Reachability in Networks of Register Protocols under Stochastic Schedulers

Patricia Bouyer, Nicolas Markey, Mickael Randour, Arnaud Sangnier and Daniel STAN

Cassting ETAPS Workshop, 03/04/2016

Reachability in Register Protocols

Almost sure reachability

Cut-off constructions

Reachability in Register Protocols

Definitions

Example

(Non-)Deterministic Reachability

Almost sure reachability

Cut-off constructions

Definition (Distributed protocol)

A distributed protocol is given by $\mathcal{P} = \langle Q, D, T \rangle$

- Q: control states
- D: possible values of the register
- ▶ T: transitions of the form $p \xrightarrow{r(d)} q$ and $p \xrightarrow{w(d)} q$ for $p, q \in Q, d \in D$.

Definition (Distributed protocol)

A distributed protocol is given by $\mathcal{P} = \langle Q, D, T \rangle$

- Q: control states
- D: possible values of the register
- ▶ T: transitions of the form $p \xrightarrow{r(d)} q$ and $p \xrightarrow{w(d)} q$ for $p, q \in Q, d \in D$.

0

Definition (Configuration of the protocol)

$$\gamma = \langle f, d \rangle$$

with $f:Q\to\mathbb{N}$ (multiset) and $d\in D$ the register value. We write $\gamma(q)=f(q)$ and $\nu(\gamma)=d$.

Definition (Configuration of the protocol)

$$\gamma = \langle f, d \rangle$$

with $f:Q\to\mathbb{N}$ (multiset) and $d\in D$ the register value. We write $\gamma(q)=f(q)$ and $\nu(\gamma)=d$.

Some notations:

- Γ is the set of configurations
- $ightharpoonup |\gamma| = \sum_q \gamma(q) \text{ (size)}$
- $ightharpoonup \operatorname{Pre}(X)$, $\operatorname{Post}(X)$
- ▶ +, − operations on multisets are extended to configurations.

Definition (Configuration of the protocol)

$$\gamma = \langle f, d \rangle$$

with $f:Q\to\mathbb{N}$ (multiset) and $d\in D$ the register value. We write $\gamma(q)=f(q)$ and $\nu(\gamma)=d$.

Some notations:

- Γ is the set of configurations
- $ightharpoonup |\gamma| = \sum_q \gamma(q) \text{ (size)}$
- $ightharpoonup \operatorname{Pre}(X)$, $\operatorname{Post}(X)$
- ▶ +, − operations on multisets are extended to configurations.

Definition (Semantics)

$$\gamma \rightarrow \gamma'$$
 if $\gamma' = \gamma - q + q'$ with either

- or $d = v(\gamma) = v(\gamma')$ and $q \xrightarrow{r(d)} q'$ (read operation)

Definition (Reachability problem)

Let $(q_0, d_0) \in Q \times D$ and some target $q_f \in Q$. Does there exist $\gamma \in \Gamma$ with $\gamma(q_f) > 0$ reachable from $\langle q_0^{|\gamma|}, d_0 \rangle$?

Definition (Reachability problem with leader)

Let $(q_0, d_0) \in Q \times D$, $q_l \in Q$ and some target $q_f \in Q$. Does there exist $\gamma \in \Gamma$ with $\gamma(q_f) > 0$ reachable from $\langle q_l + q_0^{|\gamma|-1}, d_0 \rangle$?

- lacktriangle Once γ is fixed, the number of processes in the run is fixed.
- Monotonicity: if q_f is reachable with n processes, still reachable with a bigger number of processes.
- ▶ Bound of the maximal parameter value to consider ?

Symbolic graph

In the following, we consider the leader-less case.

Definition (Symbolic graph)

We construct G_{symb} from the initial transition system by abstraction on the number of copies in each state.

$$\gamma \mapsto \overline{S}(\gamma) = (v(\gamma), \{q \mid \gamma(q) > 0\})$$

Symbolic graph

In the following, we consider the leader-less case.

Definition (Symbolic graph)

We construct G_{symb} from the initial transition system by abstraction on the number of copies in each state.

$$\gamma \mapsto \overline{S}(\gamma) = (v(\gamma), \{q \mid \gamma(q) > 0\})$$

Lemma

Every "concrete" run of \mathcal{P} corresponds to a symbolic run. And we can reconstruct a concrete run by adding enough copies.

What the symbolic graph taught us

Theorem

Every path in ${\sf G}_{symb}$ can be transformed to have less than $4|{\sf Q}|+1$ transitions.

What the symbolic graph taught us

Theorem

Every path in G_{symb} can be transformed to have less than 4|Q|+1 transitions.

Theorem

If $\gamma \to^* \gamma'$ there exists $\eta \to^* \eta'$ with same set of states/register values such that $|\eta| \le 4|Q| + 1$.

What the symbolic graph taught us

Theorem

Every path in G_{symb} can be transformed to have less than 4|Q|+1 transitions.

Theorem

If $\gamma \to^* \gamma'$ there exists $\eta \to^* \eta'$ with same set of states/register values such that $|\eta| \le 4|Q| + 1$.

Theorem (J. Esparza, P. Ganty, and R. Majumdar., 2013) The reachability problem with leader is NP-complete.

Reachability in Register Protocols

Almost sure reachability
Probabilistic semantics
Cut-off property

Cut-off constructions

Markov Chain

Definition (Law of motion)

We consider (Γ, \rightarrow) as a Markov Chain.

$$\forall \gamma' \in \operatorname{Post}(\gamma) \ \operatorname{Pr}(\gamma \to \gamma') = \frac{1}{|\operatorname{Post}(\gamma)|}$$

Markov Chain

Definition (Law of motion)

We consider (Γ, \rightarrow) as a Markov Chain.

$$\forall \gamma' \in \operatorname{Post}(\gamma) \ \operatorname{Pr}(\gamma \to \gamma') = \frac{1}{|\operatorname{Post}(\gamma)|}$$

Let $(q_0, d_0) \in Q \times D$, a parameter n.

For $X \subseteq \Gamma$, we denote $\mathbb{P}^n(X)$ the probability to <u>eventually</u> reach some $\gamma \in X$ from (q_0^n, d_0) (leader-less case).

Markov Chain

Definition (Law of motion)

We consider (Γ, \rightarrow) as a Markov Chain.

$$\forall \gamma' \in \operatorname{Post}(\gamma) \ \operatorname{Pr}(\gamma \to \gamma') = \frac{1}{|\operatorname{Post}(\gamma)|}$$

Let $(q_0, d_0) \in Q \times D$, a parameter n.

For $X \subseteq \Gamma$, we denote $\mathbb{P}^n(X)$ the probability to <u>eventually</u> reach some $\gamma \in X$ from (q_0^n, d_0) (leader-less case).

Qualitative goal

Let $q_f \in Q$.

Estimate $\mathbb{P}^n(\uparrow q_f)$.

Remarks

Lemma (Qualitative assumption)

The properties $\mathbb{P}^n(\uparrow q_f) > 0$ and $\mathbb{P}^n(\uparrow q_f) = 1$ do <u>not</u> depend on the actual distributions.

Remarks

Lemma (Qualitative assumption)

The properties $\mathbb{P}^n(\uparrow q_f) > 0$ and $\mathbb{P}^n(\uparrow q_f) = 1$ do not depend on the actual distributions.

We have already solved the case $\mathbb{P}^n(\uparrow q_f) > 0$: it corresponds to finding a path to $\uparrow q_f$.

Remarks

Lemma (Qualitative assumption)

The properties $\mathbb{P}^n(\uparrow q_f) > 0$ and $\mathbb{P}^n(\uparrow q_f) = 1$ do <u>not</u> depend on the actual distributions.

We have already solved the case $\mathbb{P}^n(\uparrow q_f) > 0$: it corresponds to finding a path to $\uparrow q_f$.

- ▶ We focus now on the almost-sure $(\mathbb{P}^n(\uparrow q_f) = 1 \text{ problem})$.
- Both the scheduler and processes are stochastic
- No atomicity
- No monotonicity a priori.

Discretization

Lemma

$$\mathbb{P}^n(\uparrow q_f) = 0 \Leftrightarrow \operatorname{Post}^*((q_0^n, d_0)) \cap \operatorname{Pre}^*(\uparrow q_f) = \emptyset$$

Discretization

Lemma

$$\mathbb{P}^n(\uparrow q_f) = 0 \Leftrightarrow \operatorname{Post}^*((q_0^n, d_0)) \cap \operatorname{Pre}^*(\uparrow q_f) = \emptyset$$

$$\mathbb{P}^n(\uparrow q_f) = 1 \Leftrightarrow \operatorname{Post}^*((q_0^n, d_0)) \subseteq \operatorname{Pre}^*(\uparrow q_f)$$

What we are looking for

Some limit behaviour, if possible

Definition (Cut-off)

Le N a parameter. If $\forall n \geq N \ \mathbb{P}^n(\uparrow q_f) = 1$ or $\forall n \geq N \ \mathbb{P}^n(\uparrow q_f) < 1$, then N is a cut-off.

What we are looking for

Some limit behaviour, if possible

Definition (Cut-off)

Le N a parameter. If $\forall n \geq N \ \mathbb{P}^n(\uparrow q_f) = 1$ or $\forall n \geq N \ \mathbb{P}^n(\uparrow q_f) < 1$, then N is a cut-off.

- ▶ positive $\forall n \geq N \mathbb{P}^n(\uparrow q_f) = 1$
- ▶ negative $\forall n \geq N \mathbb{P}^n(\uparrow q_f) < 1$
- Non-atomicity is crucial.

Existential solution

Theorem

Given a protocol \mathcal{P} there always exists either a positive cut-off either a negative cut-off N.

The probability to reach $\uparrow q_f$ is eventually 1 or eventually strictly less than 1.

- ▶ Non-constructive proof based on well-quasi-orders
- ▶ The bound is polynomial . . .

Existential solution

Theorem

Given a protocol \mathcal{P} there always exists either a positive cut-off either a negative cut-off N.

The probability to reach $\uparrow q_f$ is eventually 1 or eventually strictly less than 1.

- ▶ Non-constructive proof based on well-quasi-orders
- ▶ The bound is polynomial ...
- ... in the size of the elements of min $\operatorname{Post}^*(\uparrow(q_0,d_0))$ and min $\operatorname{Pre}^*(\uparrow q_f)$
- ▶ How to effeciently decide the type of the cut-off?

Remark

Almost-sure reachability in the concrete system implies Almost-sure reachability in G_{symb} .

Remark

Almost-sure reachability in the concrete system implies Almost-sure reachability in $G_{\rm symb}$.

The converse is not true

Remark

Almost-sure reachability in the concrete system implies Almost-sure reachability in $G_{\rm symb}$.

The converse is not true

Example

Remark

Almost-sure reachability in the concrete system implies Almost-sure reachability in $G_{\rm symb}$.

The converse is not true

Example

$$(q_0^n, 0) \xrightarrow{r(0)} (q_0^{n-1}q_1, 0) \xrightarrow{w(0)} (q_0^{n-1}q_1, 1) \not\to^* \uparrow q_f$$

Reachability in Register Protocols

Almost sure reachability

Cut-off constructions Linear filter Consequences Upper Bound

Linear example

Example

Cut-off value?

Linear example

Example

Cut-off value ? Invariant (with *m* initial processes):

$$\forall j \leq m \sum_{k=0}^{j} \gamma(q_k) \geq j + \mathbb{1}_{v(\gamma)=j+1}$$

Linear example

Example

Cut-off value? The cut-off is <u>positive</u> and equals n. Invariant (with m initial processes):

$$\forall j \leq m \sum_{k=0}^{j} \gamma(q_k) \geq j + \mathbb{1}_{v(\gamma)=j+1}$$

Consequences

- ▶ Checking that few processes are in the same set of states
- ▶ Main tool to ensure proper encodings with negative cut-offs.

Consequences

- ▶ Checking that few processes are in the same set of states
- ▶ Main tool to ensure proper encodings with negative cut-offs.
- ▶ We can encode a *n*-bits counter (exponential size negative cut-offs).
- Can encode a linearly-bounded Turing Machine

Decision Problem

- ▶ INPUT: a protocol \mathcal{P} , $q_0, q_f \in Q$ and $d_0 \in D$.
- ▶ OUTPUT: whether the cut-off is positive or negative.

The cut-off decision problem is PSPACE-hard.

Upper bound?

- ▶ Rackoff's theorem: min $\operatorname{Pre}^*(\uparrow q_f)$ can be bounded by M doubly-exponential in $|\mathcal{P}|$.
- ▶ No bound on the min $Post^*(\uparrow (q_0, d_0))$.

Upper bound?

- ▶ Rackoff's theorem: min $\operatorname{Pre}^*(\uparrow q_f)$ can be bounded by M doubly-exponential in $|\mathcal{P}|$.
- ▶ No bound on the min $Post^*(\uparrow(q_0, d_0))$.
- ▶ Idea: refine the symbolic graph to keep track of up to M processes.

Theorem

Deciding whether the cut-off is positive can be done in EXPSPACE.

- Almost sure reachability without leader: always a cut-off value.
- ► At least linear in the (worst) **positive** case.
- ▶ At least exponential in the (worst) negative case.
- The decision problem is PSPACE hard and in EXPSPACE.

- Almost sure reachability without leader: always a cut-off value.
- ► At least linear in the (worst) **positive** case.
- ► At least exponential in the (worst) negative case.
- The decision problem is PSPACE hard and in EXPSPACE.
- ▶ What happens with atomic operations ?
- More registers, leader process.
- Other properties (safety, LTL, limit-sure)
- ► (Local) Strategy synthesis?

- Almost sure reachability without leader: always a cut-off value.
- ► At least linear in the (worst) **positive** case.
- ▶ At least exponential in the (worst) negative case.
- ► The decision problem is PSPACE hard and in EXPSPACE.
- What happens with atomic operations?
- More registers, leader process.
- Other properties (safety, LTL, limit-sure)
- (Local) Strategy synthesis?

Thank you for your attention