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1. Introduction and motivation 1.a. Objective

We want

A lot of IoT devices want to access to a gateway of base station.

Insert them in a crowded wireless network.
With a protocol slotted in time and frequency.
Each device has a low duty cycle (a few messages per day).
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We want

A lot of IoT devices want to access to a gateway of base station.

Insert them in a crowded wireless network.
With a protocol slotted in time and frequency.
Each device has a low duty cycle (a few messages per day).

Goal
Maintain a good Quality of Service.
Without centralized supervision!

How?
Use learning algorithms: devices will learn on which
frequency they should talk!
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1. Introduction and motivation 1.b. Outline

Outline

1 Introduction and motivation
2 Model and hypotheses
3 Baseline algorithms : to compare against naive and efficient

centralized approaches
4 Two Multi-Armed Bandit algorithms : UCB, Thompson

sampling
5 Experimental results
6 Perspectives and future works
7 Conclusion

Lilian Besson (CentraleSupélec & Inria) MAB Learning in IoT Networks CROWNCOM 2017 3 / 18



2. Model and hypotheses 2.a. Model

Model

Discrete time t ≥ 1 and Nc radio channels (e.g., 10) (known)

Figure 1: Protocol in time and frequency, with an Acknowledgement.

D dynamic devices try to access the network independently
S = S1 + · · · + SNc

static devices occupy the network :
S1, . . . , SNc

in each channel (unknown).
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2. Model and hypotheses 2.b. Hypotheses

Hypotheses I

Emission model
Each device has the same low emission probability:
each step, each device sends a packet with probability p.
(this gives a duty cycle proportional to 1/p)

Background traffic

Each static device uses only one channel.
Their repartition is fixed in time.

=⇒ Background traffic, bothering the dynamic devices!
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2. Model and hypotheses 2.b. Hypotheses

Hypotheses II

Dynamic radio reconfiguration

Each dynamic device decides the channel it uses to send
every packet.
It has memory and computational capacity to implement
basic decision algorithm.

Problem
Goal : maximize packet loss ratio (= number of received Ack) in
a finite-space discrete-time Decision Making Problem.
Solution ? Multi-Armed Bandit algorithms, decentralized
and used independently by each device.
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3. Baseline algorithms 3.a. A naive strategy : uniformly random access

A naive strategy : uniformly random access

Uniformly random access: dynamic devices choose
uniformly their channel in the pull of Nc channels.
Natural strategy, dead simple to implement.
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A naive strategy : uniformly random access

Uniformly random access: dynamic devices choose
uniformly their channel in the pull of Nc channels.
Natural strategy, dead simple to implement.

Simple analysis, in term of successful transmission
probability (for every message from dynamic devices) :

P(success|sent) =
Nc∑

i=1

(1 − p/Nc)
D−1

︸ ︷︷ ︸
No other dynamic device

× (1 − p)Si

︸ ︷︷ ︸
No static device

×
1

Nc
.
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︸ ︷︷ ︸
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︸ ︷︷ ︸
No static device

×
1
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.

Works fine only if all channels are similarly occupied,
but it cannot learn to exploit the best (more free) channels.
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3. Baseline algorithms 3.b. Optimal centralized strategy

Optimal centralized strategy I

If an oracle can decide to affect Di dynamic devices to
channel i, the successful transmission probability is:

P(success|sent) =
Nc∑

i=1

(1 − p)Di−1

︸ ︷︷ ︸
Di−1 others

× (1 − p)Si

︸ ︷︷ ︸
No static device

× Di/D︸ ︷︷ ︸
Sent in channel i

.

The oracle has to solve this optimization problem:




arg max
D1,...,DNc

∑Nc

i=1 Di(1 − p)Si+Di−1

such that
∑Nc

i=1 Di = D and Di ≥ 0, ∀1 ≤ i ≤ Nc.

We solved this quasi-convex optimization problem with
Lagrange multipliers, only numerically.
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3. Baseline algorithms 3.b. Optimal centralized strategy

Optimal centralized strategy II

=⇒ Very good performance, maximizing the transmission
rate of all the D dynamic devices

But unrealistic
But not achievable in practice: no centralized oracle!

Let see realistic decentralized approaches

→֒ Machine Learning ?
→֒ Reinforcement Learning ?

→֒ Multi-Armed Bandit !
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4. Multi-Armed Bandit algorithm : UCB 4.1. Multi-Armed Bandit formulation

Multi-Armed Bandit formulation

A dynamic device tries to collect rewards when transmitting :

it transmits following a Bernoulli process
(probability p of transmitting at each time step τ ),
chooses a channel A(τ) ∈ {1, . . . , Nc},
if Ack (no collision) =⇒ reward rA(τ) = 1,
if collision (no Ack) =⇒ reward rA(τ) = 0.
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4. Multi-Armed Bandit algorithm : UCB 4.1. Multi-Armed Bandit formulation

Multi-Armed Bandit formulation

A dynamic device tries to collect rewards when transmitting :

it transmits following a Bernoulli process
(probability p of transmitting at each time step τ ),
chooses a channel A(τ) ∈ {1, . . . , Nc},
if Ack (no collision) =⇒ reward rA(τ) = 1,
if collision (no Ack) =⇒ reward rA(τ) = 0.

Reinforcement Learning interpretation

Maximize transmission rate ≡ maximize cumulated rewards

max
algorithm A

horizon∑

τ=1

rA(τ).
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4. Multi-Armed Bandit algorithm : UCB 4.2. Upper Confidence Bound algorithm : UCB

Upper Confidence Bound algorithm (UCB1)

A dynamic device keeps τ number of sent packets, Tk(t)
selections of channel k, Xk(t) successful transmission in channel
k.

1 For the first Nc steps (τ = 1, . . . , Nc), try each channel once.
2 Then for the next steps t ≥ Nc :

Compute the index gk(τ) :=
Xk(τ)

Nk(τ)︸ ︷︷ ︸
Mean µ̂k(τ)

+

√
log(τ)

2Nk(τ)
,

︸ ︷︷ ︸
Upper Confidence Bound

Choose channel A(τ) = arg max
k

gk(τ),

Update Tk(τ + 1) and Xk(τ + 1).

References: [Lai & Robbins, 1985], [Auer et al, 2002], [Bubeck & Cesa-Bianchi, 2012]
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5. Experimental results 5.1. Experiment setting

Experimental setting

Simulation parameters

Nc = 10 channels,
S + D = 10000 devices in total,
p = 10−3 probability of emission,
horizon = 105 time slots (≃ 100 messages / device),
The proportion of dynamic devices D/(S + D) varies,
Various settings for (S1, . . . , SNc

) static devices repartition.

What do we show
After a short learning time, MAB algorithms are almost as
efficient as the oracle solution.
Never worse than the naive solution.
Thompson sampling is even more efficient than UCB.
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5. Experimental results 5.2. First result: 10%

10% of dynamic devices

Number of slots ×105
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Figure 2: 10% of dynamic devices. 7% of gain.
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5. Experimental results 5.2. First result: 30%

30% of dynamic devices

Number of slots ×105
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Figure 3: 30% of dynamic devices. 3% of gain but not much is possible.
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5. Experimental results 5.3. Growing proportion of devices dynamic devices

Dependence on D/(S + D)

Proportion of dynamic devices (%)
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Figure 4: Almost optimal, for any proportion of dynamic devices, after a
short learning time. Up-to 16% gain over the naive approach!
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6. Perspectives and future work 6.1. Perspectives

Perspectives

Theoretical results
MAB algorithms have performance guarantees for stochastic
settings,
But here the collisions cancel the i.i.d. hypothesis,
Not easy to obtain guarantees in this mixed setting
(i.i.d. emission process, game theoretic collisions).
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6. Perspectives and future work 6.1. Perspectives

Perspectives

Theoretical results
MAB algorithms have performance guarantees for stochastic
settings,
But here the collisions cancel the i.i.d. hypothesis,
Not easy to obtain guarantees in this mixed setting
(i.i.d. emission process, game theoretic collisions).

Real-world experimental validation ?

Real-world radio experiments will help to validate this.
In progress. . .
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6. Perspectives and future work 6.2. Future work

Other direction of future work

More realistic emission model: maybe driven by number of
packets in a whole day, instead of emission probability.
Validate this on a larger experimental scale.
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7. Conclusion Thanks!

Conclusion
We showed numerically. . .

After a learning period, MAB algorithms are as efficient as
we could expect.
Never worse than the naive solution.
Thompson sampling is even more efficient than UCB.
Simple algorithms are up-to 16% more efficient than the
naive approach, and straightforward to apply.

But more work is still needed. . .
Theoretical guarantees are still missing.
Maybe study other emission models.
And also implement this on real-world radio devices.

Thanks! Question?
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Appendix A.1. Thompson Sampling : Bayesian index policy

Thompson Sampling : Bayesian approach
A dynamic device assumes a stochastic hypothesis on the
background traffic, modeled as Bernoulli distributions.

Rewards rk(τ) are assumed to be i.i.d. samples from a
Bernoulli distribution Bern(µk).
A binomial Bayesian posterior is kept on the mean
availability µk : Bin(1 + Xk(τ), 1 + Nk(τ) − Xk(τ)).
Starts with a uniform prior : Bin(1, 1) ∼ U([0, 1]).

1 Each step τ ≥ 1, a sample is drawn from each posterior
ik(t) ∼ Bin(ak(τ), bk(τ)),
2 Choose channel A(τ) = arg max

k

ik(τ),

3 Update the posterior after receiving Ack or if collision.

References: [Thompson, 1933], [Kaufmann et al, 2012]

Lilian Besson (CentraleSupélec & Inria) MAB Learning in IoT Networks CROWNCOM 2017 18 / 18


	1. Introduction and motivation
	1.a. Objective
	1.b. Outline

	2. Model and hypotheses
	2.a. Model
	2.b. Hypotheses

	3. Baseline algorithms
	3.a. A naive strategy : uniformly random access
	3.b. Optimal centralized strategy

	4. Multi-Armed Bandit algorithm : UCB
	4.1. Multi-Armed Bandit formulation
	4.2. Upper Confidence Bound algorithm : UCB

	5. Experimental results
	5.1. Experiment setting
	5.2. First result: 10%
	5.2. First result: 30%
	5.3. Growing proportion of devices dynamic devices

	6. Perspectives and future work
	6.1. Perspectives
	6.2. Future work

	7. Conclusion
	Thanks!

	Appendix
	Appendix
	A.1. Thompson Sampling : Bayesian index policy



