Relativité, noyaux et particules - MP113 Examen de mi-semestre Mercredi 6 novembre 2013

Durée: 1h30

Sont autorisés : PDG, calculatrice non programable.

Toute utilisation de téléphone portable est strictement interdite!

4 pages imprimées

Durée approximative :

10 min Ex. II : 15 min Ex. IV :

Ex. IV: 10 min

10 min

Problème:

Ex. I:

Ex. III:

45 min

Exercice I

Questions de cours

Répondre de manière courte et synthétique aux questions suivantes :

- 1. Découvertes des particules de la troisième famille.
 - (a) Donner des éléments d'explication sur l'ordre des découvertes des particules de la troisième famille : quark b puis lepton τ puis quark top puis neutrino ν_{τ} .
 - (b) Donner, aussi précisément que possible l'année de ces découvertes.
- 2. Commenter d'une manière détaillée la notion de largeur d'une particule.

Exercice II

Courant électromagnétique d'une particule scalaire

A partir de l'équation de Klein-Gordon

$$-\frac{\partial^2 \phi}{\partial t^2} + \nabla^2 \phi = m^2 \phi$$

d'une particule scalaire de masse m et de charge Q dont la fonction d'onde est ϕ , obtenirune équation de continuité, et en déduire l'expression du quadrivecteur courant électromagnétique. Ecrire sa forme pour une onde plane $\phi = Nexp(-ip^{\rho}x_{\rho})$, où N est un facteur de normalisation, x le quadrivecteur espace-temps, et $p = (E, \vec{p})$ le quadrivecteur énergieimpulsion. Commenter la forme obtenue.

Exercice III

Interaction électromagnétique

On considère la réaction $e^+e^- \longrightarrow \mu^+\mu^-$.

- 1. Tracer le diagramme de Feynman dominant de cette réaction.
- 2. Calculer les variables de Mandelstam, s, t et u, en fonction du module p de l'impulsion de l'électron dans le centre de masse, et de l'angle θ , dans le même référentiel, entre les impulsions de l'électron et du μ^+ .
- 3. Obtenir l'élément de matrice $\mathcal{M}_{\mathrm{fi}}$ correspondant à l'interaction électromagnétique, en supposant que toutes les particules dans la réaction sont de spin 0.

Exercice IV

Diagrammes de Feynman

Tracer le(s) graphe(s) de Feynman dominant pour les réactions suivantes en nommant toutes les particules (réelles et virtuelles) qu'il(s) fait(font) intervenir.

a)
$$p \to ne^+\nu_e$$

b) $\bar{\nu}_e e^- \to \mu^- \bar{\nu}_\mu$
c) $e^+e^- \to \gamma\gamma$

b)
$$\bar{\nu}_e e^- \rightarrow \mu^- \bar{\nu}_e$$

b)
$$\nu_{\mu}e^{-} \rightarrow \mu^{-}\nu_{e}$$

c)
$$e^+e^- \rightarrow \gamma\gamma$$

Problème

Vol des mésons B

- 1. La figure 1 montre la section efficace totale $\sigma(e^-e^+ \to X)$ où X sont toutes les particules finales possibles. Elle montre aussi le rapport entre cette section efficace et celle du processus $e^-e^+ \rightarrow \mu^+\mu^-$.
 - (a) Interpréter l'existence des pics sur les figures 1.
 - (b) Quelles informations pouvons-nous tirer de cette figure sur différentes particules (qualitativement, sans faire des calculs).
 - (c) On s'intéresse à la production du bottomonium $\Upsilon(4S)$ via la réaction $e^+e^- \to \Upsilon(4S)$. Donner, en argumentant, la composition en quark de cet état $q\bar{q}$. En utilisant les données de la figure, déterminer approximativement, en expliquant, la masse M_Υ et la durée de vie τ_{Υ} de l' $\Upsilon(4S)$.
- 2. L'un des principaux modes de désintégration de l'\U00a3(4S) est en une paire de mésons beaux :

$$\Upsilon(4S) \to B^- B^+$$

La masse des mésons B est de $M_B = 5,28$ GeV avec une durée de vie de $\tau_B = 1,5 \times 10^{-12}$ s.

- (a) Déterminer les énergies des mésons B dans les référentiel où le $\Upsilon(4S)$ est au repos.
- (b) Déterminer la distance moyenne parcourue par les mésons B dans le référentiel où le $\Upsilon(4S)$ est au repos en fonction de M_{Υ} , M_B et $c\tau_B$.

- (c) Déterminer le module de la vitesse des mésons B dans ce référentiel. Commenter, et retenir une conclusion de ce résultat pour la suite des calculs.
- (d) Quelles sont les énergies des faisceaux d' e^- et d' e^+ dans le référentiel du laboratoire pour lesquelles le $\Upsilon(4S)$ est produit au repos dans celui-ci.
- (e) Dans le cas d'une expérience de cible fixe, un faisceau de e^+ est envoyé sur une cible d' e^- .
 - i. Quelle est l'énergie cinétique minimum T_{min} des e^+ pour que la réaction $e^+e^- \to \Upsilon(4S)$ ait lieu en fonction de M_{Υ} et m_e , la masse des électrons.
 - ii. En se plaçant à cette énergie, déterminer la distance moyenne parcourue par les mésons B dans le référentiel du laboratoire. Faites les approximations que vous jugerez nécessaires.
- 3. La distance calculée précédemment dans un collisionneur étant très faible, afin de l'augmenter, l'idée est d'utiliser des faisceaux colinéaires d'e⁺ et d'e⁻ d'énergie différente. La collision est donc asymétrique dans le référentiel du laboratoire.
 - (a) L'Y(4S) est-il produit au repos dans le référentiel du laboratoire dans ces conditions?
 - (b) Quelle doit être la différence d'énergie des e^+ et des e^- dans le laboratoire afin de produire des mésons B parcourant en moyenne 0,2 millimètre dans le laboratoire? Faites les approximations que vous jugerez nécessaires.
- 4. Le détecteur BaBar utilisait les faisceaux de l'anneau de stockage PEP-II : un faisceau d'électrons de 9 GeV et un faisceau de positrons de 3,1 GeV entraient en collision au centre du détecteur, pour former la réaction $e^+e^- \to \Upsilon(4S) \to B^+B^-$.
 - (a) Déterminer l'énergie minimale E_B^{min} et l'énergie maximale E_B^{max} du B^+ dans le référentiel du laboratoire.
 - (b) Les mésons B sont observables via leurs modes de désintégrations. On s'intéresse ici aux désintégrations : $B^+ \to \tau^+ \nu_\tau$ et $B^- \to \tau^- \bar{\nu}_\tau$. Déterminer l'énergie minimale et maximale du τ^+ dans le référentiel du laboratoire.
 - (c) Reprendre les deux dernières questions pour les particules B^- et τ^- .

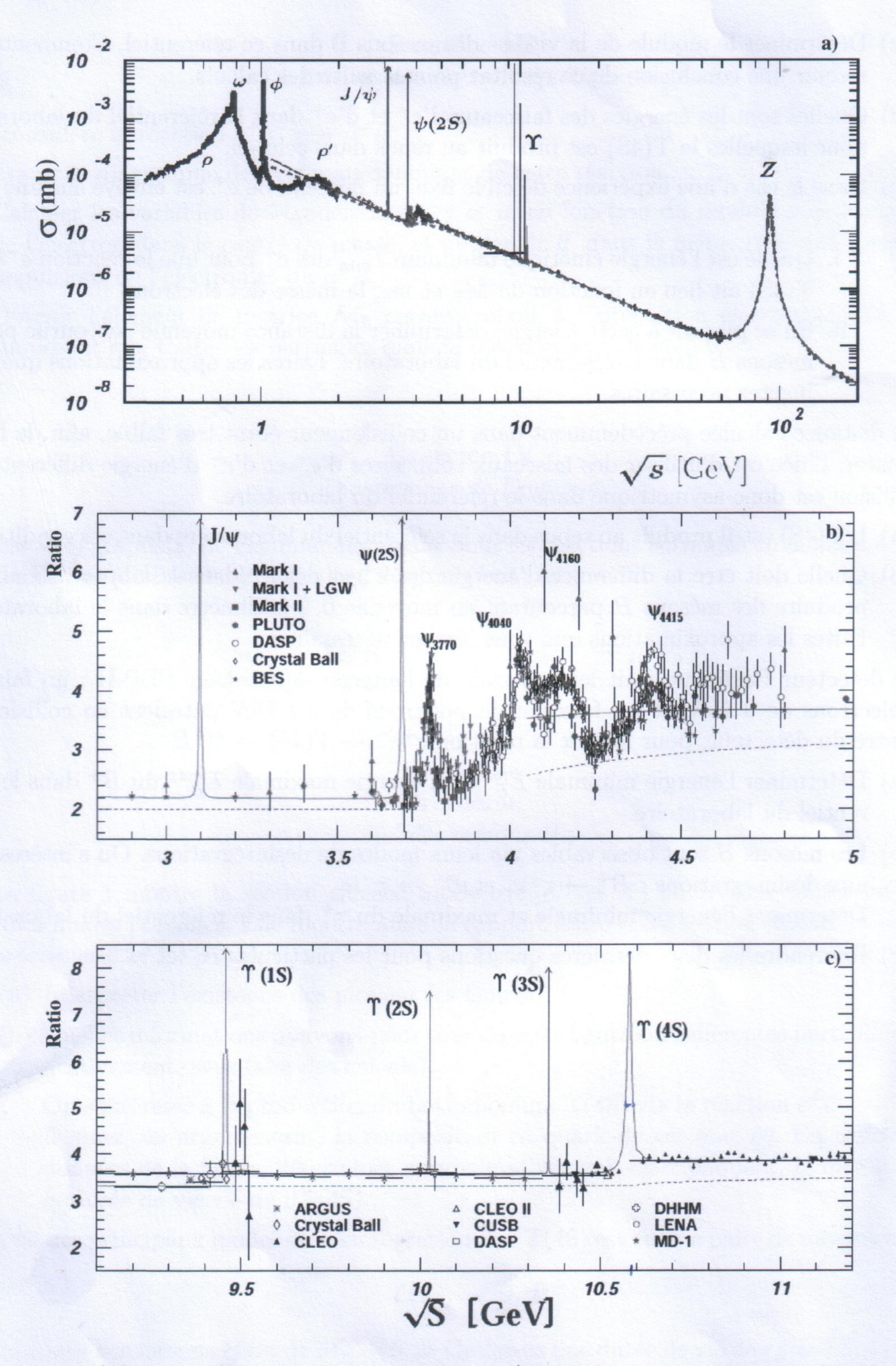


FIGURE 1 – a) Section efficace totale du processus e^+e^- en fonction de l'énergie dans le centre de masse \sqrt{s} . b) et c) Valeur du rapport $R = \frac{\sigma(e^-e^+ \to \text{hadrons})}{\sigma(e^-e^+ \to \mu^-\mu^+)}$ en fonction de l'énergie dans le centre de masse \sqrt{s} . Les mesures de diverses expériences ainsi que les résonances sont représentées.