
7 deterministic games1

7 zero-sum games [KS81]

Decidability

Unknown
3 ε-NE

3

3 one-stage-game
3 deterministic games [BBMU11]
7 at least 11 players [UW11]
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Undecidability

Theorem (Bouyer, Markey, S. in FSTTCS’2014)

The existence problem is undecidable for three players.

Features:

Simulation of a 2-counter machine [Min67].

Constraint NE: first player has to win almost-surely.

, ,

Heavy use of concurrent actions.

Heavy use of action-invisibility.
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We can restrict to qualitative objectives.
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Parametrized Protocols

Parametrized verification

Concrete situations: most
agents are identical;

The number of agents is an

::::::::
unknown parameter;

Idea: relax parameter
assumptions to gain regularity;

Obtain an answer for any
parameter, asymptotically;

Several choices:

Agent model: Finite automaton, pushdown automaton;

Communication model [Esp14]: broadcast communication,
shared register, Rendez-Vous (population protocols), shared register
with non-atomicity.
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Deterministic case: copycat lemma [EGM13]
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2 q1 q1 q2

(q2, W (2) , q1)

Coverability objective: reach 3qf , a configuration with at least one
process in qf .

If reachable with parameter n, it is still reachable with parameter
n + 1.

This property holds because of the non-atomicity hypothesis.
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Parametrized Protocols

Role of the scheduler

Theorem ([EGM13, DEGM15])

The coverability problem can be solved in polynomial time and becomes
NP-complete in the presence of a distinguished leader process.

Scheduler : Configuration+ → Configuration

The scheduler is deterministic, and has a global view over the
system.

In this thesis:

What happens with a stochastic scheduler?

; Denote Pn(3qf ) the probability to cover a state qf .
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Parametrized Protocols

Almost-sure reachability

Lemma (Qualitative assumption)

The properties Pn(3qf ) > 0 and Pn(3qf ) = 1 do not depend on the
actual probability distributions.

We have already solved the case Pn(3qf ) > 0 : it corresponds to finding a
path to 3qf .

; We focus now on the almost-sure case: Pn(3qf ) = 1.
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21 / 31



Parametrized Protocols

q0 q1 q2 qf

R (1) ,R (2)

0
R (0)

W (1)

R (1)

W (2)

R (2)

W (1)

0 q0 q0 q0

0 q1 q0 q0

R (0)

0 q1 q0 q1

R (0)

1 q1 q0 q1

W (1)

1 q1 q0 q2

R (1)

R (1)

2 q1 q0 q1

W (2)

R (2)
. . .

R (1)

1 q2 q0 q2

R (1)
R (1)

2 q2 q0 q1

W (2)

2 qf q0 q1

R (2)

1 q1 q0 q0

W (1)

R (1) R (1)

22 / 31



Parametrized Protocols

q0 q1 q2 qf

R (1) ,R (2)

0
R (0)

W (1)

R (1)

W (2)

R (2)

W (1)

0 q0 q0 q0

0 q1 q0 q0

R (0)

0 q1 q0 q1

R (0)

1 q1 q0 q1

W (1)

1 q1 q0 q2

R (1)

R (1)

2 q1 q0 q1

W (2)

R (2)
. . .

R (1)

1 q2 q0 q2

R (1)
R (1)

2 q2 q0 q1

W (2)

2 qf q0 q1

R (2)

1 q1 q0 q0

W (1)

R (1) R (1)

22 / 31



Parametrized Protocols

q0 q1 q2 qf

R (1) ,R (2)

0
R (0)

W (1)

R (1)

W (2)

R (2)

W (1)

0 q0 q0 q0

0 q1 q0 q0

R (0)

0 q1 q0 q1

R (0)

1 q1 q0 q1

W (1)

1 q1 q0 q2

R (1)

R (1)

2 q1 q0 q1

W (2)

R (2)
. . .

R (1)

1 q2 q0 q2

R (1)
R (1)

2 q2 q0 q1

W (2)

2 qf q0 q1

R (2)

1 q1 q0 q0

W (1)

R (1) R (1)

22 / 31



Parametrized Protocols

What we are looking for

A limit behaviour, if possible

Definition (Cut-off [EK00])

Le N a parameter. If ∀n ≥ N Pn(3qf ) = 1 or ∀n ≥ N Pn(3qf ) < 1, then
N is a cut-off.

n
3

1

7

2

7

3

3

4

7

15

7

16

7

17

negative cut-off values

n
3

1

7

2

7

3

3

4

3

21

3

22

3

23

positive cut-off values
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Parametrized Protocols

Existence of a cut-off

Theorem (Bouyer, Markey, Randour, Sangnier, S. in ICALP’2016)

Given a protocol P there always exists a cut-off N.

Idea:

Particular case of a well-structured-transition-system [FS01];

Post and Pre operations preserves upward-closed sets;

Initial and final configuration spaces are upward-closed.

Rely on non-atomicity of operations;

Non-constructive proof.

;How to efficiently decide the type (positive or negative) of the cut-off?

24 / 31



Parametrized Protocols

Existence of a cut-off

Theorem (Bouyer, Markey, Randour, Sangnier, S. in ICALP’2016)

Given a protocol P there always exists a cut-off N.

Idea:

Particular case of a well-structured-transition-system [FS01];

Post and Pre operations preserves upward-closed sets;

Initial and final configuration spaces are upward-closed.

Rely on non-atomicity of operations;

Non-constructive proof.

;How to efficiently decide the type (positive or negative) of the cut-off?

24 / 31



Parametrized Protocols

Existence of a cut-off

Theorem (Bouyer, Markey, Randour, Sangnier, S. in ICALP’2016)

Given a protocol P there always exists a cut-off N.

Idea:

Particular case of a well-structured-transition-system [FS01];

Post and Pre operations preserves upward-closed sets;

Initial and final configuration spaces are upward-closed.

Rely on non-atomicity of operations;

Non-constructive proof.

;How to efficiently decide the type (positive or negative) of the cut-off?

24 / 31



Parametrized Protocols

Existence of a cut-off

Theorem (Bouyer, Markey, Randour, Sangnier, S. in ICALP’2016)

Given a protocol P there always exists a cut-off N.

Idea:

Particular case of a well-structured-transition-system [FS01];

Post and Pre operations preserves upward-closed sets;

Initial and final configuration spaces are upward-closed.

Rely on non-atomicity of operations;

Non-constructive proof.

;How to efficiently decide the type (positive or negative) of the cut-off?

24 / 31



Parametrized Protocols

Decision problem

Problem

Input: a protocol P.

Output: YES if there exists a positive cut-off, NO otherwise.

In the size of the protocol:

So far, all examples have linear cut-off.

There exist protocols with exponential negative cut-off.

Existence proof: minimal elements are shown to be
doubly-exponential [Rac78].

Theorem (ICALP’2016)

The cut-off decision problem is PSPACE-hard

and can be solved in EXPSPACE.
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Parametrized Protocols

Extensions

Previous results are extended, with the same complexity, to:

A distinguished leader process;

Multiple registers with move operations;

Simple upward-closed target objectives (instead of coverability);

Almost-sure repeated reachability.

; Extension to the local strategy synthesis (with positive and zero
probability).
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Conclusions

Summary

Stochastic games: understanding of fundamental models

Existence of a Nash equilibrium is undecidable even with three players
and qualitative terminal-reachability and safety objectives.

Narrow the gap between known existence and undecidability.

Hope in the approximation case (ε-NE, imprecise deviations).

; Open problems:

Two-player case;

Terminal-reachability only objectives;

Exact complexity of equilibrium under ε-precise deviations.
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Conclusions

Summary

Parametrized verification

Qualitative analysis of almost-sure reachability.

Several proposed extensions.

Proof techniques (well-quasi-orders) reusable in other contexts.

; Open problems:

Fundamental study: atomic operations;

Process identifiers;

Limit-sure;

Quantitative analysis;

Local strategy synthesis for almost-sure reachability.

NE with local strategies?
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Conclusions

Perspectives

; Common goals:

Complexity gaps.

More complex objectives: model checking.

Efficient strategy synthesis (SMT-solvers, non-linear optimization).
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Hide-or-run

Does a mixed Nash Equilibrium always exist?

Idea: two player concurrent zero-sum games may not have optimal
strategies but only ε-optimal strategies (for any ε > 0).

1,−1 −1, 1

hs,rw rs

hw

Hide-or-Run game.

2, 0 0, 2

1, 1
hs,rw rs

hw

Shifted hide-or-Run game

Value problem in a zero-sum game is not a special case of Nash
Equilibrium problem with positive terminal rewards.
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LTM

p0p′0

1, c1 2, c2 3, c3 ... n, cn

⊥
R(#) R(D\{#})

R(#) R(#) R(#)W (q0,1)

1, σ

1, σ, q

1, σ′

n, σ′

n, σ′, q′′

n, σ′′

R(q,1)

W (q′,2)

R(q′′,n)

W (q,n−1)

s0 s1 s2 sn sn+1W (f0)

R(f0)

W (f1)

R(f1)

W (f2)

R(f2) R(fn−1) R(fn)

R(qhalt,n)
R(fi ),i∈[0;n] R(·,j),j 6=n

R(#)

(to sn+1)

(to sn+1)

(to s0)

(to s0)

initialization phase

simulation phase
for transitions
(q, σ)→ (q′, σ′,+1)
(q′′, σ′)→ (q, σ′′,−1))

counting phase
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