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Abstract—In this paper, we investigate the role of mentions on
tweet propagation. We propose a novel tweet propagation model
SIRMF based on a multiplex network framework, that allows
to analyze the effects of mentioning on final retweet count. The
basic bricks of this model are supported by a comprehensive
study of multiple real datasets and simulations of the model
show a nice agreement with the empirically observed tweet
popularity. Studies and experiments also reveal that follower
count, retweet rate & profile similarity are important factors
in gaining tweet popularity and allow to better understand
the impact of the mention strategies on the retweet count.
Interestingly, we analytically identify a critical retweet rate
regulating the role of mention on the tweet popularity. Finally,
our data driven simulation demonstrates that the proposed
mention recommendation heuristic Easy-Mention outperforms
the benchmark Whom-To-Mention algorithm.

Keywords-Mention Recommendation; Multiplex Network; In-
formation Diffusion.

I. INTRODUCTION

In recent times, Twitter has become one of the most
influential micro-blogging systems for spreading and sharing
breaking news, personal updates and spontaneous ideas [1].
However, it is observed that the popularity of tweets and
hashtags follow a skewed distribution in any unbiased col-
lection of tweets: only a small set of the tweets (or hash-
tags) are heavily popular [2]. In Twitter, propagation of a
tweet or hashtag from one user to another occurs mainly via
two activities: “retweeting” and “mentioning” [3]. In case of
retweet, information is simply relayed to all the followers of
the retweeting user. However, mention utility allows to spread
an information far beyond the neighborhood and improves its
visibility by making it available to the appropriate set of users.
Furthermore, as mentions get listed in a separate tab, they gain
higher attention than regular posts. Admittedly, mention utility
plays a significant role in the cascading behavior of tweets and
hashtags in Twitter. For instance, in our dataset, we observe
that the probability that a mentioned user retweets a post is
on average 32% higher than the one of a follower. Hence,
investigating the role of mention utility behind popularizing a
tweet is an interesting research question.

The problem of popularizing a tweet has two opposite
facets. On the one hand, this is important to realize that artifi-
cially boosting popularity may immediately lead to spamming
behavior [4]. Moreover, public mentions and direct message
features have been exploited a lot for spamming hyperlinks and
irrelevant content. Automatic mentioning through bots may
further compound the problem and surely lead to annoyance.
Hence, any attempt towards popularizing a tweet should be
ready to deal with the possible mistreatment by the spammers.
On the other hand, follower distribution exhibits the fact that
most of the normal Twitter users only have a low to moder-
ate number of followers [2]. Hence, any useful information,
produced by a normal and trustworthy user, reaches only to a
small population, even after a lot of deliberation.

Several studies have been carried out in understanding the
dynamics behind the popularity of tweets. In [5] and [6],
researchers investigated the role of content and contextual
features of tweets and identified factors that are significantly
associated with retweet rate and tweet popularity. In [7], Uysal
and Croft proposed methods to recommend useful tweets that
users are really interested in and more likely to retweet:
given a tweet, they rank users based on retweet probability.
Considering mentioned user as an influential information
broker, several influence models have been explored [8], [9].
Importantly, in [10], Cha et al revealed that follower count
is not necessarily the best metric to measure the influence.
Following this line, another set of influence models [11], [12],
[8] have been proposed to identify the influential nodes in a
network. However, mentioning one influential user does not
ensure that she retweets the post. This later part depends
on several factors including information content of the post,
profile of the tweeting user, etc. This motivates the community
for the development of mention recommendation algorithms
to identify the suitable users to mention. For instance, Wang
et al. [13] proposed the Whom-to-Mention heuristic that uses
features (such as user interest match, content-dependent user
relationship and user influence) and uses machine learning
to train a ranking function for extracting the best users to
mention. Similar recommendation heuristics can be found
in [14], [15], [16] and [17].
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(a) Popularities (number of times posted) of top 10 popular hashtags in
“Algeria” dataset with & without mentions.
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(b) Popularities (retweet counts) of top 10 popular tweets (containing
mentions) in “Egypt” dataset with & without mentions.

Fig. 1. Mention dependency for tweets and hashtags in “Algeria” & “Egypt” datasets.

Notably the aforementioned state of the art endeavors suf-
fer from several limitations. In [13], the relevance function
remains unchanged for different tweet messages, leading to
same recommended ranked list for different tweets. Moreover,
most of these heuristics rely on a large set of features to be
calculated on a large population which is infeasible in real
time; hence those approaches cannot be used to design an
online mention recommendation system. More importantly,
all these works fail to shed light on the interplay between
the factors involved in the propagation of the tweets. For
instance, it is not clear how exactly the mentioned user can
make the tweet popular; does mentioning somebody in a tweet
of her interest really helps in gaining popularity; how does the
users’ activity (say retweet) rate influence the choice of the
mention strategy? In order to address these questions, a simple
model to mimic the tweet cascading process is necessary. This
model can guide one to identify the role of individual factors
on the tweet propagation and lead to the development of a
simple recommendation system which may recommend users
to mention. This paper takes an important step towards this
direction.

In this paper, we dissect the impact of mentioning on
tweet popularity. We start with a comprehensive data study to
motivate the importance of mention utility on the popularity
of a tweet. This study enables us to identify the important
features of the mentioned user contributing to tweet popu-
larity; her follower count, activity (retweet) rate, her profile
similarity with the post, etc. (section II). We represent the
tweet propagation process as a multiplex network [18] and
propose an analytical framework SIRMF to model the flow
of tweets. Simulation of the model with suitable parameters
show a nice agreement with the empirical tweet popularity
observed in the dataset (section III). Moreover, the simulation
model identifies a critical threshold on the retweet rate which
demarcates the phase transition beyond which the retweet
count increases exponentially. Our analytical framework nicely
quantifies this observed critical threshold (section IV). Finally,
taking cues from this model, we propose a simple mention
recommendation heuristic which outperforms the Whom-to-
Mention benchmark algorithm [13] (section V).

II. MOTIVATIONAL EXPERIMENTS

In this section we introduce the datasets and perform
few motivational experiments to establish the importance of
mention utility on the spread of tweets. This data study enables
us to identify the key features of the mentioned users and
works as a general guideline for identifying the right users to
mention for maximizing the retweet count.

Fig. 2. Example of Mention-Follow Multiplex

A. Dataset

We collect the tweets posted during two particular real-life
events - (a) Arab-Spring Movement-2011 and (b) World-Cup
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(a) Probability of mentioning popular users
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(b) Retweeting probability of mentioned
users
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(c) Expected visibility

Fig. 3. Users’ tendency & reasons to mention popular users in “World-Cup” & “Egypt” datasets

Football-2014. In both events, Twitter was used extensively to
propagate news and opinions; however the domains, locations
and time-spans of these two events are very different, hence
tweet propagation in both events are completely independent.
We may therefore assume that observed behaviors and results
may hold more generally in Twitter.
(a) Arab-Spring Dataset: We collected two publicly available
datasets [19] connected to these events - (i) “Algeria” Dataset
is a collection of around 60K tweets (tweet-ids) and 20K users
who posted them during the ‘Algeria movement’. We also
crawled the tweet content, user profile and the corresponding
follower network. (ii) “Egypt” dataset is a collection of around
2.6 million tweets (tweet-ids) posted during ‘Egypt uprising’.
We crawled the tweet content of 0.2 million posts and the
profile details and follower network of around 60K users who
posted them.
(b) World-Cup Football Dataset: This dataset1 consists of all
tweets (2.8 million tweets) which are posted during the soccer
World-Cup 2014 and contain official team-hashtags (#BRA,
#CRO etc.) or match-hashtags (#BRACRO, #MEXCMR etc.).

B. Multiplex Representation

For a given hash-tag ‘#h’, the multiplex representation con-
tains two layers: the bottom one represents tweet propagation
via follow links, the top one via mention links (Fig. 2). More
precisely, all users who tweet ‘#h’ appear as a node in the
bottom (follow) layer. A directed link connects user ‘A’ to
‘B’ if ‘A’ (re)tweets ‘#h’ before ‘B’ further retweets and ‘B’
is a follower of ‘A’. In the top (mention) layer a directed
link connects ‘C’ to ‘D’ if ‘C’ tweets ‘#h’ before ‘D’ further
retweets and ‘C’ mentions ‘D’ in her post (‘D’ may or may
not be a follower of ‘C’). One user is free to appear in both
the layers.

A closer look reveals that both the layers are essentially
collection of directed acyclic graphs (DAG). We denote the
root of each DAG as an initiator since they are responsible for
initiating the spreading process. We can identify two classes

1We received it from the “linkfluence” company (http://linkfluence.com/en/)

of initiators, the ‘true initiators’ and the ‘dummy initiators’. A
true initiator of ‘#h’ is a user who is a root in a Follow or a
Mention DAG but never appears as non-root member of any
DAG. These users have actually started the spreading process
(for ‘#h’) as a result of some external influences. A dummy
initiator is a user who is a root in a follow DAG but a non-
root member of a mention DAG. Basically a dummy initiator
gets the information from someone else via mention and
subsequently initiates the spreading process to its followers.

C. Dependence on Mention

Given this multiplex representation, we measure the impact
of the mentioned users on the popularity of hashtags. Let us
define the popularity of a hashtag as the number of (re)tweets
it receives. We select few popular hashtags for which we
estimate the popularity reduction by dropping mentions. In
this estimation, first we find the dummy initiators (set D) for
a hashtag ‘#h’ and all the users (set S) who only belong
to the DAGs rooted by dummy initiators. Obviously the
retweet activity of the S ∪ D users is dependent on the
mention layer. If hashtag ‘#h’ is tweeted by total n users,
then mention dependency of ‘#h’ can be measured as (|S∪D|)

n .
Looking at the most popular hashtags (tweets) in Fig. 1(a), 1(b)
we observe that such hashtags (tweets) are heavily mention
dependent.

D. Properties of mentioned nodes

Next we turn our attention to the node level properties of
the mentioned users. This may provide us some guideline to
select proper users to mention.

Impact of popularity and retweet activity: In order to
confirm whether people like to mention popular users, we
plot the proportion of mentioned users with different follower
counts (see Fig. 3(a)). The plot clearly depicts that a significant
fraction of users mention popular people. On the other hand,
Fig. 3(b) shows that the probability of getting a retweet from
a mentioned user reduces sharply if her follower count is
over 1000 (celebrities are choosy in retweeting). This clearly
demonstrates that two opposite forces play a role in tweet
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Fig. 5. The distribution of retweet counts of tweets containing different
number of mentions in “World-Cup” Dataset. The Inset shows how the average
retweet count changes with number of mentions in the tweets.

propagation through mentions; highly popular users are less
likely to retweet but they provide high reachability when they
retweet. In order to measure the combined effect of user
popularity and retweet rate, we introduce expected visibility,
which is the product of follower count and retweet probability
of a mentioned user, and plot its distribution in Fig. 3(c). The
peak of the curve demonstrates the existence of a balance
between popularity and retweet rate, while mentioning some
user.

Impact of content similarity: Content similarity between
the profile of the mentioned user and the posted tweet is an-
other factor which determines the propensity of retweeting. We
compute the expectation that the mentioned user retweets in
the “World-Cup” dataset (see Fig. 4), (a) if the tweet contains
at least one hashtag that she has already posted (expected
probability to retweet 0.029) and (b) if the tweet does not
contain any hashtag which she has already posted (expected
probability to retweet 0.017). Hence if the mentioned user
has already posted the hashtag, her probability to retweet
almost doubles. Moreover, Fig. 4 also reveals that this fact
is independent to the follower count of the mentioned user.

Impact of the number of mentions: Mentioning the correct
number of users is important to gain a high number of
retweets. In the “Egypt” Dataset, we observe that 23.9% of all
tweets in our dataset contain mentions. Out of them 80.5% of
the tweets contain only one mention, 14.7% contain two, 3.2%
contain three and the remaining 1.6% contain more than three.
We also observe similar statistics in the “Algeria” & “World-
Cup” datasets. Fig. 5 highlights the fact that mentioning
few (say 2-3) intended users is always beneficial in gaining
retweets; mentioning too many people makes the tweet content
short and less interesting.

III. SIMULATION MODEL

In this section we model the tweet propagation dynamics
in an epidemiological framework [20]. We validate the model
with respect to the real retweet counts observed in the “Alge-
ria” and “Egypt” datasets. Finally, we investigate the influence
of the individual model parameters on the retweet count.
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A. Model description

We propose a SIR based epidemic model SIRMF to mimic
the propagation of tweets on the mention-follow multiplex
network (Fig. 2). Initially, all the nodes (representing users) are
in the susceptible state. A node v gets infected by a tweet T if
it retweets T in the next timestamp. A node once infected gets
recovered instantaneously in the next timestamp. We assume
that there is only one information (post) propagating in the
system and any node can tweet / retweet it only once. The
simulation stops when no more users can be infected.

In this framework, the infection of a node v for a tweet T is
governed by three factors, (a) v has to be exposed to T , (b) v
has to show interest in T and (c) v must have a certain retweet
rate to retweet T ; even exposed to an interesting tweet, v may
not retweet it. In more details, (a) A node v may get exposed
to T by a node u in two different ways; (i) via follower links:
if u posts T and v is a follower of u, (ii) via mention links:
if v is not a follower of u but u mentions v while posting
T . This forms the structure of the multiplex network (see
Fig. 2). (b) The interest of v in tweet T depends on whether it
has been exposed through mention or follow link. We model
user interests (normalized between [0,1]) with two Poisson
distributions with mean µ1 and µ2 respectively for the posts
received through mention and follow links. Since mentions
are more visible than normal posts, we keep µ1 ≥ µ2. (c)
The retweet rate κv (normalized between [0,1]) of node v is
modeled by a power law distribution with exponent κ [21].

For a node v, we denote the infection rate (probability of
retweeting) through mention links as αv and through follow
links as βv . Notably, in Fig. 2 nodes get infected in the
mention layer with average probability αv = f(κv, µ1v ) and
in the follow layer with average probability βv = f(κv, µ2v ).
The general function f can simply be the product of both
probabilities. One user is allowed to mention on average λ
users in her tweet. The model parameters are summarized in
Table I.

1) Mention Strategies: In SIRMF model, we introduce
three mention strategies, following which the user u can be
chosen for mentioning in a tweet.
Random mention: The user u is chosen uniformly at random
from the set of susceptible users.



Epidemic Propagation Tweet Propagation
Susceptible Users yet to post any tweet or retweet

Getting Infected Tweeting/retweeting a post
Infected Individual User who tweets/retweets a post

Model parameters
κ Exponent of Power-Law distribution

representing user-activity
Infection Probability (via Mention) Probability that v has been mentioned

αu = (κu × µ1u) in post T and v retweets T in
the next timestep.

Infection Probability (via Follow) Probability that v receives the post
βu = (κu × µ2u) from followee and retweets the post

in the next timestep
λ Average Number of users mentioned

in each tweet T

TABLE I
MAPPING THE TERMINOLOGIES AND PARAMETERS OF EPIDEMIC

PROPAGATION & TWEET PROPAGATION.

Smart mention: The user u is chosen preferentially to her
fu × αu score where fu is the follower count of u. Here the
objective is to maximize the expected number users exposed
to that tweet.
Parametric mention: The user u is chosen preferentially
to her (fu × αu)θ score where (θ ∈ [0, 1]) is a tunable
parameter. Admittedly, this is the generic mention strategy;
with θ = 0 & 1, we may emulate the ‘random’ and ‘smart’
mention strategies respectively.

B. Simulation setup and metrics

We simulate the SIRMF model taking the follower net-
works from the “Algeria” and “Egypt” datasets. For all sim-
ulations, we fix λ (except for Fig. 6) to the average number
of mentions in the dataset and κ = −2.5 considering that the
average number of mentions per tweet and the retweet-rate of
users do not change frequently over time [21]. We vary µ1

and µ2 to regulate the probabilities α (avg. of αv) and β (avg.
of βv) respectively. Each result presented here is an average
of 500 simulations.

1) Evaluation Metrics: We introduce the following four
metrics to quantify the tweet propagation dynamics. These
set of metrics will be further applied for evaluating the
performance of different mention recommendation algorithms
in section V:
(a) Retweet count with Mentions (RU ) is the average
number of times tweets containing mentions are retweeted.
In simulations we have a single tweet in the system and that
tweet contains mentions (as λ > 0), therefore RU is simply
the infected population in the network.
(b) Retweet count without Mentions (NU ) is the average
number of times tweets without mentions are retweeted.
(c) Retweet Fraction by Mentioned Users (FM ) is the
average fraction of all the retweets (of the posts containing
mentions) done by the mentioned users. In simulations this
gives the fraction of retweeting users who has received the
tweet via mention links and retweeted it.
(d) Fraction of Mentioned Users Retweeted (FC) is the
fraction of mentioned users who retweeted the post.

Note that NU is not relevant for simulations since we
only simulate tweets with mentions. Similarly FC is not
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an observable metric in simulations; this simply depicts our
model parameter α. However both metrics will play an im-
portant role to evaluate the performance of different mention
recommendation algorithms in section V.

C. Model validation and insights

First we validate the SIRMF model with respect to the
retweet counts (RU ) of the tweets containing mentions in the
“Algeria” & “Egypt” datasets. We implement the ‘Parametric’
mention strategy and simulate the model for each tweet (with a
positive α) on the follower network obtained from the datasets.
In order to run the model, we estimate suitable µ1 and µ2 to
keep the average infection probabilities α and β close to the
real data. Furthermore, we simulate each tweet diffusion with
the same set of initiators and keeping the same number of
mentions (λ) as in the real data. We adjust θ in the model to
compute the total infected population, and fix θ which results
to the best agreement with empirical RU , estimated from the
dataset.

In Fig. 6, we observe a nice agreement between the infected
population of SIRMF model and the real retweet count RU
estimated for both the “Algeria” and “Egypt” datasets. For
most of the tweets, we fix θ ≈ 0, indicating that in reality,
random mention strategy mostly gets followed. Nevertheless,
the Fig. 6 demonstrates the fact that there is ample scope
to boost the retweet count RU by choosing the users to be
mentioned, smartly.

Once we validate SIRMF model with real data, next we
investigate the role of individual parameters on the retweet
count (RU ).

1) Impact of infection rates α and β: Inset of Fig. 7 shows
that under a critical β, the tweet does not gain much retweet.
Once it exceeds the threshold, the total retweet count increases
almost linearly with β. However, the critical threshold value
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of β decreases with increasing α. Similar effects can be seen
if we keep β constant and vary α in X-axis (see Fig. 7). Also
after a threshold value of α, RU increases sharply and that
critical threshold α value lowers if β is higher. Importantly, we
analytically estimate these threshold points in the next section.

In the inset of Fig. 8, we observe that for same α, retweet
fraction by the mentioned users (FM ) is lower for higher β
values. This is intuitive because if β is high, more people
retweet due to follow links which in turn lowers the fraction
FM . We note that FM increases almost linearly with α up to
a point and then converges.

2) Impact of the mention strategies: Fig. 8 shows that
smart mention proves beneficial in low activity environment
(low β). However, increase in β reduces the gap of RU
between the two mention strategies. This is because when
β increases, mention-strategies become less important as
most of the users start to get infected due to only follow links.

IV. ANALYTICAL REPRESENTATION OF
SIRMF MODEL

Inspired by the observation in Fig. 7, where the epidemic
critical threshold exists for α = 0, 0.01, 0.5, we now compute
the epidemic threshold of our SIRMF model by using the
Microscopic Markov Chain Approach (MMCA). The MMCA
equations are derived from the scheme shown in Fig. 9
which describes the transition probability of the states in the
multiplex framework (Fig. 2). At time t, a susceptible user
v on the top (mention) layer gets mentioned by an infected
user and switch its state to mention-susceptible (MS); rest
of the susceptible nodes on the follow (bottom) layer remain
at the unmention-susceptible (US) state. In the next timestep
(t+ 1), both kinds of nodes are allowed to retweet and switch
to infected (I) state. However, there is a possibility that at
time t+ 1 one user v does not get infected and hence switch
back to susceptible (S) state. This event enables v to being
mentioned or unmentioned in the next subsequent steps.

Let A = (avz) denote the adjacency matrix that describes
the follow links between individuals. N is the total number
of individuals. On the follow layer, each individual v has a
certain probability of being in one of the three states at time
t, given by pSv (t), pIv(t) and pRv (t), respectively. Similarly,
on the mention layer, for each (susceptible) individual v, the
probabilities of being in one of the two states are denoted
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w.r.t. RU in “Algeria” dataset.

by pUv (t) and pMv (t), respectively for unmentioned-susceptible
and mentioned-susceptible.

Let the total number of individuals infecting neighbors at
time t be denoted by I(t), that is, I(t) =

∑
v p

I
v(t). Thereby,

the probability that a (susceptible) individual v is in mentioned
state at time t is

pMv (t) =
λI(t)

N
(1)

Since all susceptible users are either mentioned or unmen-
tioned, given an individual v at time t, the probability to be in
the mentioned-susceptible state pMS

v (t) is the product of the
probabilities of being mentioned and susceptible. The same
applies for the unmentioned-susceptible state pUSv (t). Hence

pMS
v (t) = pMv (t)pSv (t) = λI(t)

N pSv (t)

pUSv (t) = (1− pMv (t))pSv (t) = N−λI(t)
N pSv (t)

(2)

The transition probability for a susceptible individual v
not to be infected by any neighbor through a follow link is
rv(t) = Πz(1 − azvp

I
z(t)β) and the probability for v not

to be infected through mention is (1 − α). It follows that
the transition probabilities for an individual v unmentioned-
susceptible (qUSv (t)) or mentioned-susceptible (qMS

v (t)) not
to be infected are

qUSv (t) = rv(t)
qMS
v (t) = rv(t)(1− α)

(3)

By using Eqs. 3, we can develop the Microscopic Markov
Chains for the epidemic spreading process for each node v:

pSv (t+ 1) = pUSv (t)qUSv (t) + pMS
v (t)qMS

v (t) (4)

pIv(t+1) = pUSv (t)(1−qUSv (t))+pMS
v (t)(1−qMS

v (t))−pIv(t)
(5)

pRv (t+ 1) = pRv (t) + pIv(t) (6)

To validate our MMCA based analytical model, we com-
pare them with Monte-Carlo simulation (MC). In MC, each
simulation starts with a single infected node that is randomly
chosen among the individuals, while in MMCA, each in-
dividual is initially infected with probability pIv(0) = 1

N
(pIv(0) ≈ 0.00005 in our simulations). Here, we represent the
fraction of users retweeted as RU . In MC, each simulation



stops when no susceptible node gets infected, while in MMCA,
RU =

∑
pRv (t) when I(t) < 10−7. One can observe in

Fig. 10 that the results based on the two approaches are in
good agreement. We also note that MMCA upper-bounds MC
simulations for a large range of β. This is caused by the
mean field theory (MMCA) which assumes that events are
independent [22].

Since MMCA provides the results that closely approximate
MC simulation, we will derive the epidemic threshold from
MMCA equations. The epidemic threshold determines whether
the epidemic can outbreak or die out. Let us assume the
existence of a critical point βc for fixed parameters: α and λ,
i.e. the epidemic will die out if β < βc. The calculation of this
critical point is performed by considering that when β → βc,
the probability of nodes being infected pIv ≈ εv � 1. The
smaller the probability of nodes being infected, the faster the
epidemic dying out. Consequently, qUSv ≈ 1 − β

∑
z avzεz ,

qMS
v ≈ 1 − α − β

∑
z avzεz and pMv =

λ
∑

z
εz

N ≈ λεv .
Inserting this and Eqs. 2 in Eq. 5, we obtain

εv = (pUSv + pMS
v )β

∑
z avzεz + αpMS

v

= pSv [β
∑
z avzεz + αλεv]

and therefore,∑
v

[
avz −

δvz(
1
pSv
− αλ)

β

]
εv = 0, (7)

where δvz are the elements of the identity matrix such that
δvz = 1 if v = z; otherwise, δvz = 0. We can rewrite the
solution of Eq. 7 into the form: A = 1−αλ

β IN by taking place
for t → 0 and pSv (0) → 1. According to Frobenius theorem,
the vector A is equal to the vector IN = (δvz) only if 1−αλ

β is
equal to the maximum eigenvalue of A denoted by Λmax(A).
Hence

β × Λmax(A) + αλ = 1 (8)

Intuitive Justification: Basically the terms in the left hand
side of Eq. 8 represents the contribution of follow-links and
mention-links on the total number of infected users. The infec-
tion via follow-links depends on two factors - (i) the density
of the follow-network (represented by Λmax(A)) and (ii) the
probability of retweeting via follow-links i.e. β. Similarly, the
infection via mention-links depends on the average number of
mentions per tweet i.e. λ and the probability of retweeting via
mention-links i.e. α. For both the terms if any of the factor is
0, the contribution of that part will be nullified regardless of
how big the other factor is. For example, if α is 0 even if λ
is very high, there will be no infection via mention-links and
vice versa.

Eq. 8 is the key equation of our analysis which can be used
to derive critical values of both α and β. For example, from
Eq. 8 critical β can be derived as

βc =
1− αλ

Λmax(A)
(9)

Note that βc not only depends on the eigenvalue Λmax(A),

Content Attributes Behavioral Attributes
#Words per tweet #Followees

#Characters per tweet #Followers
#URLs per tweet #Followers/#followees

#Hashtags per tweet #Tweets
#Users mentioned per tweet Age of account

#Retweets per tweet #times mentioned

TABLE II
EXAMPLES OF CONTENT AND BEHAVIORAL ATTRIBUTES USED FOR

SPAMMER DETECTION
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Fig. 11. Probabilities of mentioning users with different relations (reciprocal
followers are denoted as ‘Friends’ here) and their probabilities of retweeting
in “Egypt” dataset. Inset shows the annotators’ major reasons of labeling users
as spammers for “Egypt” dataset.

but also on α and λ. For α > 1
λ , βc does not exist.

Next, we compare our computed critical epidemic threshold
to the result obtained by using MC simulation, as shown in
Fig. 7. Considering that MMCA upper-bounds MC simula-
tions, the epidemic threshold obtained by MC will be larger
than βc given by Eq. 9. We extend Eq. 9 for MC simulations
by following our observation and [22], which is

βMC
c =

1− αλ
0.7Λmax(A)

(10)

.
We obtain Λmax(A) ≈ 117.5 for the follow network of

Algeria dataset. Consequently, for α = 0, βMC
c = 0.012 ; for

α = 0.1, βMC
c = 0.0097; for α = 0.5, βMC

c = 0. Hence
this is nice to observe that the results derived from Eq. 10
and our MC simulations in Fig. 7 are identical. Their good
agreement verifies the effectiveness of our computed critical
epidemic threshold. Similar agreement holds for critical α too.

V. EASY-MENTION: RECOMMENDATION HEURISTIC

In this section, we propose a Mention Recommendation
heuristic named Easy-Mention which is easily deployable in
online systems. The design of the Easy-Mention is mostly
driven by the insights obtained from the model proposed in
the previous sections. We show its effectiveness by comparing
it with the benchmark algorithms.

A. Development of Easy-Mention

The objective of the Easy-Mention heuristic is to recom-
mend the user, while she posts a tweet, the best set of users
to mention in order to boost the retweet count of that tweet.
Hence, the input of the heuristic is the submitted tweet and



the output is a ranked list of users to be mentioned. The three
major stages of this recommendation are the following.

1) Detect spammers: The first stage of Easy-Mention is
to protect the application from the malicious users. It is
expected that any mention recommendation system has a high
potential to be exploited by spammers for spreading their
spam tweets. We implement a spammer detection algorithm
(inspired from [23]) at the first stage, to refrain spammers
from using our service2. If this stage detects one user as a
potential spammer, Easy-Mention terminates immediately. In
this spammer detection algorithm, we crawl her recent tweets
and focus on the following two class of features.

Content attributes: Content attributes are features of the
tweet text posted by the users, which capture specific proper-
ties related to the way people write tweets. Studies show that,
in general, spammers post tweets with higher number of hyper-
links, mentions and hashtags compared to non-spammers [23].
We analyze the tweet content characteristics based on the
maximum, minimum, average, and median of the features
shown in Table. II. In total, we consider 39 attributes related
to the content of tweets for spammer classification.

Behavioral attributes: Behavioral attributes capture spe-
cific features connected to user behavior in terms of the posting
frequency, social interactions and influence on the Twitter
network. Admittedly, spammers have a lower followers to
followees ratio than non-spammers and they generally posses
recent accounts (less age) since Twitter continuously suspends
potential spammers [23]). We consider 23 different features
connected to user’s behavioral attributes as summarized in
Table. II.

We evaluate the performance of the algorithm on the “Alge-
ria” and “Egypt” datasets; the major challenge is the ground
truth labeling of spammers and non-spammers. We train our
model on a labeled spammer dataset available in [23]3. The
model classifies 537 out of 20268 users in “Algeria” dataset
and 27 out of 20092 users in “Egypt” dataset as spammers.
During validation, this is comforting for us to notice that
10% of the detected accounts have already been suspended
by Twitter. For the remaining 90% of the accounts detected as
spammers, we perform a human survey with 3 volunteers and
they labeled 89% of them as true spammers unanimously by
manually going through their profiles. Their justification and
rationale are summarized in the inset of Fig. 11. In summary,
stage I efficiently performs the spammer detection in our
datasets.

2) Identify the candidate users: In stage II, we narrow down
the search space for ranking and recommending the users to
be mentioned. This includes two steps. In the first step, we
identify the keywords in the submitted tweet (hashtags and
proper nouns) and search for the followers and followees,
who recently posted them. This is a quick way to collect a
reasonable set of active users who are interested in the post.
In general, we find that if users are mentioned within one hop

2The details of the spammer detection methodology is out of the scope of
this paper.

3http://homepages.dcc.ufmg.br/∼fabrico/spammerscollection.html

neighborhood (happens in 50% of cases), they have higher
probabilities of retweeting (see Fig. 11). Moreover, selecting
the candidates from the one hop neighbors may significantly
reduce the spamming threat for Easy-Mention.

In the second step, we exploit the critical thresholds ob-
tained in SIRMF model to further narrow down the candidate
set. Specificality, we leverage on Eq. 10 and remove all the
candidate users with α below the estimated threshold, from the
candidate set. This step enhances the quality of the candidate
set by keeping only the promising nodes (for virality) in the
set. In case, we fail to find any suitable user with α above the
critical threshold, we go ahead with the candidate set obtained
in the first step and flash suitable warning message to the end
user regarding the possibility of ‘non-cascading behavior’ of
the post. This warning may help the user in deciding on the
suitability and usefulness of the recommendation.

3) Calculating a score for each candidate user: In stage III,
Easy-Mention assigns a quality score to each candidate user u.
This score basically signifies the expected gain in popularity of
tweet T , if u is mentioned in T . The data study and SIRMF

model show that the following factors may regulate the quality
score (i) follower count (fP ): this is motivated from the smart
mention strategy described in the previous section (ii) retweet
rate (fR): this factor captures the general retweet rate of an
user. This is motivated from the retweet rate β of the SIRMF

model (iii) the content similarity (fI ) between the posted tweet
T and the profile of the mentioned user u: a mentioned user
with higher content similarity has high propensity to retweet.
This essentially captures the notion of α in SIRMF model.

Finally, the score S(u, T ) is computed for each candidate
user u related to a submitted tweet T . In order to estimate the
score S(u, T ), we simply use the regression models to suitably
combine the key features fP (u), fR(u) and fI(u, T ) (fP (u)
is u’s normalized follower-count, fR(u) is her normalized
retweet rate and fI(u, T ) is the similarity between the profile
of u and the tweet T ) to optimize ‘Relevance’ introduced in
[13]. Relevance of a user-tweet pair (say, u & T ) is calculated
as the sum of the follower counts of the (re)tweeting users in
the cascade subtree (of tweet T ) rooted by u. In other terms,
relevance for a user-tweet pair measures the visibility brought
by the user u to the tweet T .

To represent the profile of u in real-time, we use the
term-vector TVu created from the words (after stemming and
stopwords-removal) in u′s past retweets4. In the same way,
we create another term-vector TVT for the submitted tweet T
and finally calculate fI(u, T ) as the cosine-similarity between
these two term vectors (TVu & TVT ). The score S(u, T )
assigned to each user u prepares the ranked list of candidate
mention users who maximize the expected visibility.

B. Experimental setup

Now we aim to evaluate the performance of Easy-Mention
with the competing benchmark algorithms. In order to accom-
plish the task, first (a) we implement a standard retweet model

4In the evaluation experiments, we compose the profile of a user from all
her retweets in the dataset.
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for “Algeria” and “Egypt” datasets.

which simulates the propagation of the tweets via retweet
activity. Next (b) on top of the retweet model, we implement
the mention recommendation algorithms to evaluate the per-
formance of Easy-Mention.

1) Retweet Model: We choose a well-accepted retweet
model by Vespignani et al. [24]. It basically deals with com-
peting memes in social networks and employs a parsimonious
agent based model to study whether such a competition may
affect the popularity of different memes. Since this is only
a retweet model and does not handle the mention utility
separately, we adapt it to include the mention utility in the
following way. First we construct a tweet corpus DT from
each of the “Algeria” and “Egypt” datasets such that only 50%
of tweets contain mentions. In order to post a new tweet or
retweet, one user is chosen preferentially based on her retweet
rate. If she chooses to post a new tweet, one tweet is selected
randomly from DT and she tweets the post with the same
number of mentions (including zero) as in the original tweet.
The specific users to be mentioned in that tweet is regulated by
the specific “mention-recommendation” algorithm. The other
possibility is that she opts to retweet an already received
post. For each user u, we maintain a ‘screen window’ and
a ‘mention window’ where tweets received via follow links
(retweet from the followees of u) and tweets received via
mention links (tweets where u has been mentioned) are stored
respectively. If the selected user u chooses to retweet, one of
these two windows is chosen based on its similarity with the
profile of u (computed as cosine-similarity of term vectors)
and then the most similar post (with respect to u’s profile) in
that window is retweeted. However, there is a fair possibility
of not retweeting any post, if the context similarity is below
a threshold. The value of the threshold is fixed externally
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Dataset Algorithms RU FM RU - FC
NU

“Algeria” Easy-Mention 2.52 0.136 0.69 0.087
Whom-To-Mention[13] 1.77 0.012 -1.31 0.024

”Egypt” Easy-Mention 2.32 0.588 1.22 0.195
Whom-To-Mention[13] 1.38 0.307 -0.19 0.029

TABLE III
METRIC VALUES FOR DIFFERENT MENTIONING STRATEGIES APPLIED ON

“ALGERIA” AND “EGYPT” DATASETS.

depending on the tweet environment.
In order to validate, we simulate this retweet model on “Al-

geria” & “Egypt” datasets with posts containing no mentions.
It is comforting for us to observe that the result explains
the heterogeneity in the tweet popularity distribution with
reasonable accuracy (see Fig. 12). Now we are ready to use
this retweet model to evaluate the performance of different
mention recommendation heuristics.

2) Competing algorithms: On top of this retweet model,
we apply the proposed mention recommendation heuristic
Easy-Mention and compare its performance with the baseline
algorithms Whom-to-mention [13] and Random-mention. The
outline of the baseline algorithms are given below
1. Whom-to-Mention: To the best of our knowledge,
Whom-To-Mention [13] is currently the most widely accepted
state-of-the-art mention recommendation algorithm. In this
algorithm, whenever a user u wishes to mention somebody in
her tweet T , all the users in Twitter are considered as potential
users to mention. In order to rank these potential users, three
types of features are extracted - (a) Interest-match between
the post and users’ recent tweets (b) Social-Tie and (c) User
influence. Finally an SVR (Support Vector Regression) based
system is used to rank these users, taking into account the
average depth of the retweet cascades created by them.
2. Random Mention: This is a baseline algorithm where the
recommended users to be mentioned are chosen randomly
from the set of users in the dataset.

C. Performance evaluation

Finally, we perform the experiments on the “Algeria” and
“Egypt” datasets (tweets and follower network); the evaluation
metrics are already introduced in the section III. In this
experiment, while posting a tweet T , we remove the original
mentions from the tweet T and replace each mention by the



username selected by the specific mention recommendation
algorithm. To ensure fairness, we keep the same number of
mentioned users in each tweet as in the original tweet. Once
the users to be mentioned are identified, we simulate the
retweet model.

Fig. 13 clearly illustrates the fact that Easy-Mention outper-
forms the other competing algorithms in achieving tweets with
higher retweet counts. Delving into the details, in Table. III
we enumerate the observed evaluation metrics for different
mentioning algorithms. Table. III uncovers the rationale behind
the superiority of the Easy-Mention. It can be clearly observed
that Easy-Mention is able to mention those users who not
only frequently retweet that post (high FC) but also are
popular enough to give the tweet high visibility (the average
follower count of users recommended by Easy-Mention is
158.4 whereas the same for Whom-To-Mention & Random-
Mention are 93.1 & 28.2 respectively). This in turn helps Easy-
Mention to achieve more retweets for the posts with mentions
(RU ) than posts without mentions (NU ). Moreover, Fig. 14
points to the fact that, the mentioned users in case of Easy-
Mention retweets more frequently compared to the competing
algorithms; this directly contributes to the cascade size. In
summary, all these properties help Easy-Mention to popularize
tweets effectively by creating more cascades and larger ones.
Importantly, Eq. 10 confirms virality of 86.5% of the tweets
while using Easy-mention and the tweets satisfying this criteria
get on average 30% more retweets than others.

VI. CONCLUSION

In this paper, we offer an in-depth study on explaining the
role of mentions on tweet virality. We have identified that
a significant fraction (sometimes even up to 50%-60%) of
retweets might disappear if people stop using mentions (see
Fig. 1(a), 1(b)). In order to have a detailed understanding, we
have proposed a SIR based epidemic model SIRMF to mimic
the propagation of tweets on the mention-follow multiplex
framework. Using a novel MMCA based analytical model, we
have identified the critical threshold on retweet-rates (α & β),
regulating the role of mention utility on tweet cascading
effect. Exploiting the insights obtained from the motivational
studies and modeling experiments, we have extracted the
following three key-parameters controlling the effectiveness of
mentioning: follower-count, retweet-rate & content-similarity
and proposed our Easy-Mention recommendation heuristic. We
have shown that the proposed approach outperforms the state
of the art Whom-To-Mention algorithm [13] in the yardstick of
performance. Nevertheless, the state of the art ‘Influence max-
imization’ algorithms ([12], [8]) may open up new possibilities
for further improvement of the Easy-Mention heuristic.
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