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Abstract. The use of composite materials is strongly increasing in aeronautics industry. 
Consequently there is a need for numerical analysis of these composite components. To perform 
accurately the service live analyses, it is necessary to know the direction and the density of the 
fibres at any point of the part. These directions are mainly depending of the forming of the 
composite. Because they are woven, textile reinforcements can reach very large in-plane shear 
strain during manufacturing. A numerical tool that simulates this forming process permits to 
envisage the feasibility of a process without defect but also to know the directions of the 
reinforcements after shaping. These directions condition strongly the mechanical behaviour of the 
final textile composite structure. In addition, the angles between warp and weft yarns influence 
the permeability of the reinforcement and thus the filling of the resin in the case of a liquid 
moulding process. The forming of composite reinforcement can be made on a single ply or 
simultaneously on several plies. In this paper models for the single woven ply forming are 
compared. The extension to multiply forming simulation is then considered. 
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INTRODUCTION 

The simulation of a composite forming process needs a model of the mechanical 
behaviour woven reinforcement and usually a numerical method, within, for instance, 
the Finite Element Method. The mechanical behaviour of fabrics is complex due to the 
intricate interactions of the yarns. It is a multi-scale problem. The macroscopic 
behaviour is much dependent of the interactions of yarns at meso-scale (scale of the 
woven unit cell) and at the micro-scale (level of the fibres constituting yarns). Despite 
the lot of works in the field, there is no widely accepted model that describes accurately 
all the main aspects of a fabric mechanical behaviour. The main model families come 
from the multi-scale nature of the textile. A first family of models is obtained by 
homogenizing the mechanical behaviour of the underlying meso-structure and 
considers the fabric as an anisotropic continuum [1]. The next section will compare two 
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of these approaches. If these models can easily be integrated in F.E. classical shell or 
membrane elements, the identification of homogenized material parameters is very 
difficult, especially because these parameters change when the fabric is strained and 
when, consequently, the directions of the yarns change. Currently, the continuum 
models proposed in the literature do not generally account for the interactions between 
warp and weft yarns (crimp change, locking ). At the opposite, some authors present 
fully discrete models of fabrics based on beams and springs [2]. A proposed approach 
associates a finite element method and a mesoscopic analysis of the woven unit cell. 
Specific finite elements are defined that are made of a discrete number of woven unit 
cells. The mechanical behaviour of these woven cells is obtained by experimental 
analyses [3] or from 3D F.E. computations of the woven cell [4-6]. The nodal interior 
loads are deduced from this local behaviour and the corresponding strain energy in the 
element deformation. The simple and consequently numerically efficient four and three 
node 3D membrane elements obtained in this way have given satisfactory results in 
some fabric forming simulations. 

CONTINUOUS APPROACH FOR COMPOSITE FORMING 

For finite strain analyses, FE codes widely use rate elastic constitutive equations 
(hypoelastic law): 

o v = C : D 2 V = Q [ d QT .o .Q ] . Q T = 5 + 5 . Q - Q . 5 (1) 

o and D are respectively the Cauchy stress tensor and the strain rate tensor, o is 

the objective derivative of o associated to rotation Q. The classical Hughes and 

Winget incremental scheme is constructed from equation (1) for stress calculation: 

k + 1 ] , + 1 =[ - n L + [ C n + 1 / 2 L + - [ A £ ] e - (2) 
1 1 1 ' 

[ « n + I ] r = [ « n ] ^ + [ C B + I / 2 ] ^ [ D B + I / 2 ] r ^ (3) 

For a fibrous medium the constitutive tensor C is oriented by f the fibre direction. 

f is a material direction. Let |e ; | denotes the orthonormal frame formed by the initial 

basis vectors rotated by Q, consequently f is in general not fixed in je t} since it is a 

material direction. The initial fibre direction f ° is transformed by F (the gradient 

tensor) into f = f l, while |e ;} is rotated by Q (figure 1) . To solve this problem two 

approaches are developed for fibrous media within the hypoelastic formulation 
presented above. The first one [7,8] uses the classical Green Naghdi objective 
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derivative that is used in user-subroutine of codes such as ABAQUS. All the 
calculations are performed in the corresponding rotated frame (Green Naghdi's frame). 
The material behaviour operator is obtained in this frame from its specific form in the 
fibre frame by a basis change. The second approach [5] consists in using another 
objective derivative defined from the fibre rotation. It can be shown that in some case 
the second approach is preferable. 

FIGURE 1. Initial frame I e ; | , rotated frame I e ; \ and fibre frame I f j 

SEMI-DISCRETE FINITE ELEMENTS 

The approach associates a finite element method with a mesoscopic analysis of the 
woven unit cell. Specific finite elements are defined. They are made of a discrete 
number of woven unit cells. 
This approach permits to describe the specificities of textile reinforcement mechanical 
behaviour, especially: 

the non-linear tensile behaviour due to crimp interchange 
shear locking angle and the very different in plane shear behaviour before and 

after this angle. The following global simplified dynamic equation is considered : 

ncell ncell 

X l ' ^ W ' f L . + ' s J , ) PT22L2) + XPC'Y(Tl)-Wit(n) = jpu.n dV (4) 
P=l P=l Q 

where E( ) = VS =e„p( ) "® p is the symmetrical gradient in the virtual displacement 

r| (a and (3 are indexes taking value 1 or 2). h1 , h2 are the contravariant vectors related 
to hi, h2 Li and L2 are the lengths of the warp and weft yarns in the mid-plane of the 
fabric. Y(r|) is the virtual relative rotation between warp and weft fibres (or virtual shear 
angle), ncell is the number of woven unit cells of the textile structure, PQ, means that 
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the quantity Q is considered for the woven unit cell number p. p is the mass per volume 
of the fabric Q.. Wext (T|) is the virtual work of the exterior prescribed loads. 
To make a finite element simulation of composite woven reinforcement forming based 
on the above approach, it is necessary to be able to know the tensions T and T and 
the shear couple C for a given strain field in the woven unit cell. It is assumed that the 
tension do not depend on the shear angle and that the shear couple do not depend on 
the axial strain i.e. Tn(£n, £22), T22(£n, £22) and C(y). In [3], biaxial tensile tests 
performed for different angle between warp and weft yarns have shown that the 
influence of this angle is small and can be neglected. The second assumption (C only 
depending on y) is probably less true [9]. Nevertheless, all the experimental results that 
are currently available give the shear load in function of the shear angle without any 
information on the tensions, so the assumption C(y) will be made by default. 

1 1 99 

The tension surfaces (T (£n, £22) and T (£n, £22)) and of the shear curve (C(y)) can 
be determined both by experiments or mesoscopic F.E. on the unit woven cell. From 
the simplified dynamic equation (4) a specific finite element for fabric forming is 
constructed (figure 2). The nodal interior load components (F^) are obtained from the 
strain interpolation matrix: 

W:(il) = T,,5; (|gl|f
 pB11/T

11
+|g2|P

PB22/T
22

 +
 pCpBys) = lls(Fi:t)s (5) 

The detailed formulation of the element can be found in [6]. 

FIGURE 2. Semi discrete finite element 

This classical square box benchmark test is performed using the semi-discrete finite 
element presented above. The geometry is strongly double curved, and asks very large 
angle variations between warp and weft yarns in the radius of the square box. The 
shear angles that are necessary to shape the part can be larger than the locking angle of 
the fabric depending on the radius values. The forming of a plain weave fabric is 
simulated. The locking angle of this fabric is 41°. The forming simulation is made with 
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the dynamic equation presented in (4) (tensile and in plane shear energy) but also 
neglecting the in-plane shear term (tensile energy only). Figures 3 and 4 present in both 
cases the computed deformed shape after forming. Because of the geometry (strongly 
double curved) the locking angle of the plain weave fabric is exceeded. This leads to 
rather different results for both approaches. There is no wrinkle when using the 
approach based only on the tension because there is no source of instability (figure 3). 
On the contrary, the computed solution obtained when taking shear into account shows 
some wrinkles (figure 4). Those are due to shear locking that leads to out-of plane 
solutions in order to reduce this shear. The rotation angles are clearly reduced when the 
shear stiffness is taken into account. This example (as others [6]) shows that the 
contribution of the in-plane shear term is important in the description of the deformed 
shape after the appearance of wrinkles. 

FIGURE 3. Deformed shape and shear angle FIGURE 4. Deformed shape and shear angle 
(Tensile energy only) (Tensile + in plane shear energy) 

SIMULTANEOUS FORMING OF SEVERAL LAYERS 

The difficulty of modeling simultaneous forming of several layers mainly comes 
from the relative motion of the different plies during forming. It can be important if the 
formed shape is double curved and if the layers do not have the same orientation which 
is usually the case (Figure 5 and 6). Because of this relative displacement, the laminate 
shell elements used to model the total stack of plies for strength analyses of composite 
cannot be used here. 

Two approaches are considered. In the first one, each ply is modeled by a set of 
finite elements and the contact/friction between the plies is taken into account. A 
forward Lagrange multipliers technique is used. The edge-edge contact is an important 
point in multiple forming and must be taken into account. 

In the second approach, a single element is used for all the plies through the 
thickness and an ALE scheme is used to take the motion of the plies relatively to the 
element. 
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FIGURE 5. Simultaneous forming of a 0-90 
layer and a ± 45° layer. 

FIGURE 6. Simultaneous forming of a 0-90 
layer and a ± 45° layer. 

Deformed shape of the two plies 
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