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Reachability in Register Protocols Definitions

Definition (Distributed protocol)
A distributed protocol is given by P = (Q,D, T)
@ @: control states

@ D: possible values of the register

), w(d)

@ T: transitions of the form p —= g and p ——

deD.

q for p,q € Q,
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Reachability in Register Protocols Definitions

Definition (Distributed protocol)
A distributed protocol is given by P = (Q,D, T)
@ @: control states

@ D: possible values of the register

d d
@ T: transitions of the form p Q g and p M

deD.

q for p,q € Q,
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Reachability in Register Protocols efinitions

Semantics

r(1),r(2)  w(l) w(1)

@@
7 r(0) \Cil/ r(1) @ r(2) 9

1900




Semantics

r(1),r(2)  w(l) w(1)

(% % 5
o \E e\




Semantics

r(1),r(2)  w(l) w(1)

(ﬂ) ?\ﬁm 5
o \E e\

@..




Semantics

w(1)

r(1),r(2)
@%6
r(2)

r(l




Semantics

w(1)

r(1),r(2)
@%6
r(2)

r(1




Semantics

r(1),r(2)  w(l) w(1)

<O> -
o \E e\




Semantics




Semantics

w(1)

r(1),r(2)

r(1 r(2)

:r(O) r )
() @) ()

:‘@'?:::9'@i




Semantics

2‘




Semantics



Definition (Configuration of the protocol)
v ={f, d>

with f: Q — N (multiset) and d € D the register value. We write
7(q) = f(q) and v(y) =d.
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Definition (Configuration of the protocol)
v =(f,d)

with f: Q — N (multiset) and d € D the register value. We write
7(q) = f(q) and v(7) = d.

Some notations:
o [ is the set of configurations
7l =224 7(q) (size)
Pre(X), Post(X)
-+, — operations on multisets are extended to configurations.
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Reachability in Register Protocols Definitions

Definition (Configuration of the protocol)

v = (f,d)
with f : @ — N (multiset) and d € D the register value. We write
v(q) = f(q) and v(v) = d.

Some notations:
o [ is the set of configurations
7l =224 7(q) (size)
Pre(X), Post(X)
-+, — operations on multisets are extended to configurations.

Definition (Semantics)
v =~ ify =+ —q+ g with either
e g i), g’ (write operation)

e ord=v(y)=v(y)and q LGN q’ (read operation)




GEEL BT IR NSNS E  (Non-)Deterministic Reachability

Definition (Reachability problem )

Let (qo,do) € Q x D

and some target gr € Q. Does there exist
vl

v € I with y(qr) > 0 reachable from (q,", do) ?
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Reachability in Register Protocols (Non-)Deterministic Reachability

Definition (Reachability problem with leader)

Let (qo,do) € @ x D, g, € Q and some target gr € Q. Does there exist
v € [ with y(gf) > 0 reachable from (g, + q(‘)ﬁ’/‘_l7 do) ?

@ Once 7 is fixed, the number of processes in the run is fixed.

@ Monotonicity : if g is reachable with n processes, still reachable with
a bigger number of processes.

@ Bound of the maximal parameter value to consider ?



GEEL BT IR NSNS E  (Non-)Deterministic Reachability

Symbolic graph

In the following, we consider the leader-less case.

Definition (Symbolic graph)
We construct Ggymp, from the initial transition system by abstraction on
the number of copies in each state.

v 5(7) = (v(7),{q | v(q) > 0})
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Reachability in Register Protocols (Non-)Deterministic Reachability

Symbolic graph

In the following, we consider the leader-less case.

Definition (Symbolic graph)
We construct Ggymp, from the initial transition system by abstraction on
the number of copies in each state.

v 5(7) = (v(7),{q | v(q) > 0})

Lemma

Every "concrete” run of P corresponds to a symbolic run. And we can
reconstruct a concrete run by adding enough copies.
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Example

r(1),r(2)  w(l) w(1)
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GEEL BT IR NSNS E  (Non-)Deterministic Reachability

What the symbolic graph taught us

Theorem

Every path in Ggymy, can be transformed to have less than 4|Q| + 1
transitions.
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(R e 7
What the symbolic graph taught us

Theorem

Every path in Ggymy, can be transformed to have less than 4|Q| + 1
transitions.

Theorem

If v —* +/ there exists n —* 1’ with same set of states/register values
such that |n| < 4|Q| + 1.

Theorem (J. Esparza, P. Ganty, and R. Majumdar., 2013)
The reachability problem with leader is NP-complete.
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@ Probabilistic semantics
@ Cut-off property
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Probabilistic semantics
Markov Chain

Definition (Law of motion)
We consider (I', —) as a Markov Chain.

1

Vv~ € Post Pr(y > ~)= ———
7 (v) Pr(y =) Post(7)]
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Probabilistic semantics
Markov Chain

Definition (Law of motion)

We consider (I', —) as a Markov Chain.

1

Vv~ € Post Pr(y > ~)= ———
y (v) Pr(y =) Post(7)]

Let (qo,db) € Q x D, a parameter n.
For X C T, we denote P"(X) the probability to eventually reach some
v € X from (qg, do) (leader-less case).
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Probabilistic semantics
Markov Chain

Definition (Law of motion)

We consider (I', —) as a Markov Chain.

1

Vv~ € Post Pr(y > ~)= ———
y (v) Pr(y =) Post(7)]

Let (qo,db) € Q x D, a parameter n.
For X C T, we denote P"(X) the probability to eventually reach some
v € X from (qg, do) (leader-less case).

Qualitative goal

Let gr € Q.
Estimate P"(7 gr).
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Almost sure reachability Probabilistic semantics

Remarks

Lemma (Qualitative assumption)

The properties P"(1 q¢) > 0 and P"(1 qr) = 1 do not depend on the
actual distributions.
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Almost sure reachability Probabilistic semantics

Remarks

Lemma (Qualitative assumption)

The properties P"(1 q¢) > 0 and P"(1 qr) = 1 do not depend on the
actual distributions.

We have already solved the case P"(1 gf) > 0 : it corresponds to finding a
path to T gr.

e We focus now on the almost-sure (P"(1 gf) = 1 problem).

@ Both the scheduler and processes are stochastic

o No atomicity

@ No monotonicity a priori.
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Discretization

Lemma

P"(1 gr) = 0 < Post™((qg, do)) N Pre*(T gr) = 0

D¢
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Almost sure reachability Probabilistic semantics

Discretization

Lemma

P"(1 gr) = 0 < Post™((qg, do)) N Pre*(T gr) = 0

P"(1 gr) = 1 < Post*((qg, do)) C Pre*(1 gr)
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VA [ S RN EEISEGITAWAN  Cut-off property

What we are looking for

Some limit behaviour, if possible
Definition (Cut-off)

Le N a parameter. If Vn > N P"(1 gf) =1 or Vn > N P"(1 gr) < 1, then
N is a cut-off.

16/23



VA [ S RN EEISEGITAWAN  Cut-off property

What we are looking for

Some limit behaviour, if possible
Definition (Cut-off)

Le N a parameter. If Vn > N P"(1 gf) =1 or Vn > N P"(1 gr) < 1, then
N is a cut-off.

@ positive Vn > N P"(1 gr) =1
e negative Vn > N P"(1 gr) < 1

@ Non-atomicity is crucial.
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VA [ S RN EEISEGITAWAN  Cut-off property

Existential solution

Theorem

Given a protocol P there always exists either a positive cut-off either a
negative cut-off N.

The probability to reach 1 qr is eventually 1 or eventually strictly less than
1.

@ Non-constructive proof based on well-quasi-orders
@ The bound is polynomial ...
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VA [ S RN EEISEGITAWAN  Cut-off property

Existential solution

Theorem

Given a protocol P there always exists either a positive cut-off either a
negative cut-off N.

The probability to reach 1 qr is eventually 1 or eventually strictly less than
1.

@ Non-constructive proof based on well-quasi-orders
@ The bound is polynomial ...

@ ... in the size of the elements of minPost*(1 (qo, dp)) and
min Pre* (1 gr)

@ How to effeciently decide the type of the cut-off ?
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Negative cut-off: the easy case

Remark

Almost-sure reachability in the concrete system implies Almost-sure
reachability in Ggymp.
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Gl
Negative cut-off: the easy case

Remark

Almost-sure reachability in the concrete system implies Almost-sure
reachability in Ggymp.

The converse is not true

Example
r(1),r(2)  w(1) - w(1)
r(0) " r(1) "\ r(2)
(@,0) % (07291,0) X (g2 qn, 1) A" a1
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@ Linear filter

@ Consequences
@ Upper Bound
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Linear example
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Cut-off value ?
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Cut-off constructions
Linear example

Example

w(0) w(2)

N 1)
"0 .0 O

Cut-off value ?

r(n— 1)
Invariant (with m initial processes):

J

Vi<m > v(aw) =+ Lyymj
k=0

D¢
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Cut-off constructions

Linear example

Example

w(0) w(2)

N 1)
"0 .0 O

r(n— 1)
Cut-off value ? The cut-off is positive and equals n.
Invariant (with m initial processes):

J

Vi<m > v(aw) =+ Lyymj
k=0

D¢
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(N IR E e  Consequences

Consequences

@ Checking that few processes are in the same set of states

@ Main tool to ensure proper encodings with negative cut-offs.
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Cut-off constructions Consequences

Consequences

@ Checking that few processes are in the same set of states
@ Main tool to ensure proper encodings with negative cut-offs.
e We can encode a n-bits counter (exponential size negative cut-offs).

@ Can encode a linearly-bounded Turing Machine

Decision Problem
e INPUT: a protocol P, qo,qr € Q and dy € D.
@ OUTPUT: whether the cut-off is positive or negative.

The cut-off decision problem is PSPACE-hard.
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Upper bound 7

@ Rackoff’s theorem: min Pre*(1 gr) can be bounded by M
doubly-exponential in |P|.
@ No bound on the min Post*(1 (qo, db)).
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0z722 o
Upper bound 7

@ Rackoff’s theorem: min Pre*(1 gr) can be bounded by M
doubly-exponential in |P|.

@ No bound on the min Post*(1 (qo, db)).

@ ldea: refine the symbolic graph to keep track of up to M processes.

Theorem
Deciding whether the cut-off is positive can be done in EXPSPACE. J
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Summary and Perspectives

Almost sure reachability without leader: always a cut-off value.

At least linear in the (worst) positive case.

At least exponential in the (worst) negative case.
The decision problem is PSPACE hard and in EXPSPACE.
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Summary and Perspectives

Almost sure reachability without leader: always a cut-off value.

At least linear in the (worst) positive case.

At least exponential in the (worst) negative case.
The decision problem is PSPACE hard and in EXPSPACE.

What happens with atomic operations ?
More registers, leader process,PDS 7

o
o
@ Other properties (safety, LTL, limit-sure)
o

(Local) Strategy synthesis ?
Thank you for your attention
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