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Introduction

The particularity of fracture simulation is that this involved discontinuities and interfaces.
Moreover the stress and displacement fields have high gradients near the crack tip. In a
classical Finite Element Method approach, the interface is modelised by different meshes and
also the mesh is refine near the crack tip. This fine mesh evolves with the propagation of
the crack (adaptive mesh) and has a huge impact on computational costs. The X-FEM idea
(proposed by T. Belytschko in 1999 [5]) is to add special appropriate functions into the standard
approximation space to take into account discontinuities and high gradiants. This is one of the
most famous method for simulating cracks. Other methods : mesh-free method, adaptative
remeshing, etc.

The main support of this internship was an experimental XFEM code for 2D elastic prob-
lems in Matlab. After studying the fracture theory, several computations revealed that some
steps of the computation should be improved. Thus, one main objective was to improve the
accuracy of the computation by modifying the code. After that the code has been applied
on several test cases (center crack under tension, offset cracks,etc.) and also extended on a
new method called FleXFEM. In reality the main aim of this work was the obtaining of an
accurate code in order to be able to compare in details XFEM and FleXFEM. This work will
lead to a publication in the International Journal For Numerical Methods in Ingineering.

The reader will notice that this code is not to be used in real simulation for products
conception. Two reason : first Matlab is not really efficient for problems with a lot of degrees
of freedom (dofs) and secondary because this code is "only" adapted for linear elastic fracture
(LEFM) in 2D. Nevertheless, this code is and will be very useful for:

I beginner in fracture simulation ;

I having a good basis to treat more complex simulations (inhomogeneity, 3D, multiple
cracks,etc) ;

I studying basic ideas based on XFEM (like FlexFEM for instance as you will see below)
because easier than c++ for example.
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Crack simulation:theory

In this report it’s considered that the reader has some basis in the Finite Element Method
(FEM). Some reminder have been added in the appendix (7.1.1).

2.1 Linear elastic fracture
Deformation near the tip is separate between 3 independent load ways;

(a) mode I: opening mode (b) mode II: sliding or shar-
ing mode

(c) mode III: tearing mode

Fig. 2.1: Modes of crack tip deformation.

In Linear Elastic Fracture Mechanics (LEFM) the
fields are linear combinations of every individual mode.
Thus the stress σ, the strain ε and displacements u are
given by analytical expressions for each mode (demon-
stration in [6] [7] ). In this document only plan problems
will be considered so only the mode I and II are impor-
tant. See in Table 2.1 the analytical stress and displace-
ment field corresponding to the polar parameters Fig.
2.2 in the global coordinate system.

Fig. 2.2: Polar coordinate system as-
sociated to the crack tip [1].

2



CHAPTER 2. CRACK SIMULATION:THEORY Year 2007-2008

Mode I Mode II

u1(r, θ) = KI
µ

√
r

2π cos θ2

(
1− 2ν + sin2 θ

2

)
u1(r, θ) = KII

µ

√
r

3π sin θ2

(
2− 2ν + cos2 θ

2

)

u2(r, θ) = KI
µ

√
r

2π sin θ2

(
1− 2ν − cos2 θ

2

)
u2(r, θ) = KII

µ

√
r

3π cos θ2

(
−1 + 2ν + sin2 θ

2

)

σ11(r, θ) = KI√
2πr

cos θ2

(
1− sin θ2 sin 3θ

2

)
σ11(r, θ) = − KII√

2πr
sin θ2

(
2− cos θ2 cos 3θ

2

)

σ22(r, θ) = KI√
2πr

cos θ2

(
1 + sin θ2 sin 3θ

2

)
σ22(r, θ) = KII√

2πr
sin θ2 cos θ2 cos 3θ

2

σ33(r, θ) = ν(σ11 + σ22) σ33(r, θ) = ν(σ11 + σ22)

σ12(r, θ) = KI√
2πr

sin θ2 cos θ2 cos 3θ
2 σ12(r, θ) = KI√

2πr
cos θ2

(
1− sin θ2 sin 3θ

2

)

Table 2.1: Analtytical expression of the stress and diplacement fields for modes I and II

As one can see, these field are defined by some magnitude KI and KII . They are named
Stress Intensity Factor (SIF) and there definition is :

KI =
√

2πr lim
r→0

σ22(r, 0) KII =
√

2πr lim
r→0

σ11(r, 0) (2.1)

2.2 Enrichment of the approximation field

As discussed in the introduction, for increasing the rate of convergence in displacement and
simulate the discontinuity, the approximation field is enriched. As the theoretical expressions
are known for each mode the functions are choosen to help to reproduce the real displacement
field. (The advantage on enriched methods will be discuss in 5.2.3 ) That’s why in XFEM for
fracture mechanics the approximate displacment field is given by the following expression [8]:

uh(x) =
∑
i∈N

ϕi(x)ui +
∑
i∈Nd

ϕi(x)H(x)ai +
∑
i∈Np

ϕi(x)

 4∑
j=1

Fj(x)bji

 (2.2)
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With

I N is the set of nodes of the mesh ;

I Nd is the set of nodes enriched by the discontinuity
(in blue);

I Np is the set of nodes selected to model the field
near the tip (in red) ;

I ui the classical degree of freedom for the node i ;

I ai the extra degree of freedom for the discontinuity
function ;

I bji the extra degree of freedom for the branch func-
tion Fj ;

I ϕi the standard FE shape function associated to
the node i ;

Fig. 2.3: Node selection for the en-
richment [2].

I H the Heaviside function ;

I Fj the branch function such as:

Fj =
{√

r sin θ2 ,
√
r cos θ2 ,

√
r sin θ2 sin θ,

√
r cos θ2 sin θ

}
(2.3)

As you can verify each algebraical displacement expressions in the Table 2.1 are linear
combinations of the functions Fi

Example:
u1(r, θ) = KI

µ
√

2π

[
(1− 2ν)F2 + F3

]
(2.4)

Number of Degrees Of Freedom (dofs):

An enriched node won’t have one dof on the contrary to a non-enriched . For instance if
the node I belong to Np it will have 5 degree of freedom. In fact each enrichment function has
an additionnal dof that the resolution will determine. That’s why in XFEM:

dofs = size(N) + size(Nd) + size(Np)

David NOËL 4/39 August 2008
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2.3 Method to calculate the Stress Intensity Factors

2.3.1 J integral

Let’s suppose the presence of a crack in the
domain as described Fig. 2.4. The concept of
the J integral has been invented by Cherepanov
(1967) It represent the strain energy release
rate. In 2D case, it is defined by Eqn. (2.5):

x2

x1

Γ

Fig. 2.4: Definition of the
Jdomain.

J =
∫

Γ

[
Wdx2 − Ti

∂ui
∂x1

dΓ
]

with
{
W = σ : ε/2
Ti = σijnj

(2.5)

J is independent of the path as demonstrated by Rice (1968)[9]. Rice also demonstrate the
link between J and the SIF : in two dimensions :

J = 1
E′

(K2
I +K2

II) with E′ =


E

1 + ν2 for plan strain

E for plan stress
(2.6)

2.3.2 Auxiliary fields for extracting KI and KII

Although there is a link between (σ, ε) and (KI ,KII) each SIF doesn’t have a seperate
expression. The following method allows the extraction of these SIFs.

This consists in adding some auxiliary fields and superimposing them to the actual field
previously computed. If these field are suitably selected the SIF can be extracted.

I Let’s transform first the Jintegral into an indiciel form:

J = 1
2

∫
Γ

[
σijεijdx2 − 2σijnj

∂ui
∂x1

]
= 1

2

∫
Γ

[
σijεijδ2j − 2σij

∂ui
∂x1

]
njdΓ (2.7)

I Let’s consider two states of the cracked body: (σ(1)
ij , ε

(1)
ij , u

(1)
i ) is the present state

(σ(2)
ij , ε

(2)
ij , u

(2)
i ) is the auxiliary state

I Let J (1+2) be the J-integral for the sum of the two states:, from Eqn. (2.7):

J (1+2) = 1
2

∫
Γ

[
(σ(1)
ij + σ

(2)
ij )(ε(1)

ij + ε
(2)
ij )δ1j − (σ(1)

ij + σ
(1)
ij )∂(u(1)

i + u
(2)
i )

∂x1

]
= J (1) + J (2) + I(1+2)

(2.8)
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with I(1+2) the interaction integral:

I(1+2) = 1
2

∫
Γ

[
σ

(2)
ij ε

(1)
ij δ1j − 2σ(1)

ij

∂u
(2)
i

∂x1
− 2σ(2)

ij

∂u
(1)
i

∂x1

]
njdΓ since σ

(2)
ij ε

(1)
ij = σ

(1)
ij ε

(2)
ij

I From Eqn. (2.6) :

J (1+2) = 1
E′

[
(K(1)

I +K
(2)
I )2 + (K(1)

II +K
(2)
II )2

]
= J (1) + J (2) + 2

E′
(K(1)

I K
(2)
I +K

(1)
II K

(2)
II )

(2.9)

I Combining Eqn. (2.9) and Eqn. (2.8) we get:

I(1+2) = 2
E′

(K(1)
I K

(2)
I +K

(1)
II K

(2)
II ) (2.10)

I Solution

Now let’s choose particulate state 2 to apply the equation 2.10. See below:

{
state 2 = pure Mode II asymptotic field
state 1 = pure Mode I asymptotic field

=⇒

 (K(2)
I ,K

(2)
II ) = (1, 0)

(K(2)
I ,K

(2)
II ) = (0, 1)

I Finally:


K

(1)
I = 2

E′
I(1,ModeI)

K
(1)
II = 2

E′
I(1,ModeII)

with I(1+2) = 1
2

∫
Γ

[
σ

(2)
ij ε

(1)
ij δ1j − 2σ(1)

ij

∂u
(2)
i

∂x1
− 2σ(2)

ij

∂u
(1)
i

∂x1

]
njdΓ

(2.11)

2.4 Crack growth
As soon as there is a crack in a structure, the propagation of this one has to be simulate.

In all our method the problem is quasi-static. The propagation is proceeded step by step. So
at each step, the direction of the propagation has to be determined. Here are major criterias
which are used to determine the direction:

I the maximum energy release rate criterion ;

I the maximum circumferential stress (hoop stress) criterion or the maximum principal
stress criterion ;

I the minimum strain energy density criterion ;

I the zero KII criterion.

David NOËL 6/39 August 2008
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The hoop stress criterion will be detailed below. In fact this the most frequently used
because of its simplicity and accuracy. The propagation direction is computed such that
in the direction θ = θc the circumferential stress σθθ is maximum. Remark: the complete
demonstration is in Appendix 7.1.2.

By using (er, eθ) as reference, the expression of σθθ given in Table 2.1 become:

σθθ = 1
4
KI√
2πr

[
3 cos θ2 + cos 3θ

2

]
+ 1

4
KII√
2πr

[
−3 sin θ2 − 3 sin 3θ

2

]
(2.12)

Abstract of the calculation steps detailed in Appendix 7.1.2. :

I development of ∂σθθ
∂θ

= 0 ;

I trigonometrical manipulations ;

I transformation using t = tan θ2 ;

I resolution of the quadratic equation.

And finally:

θc = 2 arctan
[

−2KII/KI

1 +
√

1 + 8(KII/KI)2

]
(2.13)
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Numerical implementation

3.1 Structure of our XFEM code

Meshing

Element’s selection

Stiffness matrix 
computation

Imposing BC

Resolution

SIF computation 
and updating the 

crack
Stress computation

u

σ(KI,KII,xCr)

Fig. 3.1: Structure of the XFEM code.

with BC the Boundary Conditions i.e. the imposed displacements and/or imposed stress,
u the strain field, KI and KII the Stress Intensity Factors (SIF), xCr the crack path (stored
in an structure in Matlab) and σ the stress field .

8
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3.2 Elements and nodes selection
This part is based on the work of Sukumar and Prévost [10] who have presented a efficient

way to select nodes for enrichment. In the code, the selection is a bit different because the
function node-detect can take into account several cracks and gives also the coordinates of the
intersection between the crack and the mesh, and the type of element.

3.2.1 Definition

2’

22

3

2’ 1

0

0 0 0’ 0’

0’

Fig. 3.2: Node and element’s classification.

Nodes: The type of enrichment is stored in a array called enrich_node. For a node n,

I enrich_node(n) = 0 for no enriched nodes ;

I enrich_node(n) = 1 for nodes enriched by H (red cross) ;

I enrich_node(n) = 2 for nodes enriched by branch functions (red square).

Elements: The type of element is stored in an array called type_elem. For the crack
number k and the element e:

I type_elem(e, k) = 0 for a normal element ;

I type_elem(e, k) = 1 for a tip-element ;

I type_elem(e, k) = 2 for a split-element ;

I type_elem(e, k) = 3 for a vertex-element.

A blending-element will be an element which don’t contain the tip but have some of his
node enriched by branch functions (n′ in the Fig. 3.2).

David NOËL 9/39 August 2008
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3.2.2 Element’s selection

The type of element is determined by
the opposite routine. In this routine the
place of the intersection between element’s
boundaries is also stored.

crack 
element e 

(boundary Γe) 

Intes = intersection’s number 
of the crack and  Γe

= 0 = 1 = 2

contain 
crack’s node 

?

normal 
element

tip 
element

split 
element

no yes

vertex 
element

Fig. 3.3: Routine of the element classe’s
selection.

3.2.3 Node’s type - support area

The selection of the enrichment is sim-
ple. Tip nodes are enriched with Fi and
vertex and split nodes are enriched with
the jump H IF the proportion of the con-
sidered support area of the node cut by the
crack is bigger than the tolerance (usually
10−4).
The support area’s tolerance is really im-
portant. It prevents for bugs (due to bad
condition number of the matrix) appearing
when a node is too close to the crack.

enriched if :

10-4

Fig. 3.4: Tolerance definition for selecting
a node for the enrichment.

3.3 Enrichment of the approximation field - shifted
function

At each enriched node, H or Fj is applied. If no precaution is taken, the code will need
special post-processing steps to extract displacments at the nodes. Nevertheless if shifted
function are used, the implementation of the rest of the code will be simpler. A shifted
function is a enrichment function which take a zero value at the considered node (Fig. 3.5).

∀S ∈ {H,F1,...,4} , ∀x ∈ Ωsupport, Snode(x) = S(x)− S(xnode) (3.1)

David NOËL 10/39 August 2008
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Remark : for simplify the notation, Si is the shifted function of the node i (S ∈ {H,F1,...,4}).

One-dimension example for a shifted heaviside enrichment:

1 2 3 4
0 0

=0

N 2 x N 3 x

N 2 xS x 

N 3 xS  x

N 3 xS x −S  x3

N 2 xS x −S  x2

S
ha

pe
F

un
ct

io
ns

S
ha

pe
 F

un
ct

io
ns

 
en

ri
ch

ed
 w

ith
 

S
te

p 
F

un
ct

io
n

Shifted Enrichment

Fig. 3.5: Example of a 1D shifted function. The enrichment discribing the dicontinuity in the
middle element is shifted and thus have no influence on the adjacent elements solution [3].

3.4 Construction of Ku = f

Let’s consider the following figure to explain the computation of the stiffness matrix [11]:

Fig. 3.6: Physical and parent 4-nodes elements [1].

3.4.1 Displacement implementation

The displacement field is given by: uh = ustd + uenr For an element e the discretized
displacements are:

ue(x) = Ne(x)qe

David NOËL 11/39 August 2008
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Where N = [n1 N2 N3 N4]T is the vector of the shape function:

Ne = 1
4


(1 + r)(1 + s)
(1− r)(1 + s)
(1− r)(1− s)
(1 + r)(1− s)

 (3.2)

See below an example of Ne qe : considering that the field is enriched by only one function
F (with Fi = F (x)− F (xi) the function associated to the node i as discuss in 3.3).

qe = [ qe
std

qe
enr

]

= [ux1 ux2 ux3 ux4 uy1 uy2 uy3 uy4 ax1 ax2 ax3 ax4 ay1 ay2 ay3 ay4 ]

Ne(x) = [ Ne
std(x) Ne

enr(x) ]

=
[
N1 N2 N3 N4 0 0 0 0
0 0 0 0 N1 N2 N3 N4

. . .

. . .
N1F1 N2F2 N3F3 N4F4 0 0 0 0

0 0 0 0 N1F1 N2F2 N3F3 N4F4

]

3.4.2 Stiffness Matrix

By definition an element stiffness matrix is given by:

Ke =
∫

Ωe
εT A ε dΩ where εe = D.ue(x) = DNe(x)qe (3.3)

Let Be be the discetized gradient operator such as Be = DNe(x) and Be = [ Be
std Be

enr ]

Thus:
εe = Be(x)qe (3.4)

With (in case of a 1-function enrichment F such as Fi = F (xi, yi)):

B =


N1,x N2,x N3,x N4,x 0 0 0 0

0 0 0 0 N1,y N2,y N3,y N4,y

N1,y N2,y N3,y N4,y N1,x N2,x N3,x N4,x

. . .

. . .

(N1F1),x (N2F2),x (N3F3),x (N4F4),x 0 0 0 0
0 0 0 0 (N1F1),y (N2F2),y (N3F3),y (N4F4),y

(N1F1),y (N2F2),y (N3F3),y (N4F4),y (N1F1),x (N2F2),x (N3F3),x (N4F4),x


So Eqn. (3.3) become:

Ke =
∫

Ωe

tBe(x)ABe(x)dΩ (3.5)
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And also:

Ke =


∫

Ωe
tBe

std(x)ABe
std(x)dΩ

∫
Ωe

tBe
std(x)ABe

enr(x)dΩ

∫
Ωe

tBe
enr(x)ABe

std(x)dΩ
∫

Ωe
tBe

enr(x)ABe
enr(x)dΩ

 (3.6)

3.4.3 From the parent element to the physical element

The derivate of the shape function in the physical element (N,x, N,y) are needed for com-
puting the stiffness matrix. But for now they are only given in the parent element (N,r, N,s)
(See Fig. 3.6 for the notations.) :

Eqn.(3.2) =⇒ N,r =


1 + s

−1− s
−1 + s

1− s

 & N,s =


1 + r

1− r
−1 + r

−1− r


Let’s use the following fundamental relations:

N,x = N,r
∂r

∂x
+N,s

∂s

∂x
N,y = N,r

∂r

∂y
+N,s

∂s

∂y

Oftenly the gradient of the transformation F is used:

F =


∂x

∂r

∂x

∂s

∂y

∂r

∂y

∂s

 so [N,x N,y] = [N,r N,s].F−1

And for computing F (example with ∂x

∂r
)

x =
4∑
I=1

NIxI =⇒ ∂x

∂r
=

4∑
I=1

∂NI

∂r
xI

Remark: F is also very useful to change the limits of integrals:∫
Ωe

__ dΩ =
∫∫ 1

−1
__ det(F)dr ds (3.7)

Thus:
Ke =

∫∫ 1

−1
tBe(r, s).A.Be(r, s)det(F)dr ds (3.8)

3.4.4 Integration in XFEM

The integration of Eqn. (3.8) has to be transformed in order to be implemented. Like
in classical FEM, we use Gauss Points (GP) and let Eqn. (3.8) be a sum. The GP are
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Fig. 3.7: Subtriangles and location of Gauss Points for the integration in XFEM (example
with 3GP in each triangle and 4per quad).

caracterized by their position in the parent element xg and their weight ωg. Thus, the
approximate integral is:

Ke =
G∑
g=1

ωg
tBe(r, s)ABe(r, s) det(F) (3.9)

Since the integration is performed on the parent element, the mapping described in Fig.
3.4.3 will transform it to the physical element thanks to Eqn. (3.7). A subdivision is also
perfomed in the elements containing the crack (Fig. 3.7). Indeed it is important to have no
GP too close to the crack to be able to compute values of functions at these points.

The influence of the number of GP for the integration will be discuss further (in 4.1) since
this represent a important part of this work.

3.5 The SIF computation
Caution: All the implementation of the SIF computation won’t be detailed in the part

because it was not the aim of this work. Only the main lignes will be explained.

3.5.1 Adaptation of 2.11
The Eqn. (2.11) is a 1D inteagrale. For an easier implementation this equation is trans-

formed to an surface integrale using the divergence theorem.
Eqn. (2.11) become:

I(1+2) = 1
2

∫
Jdomain

[
−σ(2)

ij ε
(1)
ij δ1j + 2σ(1)

ij

∂u
(2)
i

∂x1
+ 2σ(2)

ij

∂u
(1)
i

∂x1

]
∂q

∂xj
dS (3.10)
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with q(x) a smooth weighting function which takes the value of unity on an open set
containing the crack tip (called the J domain)and vanished on an outer contour Γ as described
in Fig. 2.4

3.5.2 Integration - J domain

The integral in Eqn. (3.10) have to be imple-
mented too. As for the integration performed
to obtain the stiffness matrix, we use GP on
the Jdomain. The elements selected for the
Jdomain are at a distance of 3 element size as
prescribed in [12].

Fig. 3.8: Jdomain and location of the GP
for the integration of Eqn. (3.10).

3.6 The Flexible eXtended Finite Element Method
(FleXFEM)

FleXFEM is a new method born in the university of Glasgow in 2008 thanks to the work
of Stéphane BORDAS and his team. They published the first paper on the subject in march
2008 [13].

This method is the union of XFEM and Smooth Finite Element Method (SFEM) [14] [15],
method using a technique based on the strain smoothing .

3.6.1 From surface integrals to boundary integrals
In FleXFEM we conside several subcells per element (nc). On each subcell the stress is

constant over each smoothing cell, but discontinuous across cells. On the contrary, the dis-
placement field is continuous within the element. The smoothing strain field ε̃ at an arbitrary
point xC is defined exactly as for the standard SFEM:

ε̃hij(xC) =
∫

Ω
εhij(x)Φ(x− xC)dx (3.11)
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where Φ is a smoothing function defined exactly as in the SFEM

Φ ≥ 0 and
∫

Ω
Φ(x)dx = 1 (3.12a)

Φ (x− xC) =
{

1/AC , x ∈ ΩC

0, x /∈ ΩC

(3.12b)

Similary as discribed in 3.4.2, the strain is written as

ε̃h(xC) =
∫

Ω
BxfemqΦ(x− xC)dΩ = B̃ q with B̃ = 1

AC

∫
ΩC

B̃xfem(x)dx (3.13)

Now, the integration have to be performed to get B̃. For a cell C, a node I and its shape
function NI and only one enrichment function F , B̃CI is given by :

B̃CI =
[
B̃CIstd‖B̃CIenr

]
= 1
AC

∫
ΩC


NI,x 0 (NIFI),x 0

0 NI,y 0 (NIFI),y
NI,y NI,x (NIFI),y (NIFI),x

dΩ (3.14)

And now by using the divergence theorem, the surface integral become a 1D integral: B̃CI

become :

B̃CI = 1
AC

∫
ΓC


nxNI 0 nx(NIFI) 0

0 nyNI 0 ny(NIFI)
nyNI nxNI ny(NIFI) nx(NIFI)

dΓ (3.15)

With FI = FI(x) = F (x)− F (xI) (see section 3.3).
The assembly is similar to XFEM but considering several subcells nC in the element, the

elementary matrix become:

Ke =
nC∑
C=0

∫
ΩC

B̃TAB̃dΩ (3.16)

3.6.2 Integration in FleXFEM
The integration is very simple in FleXFEM because its a 1D one. For one GP per edge

(which in sufficient for most cases for the exact integration), Eqn. (3.15) become : ∀I ∈
[[1, 4]], ∀C ∈ [[1, nc]],

B̃CI = 1
AC

nb∑
b=1


nxNI(xGb ) 0 nxNI(xGb )FI(xGb ) 0

0 nyNI(xGb ) 0 nyNI(xGb )FI(xGb )
nyNI(xGb ) nxNI(xGb ) nyNI(xGb )FI(xGb ) nxNI(xGb )FI(xGb )

lCb (3.17)

with xGb the center of the edge (GP) and and lCb the length of ΓCb . See Fig. 3.6.2, the
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quadrature used for the integration in case of 1GP per edge.

 Domain discretized with finite elementsFig. 3.9: Subcells and location of Gauss Points for the integration in FleXFEM.

Eqn. (3.16) is also integrated (very simply because evrything is constant). Finally Ke is
given by:

Ke =
nc∑
C=1

B̃CAB̃CAC with AC the area of the subcell ΩC . (3.18)

3.6.3 Advantages
This method have some very interesting advantages :
I It decrease the complexity of integration because no more quadrature rules are needed

and no mapping is done. This improve the speed of the computation.
I there is no more singular function to integrate because the 1/r term does not appear

since the derivative of the shape function are not used.
I and other avantage details in [13] concerning the accuracy of the stress field, the accuracy

of the SIF, the locking-free properties and also the non-sensibility to distorded meshes.
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Improvement in the code

The main modifications made during this internship are explain below. They have been
preceded by numerous computations which highlihted parts which needed to be improved.

4.1 Numeric integration for computing K

4.1.1 Order in normal elements

Why using the order 2? Because the functions in these elements are order one polynomial,
only one point is needed. In fact, if G is the number of GP and n the order of the polynomial
function to integrate, we need G >

n+ 1
2

But unfortunately with only one GP in the quad, zero
energy mode can appear (Fig. 4.1).

∫
Q4
εdx1dx2 =

G∑
i=1

ωiεi(u) = 0

Although the quad is deformed the integral is zero.
That why the order 2 is used for the integration in the
normal elements. Fig. 4.1: Zero-energy mode.

Inconvenience: Theoretically, with higher order of in-
tegration the locking can appear but this is not a problem
in our case.
We call locking when some displacements are blocked

altought they should not. See Fig. 4.2, a simple exemple
for the volumetric locking:
1- considering the triangle 1 for the point P: because of
the incompressibility of 1, P can only move vertically
2- considering the triangle 2 for the point P: for the same
reason, P can only move horizontally
⇒ P is blocked

Fig. 4.2: Simple case of locking.
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4.1.2 Integration in branch enriched elements
In tip and blending elements, the derivative of the shape function say 1/

√
r functions are

integrated. This function is equal to an infinite polynomial sum (Taylor formula). Because
2m−1 GP are needed to integrate a m-degree polynomial an infinite number of GP is required
for he exact integration.

Nevertheless the more GP is used the more the Time Of Computation (TOC) is high. And
in computing, having an infinity of GP will not give an exact result. In fact, a computation
error is added at each elementary operation. Some results also showed that the accuracy was
different on a 32-bits and 64-bits computers. This also proves that the precision of the machine
have a real impact on the accuracy of the results.

First computation

One of the first computation made was the propagation for the center crack under tension.
Fig. 4.3 show the path obtained.

Fig. 4.3: First propagation result for the
center crack under tension.

Fig. 4.4: Old GP mapping for the integra-
tion.

Interpretation:

One can notice on Fig. 4.4 that, the number near the tip element is not high. Furthermore
the branch functions need to be integrated in blending elements too because these elements
have some of their nodes enriched with branch functions. The number of GP have to be high
in these elements too. Effect of this non sufficient integration accuracy: their is no convergence
of the path whis refinement.

4.1.3 Tactless increase of GP
The increase a lot the number of GP was the first modification in the existing code. The

old quadrature rule for triangle had a maximum of 13GP. A new rule called Dunavant (same
as the author) have been include in the code. It allowed 121GP per triangle. The number of
GP has been increased too in blending elements (subtriangulation + new quadrature rule).
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See below the effect on the path for the exact same parameters as for Fig. 4.3 and the new
GP mapping.

Fig. 4.5: Propagation for the center crack
under tension after increasing the number
of GP.

Fig. 4.6: Increase of GP in branch en-
riched elements with sub-triangulation in
blending elements.

Conclusion:
In Fig. 4.5, the path seems better and most of all it convergs with mesh refinement. This

result illustrates that increasing the number of GP improves the accuracy of the code.
Remark: After the implementation of this new quadrature rule other computations showed

that this particular quadrature rule was less efficient than the previous one (relative error with
the exact SIF). In fact there was other more efficient ways to increase the number of GP. That’s
why this rule has been abandonned. Nonetheless the conclusion of the influence of increasing
the number of GP is still valide. The objective was to increase arbitrary the number of GP
but still with using our rule which allow a maximum of 13 GP per triangle ; see below.

4.1.4 Increase of GP : the sub-triangulation solution
Making subdivisions is a good solution for increasing the number of GP in an element

because it is a recursive routine.
Two methods of sub-triangulation have been created : by adding a new point in the middle

of the triangle or by adding a new point in middle of each edge of the triangle.
The sub-division could be made with one or several rules. With a fixed number of sub-

division’s iteration and or when :

I the considered triangle have one of his node which is the tip (refinement of GP near the
tip);

I the area of the considered triangle is bigger than a fixed fraction of the element.

Nevertheless these influence of 2 last conditions on the accuracy have not really been tested.
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(a) with new point in the traingle (b) with new point on each edge

Fig. 4.7: Sub-triangulation methods.

The article [4] suggests also a efficient method to put GP near the tip with quad quadrature
and a mapping to transform it into a triangle. (see Fig. 4.8).

Fig. 4.8: Quadrature proposed by [4] to refine in GP near the tip.

4.1.5 Location test for improving the integration quality.

To try to test the efficiency of the integration, a test called location test has been made.
With the Griffith problem (discribed in 5.2.1) the influence of the location of the tip element
on the relative error to the analytique solution has been studied(see Fig. 4.9).

1

1

0

Computation Results

Fig. 4.9: Test the influence of the location of the tip in the element.
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The first computation of this
test has been made with the
quadrature discribed in 4.1.3.
This time of computation was
high because the number of point
on which you have to make a cal-
culation of SIF is really impor-
tant to have significant results.
The relative error for the SIF KI

is plotted in Fig. 4.10. A 3D
plot is also available in the ap-
pendix (Fig. 7.1) but is more
adapted for visulising the relative
error when you can rotate the 3D
plot. Fig. 4.10: Influence of the tip’s location in the element

on the relative error ERKI .

The first interpretation on this result was that the sub-division had a direct impact on the
error by creating gaps in the mapping (clearly visible with the limit between different colors
in Fig. 4.10). After a lot of computations with several integration rules (trying different
sub-divisions types and number and also increasing the GP in the blending elements) have
been made but unfortunalty no real influence were visible.

After some reflexion the conclusion was that this influence came from the integration of
the auxilary terms in the SIF computation. In fact the location of the tip influence which
element is in the Jdomain. As discussed before, the Jdomain have a huge influence on the
computation of the SIF. Selecting or not an element can give different values of the SIF and
that what explain the gaps in Fig. 4.10.

4.1.6 Displacement energy for choosing the number of GP
Principle:

We need to know precisely how much GP we should use to both have a fixed integration
error and a reasonnable time of computation (concerning the integration in the branch-enriched
elements). For that, the energy convergence with the Griffith case will be used. This case
discribed in 5.2.1 will allow to study the exact link between the quadrature and the accuracy
of the integration of the because the exact boundary condition are applied. For mesuring the
accuracy of the integration, the following displacment error ED is computed:

ED =
N∑
I=1

||u2
I,exact − u2

I,comp||
u2
I,exact

(4.1)
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An iteration has been made for each number of sub-triangulation nsub ∈ {0, ..., 4} for
each order of quadrature order ∈ {1, ..., 7} and for the 2 differents sub-triangulation types
(edge− sub and tri− sub discribed in 4.7). The displacement error ED is defined below by a
sum on the nodes:

Results:
Unfortunatly nothing can be observe from ED because the results are not significally. Same

test have been made for the global energy and the strain energy error but the conclusion is
similar. Nevertheless these computations showed the impact of the subtriangulations on the
time of computation :

0 1000 2000 3000 4000 5000 6000

0

50

100

150

200

 

 

Fig. 4.11: Influence of the number of GP on the time of computation for several quadrature
rules

Conclusion:
The sub-triangulation named edge-sub (Fig. 4.7(a)) will be picked up because

I for the same number of GP the TOC is shorter ;

I also because the condition number is always better with this sub-triangulation .

Because there is other computationnal errors introduced, in the SIF for instance, it’s not
worth it to use a huge number of GP for this integration. The increase of GP in blending
elements will be sufficient. In conclusion, for having a limited integration error for the dis-
placements we should use order 7 in the sub-triangles with one sub-triangulation type edge-sub
done on the branch enriched elements.
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4.2 Variable optimisation - modification of principal
function

4.2.1 Variable optimisation
In the old version: the element class was stored in 2 different way: in an array (with

numbers 1,2,3) and in 3 lists ([split_elem] [tip_elem] [vertex_elem]). This was not necessary
since only the array is sufficient even with multiples cracks.

Confusion: A simplification was necessary to erase all confusion. In fact, a vertex and a
split element had the same number in the type_elem array and some of the vertex element were
select too to be in [split_elem] too. Caution: the number in type_elem and in enrich_nodes
have no similarity. In fact a vertex element has the number 3 in type_elem and its nodes have
the number 2 in node_detect (because it is enriched with the heaviside function).

New method: The 3 lists have been suppressed. To handle this change have been made in
some function (SIF, gauss_rule, xfemBmatrix, and of course node_detect). These changments
still allow multiple cracks since type_elem have a column for each crack.

Effect: These modifications will ease the understanding of the code by suppressing possible
confusion and simplify the input and output off some functions.

4.2.2 Vertex element in node_detect to compute the support
area

Identification of the origine of the problem: In the previous version of the code,
vertex elements were not properly taken into account. One could noticed it with non-symetrical
results for symetric Boundary Conditions. That’s why the function node_detect.m have been
reorganized. But the main origin of imprecisions was the computation of the support area for
vertex elements.

Computation of the support area for vertex elements All the calculation of the
support area is based on computing the algebraic distance of the nodes from the nodes in
function of the side of the crack. Unfortunately when there is vertex elements in the support
the computation of this surface was wrong. Let’s just see these following case:

Fig. 4.12(a): in red, the tested point, in yellow the area computed and in dots the
reference element (for the description of the path). One can see that there was a problem with
the selection of the side of the nodes (see the black one). This have been solved by adding a
local definition of the path in each cut element.

Fig. 4.12(b): the computation of the surface of vertex is not that simple because it could
be a non-convex area. To obtain the vertex area the surface is computed as if the element
were a split element (in yellow) and depending on which side the vertex point, the surface of
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(a) Problem of definition of the path for choosing
the side of nodes.

(b) Computation of the non-convexe area.

Fig. 4.12: Computation of the support area for vertex elements.

the triangle is added or substracted.
Remark: level sets would also solve this kind of problems [16].

4.3 Locking problem
Description of the problem Some bug appeared when the crack was too close to a

node. The node whose support area is really little was not enriched but we still had stress
concentration near these points (Fig. 4.13). See below:

Fig. 4.13: Problem of stress concentration with a crack to close to a node.

Comprehension of the problem and resolution The bug came from the affectation of
the heaviside function to these GP. To assign the value of the function at a GP, the code use
the distance. Unfortunatly the distance was 0 when then GP were too close (because of the
presence of a truncation). So the value associated to this node in B was 0 and that’s why this
locking appeared. Suppressing the truncation while computing the distance solve this problem
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and erase the spurious stress concentration.
Remark: One could wonder what append when the crack is on the node? In fact, if

precautions are taken for the initial definition of crack, the crack will never be exactly on a
node and that’s why this problem will not appear anymore.
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4.4 Post-processing
During this internship a lot of computations were to be made. Mainly it was to study the

influence of some parameters on the crack simulation. Results and parameters needed to be
saved to be proceed afterwards.

Instead of doing repetitive tasks at each computation, these two following functions (Ap-
pendix 7.4)have been created. This permit to earn a lot of time while creating test routines
and while proceeding the results.

• data_save.m which stores the data in a .txt file. First it write all the fixed parameters (ν,
E, the domain size, date of computation, etc.). Then it writes the results between delimiters
(__ ˝and −−−−˝) to be able to read the datas afterwards. In the main code call

I data_saving(fname,labels,parameters,[],’0’); before the loop to save parameters
of the test and give lebels of the data (; size_mesh ; KI ; KII ; toc ; for instance);

I data_saving(fname,[],data,2,’1’); at the end of the loop to write these 4 values
contained in the vector data;

I data_saving(fname,[],[],[],’3’); after the loop to finalize the data.txt file (ending
delimiter and closing).

Remark:
To save a entire array you can use data_saving(fname,additional_label,xCr,ipas,’2’);

at the end of the loop (like for saving the crack path named xCr ). Additional_label is useful
to print label to data sets in order to name these sets in a nexus plot.

• data_post.m which import the data from the file data.txt and plot these data. It is im-
portant to use a file created by data_saving.m because a special format is needed (delimiters,
etc.).

This function have been designed to not need any coding in using it. The user first choose
the data file with a windows interface. Then he choose which data to plot anmong a list of
available data. He can also choose to the log mode (useful to make the most of convergence
results for instance). And finally the figure will be displayed and the user would be able to
change some style parameters directly in the figure windows. some parameters have already
been selected (Latex font, font size, colors, etc.)

Remark:
This also allow to plot data comming from a test about the influence of the tip location in

the element. The data.txt file just need to contain the flag location at the beginning of the
data.

David NOËL 27/39 August 2008



Results

5.1 Caution
Crack coincident with a node

The code is not able yet to handle cracks which coincide exactly with a node. This is not
really a problem. In fact one has to be careful for the initial definition of the path. After that
during the propagation the path will never be exactly on a node. That is why sometimes it
is good to add an ε � 1 to the initial coordinates of the crack and/or to the initial length of
the crack.

Double split element: Some isolated computation have revealed double split elements
(Fig. 5.1). The code can’t handle it and give spurious results in that event. This problem
disappear with mesh refinement. An other solution to suppress it is to use T3 because with
the same number of dofs the number of elements will be double.

Fig. 5.1: Problem of double spli element.

Center In the following section you will see several case description. Have in mind that
when the position of the crack is not specified that is because the crack (or group of cracks)
is centered in the domain.

5.2 Exact boundary conditions : Griffith case

5.2.1 Description
Previous simulations have underlined that the domain size has a huge influence on the

results. To suppress this influence, exact boundary conditions are applied on the choosen
domain (ABCD). This allows to test the ability of the code to approximate the solution
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without having to worry about the finite domain of the problem.

Fig. 5.2: Infinite cracked plate under
tension and discretization around the
crack tip.

Only the rectangle ABCD is discretized. Exact dis-
placements are applied on all the boundary nodes of
this rectangle with the following formula :

ux = 2(1 + ν)√
2π

KI

E

√
r cos θ2

(
2− 2ν − cos2 θ

2

)
uy = 2(1 + ν)√

2π
KI

E

√
r sin θ2

(
2− 2ν − cos2 θ

2

)
(5.1)

Fig. 5.3: Parameters for computing the exact dis-
placements.

5.2.2 Convergence in energy
This computation will verify that we have a convergence in energy for each method. In

this section the energy is computed with the Eqn. (5.2):

E = 1
2u

tKu (5.2)

This implementation of Eqn. (5.2) is simple. This will give equivalent results to the strain
energy error computed by Eqn. (5.3)

Eg =
GPnumber∑
GP=1

(εTexact − εTcomp)A(εexact − εcomp)det(J) wGP (5.3)

In theory the plot of the energy in function of the number of dofs in scale log.log is straight
line if there is convergence and the slope a of it (< 1) give the rate of convergence (i.e. speed).

FEM XFEM FleXFEM
slope 0.5184 0.5229 0.5352

Norm of residuals 0.015747 0.021637 0.031866
Table 5.1: Global energy convergence rates for FEMs.

The slopes obtained in Table 5.1 prooved that the code for the 3 methods do converge
in strain energy. That also underlignes that the enrichment of the SFEM is not absurd. Also
to have a better convergence rate for enriched methods the fixed enrichment area should be
implemented. In fact the effect of the enrichment in XFEM vanish with mesh refinement
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because the enriched area goes to zero. With an adapted fixed enrichment area, convergence
rates would be improoved [4].

5.2.3 Convergence forKI : comparison of classical FEM, XFEM
and FleXFEM

With a domain 1*1 and a crack length of 100:

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
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0

1

 

 

Fig. 5.4: Convergence of the relative error of the SIF KI with mesh refinement for different
FE methods.

Observations The XFEM permit to have a better accuracy than the classical FEM with
an equivalent time of computation. Concerniong FleXFEM several computation have shown
that the SIF don’t converge to zero and that the accuracy of the SIF are really sensible to the
quadrature chosen.

Remark: With an other implementation in which the number of nodes per meter is fixed
and in which the domain area is increasing we noticed this: for the same number of elements
in the domain the SIF values are the same. An other implementation where the total crack
length was a parameter showed that it has no influence on the SIF’s accuracy. That why in
conclusion, only the number of dofs have an influence in the Griffith case.
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5.3 Inclined crack under tension

5.3.1 Description

Fig. 5.5: Description of the inclined crack un-
der tension.

These Boundary Conditions (BC)
have been choosen in order to mini-
mize the effect on finite domain and
to have symmetries.

units value
E N.mm−2 2.107

ν - 0, 3
σ N.mm−2 103

Table 5.2: Parameters for inclined
crack under tension

5.3.2 Angle influence

This computation has been made with (L,D) = (4, 4) and node_density = 50

Fig. 5.6: Inclined crack: SIF in function of θ.

David NOËL 31/39 August 2008



CHAPTER 5. RESULTS Year 2007-2008

Fig. 5.7: Inclined crack: relative errors for the SIF in function of θ

The SIF plotted in Fig. 5.6 are regular and seems correct. Unfortunatly, the relative error
is not tiny for all angles. The relative error for KI and KII when θ approches 90ř is normal.
It is due to the little values of this SIF and the biggest impact of the integration error and
computer imprecisions.

5.3.3 Propagation

All these results came from a computation with: β = 40◦, ∆inc = 0.055, and (L,D) = (1, 1)
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Fig. 5.8: Inclined crack: Path of the propagation for several node density.
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Fig. 5.9: Inclined crack: K2 for several node densityin function of the step of propagation.

Fig. 5.8 shows a convergence of the path with mesh refinement. Also the path has smaller
oscillations with mesh refinement. This is due to the convergence for fine mesh of the SIF KII

visible on Fig. 5.9

5.3.4 Influence of the increment of the propagation

We wanted to know what is the influence of ∆inc on the path. So with (L,D) = (4, 4) and
node_density = 50 (i.e. 50000dofs) several propagations with different ∆inc have been com-
puted. Remark: the following equation should be verified to avoid computational problems:

∆inc ≥
√

2
node_density − 1

David NOËL 33/39 August 2008



CHAPTER 5. RESULTS Year 2007-2008

2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55
0.085

0.09 

0.095

0.1  

0.105

0.11 

0.115

x

y

 

 

Fig. 5.10: Inclined crack: path for several increment of propagation ∆inc.

Remark: note that the increment of propagation is really important. The computed path is
significantly different for these values of ∆inc . Fortunatly the path converge with reffinement
of the path.
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5.4 Offset cracks

5.4.1 Description:

H

S

f2

f1

w

h

Fig. 5.11: Description of the offset
cracks case.

For this case all computations have been
made to compare the results given by our code
with the results presented in [17]. This article
also include experimental results for the propa-
gation which have a special interest to test the
accuracy of our code.

5.4.2 Influence of the distance between the 2 cracks
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Fig. 5.12: Influence of the offset parameters (S in abscisse and H in legend) on the ratio
KIb/σ

√
πf1/2.
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This test is realised with a “large” domain size (800x160). Because the cracks are close,
the mesh needs to be very fine. See below the kink of results you obtain whan the Jdomain
contains the other crack:

That is why sometimes the Jdomain contained enriched elements Fig. 5.13 and so lead
to erroneous results. For instance in Fig. 5.14 the mesh is not refined enough because for
H = 10 the J domain contains enriched elements and hence the SIF computation for H = 10
is not accurate.

Fig. 5.13: Integration in SIF computation
performed in enriched elements.
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Fig. 5.14: Mistaken results obtained with a
non valide J domain due to the presence of
enriched elements in it.

That is a problem because the number of dofs is “high”. The capability of the computer
was a limit for this computation. It was not possible to use a mesh as fine as we wanted to.
The solution for this problem was to use a finer mesh in x than in y.

5.4.3 Interaction of the cracks for different H and S

These computation have been made to study the interaction of a crack on the other. In
absisce Er_K1b is the relative error of the SIF at the tip B compared to the exact value
considering only one tip KI,exact = σ

√
π ∗ f1/2.
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Fig. 5.15: Interaction of the cracks on the relative error in KI for different H and S values.

Fig. 5.16: Visible stress interaction of the 2 cracks.

Remarks: one can see on Fig. 5.15 that the closer the tips the larger the SIF. Also, with
negative values of S, KI is smaller than in the case of one center crack under tension.

5.4.4 Influence of ∆inc on the path

On the contrary to the inclined crack, the increment of propagation does not have a huge
influence on the path.

In conclusion, the increment of propagation length is important when the angle variation
is important (as in Fig. 5.8).

So, in this case, the only effect of refining ∆inc is to have a more smoothed path description.
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Fig. 5.17: Propagation path for the offset crack with different increment size of propagation.

5.4.5 Propagation
Depending on the values of H,S, f1 and f2 it is found experimentaly that the cracks either

run into each other or do not [17]. We tried to simulate this experiement in order to obtain
the same results:

−20 0 20 40 60 80 100 120 140 160 180
−20

−15

−10

−5

0

5

10

15

20

 

 

Fig. 5.18: Propagation for the offset carck for differnt values of H and S.

Unfortunatly in all cases the cracks are running into each other. The problem with the
current code is that no propagation criterion is included i.e. at each step the increment of
propagation is fixed a priori. But in reality in some cases the left tip will propagate more
slowly than the right one and bacause both cracks have an interaction on each other the path
will not be the same. Even worse : for some values of the parameters only one of the two
cracks will propagate and or code is not able to simulate that for now. That’s why we didn’t
manage to verify our results with the experimental ones.
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Conclusion and future work

This work have permit to improve the accuracy. Mainly, the coding, the integration of the
stiffness matrix, the tolerances (for singular cases)have been improved. The results obtained for
the test case seems logical. Nevertheless these results still need to be compared with FleXFEM
ones to finally published the article based on the comparison of XFEM and FleXFEM.

Nonetheless similar test cases still need to be computed with the FleXFEM code. Because
this method is new, other detailed studies will be made to know the impact of the number of
subcells on the convergence of the SIF for instance. The impact of the new smoothed domain
integral (SmJ) on the computation of the Stress Intensity Factor is to be done too. Finally,
it will be important to determine precisely in which situation the FleXFEM method is more
suited to simulate cracks.
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Appendix

7.1 Calculation for the theory

7.1.1 Mechanical basis - aide-memoire
Hooke’s law:

In linear elasticity:
 σ = A.ε

ε = A.σ
⇒

In linear elasticity for isotropic materials:
σ = 2νε+ λTr(ε)Id
ε = 1 + ν

E
σ − ν

E
Tr(σ)Id

With:

E = µ(3λ+ 2µ)
λ+ µ

ν = λ

2(λ+ µ)
µ = E

2(1 + ν) λ = Eν

(1 + ν)(1− 2ν)

The Voigt’s notation
It’s obvious that the previous form of the Hooke’s law is not simple to implement in

programming because of all the difficulty of indices. That’s why often we use the Voigt’s
notation:

{σ} = {σ11 σ22 σ33 σ33 σ12 σ13 σ23}T {ε} = {ε11 ε22 ε33 ε33 2ε12 2ε13 2ε23}T

Plane stress

σ =


σ11 σ12 0
σ12 σ22 0
0 0 0

 and ε =


ε11 ε12 0
ε12 ε22 0
0 0 ε33

 avec ε33 = ν

E
(σ11 + σ22)

Plane strain

ε =


ε11 ε12 0
ε12 ε22 0
0 0 0

 and σ =


σ11 σ12 0
σ12 σ22 0
0 0 σ33

 avec σ33 = λ(ε11 + ε22)

Expression of A with plane strain and Voigt’s notation

I
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σ11

σ22

σ12

 = E

(1 + ν)(1− 2ν)


1− ν ν 0
ν 1− ν 0
0 0 (1− 2ν)/2



ε11

ε22

ε12


A is formulate with ν and E instead of µ and λ because these material coefficients are

more common.
Expression of A with plane stress and Voigt’s notation

σ11

σ22

σ12

 = E

1− ν2


1 ν 0
ν 1 0
0 0 (1− ν)/2



ε11

ε22

ε12



7.1.2 Demonstration of the criterion for θc

∀(r, θ) ∈ R+∗×]− π, π[, σθθ = 1
4
KI√
2πr

[
3 cos θ2 + cos 3θ

2

]
+ 1

4
KII√
2πr

[
−3 sin θ2 − 3 sin 3θ

2

]

Let’s find θ ∈]− π, π[ such as ∀r ∈ R+∗,
∂σθθ
∂θ

= 0

⇒ KI

(
sin θ2 + sin

3θ
2

)
+KII

(
cos θ2 + 3 cos 3θ

2

)
= 0

Let’s consider the following trigonometrical formulas :


sin p+ sin q = 2 sin p+ q

2 cos p− q2

cos p+ cos q = 2 cos p+ q

2 cos p− q2

⇒ KI cos θ2 sin θ +KII

(
cos θ cos θ2 + 2 cos 3θ

2

)
= 0

But :

cos 3θ
2 = cos θ2 cos θ − sin θ2 sin θ

= cos θ2 cos θ − 2 sin2 θ

2 cos θ2
= cos θ2 cos θ + (cos θ − 1) cos θ2
= 2 cos θ cos θ2 − cos θ2

θ ∈]− π, π[ so cos θ2 6= 0 Finally the equation to solve is :

KI sin θ +KII(3 cos θ − 1) = 0 (7.1)

Now let’s resolve the previous equation by using t = tan θ
2
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cos θ = 2t
1 + t2

sin θ = 1− t2
1 + t2

(7.1)⇒ KIt+KII(1 + 2t2) = 0

⇒ t = 1
4

 KI

KII
±

√(
KI

KII

)2
+ 8


So finally:

θ = 2 arctan

1
4

 KI

KII
±

√(
KI

KII

)2
+ 8

 (7.2)

7.2 Additionnal results

Fig. 7.1: Influence of the tip’s location in the element on the relative error ERKI in 3D

7.3 Modified functions
In the following key functions, some change have been made on top of variable optimisation

changments. These changment both simplify and improve the qualty of the code.

7.3.1 node_detect.m
function [type_elem,elem_crk,xTip,xVertex,enrich_node] = node_detect(xCr,elems)

% select the type of element then the type of element
global node element

type_elem = zeros(size(element,1),size(xCr,2));
elem_crk = zeros(size(element,1),4);

xCr_element = zeros(size(element,1),2);
xTip = zeros(size(element,1),2);
xVertex = zeros(size(element,1),2);

enrich_node = zeros(size(node,1),size(xCr,2));

% select the special elements(tip, vertex, split)
for kk = 1:size(xCr,2)

for iel=1:size(elems,1) %loop on elems (=elements selected to be enricged)
e = elems(iel) ;
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sctr=element(e,:);
vv = node(sctr,:);
crk_int = [];
intes = 0;
flag1 = 0;
flag2 = 0;
for kj = 1:size(xCr(kk).coor,1)-1 %loop over the elements of the fracture

q1 = xCr(kk).coor(kj,:);
q2 = xCr(kk).coor(kj+1,:);
sctrl = [sctr sctr(1,1)];
for iedge=1:size(sctr,2) %loop over the edges of elements

nnode1=sctrl(iedge);
nnode2=sctrl(iedge+1);
p1 = [node(nnode1,:)];
p2 = [node(nnode2,:)];
intersect=segments_int_2d(p1,p2,q1,q2) ;
intes = intes + intersect(1);
if intersect(1) > 0

crk_int = [crk_int intersect(2) intersect(3)];
flag1 = inhull(xCr(kk).coor(kj,:),vv,[],-1e-8);
flag2 = inhull(xCr(kk).coor(kj+1,:),vv,[],-1e-8);
xCr_element(e,:) = xCr(kk).coor(kj,:) * flag1 + xCr(kk).coor(kj+1,:) * flag2;

end
end %for iedge

end

%–––- let’s choose the categorie –––-%
if ((intes == 2) & (flag1 == 0) & (flag2 == 0)) % SPLIT

type_elem(elems(iel),kk) = 2;
elem_crk(e,:) = crk_int;

end
if (((flag1 == 1) | flag2==1) & (intes==2)) % VERTEX

type_elem(e,kk) = 3;
elem_crk(e,:) = crk_int;
xVertex(e,:) = xCr_element(e,:);

end
if (intes == 1) % TIP

type_elem(e,kk) = 1;
xTip(e,:) = xCr_element(e,:);
elem_crk(e,:) = [crk_int xTip(e,1) xTip(e,2)];

end
end % iel

end % kk

% select the enriched nodes
for kk = 1:size(xCr,2)

for iel=1:size(elems,1) %loop on elems (=elements selected to be enriched)
sctr = element(elems(iel),:);
if type_elem(elems(iel),kk) == 1 % tip

enrich_node(sctr,kk) = 1;
elseif type_elem(elems(iel),kk) == 2 % split

for in=1:length(sctr) % loop on the nodes of the element
if enrich_node (sctr(in),kk) == 0 % already enriched

[Aw, Awp] = support_area(sctr(in),elems(iel),type_elem,elem_crk,xVertex,kk);
if (abs(Awp / Aw) > 1e-4) & (abs((Aw-Awp) / Aw) > 1e-4)

enrich_node(sctr(in),kk) = 2;
end

end
end

elseif type_elem(elems(iel),kk) == 3 %vertex
for in=1:length(sctr)

if enrich_node (sctr(in),kk) == 0 % already enriched
[Aw, Awp] = support_area(sctr(in),elems(iel),type_elem,elem_crk,xVertex,kk);
if ((abs(Awp / Aw) > 1e-4) & (abs((Aw-Awp) / Aw) > 1e-4))

enrich_node(sctr(in),kk) = 2;
end

end
end % loop on the nodes

end %if
end %loop on the elements

end %loop on cracks

7.3.2 gauss_rule.m

Structure of the function:

The structure of this function have been changed with a switch statement instead of if.
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This erase problems due to the order of the statement of the if conditions.

Order of integration:

The orders of integration have been deplaced in the input of this function which allow two
things. First it is possible to change these orders easily in the main program (for studying
their influence for instance) and most of all to be able to use this function in the main.m and
in the SIF.m too. In fact the order are different in both functions.

Blending elements:

It is more simple to deal with blending element because we also increase once and for all
the order in blending/vertex and blending/split at the beginning.

function [W,Q] = gauss_rule(iel,enrich_node,elem_crk,type_elem,xTip,xVertex,elemType,normal_order,...
tip_order,split_order,vertex_order,sub_div_tip)

% Choose Gauss quadrature rules adapted at each element

global node element

sctr = element(iel,:); % element connectivity
sub_div = 0; % dfault number of sub-triangulation = 0

% ––- blending elements –––– %
tip_enr = find(enrich_node(sctr,:) == 1); % tip enriched element?
if size(tip_enr,1) > 0 % maybe to much but that’s a security

normal_order = tip_order;
split_order = tip_order;
vertex_order = tip_order;
sub_div = sub_div_tip; % let’s sub-divise as much as in the tip element

end

type_iel = max(type_elem(iel,:)); %to deal with multiples cracks
% ->just select the number which is not 0 (intersection is not possible)

switch num2str(type_iel)
case {’0’}

if ((elemType == ’Q4’) & (normal_order < tip_order))
[W,Q] = quadrature(normal_order,’GAUSS’,2);

elseif (elemType == ’Q4’)
[W,Q] = disBlendingQ4quad(normal_order,node(sctr,:),sub_div); % higher order with triangulation...

elseif elemType == ’T3’
[W,Q] = quadrature(normal_order,’TRIANGULAR’,2);

end
case {’1’} % tip element –––––––––––––––––––––––

phi = LS(iel,elem_crk);
nodes = node(sctr,:);
if elemType == ’Q4’

[W,Q] = disTipQ4quad(tip_order,phi,nodes,xTip(iel,:),node(element(iel,:),:),sub_div_tip);
elseif elemType == ’T3’

[W,Q] = disTipT3(tip_order,phi,nodes,xTip(iel,:));
end

case {’2’} % split ––––––––––––––––––––––––––
phi = LS(iel,elem_crk);
if (elemType == ’Q4’)

[W,Q] = discontQ4quad(split_order,phi,node(element(iel,:),:),sub_div);
elseif (elemType == ’T3’)

[W,Q] = discontT3(split_order,phi);
end

case {’3’} % vertex –––––––––––––––––––––––––-
phi = LS(iel,elem_crk);
nodes = node(sctr,:);
if elemType == ’Q4’

[W,Q] = disTipQ4quad(vertex_order,phi,nodes,xVertex(iel,:),node(element(iel,:),:),sub_div);%
same quadrature as tip

elseif elemType == ’T3’
[W,Q] = disTipT3(vertex_order,phi,nodes,xVertex(iel,:));

end
end
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7.3.3 SIF.m
Quadrature: In this function the vertex element for the J domain were not taken into account.
They were consider as split element and this is obvious that the accuracy of the results was
not optimum. That’s one of the reason why the part concerning the quadrature have been
replaced by the function gauss_rule. This allow us to take into account easily the quadrature
of vertex and split elements which are in the J domain.

Warning message: a message to warn the
user is display when the integration is per-
formed on tip function enriched elements be-
cause this should not append for having accu-
rate results.

Fig. 7.2: Integration on tip enriched elements.

In the main before calling the function A simplify in the main where the SIF computation
in done. Before there was a loop on all elements of the enrdomain with an inhull test. Moreover
the same procedure was written for the right and the left tip although they are the same. That’s
why we simplified by making a loop on the tip elements.

7.4 New functions

7.4.1 sub_triangulation.m

% make the sub-triangulation of triangles (simplified version)

function [node,tri] = sub_triangulation (node,ntip,number_sub)

sub_rule = 2;

% 1 –– making a predefined number of subtriangle divison with 1 new
% point in the center of each triangle
% 2 –– making a predefined number of subtriangle divison with 1 new
% point in the center of each edge of the triangle

switch num2str(sub_rule)

case{’1’}
tri = delaunay(node(:,1),node(:,2));
tri = tricheck(node,tri) ;% to assure a positive Jacobian
for i=1:number_sub

size_tri = size(tri,1);
for ics = 1:size_tri

node = [node ; sum(node(tri(ics,:),1))/3 sum(node(tri(ics,:),2))/3];
tri = [tri ; tri(ics,1) tri(ics,2) size(node,1)];
tri = [tri ; tri(ics,2) tri(ics,3) size(node,1)];
tri(ics,:) = [tri(ics,3) tri(ics,1) size(node,1)];
tri = tricheck(node,tri) ;% to assure a positive Jacobian

end
end

case{’2’}
tri = delaunay(node(:,1),node(:,2));
tri = tricheck(node,tri) ;
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size_tri = size(tri,1);
for ics = 1:size_tri

new_node1 = [sum(node(tri(ics,[1,2]),1))/2 sum(node(tri(ics,[1,2]),2))/2 ];
new_node2 = [sum(node(tri(ics,[2,3]),1))/2 sum(node(tri(ics,[2,3]),2))/2 ];
new_node3 = [sum(node(tri(ics,[3,1]),1))/2 sum(node(tri(ics,[3,1]),2))/2 ];
node = [node; new_node1 ; new_node2 ; new_node3];
tri = [tri ; tri(ics,1) (size(node,1) - 2) (size(node,1)) ];
tri = [tri ; tri(ics,2) (size(node,1) - 2) (size(node,1) - 1) ];
tri = [tri ; tri(ics,3) (size(node,1) - 1) (size(node,1)) ];
tri(ics,:) = [(size(node,1) - 2) (size(node,1) -1) (size(node,1))];
tri = tricheck(node,tri) ;

end

end

7.4.2 Pseg_dist.m
This function give the minimal distance of a point to one or several segment(s). It as been

usefull to stop the multiple crack computation before the Jdomain contain the crack or branch
enriched elements.

function dist = Pseg_dist(pt,segx,segy)

% compute the distance of a point pt to several segments
% dicribed by an array of points (segx,segy)
% function created by David NOËL: david.noel@ens-cachan.fr

Csize = size(segx)
Dist = [];
for m = 1 : Csize-1 % compute only the half

x = pt(1); y = pt(2);
x0= segx(m); x1= segx(m+1);
y0= segy(m); y1= segy(m+1);
% projection point
xp=(x0*y1ˆ2-x1*y1*y0-y1*x0*y-x0*y1*y0+y1*x1*y+x1ˆ2*x+x1*y0ˆ2+x0*y0*y...
-2*x1*x0*x-x1*y0*y+x0ˆ2*x)/(y1ˆ2-2*y1*y0+y0ˆ2+x1ˆ2-2*x1*x0+x0ˆ2);
yp=(y1*x1*x-y1*x0*x-y0*x1*x+y1ˆ2*y+y1*x0ˆ2-2*y1*y0*y-x0*x1*y0+y0*x0*x...
+y0ˆ2*y+x1ˆ2*y0-x1*y1*x0)/(y1ˆ2-2*y1*y0+y0ˆ2+x1ˆ2-2*x1*x0+x0ˆ2);
if (xp<x0) && (xp<x1)

dist(m) = (x-x0)ˆ2 + (y-y0)ˆ2; % distance to node0
elseif (xp>x0) && (xp>x1)

dist(m) = (x-x1)ˆ2 + (y-y1)ˆ2; % distance to node1
else

dist(m) = (x-xp)ˆ2 + (y-yp)ˆ2; % projection distance
end

end

7.4.3 data_saving.m
function [] = data_saving(fname,title,data,delimiter,type)

switch type

case {’0’} % save the parameters and main informations
monid = fopen(fname,’w+t’);
tooday = clock;
fprintf(monid,’Computation date : %2.0f %2.0f %4.0f ’,[tooday(3), tooday(2),tooday(1)]);
fprintf(monid,’ by: David NOEL \n ’);
fprintf(monid,’ version of the code : v1.4 \n \n’);
fprintf(monid,’Parameters for case 1 \n \n’);
fprintf(monid,’Dimensions LxD: %3.0f %3.0f \n’,[data(1),data(2)]);
fprintf(monid,’Delta increment: %12.4e \n’, data(3));
fprintf(monid,’Material properties: %12.4e %12.4e \n’,[data(4),data(5)]);
fprintf(monid,’Load: %12.4e \n’,data(6));
fprintf(monid,’initial number of nodes per meter: %3.0f \n \n \n’,data(7));
fprintf(monid,’*data \n’);
fprintf(monid,title );
fprintf(monid, ’\n\n __’);
fclose(monid);
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case {’1’} % save non nexus data line per line
monid = fopen(fname,’a’);
if delimiter == 1 % put delimiters (multiple data sets)

fprintf(monid,’–– \n \n \n’);
fprintf(monid,’__ ’);
fprintf(monid,’%12.4f \n’,title);

end
for i=1:size(data) % writing data

fprintf(monid, ’%12.4e ’ , data(i));
end
fprintf(monid, ’\n’);
fclose(monid);

case {’2’} % save the path of the propagation
monid = fopen(fname,’a’); % (!!! data in a structure)
if delimiter == 1 % put delimiters (multiple data sets)

fprintf(monid,’–– \n \n \n’);
fprintf(monid,’__\n’);
%fprintf(monid,’%12.4f \n’,title);

end
for toto=1:size(data.coor,1)

fprintf(monid, ’%12.4e %12.4e \n’, [data.coor(toto,1),data.coor(toto,2)]);
end
fclose(monid);

case {’3’} % put final delimiters used to stop the imput in data_post.m
monid = fopen(fname,’a’);
fprintf(monid,’––\n \n’); % final data-set delimiter
fprintf(monid,’****\n \n’); % final data delimiter
fprintf(monid,’*ENDFILE’); % final file delimiter
fclose(monid);

end

7.4.4 data_post.m
[fname,pname] = uigetfile(’input\*.txt’,... % gets name of input file
’Choose input file’);

fmid=fopen([pname fname],’rt’); % open the file

% ––––– laoding the datas –––––––– %
tline = fgets(fmid); % read line
n=0;
while isempty(strfind(tline,’*ENDFILE’)),

tline = fgets(fmid);disp(tline); % display the parameters (info)
if strfind(tline,’*data’) % begin-delimiter of the data

tline = fgets(fmid);
title = sscanf(tline,’%c’); % get the names of the columns
remain= title;
for k = 1:size(strfind(title,’;’),2)

[token, remain] = strtok(remain,’;’); % separate with ;
col{k} = token; % vector of labels

end
while isempty(strfind(tline,’****’)), % final-delimiter of the data

tline = fgets(fmid);
if strfind(tline,’__’) % begin-delimiter of the data set

n=n+1; % number of the set
set_title{n} = sscanf(tline(3:length(tline)),’%c’);
m=1;
tline = fgets(fmid);
while isempty(strfind(tline,’––’)), % final-delimiter of the data-set

temp_data = sscanf(tline, ’%f %f %f %f %f %f %f %f ’);
data(m,n,:)=temp_data’;
tline = fgets(fmid);
m=m+1;

end
end

end
end

end
% ––––––––––––––––- %

if strfind(set_title{1}, ’location’)
type = ’location’

elseif size(data,2)==1 % choose the plotting mode (simple set or multiple set)
type = ’simple’

elseif size(data,2)>1

David NOËL A-VIII August 2008



CHAPTER 7. APPENDIX Year 2007-2008

type = ’multiple’
end

disp(’The data are:’) % choose which data you want to plot
for i=1:size(col,2) % show the data available

aff = strcat(num2str(i),’ = ’,col{i}); disp(aff)
end
% ––- choosing data to plot ––- %

disp(’––––––––––-’)
if strfind(set_title{1}, ’location’)

toplot = input(’Which data do you want to plot? (ex: [3,7,8])’);
elem_dens = input(’For scaling : element per unit(ex:39) = ?’);

else
xaxis = input(’Column Number on x : ’);
yaxis = input(’Column Number(s) on y (ex: [1,3,8]) : ’);
logx = input(’Put <<1>> if you want log sacle on x ’);
logy = input(’Put <<1>> if you want log sacle on y ’);
disp(’––––––––––-’)
% ––- modifications of the log scale ––- %
if logx == 1

data(:,:,xaxis) = log(data(:,:,xaxis));
col(xaxis) = strcat(’log(’,col(xaxis),’)’);

end
if logy == 1

data(:,:,yaxis)=log(data(:,:,yaxis));
col(yaxis) = strcat(’log(’,col(yaxis),’)’);

end
end
% ––––––––––––––––––––– %

% –– ploting ––––%
style = {’r-x’,’g-.o’,’b:+’,’m–*’,’c-p’,’r-.h’,’g-x’,’b-.o’,’m:+’,’c–*’,’r-p’,’g-.h’};
v = get(0,’ScreenSize’);
h = 0;
switch type
case {’simple’}

figure(’Color’,[1 1 1],’Position’, ...
[0 0 0.5*v(1,3) 0.5*v(1,4)]) % set properly the figure window
hold on
for ics=1:size(yaxis,2); % number of sets

plot((data(:,1,xaxis)),(data(:,1,yaxis(ics))),style{ics},’LineWidth’,2,’MarkerSize’,12)
xlabel(col{xaxis},’FontSize’,20,’Interpreter’,’latex’)

end
if size(yaxis,2)<2

ylabel(col{yaxis},’FontSize’,20,’Interpreter’,’latex’)
else

h = legend(col{yaxis},1,’Interpreter’,’latex’); % 1 mean: right high corner
set(h,’FontSize’,16,’Interpreter’,’latex’)

end
case {’multiple’}

figure(’Color’,[1 1 1],’Position’, ...
[0 0 0.5*v(1,3) 0.5*v(1,4)]) % set properly the figure windows
hold on
for ics=1:n

plot((data(:,ics,xaxis)),(data(:,ics,yaxis)),style{ics},’LineWidth’,0.6,’MarkerSize’,8)
end
h = legend(set_title,1);
set(h,’FontSize’,16,’Interpreter’,’latex’)
xlabel(col{xaxis},’FontSize’,20,’Interpreter’,’latex’)
ylabel(col{yaxis},’FontSize’,20,’Interpreter’,’latex’)

case {’location’}
for ics = 1: size(toplot,2)

dimension = input(’Press 2 for 2D or 3 for 3D: dimension=? ’);
data(:,1,1) = data(:,1,1)/(2*elem_dens); % transforming the element to a 2x2 domain
data(:,1,2) = data(:,1,2)/(2*elem_dens);
tri = delaunay(data(:,1,1),data(:,1,2)); %
figure(’Color’,[1 1 1],’Position’, [0 0 0.5*v(1,3) 0.5*v(1,4)])
if dimension == 3

%trisurf(tri,data(:,1),data(:,2),(data(:,1,toplot(ics))));
trimesh(tri,data(:,1),data(:,2),(data(:,1,toplot(ics))));

elseif dimension == 2
plot_field([data(:,1),data(:,2)],tri,’T3’,(data(:,1,toplot(ics))));

else
disp(’unknown choice’)

end
end

end
grid on;box;
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