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Reachability in Register Protocols Definitions

Definition (Distributed protocol)

A distributed protocol is given by P = 〈Q,D,T 〉
Q: control states

D: possible values of the register

T : transitions of the form p
r(d)−−→ q and p

w(d)−−−→ q for p, q ∈ Q,
d ∈ D.

Example
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Semantics
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Reachability in Register Protocols Definitions

Definition (Configuration of the protocol)

γ = 〈f , d〉

with f : Q → N (multiset) and d ∈ D the register value. We write
γ(q) = f (q) and v(γ) = d .

Some notations:

Γ is the set of configurations

|γ| =
∑

q γ(q) (size)

Pre(X ), Post(X )

+, − operations on multisets are extended to configurations.

Definition (Semantics)

γ → γ′ if γ′ = γ − q + q′ with either

q
w(v(γ))−−−−−→ q′ (write operation)

or d = v(γ) = v(γ′) and q
r(d)−−→ q′ (read operation)
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Reachability in Register Protocols (Non-)Deterministic Reachability

Definition (Reachability problem )

Let (q0, d0) ∈ Q × D

, ql ∈ Q

and some target qf ∈ Q. Does there exist

γ ∈ Γ with γ(qf ) > 0 reachable from 〈q|γ|0 , d0〉 ?

Once γ is fixed, the number of processes in the run is fixed.

Monotonicity : if qf is reachable with n processes, still reachable with
a bigger number of processes.

Bound of the maximal parameter value to consider ?
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Reachability in Register Protocols (Non-)Deterministic Reachability

Definition (Reachability problem with leader)

Let (q0, d0) ∈ Q × D , ql ∈ Q and some target qf ∈ Q. Does there exist

γ ∈ Γ with γ(qf ) > 0 reachable from 〈ql + q
|γ|−1
0 , d0〉 ?

Once γ is fixed, the number of processes in the run is fixed.

Monotonicity : if qf is reachable with n processes, still reachable with
a bigger number of processes.

Bound of the maximal parameter value to consider ?
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Reachability in Register Protocols (Non-)Deterministic Reachability

Symbolic graph

In the following, we consider the leader-less case.

Definition (Symbolic graph)

We construct Gsymb from the initial transition system by abstraction on
the number of copies in each state.

γ 7→ S(γ) = (v(γ), {q | γ(q) > 0})

Lemma

Every ”concrete” run of P corresponds to a symbolic run. And we can
reconstruct a concrete run by adding enough copies.
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Reachability in Register Protocols (Non-)Deterministic Reachability

Example
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Reachability in Register Protocols (Non-)Deterministic Reachability

What the symbolic graph taught us

Theorem

Every path in Gsymb can be transformed to have less than 4|Q|+ 1
transitions.

Theorem

If γ →∗ γ′ there exists η →∗ η′ with same set of states/register values
such that |η| ≤ 4|Q|+ 1.

Theorem (J. Esparza, P. Ganty, and R. Majumdar., 2013)

The reachability problem with leader is NP-complete.
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Almost sure reachability Probabilistic semantics

Markov Chain

Definition (Law of motion)

We consider (Γ,→) as a Markov Chain.

∀γ′ ∈ Post(γ) Pr(γ → γ′) =
1

|Post(γ)|

Let (q0, d0) ∈ Q × D, a parameter n.
For X ⊆ Γ, we denote Pn(X ) the probability to eventually reach some
γ ∈ X from (qn0 , d0) (leader-less case).

Qualitative goal

Let qf ∈ Q.
Estimate Pn(↑ qf ).
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Almost sure reachability Probabilistic semantics
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Almost sure reachability Probabilistic semantics

Remarks

Lemma (Qualitative assumption)

The properties Pn(↑ qf ) > 0 and Pn(↑ qf ) = 1 do not depend on the
actual distributions.

We have already solved the case Pn(↑ qf ) > 0 : it corresponds to finding a
path to ↑ qf .

We focus now on the almost-sure (Pn(↑ qf ) = 1 problem).

Both the scheduler and processes are stochastic

No atomicity

No monotonicity a priori.
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Almost sure reachability Probabilistic semantics

Discretization

Lemma

Pn(↑ qf ) = 0⇔ Post∗((qn0 , d0)) ∩ Pre∗(↑ qf ) = ∅

Pn(↑ qf ) = 1⇔ Post∗((qn0 , d0)) ⊆ Pre∗(↑ qf )
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Almost sure reachability Cut-off property

What we are looking for

Some limit behaviour, if possible

Definition (Cut-off)

Le N a parameter. If ∀n ≥ N Pn(↑ qf ) = 1 or ∀n ≥ N Pn(↑ qf ) < 1, then
N is a cut-off.

positive ∀n ≥ N Pn(↑ qf ) = 1

negative ∀n ≥ N Pn(↑ qf ) < 1

Non-atomicity is crucial.
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Almost sure reachability Cut-off property

Existential solution

Theorem

Given a protocol P there always exists either a positive cut-off either a
negative cut-off N.
The probability to reach ↑ qf is eventually 1 or eventually strictly less than
1.

Non-constructive proof based on well-quasi-orders

The bound is polynomial . . .

. . . in the size of the elements of minPost∗(↑ (q0, d0)) and
minPre∗(↑ qf )

How to effeciently decide the type of the cut-off ?
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Almost sure reachability Cut-off property

Negative cut-off: the easy case

Remark

Almost-sure reachability in the concrete system implies Almost-sure
reachability in Gsymb.

The converse is not true

Example
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0 q1, 1) 6→∗↑ qf
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0 q1, 1) 6→∗↑ qf
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Cut-off constructions

1 Reachability in Register Protocols

2 Almost sure reachability

3 Cut-off constructions
Linear filter
Consequences
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Cut-off constructions Linear filter

Linear example

Example

q0w(0) q1 q2 . . . qn

w(0)

r(0)

w(1)

r(1)

w(2)

r(2) r(n − 1)

Cut-off value ?

The cut-off is positive and equals n.
Invariant (with m initial processes):

∀j ≤ m

j∑
k=0

γ(qk) ≥ j + 1v(γ)=j+1
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Cut-off constructions Consequences

Consequences

Checking that few processes are in the same set of states

Main tool to ensure proper encodings with negative cut-offs.

We can encode a n-bits counter (exponential size negative cut-offs).

Can encode a linearly-bounded Turing Machine

Decision Problem

INPUT: a protocol P, q0, qf ∈ Q and d0 ∈ D.

OUTPUT: whether the cut-off is positive or negative.

The cut-off decision problem is PSPACE-hard.
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Cut-off constructions Upper Bound

Upper bound ?

Rackoff’s theorem: minPre∗(↑ qf ) can be bounded by M
doubly-exponential in |P|.
No bound on the minPost∗(↑ (q0, d0)).

Idea: refine the symbolic graph to keep track of up to M processes.

Theorem

Deciding whether the cut-off is positive can be done in EXPSPACE.
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Perpectives

Summary and Perspectives

Almost sure reachability without leader: always a cut-off value.

At least linear in the (worst) positive case.

At least exponential in the (worst) negative case.

The decision problem is PSPACE hard and in
:::::::::::
EXPSPACE.

What happens with atomic operations ?

More registers, leader process,PDS ?

Other properties (safety, LTL, limit-sure)

(Local) Strategy synthesis ?

Thank you for your attention
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