Using the 12C Bus http://www.robot-electronics.co.uk/htm/using_thec iBus.htr

Using the 12C Bus

Judging from my emails, it is quite clear that A€ bus can be very confusing for the newcomeavih
lots of examples on using the 12C bus on the wepbiit many of these are using high level contrslle
and do not show the detail of what is actually leaqipg on the bus. This short article thereforesttee
de-mystify the 12C bus, | hope it doesn't havedpposite effect!

The physical 12C bus

This is just two wires, called SCL and SDA. SClthe clock line. It is used to synchronize all data
transfers over the 12C bus. SDA is the data lifee $CL & SDA lines are connected to all deviceshen
I2C bus. There needs to be a third wire which $$ jlne ground or 0 volts. There may also be a wio#
is power is being distributed to the devices. B®GL and SDA lines are "open drain" drivers. Wha th
means is that the chip can drive its output low,ibcannot drive it high. For the line to be atdego high
you must provide pull-up resistors to the 5v supplyere should be a resistor from the SCL liného3v
line and another from the SDA line to the 5v lieu only need one set of pull-up resistors forwimle
I2C bus, not for each device, as illustrated below:

+5
Fp [l]Rp .))
Cevice 1 Device 2 Device 3
ccL | | |
SDA,

The value of the resistors is not critical. | haeen anything from 1k8 (1800 ohms) to 47k (4700@$)h
used. 1k8, 4k7 and 10k are common values, but sxgyth this range should work OK. | recommend 1k8
as this gives you the best performance. If thestes are missing, the SCL and SDA lines will alsvag
low - nearly 0 volts - and the 12C bus will not Wor

Mastersand Slaves

The devices on the 12C bus are either mastersawes! The master is always the device that drives t
SCL clock line. The slaves are the devices thataed to the master. A slave cannot initiate a feans
over the 12C bus, only a master can do that. Toanebe, and usually are, multiple slaves on thebl2€&;
however there is normally only one master. It isgpole to have multiple masters, but it is unusunal

not covered here. On your robot, the master wildae controller and the slaves will be our modules
such as the SRF08 or CMPSO03. Slaves will nevaaiait transfer. Both master and slave can transfer
data over the 12C bus, but that transfer is alveaygrolled by the master.

The12C Physical Protocol

When the master (your controller) wishes to talla ®lave (our CMPSO03 for example) it begins byimggu
a start sequence on the 12C bus. A start sequermeiof two special sequences defined for theblC
the other being the stop sequence. The start segaenl stop sequence are special in that thesleeare
only places where the SDA (data line) is allowedhange while the SCL (clock line) is high. Whetada
is being transferred, SDA must remain stable ari¢tihh@ange whilst SCL is high. The start and stop
sequences mark the beginning and end of a transastih the slave device.

Start sequence Stop sequence

SDA—— | —— sDA

sCL — — SCL

1sur6 15/10/2007 18:1

Using the 12C Bus http://www.robot-electronics.co.uk/htm/using_thec iBus.htr

2 sur 6

Data is transferred in sequences of 8 bits. Treedvé placed on the SDA line starting with the MSB
(Most Significant Bit). The SCL line is then pulskigh, then low. Remember that the chip cannotyeal
drive the line high, it simply "lets go" of it artde resistor actually pulls it high. For every &bi
transferred, the device receiving the data sends &a acknowledge bit, so there are actually 9 8l6tk
pulses to transfer each 8 bit byte of data. Ifrdoeiving device sends back a low ACK bit, theimais
received the data and is ready to accept another Ibyt sends back a high then it is indicatihgannot
accept any further data and the master should netmthe transfer by sending a stop sequence.

zpa (D7Dl Da|lod| D3l D2| 01| D0 [ack]

SCL 1 203040 e eV Ie 1

How fast?

The standard clock (SCL) speed for 12C up to 100KPalips do define faster speeds: Fast mode, which
is up to 400KHz and High Speed mode which is up.4éHz. All of our modules are designed to work
at up to 100KHz. We have tested our modules upMbA but this needs a small delay of a few uS
between each byte transferred. In practical rolvaéshave never had any need to use high SCL speeds.
Keep SCL at or below 100KHz and then forget abbut i

| 2C Device Addressing

All I2C addresses are either 7 bits or 10 bits. U of 10 bit addresses is rare and is not coveres

All of our modules and the common chips you wikk wsill have 7 bit addresses. This means that you ca
have up to 128 devices on the 12C bus, since antionber can be from 0 to 127. When sending out the
bit address, we still always send 8 bits. The elitrés used to inform the slave if the mastemigting to

it or reading from it. If the bit is zero are masgewriting to the slave. If the bit is 1 the masis reading
from the slave. The 7 bit address is placed irufhyger 7 bits of the byte and the Read/Write (R/Wisb

in the LSB (Least Significant Bit).

spa ARl Aas]ad] as[az2] At] A [Ravlack]

=CL 1 V0 I 3 A I = A A T = O

The placement of the 7 bit address in the uppets/obthe byte is a source of confusion for the
newcomer. It means that to write to address 21 muost actually send out 42 which is 21 moved oyer b
1 bit. It is probably easier to think of the 12Csbaddresses as 8 bit addresses, with even addassaeise
only, and the odd addresses as the read addretb® fsame device. To take our CMPSO03 for example,
this is at address 0xCO ($C0). You would uses 0GArite to the CMPS03 and 0xC1 to read from it. So
the read/write bit just makes it an odd/even addres

The12C Softwar e Protocol

The first thing that will happen is that the mastér send out a start sequence. This will alertla slave
devices on the bus that a transaction is startwgtlaey should listen in incase it is for them. Nee
master will send out the device address. The sleatematches this address will continue with the
transaction, any others will ignore the rest of tinansaction and wait for the next. Having adaréske
slave device the master must now send out thenalt&ycation or register number inside the sla ih
wishes to write to or read from. This number isiobsly dependant on what the slave actually isteowd
many internal registers it has. Some very simplecgs do not have any, but most do, including Bt
modules. Our CMPS03 has 16 locations numbered 04i& SRF08 has 36. Having sent the 12C address
and the internal register address the master @arsend the data byte (or bytes, it doesn't have toist
one). The master can continue to send data bythe talave and these will normally be placed in the
following registers because the slave will autooaly increment the internal register address aseh
byte. When the master has finished writing all datthe slave, it sends a stop sequence which ate®l
the transaction. So to write to a slave device:

1. Send a start sequence

15/10/2007 18:1

Using the 12C Bus http://www.robot-electronics.co.uk/htm/using_thec iBus.htr

3 sur 6

2. Send the 12C address of the slave with the RiWow (even address)
3. Send the internal register number you want itevio

4. Send the data byte

5. [Optionally, send any further data bytes]

6. Send the stop sequence.

As an example, you have an SRFO08 at the factoguttedddress of OXEQ. To start the SRFO08 ranging yo
would write 0x51 to the command register at Ox@6 this:

1. Send a start sequence

2. Send OXEO (12C address of the SRF08 with th& Bit low (even address)

3. Send 0x00 (Internal address of the commandtesyis

4. Send 0x51 (The command to start the SRFO8 rghgin

5. Send the stop sequence.

Reading from the Slave

This is a little more complicated - but not too mumore. Before reading data from the slave devioe,
must tell it which of its internal addresses yount@ read. So a read of the slave actually stdftsy
writing to it. This is the same as when you wanitde to it: You send the start sequence, the 12C
address of the slave with the R/W bit low (evenrads) and the internal register number you want to
write to. Now you send another start sequence (8oras called a restart) and the 12C address agais -
time with the read bit set. You then read as matg ytes as you wish and terminate the transaction
with a stop sequence. So to read the compass beeria byte from the CMPS03 module:

. Send a start sequence

. Send 0xCO (I12C address of the CMPS03 with th& Bit low (even address)

. Send 0x01 (Internal address of the bearing texgis

. Send a start sequence again (repeated start)

. Send 0xC1 (12C address of the CMPS03 with th& Bit high (odd address)

. Read data byte from CMPSO03

. Send the stop sequence.

~No ok, WNBE

The bit sequence will look like this:

Start Compass uses address 0xC0 Wtite The redister num ber that Repeated
t;.rt q q o 0 o 0 a0 wou want to read from Sta_r_’_[_!b'rt
'—| [AFTasasTad]Aas a2 (A1 Ray ACK [DF JDEJDS]D4 DI (0210100 Pk | |._

i rite address= with bitd set - OxC1
1 1 0 0 0 0o 0o Stop bt

Fead ane or mare registars

T [arlac]es [aa] as Az a1 Rewlack [p7 e o5 oal b2 oz |01] 0o kek [t

Wait a moment

That's almost it for simple 12C communications, thére is one more complication. When the master is
reading from the slave, its the slave that plakbesiaita on the SDA line, but its the master thatrots

the clock. What if the slave is not ready to sdredata! With devices such as EEPROMSs this is not a
problem, but when the slave device is actually eroprocessor with other things to do, it can be a
problem. The microprocessor on the slave devicensgd to go to an interrupt routine, save its wagk
registers, find out what address the master wantsad from, get the data and place it in its tr@asion
register. This can take many uS to happen, meaeawtel master is blissfully sending out clock pulses
the SCL line that the slave cannot respond to.lZ8eprotocol provides a solution to this: the slas/e
allowed to hold the SCL line low! This is calleack stretching. When the slave gets the read comdman
from the master it holds the clock line low. Theeraprocessor then gets the requested data, places i
the transmission register and releases the claekalilowing the pull-up resistor to finally pullhigh.

15/10/2007 18:1

Using the 12C Bus http://www.robot-electronics.co.uk/htm/using_thec iBus.htr

4 sur 6

From the masters point of view, it will issue timstfclock pulse of the read by making SCL high #reh
check to see if it really has gone high. If itdl &dw then its the slave that holding it low aritetmaster
should wait until it goes high before continuingickily the hardware 12C ports on most microprocesso
will handle this automatically.

Sometimes however, the master 12C is just a codleaf subroutines and there are a few
implementations out there that completely ignooeklstretching. They work with things like EEPROM's
but not with microprocessor slaves that use cloekehing. The result is that erroneous data id feam
the slave. Beware!

Example Master Code

This example shows how to implement a softwaren®Ster, including clock stretching. It is written i
C for the PIC processor, but should be applicablaast processors with minor changes to the 1/0 pin
definitions. It is suitable for controlling all @iur 12C based robot modules. Since the SCL and Bi2&
are open drain type, we use the tristate contgpster to control the output, keeping the outpgister
low. The port pins still need to be read thoughth®y're defined as SCL_IN and SDA _IN. This defamt
and the initialization is probably all you'll needichange for a different processor.

#define SCL TRISB4 // 12C bus
#define SDA TRISB1//
#define SCL_IN RB4 //
#define SDA IN RB1 //

To initialize the ports set the output resister® &nd the tristate registers to 1 which disaliiesoutputs
and allows them to be pulled high by the resistors.

SDA = SCL =1,

SCL_IN=SDA_IN=0;

We use a small delay routine between SDA and S@h@és to give a clear sequence on the 12C bus.
This is nothing more than a subroutine call andrret

void i2c_dly(void)

{

}

The following 4 functions provide the primitive dtsstop, read and write sequences. All I2C trainsas
can be built up from these.
void i2c_start(void)
{
SDA =1; /l'i2c start bit sequence
i2c_dly();
SCL =1,
i2c_dly();
SDA =0;
i2c_dly();
SCL =0;
i2c_dly();
}

void i2c_stop(void)
{
SDA =0; /l'i2c stop bit sequence
i2c_dly();
SCL =1,
i2c_dly();
SDA =1;

15/10/2007 18:1

Using the 12C Bus

5 sur 6

i2c_dly();
}

unsigned char i2c_rx(char ack)
{
char x, d=0;
SDA =1;
for(x=0; x<8; x++) {
d <<=1;
do {
SCL =1;
}
while(SCL_IN==0);
i2c_dly();
if(SDA_IN) d |= 1,
SCL =0;
}
if(ack) SDA = 0;
else SDA =1;
SCL = 1;
i2c_dly();
SCL =0;
SDA =1;
return d;

}

bit i2c_tx(unsigned char d)
{
char x;
static bit b;
for(x=8; x; x--) {
if(d&0x80) SDA = 1;
else SDA = 0;
SCL =1;
d<<=1;
SCL =0;
}
SDA =1;
SCL = 1;
i2c_dly();
b = SDA_IN;
SCL=0;
return b;

}

/Il send (N)ACK bit

Il possible ACK bit

http://www.robot-electronics.co.uk/htm/using_thec iBus.htr

/[wait for any SCL clock stretching

The 4 primitive functions above can easily be pgether to form complete 12C transactions. Hemas a

example to start an SRF08 ranging in cm:

i2c_start();
i2c_tx(0OxEO);
i2c_tx(0x00);
i2c_tx(0x51);
i2c_stop();

/l send start sequence

/l command to start ranging in cm
Il send stop sequence

// SRF08 12C address with R/W bit clear
/l SRFO8 command register address

Now after waiting 65mS for the ranging to compl@tee left that to you) the following example shows
how to read the light sensor value from registand the range result from registers 2 & 3.

15/10/2007 18:1

Using the 12C Bus http://www.robot-electronics.co.uk/htm/using_thec iBus.htr

i2c_start(); /I send start sequence

i2c_tx(0OxEOQ); /l SRFO8 12C address with R/W bit clear
i2c_tx(0x01); /l SRFO8 light sensor register address
i2c_start(); /l send a restart sequence

i2c_tx(OxEL); /l SRFO8 12C address with R/W bit set

lightsensor = i2c_rx(1); // get light sensor and send acknowledge. Internal register address will
increment automatically.

rangehigh =i2c_rx(1); // get the high byte of the range and send acknowledge.

rangelow =i2c_rx(0); // get low byte of the range - note we don't acknowledge the last byte.
i2c_stop(); Il send stop sequence

Easy isn't it?

The definitive specs on the 12C bus can be fountherPhilips website. It currentherebut if its moved
you'll find it easily be googleing on "i2c bus sjfeation”.

6 sur 6 15/10/2007 18:1

