Formalized algebraic numbers: construction and first-order theory

Cyril Cohen

Inria Saclay – Île-de-France LIX École Polytechnique Inria Microsoft Research Joint Centre cohen@crans.org

November 20, 2012

Mathematics is a game: mathematicians must follow "rules" to convince their colleagues.

E.g.

Garfield is a cat all cats have four legs Garfield has four legs

Mathematics is a game: mathematicians must follow "rules" to convince their colleagues.

E.g.

Garfield is a cat all cats have four legs Garfield has four legs

Mathematics is a game: mathematicians must follow "rules" to convince their colleagues.

E.g.

Garfield is a cat for all x which is a cat, x has four legs Garfield has four legs

Mathematics is a game: mathematicians must follow "rules" to convince their colleagues.

E.g.

Garfield is a cat for all x which is a cat, x has four legs Garfield has four legs

Mathematics is a game: mathematicians must follow "rules" to convince their colleagues.

E.g.

Garfield: cat

for all x : cat, x has four legs

Mathematics is a game: mathematicians must follow "rules" to convince their colleagues.

E.g.

Garfield: cat

for all x : cat, x has four legs

Mathematics is a game: mathematicians must follow "rules" to convince their colleagues.

E.g.

Garfield : cat

 $\forall x$: cat, x has four legs

Mathematics is a game: mathematicians must follow "rules" to convince their colleagues.

E.g.

Garfield : cat

 $\forall x$: cat, x has four legs

Mathematics is a game: mathematicians must follow "rules" to convince their colleagues.

E.g.

Garfield : cat
$$\forall x$$
 : cat, $P(x)$ $P(Garfield)$

Mathematics is a game: mathematicians must follow "rules" to convince their colleagues.

E.g.

Garfield : cat
$$\forall x$$
 : cat, $P(x)$ $P(Garfield)$

Mathematics is a game: mathematicians must follow "rules" to convince their colleagues.

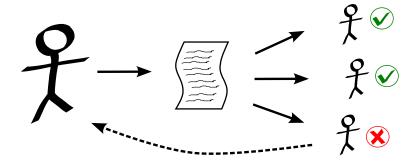
E.g.

$$t: T$$

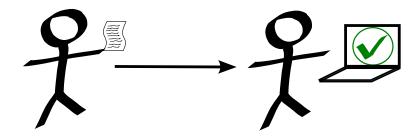
$$\forall x: T, P(x)$$

$$P(t)$$

Paper proof



Computer checked proof



Feit-Thompson Theorem

Statement

Finite groups of odd order are solvable

• First proof: Feit and Thompson (1962)

Feit-Thompson Theorem

Statement

Finite groups of odd order are solvable

- First proof: Feit and Thompson (1962)
- Revised:

```
Bender and Glauberman (1995)
Peterfalvi (2000)
```

Feit-Thompson Theorem

Statement

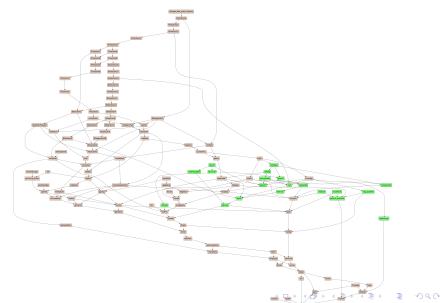
Finite groups of odd order are solvable

- First proof: Feit and Thompson (1962)
- Revised:

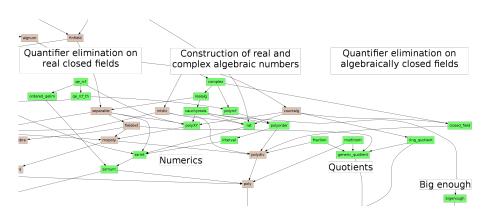
```
Bender and Glauberman (1995)
Peterfalvi (2000)
```

 Computer checked: Mathematical Components (September 2012)

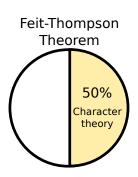
Mathematical Components project files



My contributions to the project



Complex numbers in Feit-Thompson Theorem



$$\chi_g: \mathbb{C}$$

$$\|\chi_g\|: \mathbb{R}$$

$$\|\chi_g\| > \frac{8}{15} > \frac{1}{2}$$

```
reals complex := reals [i] \Leftrightarrow FTA
```

```
algebraic reals
algebraic complex := algebraic reals [i]

⇔ FTA (Gauss, Laplace, Derksen, CC and Coquand)
```

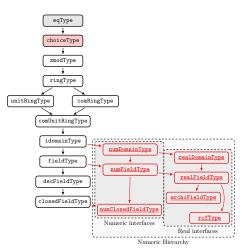
```
algebraic reals algebraic complex := algebraic reals [i] \Leftrightarrow FTA (Gauss, Laplace, Derksen, CC and Coquand)
```

- Factoring the theory of structures with order and norm
- Construction of real algebraic numbers
- The first-order theory of real and algebraic numbers is decidable (through quantifier elimination).

```
algebraic reals algebraic complex := algebraic reals [i] \Leftrightarrow FTA (Gauss, Laplace, Derksen, CC and Coquand)
```

- Factoring the theory of structures with order and norm
- Construction of real algebraic numbers
- The first-order theory of real and algebraic numbers is decidable (through quantifier elimination).

Interfaces



Why these interfaces?

Goal:

- Factor and organize the theory of numbers from \mathbb{Z} to algebraic numbers.
- Deal with the partial order complex algebraic numbers.

How?

Why these interfaces?

Goal:

- ullet Factor and organize the theory of numbers from $\mathbb Z$ to algebraic numbers.
- Deal with the partial order complex algebraic numbers.

How?

- Reuse the packed class methodolgy (Garillot et al.)
- Based on the norm, not only \leq .
- Instances: integers, rationals, real and algebraic numbers.

```
algebraic reals algebraic complex := algebraic reals [i] \Leftrightarrow FTA (Gauss, Laplace, Derksen, CC and Coquand)
```

- Factoring the theory of structures with order and norm
- Construction of real algebraic numbers
- The first-order theory of real and algebraic numbers is decidable (through quantifier elimination).

(Complex) algebraic numbers are

 the complex roots of polynomials with coefficients in Q.

Real algebraic numbers are:

the **real** roots of polynomials with coefficients in \mathbb{Q} .

Examples:

(Complex) algebraic numbers are

 the complex roots of polynomials with coefficients in Q.

Real algebraic numbers are:

the **real** roots of polynomials with coefficients in \mathbb{Q} .

Examples:

(Complex) algebraic numbers are

• the **complex** roots of polynomials with coefficients in \mathbb{Q} .

Real algebraic numbers are:

the **real** roots of polynomials with coefficients in \mathbb{Q} .

Examples:

• 43, $\frac{1}{3}$, $\sqrt{2}$, $\sqrt[5]{21}$ are real algebraic numbers

(Complex) algebraic numbers are

• the **complex** roots of polynomials with coefficients in \mathbb{Q} .

Real algebraic numbers are:

the **real** roots of polynomials with coefficients in \mathbb{Q} .

Examples:

- 43, $\frac{1}{3}$, $\sqrt{2}$, $\sqrt[5]{21}$ are real algebraic numbers
- $i, \sqrt{2} + i\sqrt{5}$ are algebraic

(Complex) algebraic numbers are

• the **complex** roots of polynomials with coefficients in \mathbb{Q} .

Real algebraic numbers are:

the **real** roots of polynomials with coefficients in \mathbb{Q} .

Examples:

- 43, $\frac{1}{3}$, $\sqrt{2}$, $\sqrt[5]{21}$ are real algebraic numbers
- $i, \sqrt{2} + i\sqrt{5}$ are algebraic
- \bullet π and e are not algebraic

Representations of real algebraic numbers

$$x \in \mathbb{R}, P \in \mathbb{Q}[X]$$

- ✓ operations (reconstruction of polynomial using resultant)
- ★ countable type

$$P \in \mathbb{Q}[X], [a, b]$$

- operations
- countable type

Construction of real algebraic numbers

Goal:

- A countable type,
- Decidability of atoms (= and \leq),
- RCF (intermediate value theorem for polynomials).

How?

Construction of real algebraic numbers

Goal:

- A countable type,
- Decidability of atoms (= and \leq),
- RCF (intermediate value theorem for polynomials).

How?

- Both representations
- A formalization of Cauchy reals
- A quotient of type

Construction of real algebraic numbers

Goal:

- A countable type,
- Decidability of atoms (= and \leq),
- RCF (intermediate value theorem for polynomials).

How?

- Both representations
- A formalization of Cauchy reals
- A quotient of type

References: C.C., ITP 2012

Cauchy reals

Definition

$$(x_n)_{n\in\mathbb{N}}\in\mathbb{Q}^{\mathbb{N}}$$
 and $\mu_x:\mathbb{Q}\to\mathbb{N}$ such that $\forall \varepsilon>0, \forall i, j\geq \mu_x(\varepsilon), |x_i-x_i|\leq \varepsilon$

- Formalized just what was needed
- Some $\varepsilon \delta$ reasoning to formalize

Cauchy reals

Definition

$$(x_n)_{n\in\mathbb{N}}\in\mathbb{Q}^{\mathbb{N}}$$
 and $\mu_x:\mathbb{Q}\to\mathbb{N}$ such that $\forall \varepsilon>0, \forall i, j\geq \mu_x(\varepsilon), |x_i-x_i|\leq \varepsilon$

- Formalized just what was needed
- Some εN reasoning to formalize

Example

if
$$x_n \to a$$
 and $y_n \to b$, then $x_n y_n \to ab$

$$|x_ny_n-ab|\leq \varepsilon$$

Example

if
$$x_n \to a$$
 and $y_n \to b$, then $x_n y_n \to ab$

$$|x_ny_n-x_nb|+|x_nb-ab|\leq \varepsilon$$

Example

if
$$x_n \to a$$
 and $y_n \to b$, then $x_n y_n \to ab$

$$|x_n||y_n-b|+|x_n-a||b|\leq \varepsilon$$

Example

if
$$x_n \to a$$
 and $y_n \to b$, then $x_n y_n \to ab$

Suppose $x_n \to a$ and $y_n \to b$. Let ε be a positive rational. Show

$$(1+|a|)|y_n-b|+|x_n-a|(1+|b|) \le \varepsilon$$

because

$$|x_n-a|\leq 1$$

Example

if
$$x_n \to a$$
 and $y_n \to b$, then $x_n y_n \to ab$

$$|y_n - b| \le \frac{\varepsilon}{2(1+|a|)}$$
 and $|x_n - a| \le \frac{\varepsilon}{2(1+|b|)}$

Goal:

• Do like in paper proofs.

How?

Usage:

Goal:

Do like in paper proofs.

How?

- Infer the *n* a posteriori.
- Based on Coq existential variables.

Usage:

Goal:

Do like in paper proofs.

How?

- Infer the *n* a posteriori.
- Based on Coq existential variables.

Usage:

More than 100 occurrences in 3163 lines of code.

Quotient types

$$\mathrm{Type}/\equiv \longrightarrow \mathrm{Type}$$

Difficult problem in Constructive TT (Hoffman, Chicli at al., Courtieu).

 \Rightarrow We are interested in a particular case.

Particular case for quotienting

Conditions:

- Decidable equivalence.
- Countable type.

Consequence: possibility to select a unique element in each equivalence class.

Theory of quotient types

- Inference.
- Preservation of the ring structure while quotienting by an ideal.

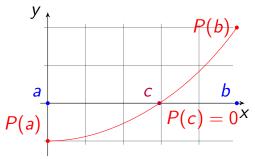
Outline

```
algebraic reals algebraic complex := algebraic reals [i] \Leftrightarrow FTA (Gauss, Laplace, Derksen, CC and Coquand)
```

- Factoring the theory of structures with order and norm
- Construction of real algebraic numbers
- The first-order theory of real and algebraic numbers is decidable (through quantifier elimination).

Definition of Real Closed Field

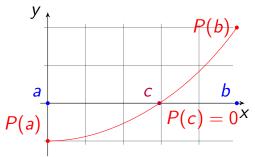
 $\label{eq:Field} \mbox{Field} + \mbox{order} + \mbox{intermediate value property for} \\ \mbox{polynomials}$



Real algebraic numbers form a real closed field
Real algebraic numbers **implement** the interface of real closed field

Definition of Real Closed Field

 $\label{eq:Field} \mbox{Field} + \mbox{order} + \mbox{intermediate value property for} \\ \mbox{polynomials}$



Real algebraic numbers form a real closed field
Real algebraic numbers **implement** the interface of real closed field

The theory of Real Closed Fields

- Rolle, MVT, ...
- Infrastructure for intervals (membership, inclusion, splitting, ...)
- Neighborhoods

Classical reasoning on Real Closed Fields

- Decidability of the atoms (= and ≤)
- ⇒ Decidability of simple formulas

Classical reasoning on Real Closed Fields

- Decidability of the atoms (= and \leq)
- ⇒ Decidability of simple formulas
 - In the litterature, case reasoning on arbitrary formula. e.g. $\exists x, P(x) = 0$.
- ⇒ Classical reasoning

Classical reasoning on Real Closed Fields

- Decidability of the atoms (= and \leq)
- ⇒ Decidability of simple formulas
 - In the litterature, case reasoning on arbitrary formula. e.g. $\exists x, P(x) = 0$.
- ⇒ Classical reasoning
 - Unless we can decide the validity of formulas

Quantifier elimination on real closed fields

Tarski (1948)

The first-order theory of real closed fields enjoys quantifier elimination.

Consequences:

- We can decide whether first-order formulas are valid.
- We can perform case analysis on quantifier formulas.

Prove the conclusion

```
R : rcfType
a : R
b : R
c : R
...
exists x, a * x ^ 2 + b * x + c = 0
```

- Prove the conclusion
- Provide the witness for x

- Prove the conclusion
- Eliminate the quantifier

An example (continued)

On Quantifier Elimination in Coq

Goal:

 Case reasoning on first-order formulas for ACF and RCF.

How?

- Deep embedding of first-order logic for RCF and ACF.
- Implement QE procedures and their formal proof.

References: CC and Mahboubi (Calculemus 2010, LMCS 2012).

Conclusion

New infrastructures in Mathematical Components:

- Interface design (Numerics)
- Tools to mechanize tasks (Big enough, intervals, quotients)

Conclusion

New infrastructures in Mathematical Components:

- Interface design (Numerics)
- Tools to mechanize tasks (Big enough, intervals, quotients)

With good infrastructure, fast formalizations:

- Construction of real algebraic numbers (2 weeks)
- Formalization of FTA (2 days)
- Programming and certification of QE on ACF and RCF

Conclusion

New infrastructures in Mathematical Components:

- Interface design (Numerics)
- Tools to mechanize tasks (Big enough, intervals, quotients)

With good infrastructure, fast formalizations:

- Construction of real algebraic numbers (2 weeks)
- Formalization of FTA (2 days)
- Programming and certification of QE on ACF and RCF

Good integration of the tools and the formalizations in the proof of Feit-Thompson Theorem.

Perspectives

- Generalize big enough numbers.
- Providing efficient implementations. Efficient algorithm are proved using naive ones.
- ⇒ application to fast real algebraic numbers
 - An algebraic hierarchy based on types which admit uniqueness of identity proofs.
 - Certifying the Cylindrical Algebraic Decomposition.

The end

Thank you for your attention.