
A Coq Formalization of Finitely Presented
Modules

Cyril Cohen and Anders Mörtberg

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

{cyril.cohen,anders.mortberg}@cse.gu.se

Abstract. This paper presents a formalization of constructive module
theory in the intuitionistic type theory of Coq. We build an abstraction
layer on top of matrix encodings, in order to represent finitely presented
modules, and obtain clean definitions with short proofs justifying that it
forms an abelian category. The goal is to use it as a first step to compute
certified topological invariants, like homology groups and Betti numbers.

Keywords: Formalization of mathematics, Homological algebra, Con-
structive algebra, Coq, SSReflect

1 Introduction

Homological algebra is the study of linear algebra over rings instead
of fields, this means that one consider modules instead of vector spaces.
Homological techniques are ubiquitous in many branches of mathematics
like algebraic topology, algebraic geometry and number theory. Homol-
ogy was originally introduced by Henri Poincaré in order to compute
topological invariants of spaces [23], which provides means for testing
whether two spaces cannot be continuously deformed into one another.
This paper presents a formalization1 of constructive module theory in
type theory, using the Coq proof assistant [7] together with the Small
Scale Reflection (SSReflect) extension [13], which provides a potential
core of a library of certified homological algebra.

In a previous work one of the authors explored ways to compute ho-
mology groups of vector spaces [17,18] in Coq. When generalizing this
to commutative rings the universal coefficient theorem of homology [15]
states that most of the homological information of a module over a ring
R can be computed by only doing computation with elements in Z. This
means that if we were only be interested in computing homology it would
not really be necessary to develop the theory of modules in general but
instead do it for Z-modules which are well behaved because any matrix
can be put in Smith normal form. However, by developing the theory
for general rings it should be possible to implement and reason about

1 The formal development is at: http://perso.crans.org/cohen/work/fpmods/

http://perso.crans.org/cohen/work/fpmods/

other functors like cohomology, Ext and Tor as in the Homalg computer
algebra package [3].

In [12], Georges Gonthier shows that the theory of finite dimensional
vector spaces can be elegantly implemented in Coq by using matrices
to represent subspaces and morphisms, as opposed to an axiomatic ap-
proach. The reason why abstract finite dimensional linear algebra can
be concretely represented by matrices is because any vector space has a
basis (a finite set of generators with no relations among the generators)
and any morphism can be represented by a matrix in this canonical basis.
However, for modules over rings this is no longer true2, this means that
the matrix-based approach cannot be directly applied when formalizing
module theory. This is why we restrict our attention to finitely gener-
ated modules that are finitely presented, that is, modules with a finite
number of generators and a finite number of relations among these gen-
erators. In constructive module theory one usually restricts attention to
this kind of modules and all algorithms can be described by manipulating
the presentation matrices [10,14,20,22]. This paper can hence be seen as
a generalization of the formalization of Gonthier to modules over rings
instead of fields.

At the heart of the formalization of Gonthier is an implementation
of Gaussian elimination which is used in all subspace constructions. In
particular from it we can compute the kernel which characterizes the
space of solutions of a system of linear equations. However when doing
module theory over arbitrary rings, there is no general algorithm for
solving systems of linear equations. This is why we restrict our attention
to modules over coherent and strongly discrete rings, as is customary in
constructive algebra [20,22], which means that we can solve systems of
equations.

The main contributions of this paper are the representation of finitely
presented modules over coherent strongly discrete rings (Sect. 2), basic
operations on these modules (Sect. 3) and we show that the collection of
these modules and morphisms forms an abelian category (Sect. 4), which
means that it is a suitable setting for developing homological algebra. We
have also proved that, over Bézout domains where every matrix has a
Smith normal form, it is possible to test if two finitely presented mod-
ules represent isomorphic modules (Sect. 5). (Examples of such Bézout
domains are principal ideal domains like Z and k[x] where k is a field).

2 Finitely presented modules

As mentioned in the introduction, a module is finitely presented if it can
be given by a finite set of generators and relations. This is traditionally
expressed as:

Definition 1. A R-moduleM is finitely presented if there is an exact
sequence:

2 Consider the ideal (X,Y) of k[X,Y], it is a module generated by X and Y which is
not free because XY = Y X.

Rm1 Rm0 M 0M π

More precisely, π is a surjection and M a matrix representing the m1

relations among the m0 generators of the module M. This means that
M is the cokernel of M :

M' coker(M) = Rm0/im(M)

Hence a module has a finite presentation if it can be expressed as
the cokernel of a matrix. As all information about a finitely presented
module is contained in its presentation matrix we will omit the surjection
π when giving presentations of modules.

Example 1. The Z-module Z⊕ Z/2Z is given by the presentation:

Z Z2 Z⊕ Z/2Z 0

(
0 2
)

as if Z ⊕ Z/2Z is generated by (e1, e2) there is one relation, namely
0e1 + 2e2 = 2e2 = 0.

Operations on finitely presented modules can now be implemented by
manipulating the presentation matrices, for instance if M and N are
finitely presented R-modules:

Rm1 Rm0 M 0 Rn1 Rn0 N 0M N

the presentation of M⊕N is given by:

Rm1+n1 Rm0+n0 M⊕N 0

M 0

0 N



We have represented finitely presented modules in Coq using the
datastructure of matrices from the SSReflect library which is defined
as:

Inductive matrix R m n := Matrix of {ffun ’I_m * ’I_n -> R}.

(* With notations: *)

(* ’M[R]_(m,n) = matrix R m n *)

(* ’rV[R]_m = ’M[R]_(1,m) *)

(* ’cV[R]_m = ’M[R]_(m,1) *)

where ’I_m is the type ordinal m which represents all natural numbers
smaller than m. This type has exactly m inhabitants and can be coerced
to the type of natural numbers, nat. Matrices are then represented as
finite functions over the finite set of indices, which means that dependent
types are used to express well-formedness. Finitely presented modules are
now conveniently represented using a record containing a matrix and its
dimension:

Record fpmodule := FPModule {

nbrel : nat;

nbgen : nat;

pres : ’M[R]_(nbrel, nbgen)

}.

The direct sum of two finitely presented modules is now straightfor-
ward to implement:

Definition dsum (M N : fpmodule R) :=

FPModule (block_mx (pres M) 0 0 (pres N)).

Here block_mx forms the block matrix consisting of the four subma-
trices. We now turn our attention to morphisms of finitely presented
modules.

2.1 Morphisms

As for vector spaces we represent morphisms of finitely presented mod-
ules using matrices. The following lemma states how this can be done:

Lemma 1. If M and N are finitely presented R-modules given by pre-
sentations:

Rm1 Rm0 M 0 Rn1 Rn0 N 0M N

and ϕ : M → N a module morphism then there is a m0 × n0 matrix
ϕG and a m1×n1 matrix ϕR such that the following diagram commutes:

Rm1 Rm0 M 0

Rn1 Rn0 N 0

M

ϕR ϕG ϕ

N

For a proof of this see Lemma 2.1.25 in [14]. This means that mor-
phisms between finitely presented modules can be represented by pairs
of matrices. The intuition why two matrices are needed is that the mor-
phism affects both the generators and relations of the modules, hence
the names ϕG and ϕR.

In order to be able to compute for example the kernel of a morphism of
finitely presented modules we need to add some constraints on the ring R
since, in general, there is no algorithm for solving systems of equations.
The class of rings that we want to consider are coherent and strongly
discrete which means that it is possible to solve systems of equations, in
Homalg these are called computable rings [2] and form the basis of the
system.

2.2 Coherent and strongly discrete rings

Given a ring R (in our setting commutative but it is possible to consider
non-commutative rings as well [2]) we want to study the problem of

solving linear systems over R. If R is a field we have a nice description
of the space of solution by a basis of solutions. Over an arbitrary ring R
there is in general no basis.3 An important weaker property is that there
is a finite number of solutions which generate all solutions.

Definition 2. A ring is (left) coherent if for any matrix M it is pos-
sible to compute a matrix L such that:

XM = 0 ↔ ∃Y.X = Y L

This means that L generates the module of solutions of XM = 0,
hence L is the kernel of M . For this it is enough to consider the case
where M has only one column [20]. Note that the notion of coherent
rings is not stressed in classical presentations of algebra since Noetherian
rings are automatically coherent, but in a computationally meaningless
way. It is however a fundamental notion, both conceptually [20,22] and
computationally [3].

One of the authors previously represented coherent rings in Coq [8],
however there are some minor differences in this implementation in or-
der to make it convenient to work with finitely presented modules. One
difference is that in the previous presentation only right coherent rings
(the indeterminate were on the right, i.e. MX = 0) were represented
while here we have left coherent rings. The reason is that SSReflect
takes the convention that composition of linear applications is done in
diagrammatic order (i.e. in the order they appear in the diagram).

In the development, coherent rings have been implemented as in [11]
using the Canonical Structure mechanism of Coq. As matrices are
represented using dependent types denoting their size this need to be
known when defining coherent rings. In general the size of L cannot be
predicted, so we include an extra function to compute this:

Record mixin_of (R : ringType) : Type := Mixin {

dim_ker : forall m n, ’M[R]_(m,n) -> nat;

ker : forall m n (M : ’M_(m,n)), ’M_(dim_ker M,m);

_ : forall m n (M : ’M_(m,n)) (X : ’rV_m),

reflect (exists Y, X = Y *m ker M) (X *m M == 0)

}.

Here *m denotes matrix multiplication and == is the boolean equality
of matrices, so the specification says that this equality is equivalence to
the existence statement. An alternative to having a function computing
the size would be to output a dependent pair but this has the undesirable
behavior that the pair has to be destructed when stating lemmas about
it, which in turn would make these lemmas cumbersome to use as it
would not be possible to rewrite with them directly.

An algorithm that can be implemented using ker is the kernel mod-

ulo a set of relation, that is, computing ker(Rm
M−→ coker(N)). This is

3 For instance over the ring R = k[X,Y, Z] where k is a field, the equation pX +
qY + rZ = 0 has no basis of solutions. It can be shown that a generating system of
solutions is given by (−Y,X, 0), (Z, 0,−X), (0,−Z, Y).

equivalent to finding a X such that ∃Y,XM+Y N = 0, which is the same
as solving (X Y)(M N)T = 0 and returning the part of the solution that
corresponds to XM . We denote this as kerN (M) and as N.-ker(M) in
the formalization. Note that this is a more fundamental operation than
taking the kernel of a matrix in the since XM = 0 is also equivalent to
∃Y,X = Y ker0(M)

In order to test if a module is zero we also need to be able to solve
systems of the kind XM = B where B is not zero. In order to do this we
need to introduce another kind of rings that are important in constructive
algebra:

Definition 3. A ring R is strongly discrete if membership in finitely
generated ideals is decidable and if x ∈ (a1, . . . , an) there is an algorithm
computing w1, . . . , wn such that x =

∑
i aiwi.

Examples of such rings are multivariate polynomial rings over fields
with decidable equality (via Gröbner bases) and Bézout domains (for
instance Z and k[x]). This kind of rings has been implemented in a similar
way as coherent rings.

If a ring is both coherent and strongly discrete it is not only possible
to solve homogeneous systems XM = 0 but also any system XM = B
where B is an arbitrary matrix with the same number of columns as M .
This operation can be seen as division of matrices as:

Lemma dvdmxP m n k (M : ’M[R]_(n,k)) (B : ’M[R]_(m,k)) :

reflect (exists X, X *m M = B) (M %| B).

Here %| is notation for the function computing the particular solution
to XM = B, returning None in the case that a solution does not exist.
We have developed a library of divisibility of matrices with lemmas like

Lemma dvdmxD m n k (M : ’M[R]_(m,n)) (N K : ’M[R]_(k,n)) :

M %| N -> M %| K -> M %| N + K.

which follow directly from dvdmxP. This can now be used to give a nicer
representation of morphisms of finitely presented modules and the divi-
sion theory of matrices gives short and elegant proofs about operations
on morphisms.

2.3 Finitely presented modules over coherent strongly
discrete rings

As mentioned before, morphisms between finitely presented R-modules
M and N can be represented by a pair of matrices. However when R is
coherent and strongly discrete it suffices to only consider the ϕG matrix
as ϕR can be computed by solving XN = MϕG, which is the same
as testing N | MϕG. In Coq this means that morphisms between two
finitely presented modules can be implemented as:

Record morphism_of (M N : fpmodule R) := Morphism {

matrix_of_morphism : ’M[R]_(nbgen M,nbgen N);

_ : pres N %| pres M *m matrix_of_morphism

}.

(* With notation: *)

(* ’Mor(M,N) := morphism_of M N *)

Using this representation we can easily define the identity morphism
(idm) and composition of morphisms (phi ** psi) and show that these
form a category. We also define the zero morphism (0) between two
finitely presented modules, the sum (phi + psi) of two morphisms and
the negation (- phi) of a morphism, respectively given by the zero ma-
trix, the sum and the negation of the underlying matrices. As everything
is based on matrices, it is straightforward to prove using the divisibility
theory of matrices that this is a pre-additive category (i.e. the hom-sets
form abelian groups).

However, morphisms are not uniquely represented by an element of
’Mor(M,N), but it is possible to test if two morphisms ϕ ψ : M → N are
equal by checking if ϕ− ψ is zero modulo the relations of N .

Definition eqmor (M N : fpmodule R) (phi psi : ’Mor(M,N)) :=

pres N %| phi%:m - psi%:m.

(* With notation: *)

(* phi %= psi = eqmor phi psi *)

As this is an equivalence relation it would be natural to either use Coq
setoid mechanism [4,24] or quotients [6] in order to avoid applying sym-
metry, transitivity and compatibility with operators (e.g. addition and
multiplication) by hand where it would be more natural to use rewriting.
We have begun to rewrite the library with quotients as we would get a
set of morphisms (instead of a setoid), which is closer to the standard
category theoretic notion.

3 Monomorphisms, epimorphisms and
operations on morphisms

A monomorphism is a morphism ϕ : B → C such that whenever there
are ψ1, ψ2 : A → B with ψ1ϕ = ψ2ϕ then ψ1 = ψ2. When working
in pre-additive categories the condition can be simplified to, whenever
ψϕ = 0 then ψ = 0.

Definition is_mono (M N : fpmodule R) (phi : ’Mor(M,N)) :=

forall (P : fpmodule R) (psi : ’Mor(P, M)),

psi ** phi %= 0 -> psi %= 0.

Record monomorphism_of := Monomorphism {

morphism_of_mono :> ’Mor(M, N);

_ : kernel morphism_of_mono %= 0

}.

(* With notation: *)

(* ’Mono(M,N) = monomorphism_of M N *)

It is convenient to think of monomorphisms B → C as defining B
as a subobject of C, so a monomorphism ϕ : M → N can be thought
as a representation of a submodule M of N . However, submodules are
not uniquely represented by monomorphisms even up to equality (%=) of
morphism. Indeed, multiple monomorphisms with different sources can
represent the same submodule. Although “representing the same sub-
module” is decidable in our theory, introducing the notion of submodules
is not mandatory to develop it and we chose not to.

Intuitively monomorphisms correspond to injective morphisms (i.e.
with kernel being zero) we would expect that for finitely presented mod-
ules this these two notions coincide. The dual notion of monomorphisms
are epimorphisms which intuitively correspond to surjective morphisms
(i.e. with cokernel being zero). A priori it is not clear that these notions
coincide for finitely presented modules. The goal of this section is to
clarify this by defining when a finitely presented module is zero, how to
compute kernels and cokernels, and the correspondence between injective
(resp. surjective) functions and mono- (resp. epi-) morphisms.

3.1 Testing if finitely presented modules are zero

As a finitely presented module is the cokernel of a presentation matrix we
have that if the presentation matrix of a module is the identity matrix of
dimension n×n the module is isomorphic to n copies of the zero module.
Now consider the following diagram:

Rm0 Rm0 0m0 0

Rm1 Rm0 M 0

Im0

X Im0

M

which commutes if ∃X,XM = Im0 , i.e. when M | Im0 . Hence this
gives a condition that can be tested in order to see if a module is zero or
not.

3.2 Computing the kernel of a morphism

In order to compute the kernel of a morphism the key observation is that
there is a commutative diagram:

0

Rk1 Rk0 ker(ϕ) 0

Rm1 Rm0 M 0

Rn1 Rn0 N 0

kerM (κ)

X kerN (ϕG)=κ

M

ϕR ϕG ϕ

N

It is easy to see that κ is a monomorphism, which means that the
kernel is a submodule of M as expected. In Coq this is easy to define:

Definition kernel (M N : fpmodule R) (phi : ’Mor(M,N)) :=

mor_of_mx ((pres N).-ker phi).

Where mor_of_mx takes a matrix K with as many columns as M and
builds a morphism from kerM (K) to M . Using this it is possible to test
if a morphism is injective:

Definition injm (M N : fpmodule R) (phi : ’Mor(M,N)) :=

kernel phi %= 0.

We have proved that a morphism is injective if and only if it is a
monomorphism:

Lemma monoP (M N : fpmodule R) (phi : ’Mor(M,N)) :

reflect (is_mono phi) (injm phi).

3.3 Computing the cokernel of a morphism

The presentation of the cokernel of a morphism can also be found by
looking at a commutative diagram:

Rm1 Rm0 M 0

Rn1 Rn0 N 0

Rm0+n1 Rn0 coker(ϕ) 0

0

M

ϕR ϕG ϕ

N

X In0
ϕG

N



Note that the canonical surjection onto the cokernel is given by the
identity matrix. The fact that this is a morphism is clear as X may be(
0 In1

)
. However, before defining this we can define the more general op-

eration of quotienting a module by the image of a morphism by stacking
matrices:

Definition quot_by (M N : fpmodule R) (phi : ’Mor(M, N)) :=

FPModule (col_mx (pres N) phi)

Now the cokernel is the canonical surjection from N onto quot_by

phi. Since it maps each generator to itself, the underlying matrix is the
identity matrix.

Definition coker : ’Mor(N, quot_by) :=

Morphism1 (dvd_quot_mx (dvdmx_refl _)).

We can now test if a morphism is surjective by comparing the cokernel
of phi with the zero morphism, which coincides with epimorphisms:

Definition surjm (M N : fpmodule R) (phi : ’Mor(M,N)) :=

coker phi %= 0.

Lemma epiP (M N : fpmodule R) (phi : ’Mor(M,N)) :

reflect (is_epi phi) (surjm phi).

Now we have algorithms computing both if a morphism is injective
and surjective we can easily test if it is an isomorphism:

Definition isom (M N : fpmodule R) (phi : ’Mor(M,N)) :=

injm phi && surjm phi.

A natural question to ask is if we get an inverse from this notion
of isomorphism. In order to show this we have introduced the notion
of isomorphisms that take two morphisms and express that they are
mutual inverse of each other, in the sense that given ϕ : M → N and
ψ : N → M then ϕψ = 1M modulo the relations in M . Using this we
have proved:

Lemma isoP (M N : fpmodule R) (phi : ’Mor(M,N)) :

reflect (exists psi, isomorphisms psi) (isom phi).

Hence isomorphisms are precisely the morphisms that are both mono
and epi. Note that this does not mean that we can decide if two mod-
ules are isomorphic, what we can do is test if a given morphism is an
isomorphism or not.

3.4 Computing homology

The homology at N in the sequence:

M N Kϕ ψ

where ϕψ = 0 is defined as ker(ψ)/im(ϕ). As ϕψ = 0 we have that
im(ϕ) ⊂ ker(ψ), in particular this means that we have an injective map
ι : im(ϕ) → ker(ψ). The homology at N is the cokernel of this map. In
our formalization, submodules are represented by morphisms, so we can
write:

Hypothesis mul_phi_psi (M N K : fpmodule R) (phi : ’Mor(M,N))

(psi : ’Mor(N,K)) : phi ** psi %= 0.

Definition homology (M N K : fpmodule R) (phi : ’Mor(M,N))

(psi : ’Mor(N,K)) := kernel psi %/ phi.

Where %/ is a notation for taking the quotient of a monomorphism by
a morphism with the same target.

In the next section, we show that these operations indeed satisfy the
axioms of abelian categories.

4 Abelian categories

As mentioned in the end of Sect. 2 the collection of morphisms between
two finitely presented modules forms an abelian group. This means that
the category of finitely presented modules and their morphisms is a pre-
additive category. It is easy to show that the dsum construction pro-
vides both a product and coproduct. This means that the category is
also additive.

In order to show that we have a pre-abelian category we need to show
that morphisms have both a kernel and cokernel in the sense of category
theory. A morphism ϕ : A → B has a kernel κ : K → A if κϕ = 0 and
for all ψ : Z → A with ψϕ = 0 the following diagram commutes:

Z A B

K

0

ψ

∃!ζ

ϕ

κ

This means that any morphism with ψϕ = 0 factors uniquely through
the kernel κ. The dual statement for cokernels state that any morphism ψ
with ϕψ = 0 factors uniquely through the cokernel of ϕ. The specification
of the kernel can be written.

Definition is_kernel (M N K : fpmodule R) (phi : ’Mor(M,N))

(k : ’Mor(K,M)) :=

(k ** phi %= 0) *

forall L (psi : ’Mor(L,M)),

reflect (exists Y, Y ** k %= psi) (psi ** phi %= 0).

We have proved that our definition of kernel satisfies this specification:

Lemma kernelP (M N : fpmodule R) (phi : ’Mor(M,N)) :

is_kernel phi (kernel phi).

We have also proved the dual statement for cokernels. The only prop-
erties left in order to have an abelian category is that every monomor-
phism (resp. epimorphism) is normal which means that it is the ker-
nel (resp. cokernel) of some morphism. We have shown that if ϕ is a
monomorphism then its cokernel satisfies the specification of kernels:

Lemma mono_ker (M N : fpmodule R) (phi : ’Mono(M,N)) :

is_kernel (coker phi) phi.

This means that ϕ is a kernel of coker(ϕ) if ϕ is a monomorphism,
hence are all monomorphisms normal. We have also proved the dual
statement for epimorphisms which means that we indeed have an abelian
category.

It is interesting to note that many presentations of abelian categories
are sloppy and say that phi is kernel(coker phi), but this is not even
well-typed as:

M N C

K

ϕ coker(ϕ)

ker(coker(ϕ))

One cannot just subtract ϕ and ker(coker(ϕ)) as they have different
sources. In order to express this formally we need to exhibit an isomor-
phism from M and K and insert it in the equation.

However, if we introduced a notion of submodule of M as a quotient
of injective morphism from any module N into M by the equivalence
relation that identifies ϕ : N → M and ϕ′ : N ′ → M if there exists an
isomorphism ψ : N → N ′ such that ϕ = αϕ′.

5 Smith normal form

As mentioned before, it is in general not possible to decide if two presen-
tations represent isomorphic modules, even when working over coherent
strongly discrete rings. When the underlying ring is a field it is possi-
ble to represent a finite dimensional vector space in a canonical way as
they are determined up to isomorphism by their dimension (i.e. the rank
of the underlying matrix) which can be computed by Gaussian elimina-
tion [12]. A generalization of this is the class of rings, called elementary
divisor rings by Kaplansky [19], where any matrix is equivalent4 to a
matrix in Smith normal form:

4 A matrix M is equivalent to a matrix D if there exist invertible matrices P and Q
such that PMQ = D.

Definition 4. A matrix is in Smith normal form if it is a diagonal
matrix of the form: 

d1 0 · · · · · · 0

. . .
...

0 dk 0 · · · 0
... 0 0

...
...

...
. . .

...
0 · · · 0 · · · · · · 0


where d1 | d2 | . . . | dk.

The connection between elementary divisor rings and finitely pre-
sented modules is that the existence of a Smith normal form for the
presentation matrix gives us:

Rm1 Rm0 M 0

Rm1 Rm0 D 0

M

P−1 Q ϕ

D

Now ϕ is an isomorphism as P and Q are invertible. In order to rep-
resent this in Coq we need to represent diagonal matrices, we use the
function diag_mx_seq. It is a function that takes two numbers m and n
and a list and returns a matrix of type ’M[R]_(m,n) where the elements
of the diagonal are the elements of the list. It is defined as follows:

Definition diag_mx_seq m n (s : seq R) :=

\matrix_(i < m, j < n) (s‘_i *+ (i == j :> nat)).

This means that the ith diagonal element of the matrix is the ith

element of the list and the rest are zero. Now if M is a matrix, our
algorithm for computing the Smith normal form should return a list s

and two matrices P and Q such that:

1. s is sorted by division and its length is less than m and n,
2. P *m M *m Q = diag_mx_seq m n s and
3. P and Q are invertible.

If we assume that R is coherent and strongly discrete we can consider
finitely presented modules over R. As P is invertible it is obvious that Q

defines a morphism from M to diag_mx_seq m n s. Also P^-1 defines a
morphism in the other direction that is inverse to P which means that M

and diag_mx_seq m n s are isomorphic.

Bézout domains

We now assume that all rings have explicit divisibility, that is, we can
decide is a | b and if this is the case produce x such that b = xa.

Definition 5. An integral domain R is a Bézout domain if every
finitely generated ideal is principal (generated by a single element).

This is equivalent to requiring that R has a GCD operation and a
function computing the elements of the Bézout identity; this means that
given a and b one can compute x and y such that xa + by is associate5

to gcd(a, b).

We have formalized a proof that Bézout domains of Krull dimension
less than or equal to 1 (in particular principal ideal domains like Z and
k[x] with k a field) are elementary divisor rings, however as this paper is
concerned with finitely presented modules we do not go into the details
of this proof here. The reason we restrict our attention to rings of Krull
dimension less than or equal to 1 is that it is still an open problem
whether all Bézout domains are elementary divisor domains or not [21].

Combining this with finitely presented modules we get a constructive
generalization of the classification theorem of finitely generated modules
over principal ideal domains which states that any finitely presented R-
module M over a principal ideal domain R can be decomposed into a
direct sum of a free module and cyclic modules, that is, there exists n ∈ N
and elements d1, . . . , dk ∈ R such that:

M' Rn ⊕R/(d1)⊕ · · · ⊕R/(dk)

with the additional property that d1 | d2 | · · · | dk.

In [5], it is proved that the Smith normal form is unique up to mul-
tiplication of units. This means that for any matrix M equivalent to a
diagonal matrix D in Smith normal form, each of the diagonal elements
of the Smith normal form of M will be associate to the corresponding
diagonal element in D. This implies that the decomposition of finitely
presented modules over elementary divisor rings is unique up to multi-
plication by units.

6 Conclusions and future work

In this paper we have presented a formalization of the category of finitely
presented modules over coherent and strongly discrete rings and shown
that it is an abelian category. The fact that we can represent everything
with matrices makes is possible for us to reuse basic results on these when
building the abstraction layer of modules on top. The division theory of
matrices makes it straightforward for us to do reasoning modulo a set of
relations.

It is not only interesting that we have an abelian category because it
provides us with a setting to do homological algebra, but also because
it is proved in [9] that in order to show that abelian groups (and hence
the category of R-modules) form an abelian category in Coq one needs
the principle of unique choice. So what we have established here is that

5 a and b are associates if a | b and b | a or equivalently that there exists a unit u ∈ R
such that a = bu.

this is not necessary for the category of finitely presented modules over
coherent strongly discrete rings.

In Homotopy Type Theory [25] there is a distinction between pre-
categories and univalent categories (just called categories in [1]). A pre-
category is a category where the collection of morphisms forms a set in
the sense of homotopy type theory, that is, they satisfy the uniqueness of
identity proofs principle. Our category of presented modules satisfy the
uniqueness of morphism equivalence (phi %= psi) proofs (by Hedberg’s
theorem [16]), but morphisms form a setoid instead of a set. If we quo-
tiented morphisms by the equivalence relation on morphisms we would
get a set, and thus our category of finitely presented modules would
become a pre-category.

A univalent category on the other hand is a pre-category where the
equality of objects coincides with isomorphisms. As we have shown that
for elementary divisor rings there is a way to decide isomorphism, we
could also get a univalent category by quotienting modules by isomor-
phisms. It would be interesting to develop these ideas further and define
the notion of univalent abelian category and study its properties. Note
that in Homotopy Type Theory, it is no longer necessary to have the de-
cidability of the equivalence relation to form the quotient, so we would
not need to be in an elementary divisor ring to get a univalent category.

Since we have shown that we have an abelian category it would now
be very interesting to formally study more complex constructions from
homological algebra. It should for instance be straightforward to com-
pute resolutions of modules. We can then define define Hom and tensor
functors in order to get derived functors like Tor and Ext. It would also
be interesting to define graded objects like chain complexes and graded
finitely presented modules, and prove that they also are abelian cate-
gories.

Acknowledgments: The authors are grateful to Bassel Mannaa for his
comments on early versions of the paper.

References

1. B. Ahrens, C. Kapulkin, and M. Shulman. Univalent categories and
the Rezk completion, 2013. Preprint. http://arxiv.org/abs/1303.
0584.

2. M. Barakat and M. Lange-Hegermann. An axiomatic setup for al-
gorithmic homological algebra and an alternative approach to local-
ization. J. Algebra Appl., 10(2):269–293, 2011.

3. M. Barakat and D. Robertz. homalg – A Meta-Package for Homo-
logical Algebra. J. Algebra Appl., 7(3):299–317, 2008.

4. G. Barthe, V. Capretta, and O. Pons. Setoids in type theory. Journal
of Functional Programming, 13(2):261–293, 2003.

5. G. Cano and M. Dénès. Matrices à blocs et en forme canonique. In
JFLA - Journées francophones des langages applicatifs, 2013.

6. C. Cohen. Pragmatic Quotient Types in Coq. In Interactive Theorem
Proving, volume 7998 of LNCS, pages 213–228. 2013.

http://arxiv.org/abs/1303.0584
http://arxiv.org/abs/1303.0584

7. Coq development team. The Coq Proof Assistant Reference Man-
ual, version 8.4. Technical report, Inria, 2012.

8. T. Coquand, A. Mörtberg, and V. Siles. Coherent and strongly
discrete rings in type theory. CPP’12, pages 273–288, 2012.

9. T. Coquand and A. Spiwack. Towards constructive homological al-
gebra in type theory. Calculemus ’07 / MKM ’07, pages 40–54, 2007.

10. W. Decker and C. Lossen. Computing in Algebraic Geometry: A
Quick Start using SINGULAR. Springer, 2006.

11. F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau. Packaging
mathematical structures. In TPHOLs’09, volume 5674 of LNCS,
pages 327–342, 2009.

12. G. Gonthier. Point-Free, Set-Free concrete linear algebra. In ITP’11,
volume 6898 of LNCS, pages 103–118, 2011.

13. G. Gonthier and A. Mahboubi. A Small Scale Reflection Extension
for the Coq system. Technical report, Microsoft Research INRIA,
2009.

14. G.-M. Greuel and G. Pfister. A Singular Introduction to Commuta-
tive Algebra. 2nd edition, 2007.

15. A. Hatcher. Algebraic Topology. Cambridge University Press, 1st
edition, 2001.

16. M. Hedberg. A Coherence Theorem for Martin-Löf’s Type Theory.
Journal of Functional Programming, 8(4):413–436, 1998.

17. J. Heras, T. Coquand, A. Mörtberg, and V. Siles. Computing persis-
tent homology within Coq/SSReflect. ACM Transactions on Com-
putational Logic, 14(4):26, 2013.

18. J. Heras, M. Dénès, G. Mata, A. Mörtberg, M. Poza, and V. Siles.
Towards a certified computation of homology groups for digital im-
ages. In CTIC’12, volume 7309 of LNCS, pages 49–57, 2012.

19. I. Kaplansky. Elementary divisors and modules. Transactions of the
American Mathematical Society, 66:464–491, 1949.

20. H. Lombardi and C. Quitté. Algèbre commutative, Méthodes con-
structives: Modules projectifs de type fini. Calvage et Mounet, 2011.

21. D. Lorenzini. On Bézout Domains. http://www.math.uga.edu/

~lorenz/Bezout.pdf.
22. R. Mines, F. Richman, and W. Ruitenburg. A Course in Construc-

tive Algebra. Springer-Verlag, 1988.
23. H. Poincaré. Analysis situs. Journal de l’École Polytechnique, 1:1–

123, 1895.
24. M. Sozeau. A new look at generalized rewriting in type theory.

Journal of Formalized Reasoning, 2(1):41–62, 2009.
25. The Univalent Foundations Program. Homotopy Type Theory: Uni-

valent Foundations of Mathematics. Institute for Advanced Study,
2013. http://homotopytypetheory.org/book/.

http://www.math.uga.edu/~lorenz/Bezout.pdf
http://www.math.uga.edu/~lorenz/Bezout.pdf
http://homotopytypetheory.org/book/

	A Coq Formalization of Finitely Presented Modules

