TDs Chimie organique

PHYTEM 1A
CHIMIE ORGANIQUE
TD5
Alcools et amines
13 mars 2013

Exercice 1:

Une voie de synthèse possible pour le 1,4-Dioxane, molécule utilisée comme solvant en chimie organique, est étudiée ici. On considère le schéma réactionnel suivant :

HO OH
$$\frac{\text{H}_2\text{SO}_4}{\text{OH}}$$
 1,4-dioxane

- 1) Le 1,4-dioxane peut être synthétisé en une étape avec l'acide sulfurique, donner la structure du 1,4-dioxane.
- **2)** Donner le mécanisme de cette transformation. Quels sont les produits que l'on peut obtenir en remplaçant l'acide sulfurique par l'acide chlorhydrique ?

Une autre voie de synthèse est décrite ci-dessous.

- 3) Donner la structure de l'intermédiaire A.
- 4) Donner le mécanisme de la seconde étape. De quel type de mécanisme s'agit-il?
- **5)** Quelle réaction secondaire parasite peut-on imaginer observer ? En quoi le choix du réactif de la seconde étape permet de s'affranchir de ce risque ?

Exercice 2:

1) Le pinacol est le nom usuel du 2,3-diméthylbutan-2,3-diol. Traité par l'acide sulfurique, celui-ci se transforme en 3,3-diméthylbutan-2-one.

Proposer un mécanisme réactionnel expliquant cette transformation.

2) Dans les mêmes conditions, le 1,1-diphényl-2-méthylpropane-1,2-diol conduit exclusivement à la 2,2-diphénylbutan-3-one. Expliquer.

Exercice 3: Synthèse de la mescaline

On étudie la synthèse d'un puissant hallucinogène, la mescaline **F**, à partir du 3,4,5-trihydroxybromobenzène.

$$HO$$
 OH
 OH
 H_3CO
 OCH_3
 F

- **1.** On introduit du phénol dans une solution aqueuse de potasse, puis on ajoute goutte à goutte de l'iodométhane. Après réaction et purification, on isole le méthoxybenzène.
- 1.a. Justifier le caractère acide du phénol.
- 1.b. Donner le mécanisme en justifiant.
- **2.** La méthylation exhaustive du 3,4,5-trihydroxybromobenzène $\bf A$ peut s'effectuer en milieu basique en présence de sulfate de diméthyle. Elle conduit au 3,4,5-triméthoxybromobenzène $\bf B$. Donner la formule semi-développée du sulfure de diméthyle $(CH_3)_2SO_4$ et justifier l'analogie de la réactivité avec l'iodométhane.

- **3.** L'addition d'époxyéthane (ou oxiranne) à l'organomagnésien $\bf C$ issu de $\bf B$ permet, après hydrolyse en milieu acide, d'obtenir le composé $\bf D$ de formule brute $C_{11}H_{16}O_4$.
- 3. a. Donner le mécanisme de formation de D.
- **3. b.** L'obtention de **D** s'accompagne de la formation de **D'**, de formule brute $C_{11}H_{14}O_3$. Donner la structure de **D'**. Comment peut-on expérimentalement éviter sa formation ?
- **4.** Pour obtenir l'alcaloïde **F** recherché, on passe de **D** au dérivé chloré correspondant **E** $(C_{11}H_{15}O_3Cl)$. L'action sur **E** d'ammoniac en large excès en présence de carbonate de sodium (Na_2CO_3) conduit alors à **F**.
- **4. a.** Citer un réactif permettant de passer de **D** à **E** et écrire l'équation bilan correspondante.
- 4. b. Ecrire le mécanisme de la réaction permettant de passer de E à F.

Exercice 4: Synthèse selon Vollhardt

On étudie ici quelques étapes du début de cette synthèse.

1) Dans la première réaction, le rôle du butyllithium est de déprotoner un des atomes de carbone en α d'une liaison C-C pour obtenir R' (ci-dessous). Pourquoi faut-il employer trois équivalents malgré tout ? Au cours de cette première réaction, on observe un dégagement gazeux. Quelle est sa nature ?

- 2) Expliciter ensuite le mécanisme des réactions qui conduisent à S.
- **3)** Donner le produit obtenu par action du chlorure de tosyle TsCl sur **S**. Quel est l'objectif de cette réaction ?
- 4) Préciser la structure du composé T obtenu après action de l'iodure de sodium.
- **5)** La réaction de **S** avec le chlorure de tosyle est effectuée en présence de pyridine. Quel est son rôle ?

6) La réaction avec l'iodure de sodium est effectuée dans l'acétone (propanone). Justifier le choix de ce solvant.

Le dérivé iodé T, noté R-I pour la suite, est opposé au composé U ci-dessous.

- 7) Montrer que le composé **U** est correctement décrit par deux formules mésomères.
- **8)** La réaction de **T** avec **U** conduit à un produit **V** qui en infrarouge présente une bande forte vers 1700 cm-1 (liaison C=O). Donner la structure de **V** et expliciter le mécanisme.
- **9)** En réalité, le composé **V** obtenu est un mélange de deux stéréo-isomères. Les représenter. Quelle est la relation entre ces deux produits ? Sont-ils aisément séparables *a priori* ?