Reasoning about big enough numbers in Coq

Cyril Cohen

INRIA Saclay—ile-de-France,
LIX Ecole Polytechnique
Microsoft Research - INRIA Joint Centre
cohen@crans.org

Abstract. This proposal shows a way to deal with the mathematical
idiom “big enough” in the CoQ proof assistant. It is indeed difficult to
use this idiom concisely in formalized constructive analysis. We describe
a tactic and a proof style to keep the reasoning as close as possible to the
paper mathematics style. The methodology was built for and successfully
applied to a construction of real algebraic numbers.

Introduction

In analysis, we use the idiom “for big enough values of n ...”. This presentation
does not exhibit the values that this “big” n could take. Of course, the user can
manually enter himself a value. The success in stating a value vouches for the
non circularity of the definition, and the success in completing the proof with
it demonstrates that it was big enough indeed. However, the proof is usually
independent from the actual value of n and depends only on its existence.

Statements of intermediate lemmas can be presented in such a way that
the constraints on n appear explicitly in the proof and could be detected auto-
matically. In order to implement this, we rely on C0OQ existential variables: an
existential variable can be created at the beginning of the proof and set a poste-
riori. We build a CoqQ tactic that updates the value of this existential variable.
We successfully applied this methodology to the construction of real algebraic
numbers [1], which full development is available at http://perso.crans.org/
cohen/work/realalg.

1 A traditional and a CoQ presentation

Let us consider the proof of the following statement: Given two Cauchy sequence
(n)n and (yp)n, if limy, o0 Tpyn # 0 then lim, o yn # 0.

The standard proof would be: since lim,, oo ZnYyn # 0 there exists N; and d;
such that x,y, > 01 for all n > N;. And since z,, is a Cauchy sequence, there

exists Ny and da, such that |z,| < d2 for all n > Ns. So for all n > max(Ny, Na),
(yn)n stays greater than g—; which completes the proof.
The CoQ presentation is almost the same except that the existence of §; and

0o are respectively rephrased this way:

http://perso.crans.org/cohen/work/realalg
http://perso.crans.org/cohen/work/realalg

Lemma lboundP (x : creal) (x_neq0 : x #0) i :
cauchymod x (lbound x_neq0) < i — lbound x_neq0 < |x il.
Lemma uboundP (x : creal) i : |x i| < ubound x.

In order to prove that lim,,_,, ¥, # 0, we pose a big enough n and show that
for all i > n, (1bound xy_neqO / ubound x < |y il)

At some point the application of the lemma lboundP generates the subgoal
(cauchymod (x * y) (lbound xy_neq0) < i) which happens to be solvable
by updating n to be at least the value on the left hand side of the inequality.

2 Methodology and implementation

A number falls into the “big enough” category if any bigger number would fit
too. Thus, we create in the context a variable i defined as (max_seq 7s), the
maximum of an existential sequence ?s. Then, the update consists in the instan-
tiation of ?s using (n :: 7s’) where n is the new value. We build a tactic big
that finds occurrences of terms of the form (n < i) in the goal and replaces
them by true and adds n to 7s.

In order to use this tactic we must ensure that any lemma we will use on a
“big enough” number ¢ will defer all the constraints on 7 as side conditions of the
form n < 4, as for example in 1boundP. The reader may also look at definitions
of cauchymodP, diffP, le_crealP, ... which are stated the same way.

We implemented the tactic in Ltac. It relies on SSREFLECT pattern selection
mechanism [2] to ensure the robustness of our tactic: we select sequentially all
the subterms of the form n < ¢, and try to apply our tactic to each of them.

We also had to deal with an issue in the version 8.3 of COQ where one cannot
instantiate evars when no goal remains. Thus, we artificially created a logical cut
when creating the evar, so that the user is prompted with a trivial goal in the end,
during the resolution of which he could set the tail of the existential sequence
to be the empty list.

3 Conclusion

Our tactic helps the user to reason like in paper mathematics by letting him
pose an arbitrary big value and explain latter why it can be big enough. We
successfully applied this method to a construction of real algebraic numbers.

This tactic uses integers, but it might be interesting to generalize it to “small
enough” element, even though in an Archimedian domain, it could be simulated
by % for a big enough n. We could also generalize this for any lattice.

References

1. Cohen, C.: Construction of real algebraic numbers in Coq. In: Proceedings of ITP
2012 (2012), to appear

2. Gonthier, G., Tassi, E.: A language of patterns for subterm selection. In: Proceedings
of ITP 2012 (2012), to appear

