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1 Presentation and motivation

HMM are a family of directed probabilistic graphical
models that allows to account for temporal structure in
the data. They have been thoroughly studied from the
last 20 years, and successfully applied to many prob-
lems, from gesture recognition to medical diagnosis to
phoneme inference ([Bis06]).

One consequence of HMM is that they can only have
geometrically distributed durations:

P(�♣� = �) = (1 ⊗ ��,�)��
�,� in state � = �.

But this can be inappropriate for some applications, such
as music, rainfalls, component’s life, etc. This can be
a severe limitation because the probability of a state
change should depends on the time spent in the current
state: some application require a distribution which is
not memory-less.

In this project, we study Hidden Semi-Markovian

Models (HSMM), an extension of the HMM model, in-
troduced in the 60s by Baum and Petrie [BP66]. We fol-
low its presentation in 2002 by [Mur02] and look at appli-
cations in audio processing ([CC14, BBC15, NCC+15]).

In a nutshell, HSMM are HMM where each hidden
state �� (� = 1..�) can emit a sequence of observations
��:�+�i

([Mur02]), whereas hidden states in a regular
HMM only emit a single observation. HSMM also mod-
els the time spent on a hidden state, ie. the sequence
duration �� (� = 1..�). Many possible prior belief can be
used for the durations of these observations ([BBC15]),
leading to various performances when HSMM are ap-
plied to a specific problem. A practical application is
music sheet matching and alignment, where the sound
recorded is following a known pattern but the duration
of each state is unknown (or close to a prior given by the
music sheet tempo).

2 The HSMM model: equations
and illustrations

In this section, we start by presenting this family of
Probabilistic Graphical Models (PGM), with two illus-
trations, and then derive an equation of its factoriza-
tion and of the transition and emission matrices. We
highlight which hypotheses are relaxed from the HMM
models, and their consequences.

2.1 A PGM for HSMM

Let start by showing two illustrations of the HSMM
model drawn as a PGM. The first model on the left is
not simplified, as proposed in [Mur02, Gué03]. Fig. 1a
represents HSMM as a graphical model, by introducing
a new random variable d. Fig. 1b is a simplified version,
where a transition to the current state is independent to

the duration of the previous state and the duration is
only conditioned on the current state.

(a) A graphical model for HSMM.

(b) Simplified PGM for HSMM

Figure 1: � sequences of observations of a HSMM (hidden
state: �� ∈ {1..�}, observed variables: ��, duration of �th
sequence: ��), for a total length � = �1 + · · ·+ �� + . . . �� ).

The probabilistic influences showed in this illustra-
tion are detailed below in equations.

2.2 Hypotheses and equations

Basically, HSMM are HMM without the Markov

property. But it is crucial to specify which of the two
HMM Markov properties we remove. We conserve1 the
hypothesis that states transition (�� = � ⊃ ��+1 = �)
are Markovian (with a transition matrix ��,�), but re-
lax the hypothesis that each hidden state emits only one
observation. The sequence duration is assumed to be
independent to the previous state.

We consider � hidden states, written �� (� = 1..�),
in ¶1..�♢, and each one can emit either:

∙ For HMM: �� ⊗⊃ �� : only one observation is
generated by each hidden state ��,

∙ But for HSMM: �� ⊗⊃ ��n:�n+�n
= (��)�n⊘�⊘�n+�n

: a sequence of observations is now generated by

each state ��, of duration2 1 ⊘ �� ⊘ �
(�)
max if �� = �,

with �
(�)
max ⊘ �max (this is explained with more de-

tails later).

Therefore, the semi-Markov model is represented by
this factorization, where the random variables for the

1 Hence the “semi-Markov” part in the HSMM name: we relax
only one of the two Markov hypotheses.

2 d� > 0 to not consider useless empty sequences.
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durations (��) are made implicit at first:

P

︁
(��, (��n:�n+�n

)�), � = 1..�
⎡

= P(�1)P((�1:�1
)1♣�1)

≤ ≤ ≤
︁

�=2..�

︁
P(��♣��⊗1)P((��n:�n+�n

)�♣��)
⎡

As for a HMM, this factorization shows that we first
need a prior on the hidden states distribution (Þ(�) =
P(�1 = �)), and then we have two types of probabilistic
influences:
︁
P(��♣��⊗1) : Markovian transition on the states,

P((�1:�n
)�♣��) : Emission of a sequence, for each state.

Below is listed the major hypotheses of the HSMM:

∙ The transition between hidden states are (still)
Markovian and homogeneous. A transition to the
current state � is independent to the duration of
the previous state � and the duration is only con-
ditioned on the current state, so that we have:

��,� = P(�  �) = P(�♣�) = P(��+1 = �♣�� = �) ∀� = 1..�

∙ The observation sequence durations: ��,� = P(�♣�).
For HMM, ��,� was implicitly following a geo-
metric law, of parameter � = ��,� , ie. ��,� =
(1 ⊗ ��,�)��

�,� . For a HSMM, �� can now follow
any discrete distribution (on N, e.g. geometric,
Poisson, truncated geometric etc).

∙ We only consider Gaussian emission probabilities
for the observations �� [Yu10], parametrized by one
mean and covariance (Û�, Σ�) for each cluster � =
1..�, exactly as for a HMM:

��,�,� = P(��⊗�+1:�♣�, �) =

�︁

�′=�⊗�+1

� (��′ ♣�, �)

=

�︁

�′=�⊗�+1

� (��′ ♣Û� , Σ� , �) =

�︁

�′=�⊗�+1

� (��′ ♣Û� , Σ�)

We can remove the marginal on � because we as-
sume that the �-th Gaussian distribution does not
depend on the duration d.

2.3 Quick discussion about the models’
parameters and their typical values

Below is given a list of the important numerical param-
eters when trying to apply a HSMM. Just to make this
clearer, for the datasets we used below, these parameters
(of �, �, �max) have values typically of the order of:

∙ � is the dimension of the dataset, each observation
�� belongs to R

�, and in our examples we stayed
with � = 2. Note that � does not influence that
much the complexity of our algorithms, so we could
easily scale to bigger � (not high-dimensional like
� = 1000 but easily with e.g. � = 3 or � = 10).

∙ On one hand, � is the size of the dataset, ie. the
number of observations �� we have in the text file.
On the first experiment we tried it was � = 500,
and then � = 1000 and � = 2000. In order for a
HSMM-based sound processing algorithm to scale
to real-world data it should be at most linear in
� , as � is the basically the length of the song and
will usually be quite large.

∙ On the other hand, � is the size of the hidden
states sequence. Obviously, it is unknown when
we only provide (��)�=1..� . We have 1 ⊘ � ⊘ � ,
and if we try to model sequences of typical length
�, then � ≡ �/�. HSMM will be useful if we do try
to model sequences, ie. if � < � (but even with
� = 2 or 10 HSMM will perform well, see below for
a few experiments). It is important to note that
� does not appear in any algorithm complexity,
as it is a hidden parameter (and a random one,
depending on our prediction for (�︀�)�=1..� ).

∙ We also have the parameter �, size of the (discrete
and finite) state space. A hidden state �� will only
take his value �� = � ∈ ¶1, . . . , �♢, exactly like
a cluster index. Note that this � appears in the
complexity of both our algorithms presented be-
low. One classical question is to also learn the
number of clusters, but for music related applica-
tion it might not be that important (e.g. for music
sheet alignment, a cluster is a tone so we already
know how many are they).

∙ �max is the constant prior we impose on the max-
imum value the random variables �� can take, ie.
it is the longest possible sequence durations. This
parameter is very important, and at first we thought
that choosing a “brutal” �max equals to the whole
sample (e.g. �max = � = 500) would work, but
it turns out the Ð-Ñ algorithm’s complexity (and
worse, the EM algorithm’s complexity) starts to be
huge. EM’s complexity is of the order of ���2

max,
so it was of the order of 4 × 5003 ♠ 5 × 108 loops.
Note that this rough number is not the number of
elementary operations, just the number of time we
cycle the various loops! (so its execution will really
take a while).
Long story short, filtering and inference in HSMM
become intractable if we try to model too long se-
quences (�max ≡ � and not �max ⪯ � , which will
anyway have a very small probability for real-world
time-dependent data), and that’s quite coherent.
E.g. for music, HSMM seems to not be appropri-
ate if a 2-minute music track has only two or three
notes each being played 40 seconds.
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3 Filtering with an efficient α-β
forward-backward algorithm

The filtering problem is to predict the most probable
value for every hidden state, after having observed the
whole3 sequence of values �. We need the entire sequence
because there is two steps of message passing (it is a
MPA), a forward step (from the past �1 to the last one
�� ), and a backward step. The goal is therefore to give
an iterative and exact4 algorithm to compute:

P(�� = �♣�1, . . . , �� ).

Note that here, we introduce the notation �� (and not
��), because in practice we do not have access to � but
only to �. In that notation, we consider one �� emitting
only one �� rather than a sequence of observations.

3.1 Forward and backward recurrent equa-
tions

We use the notations from [Mur02]. We can define sim-
ilar quantities as Ð and Ñ in HMM in the following way:

Ð�,�,� = P(��⊗�+1:� = �, �1, . . . , �� )

Ñ�,�,� = P(��+1,...,�T
♣��⊗�+1:�)

The forward recursion5 (Ð), and the backward recur-
sion (Ñ) are given by:

Ð�,� =

�(j)
max︁

�=1

Ð�,�,� =

�(j)
max︁

�=1

��,�,���,�

︃
�︁

�=1

��,�Ð�⊗�,�

⎜
(1)

Ñ�,� =

�(j)
max︁

�=1

Ñ�,�,� =
�︁

�=1

��,�

︀
︁

�(j)
max︁

�=1

��,���+�,�,�′Ñ�+�,�

︀
⎠

(2)

These two recursions are very similar to the ones for
HMM, except for the additional term ��,� (highlighted

in blue), and for the sum on �, from 1 to �
(�)
max (in green).

Below we detail the complexity of the forward-backward
algorithm.

This �
(�)
max means the longest duration to be consid-

ered for the hidden state �. As � is given as a distri-
bution on the domain Ω = ¶1, . . . , �♢ × ¶1, . . . , �max♢,
for each � its support on � could be smaller than the
whole 1, . . . , �max. Obviously, as we will have to sum

up to these �
(�)
max, the smaller the better. Having smaller

�
(�)
max either means a better prior knowledge on our data

(e.g. for music, the hidden state � = 1 is a high pitch
note, never played longer than 250��), or a restriction

3 An on-line version of this problem could also be studied, but
we did not.

4 Up to underflows or floating point errors.
5 For forward messages, we look back in the past (α�⊗�), and

for backward messages, we look “back to the future” (β�+�).

to try to reduce the computational time (e.g. forcing a
truncated distribution).

For HSMM, the Ð-Ñ forward-backward algorithm has
a complexity6 of �(��max�2), with a rather small con-
stant.

3.2 How to work only with logarithms
to avoid underflow errors?

[Mur02] explains how to use in HSMM the “log trick”7

to remove (or at least reduce) underflow risks. This is
very close to what is done for HMM, we just have more
variables and more loops. For the forward messages:

︁
log Ð�,� = logsumexp�(log ��,�,� + log ��,� + log Ð⋆

�⊗�,�)

log Ð⋆
�′,� = logsumexp�(log ��,� + log Ð�′,�)

And for the backward messages:

︁
log Ñ�,� = logsumexp�(log ��,� + log Ñ⋆

�,�)

log Ñ⋆
�,� = logsumexp�(log ��+�,�,� + log ��,� + log Ñ�+�,�)

The term highlighted in red (log ��,�) does not appear
in [Mur02, p.10], but it is obviously a mistake (as it is
present in Ñ�,� it cannot simply disappear in log Ñ�,�!).

3.3 Implementation and application of
the α-β algorithm

We implemented the Ð-Ñ directly using logarithms, and
our code is as simple and as clear as possible (please
have a look to HSMM.py). It was quite efficient for
small values of �max (2, 5, 10), but at first we forgot to
specify a maximum duration, and as explained above in
section subsection 2.3, with � = � and � = 500, it was
running for at least an hour.

Below is plotted in Fig. 2 a filtering obtained for 500
2� points, generated from 4 Gaussian clusters (same
data as for HMK3). For this first experiment, we chose
to emulate the HMM used in HMK3 with a Geometric-
duration HSMM, and, as expected, we got very similar
results.

3.4 Using α-β values for the filtering

How can we compute the filtering P(�� = �♣�1, . . . , �� )
for HSMM ? Contrary to HMM, we need to compute it at
the same time as doing the forward-backward recursions,
as we need to sum Ð�,�,� and Ð�,�,�, because the filtering
is given by:

6 See section subsection A.1 in the appendix for a proof.
7 Here we use the notation logsumexp� for the function E�

⊃

R, (s�)�=1..� ↦⊃ log(
︁�

�=1
exp(s�)). It can be efficiently com-

puted (on a computer) by first writing s0 = max�(s�) = s�0 , and

then log(
︁�

�=1
exp(s�)) = log(

︁�

�=1
exp(s0) exp(s�⊗s0)) = s0+

log(1 +
︁

� ̸=�0
exp(s� ⊗ s0)) and using an efficient x ↦⊃ log(1 + x)

function (usually called log1p).
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(a) Ð-Ñ filtering by a HMM

(b) Ð-Ñ filtering by a Geometric-HSMM

Figure 2: Filtering on the first 100 points of HMK3 data,
HMM and Geometric-HSMM.

P(�� = �♣�1, . . . , �� ) =
︁

á>�

�(j)
max︁

�=á⊗�+1

Ðá,�,�Ñá,�,�

4 Inference with an E-M algorithm

We now present an E-M algorithm we studied, in order
to infer the hidden variables (expectation step) and to
learn the parameters (maximization step).

4.1 Expectation (E step)

We can compute expectation formulas in a similar way
as what is done in regular HMM (see [Yu10, Part 4.4.3]
and [Gué03] for the details):

Ö�,�,� = Ð�,��Ñ�,�,�

Ý�(�, �′; �, �) = Ð�,�,�′��,���,���,�,�Ñ�+�,�,�

Ý�(�, �) = P(�� = �, ��+1 = �♣�1..�� ) =
︁

�′

︁

�

Ý�(�, �′; �, �)

4.2 Maximization (M step)

For the M step, we first use the means and covariances of
the Gaussian clusters, from the observations (��)�=1..� ,
weighted by P(�� = �), to update Û�, Σ� with this scheme:

Û︀new
� ←

1

�

︁

�=1..�

P(�� = �|�1..�� )��

Σ︀new
� ←

1

�

︁

�=1..�

︀
�� − Û︀new

�

︃�
P(�� = �|�1..�� )

︀
�� − Û︀new

�

︃

With normalization factor � =
︁

�=1..�

︁
�=1..�

P(�� = �).

And then for the HMM or HSMM parameters Þ, �:

Þ︀new
� ← P(�0 = �|�1..�� ) (From Ð-Ñ filtering)

�︀new
�,� ←

︁

�=1..�

Ý�(�, �)/
︀ ︁

�=1..�,�=1..�

Ý�(�, �)
︃

As for HMM [Mur02], we used these variables Ý� to
simplify the update formula for ��,� :

Ý�(�, �) = P(�� = �, ��+1 = �|�1..�� ).

Finally, for the HSMM-specific parameter � (dura-
tion distribution):

�︀new
�,� ← Ö(�, �)/

︀ ︁

�=1..�
(j)
max

Ö(�, �)
︃

As expected, the last term �︀�,� is the most compli-
cated. It uses an additional variable Ö(�, �) [Yu10, Part
2.3.1], which has a very intuitive explanation: Ö(�, �) is
the probability of having a sequence of length � gener-
ated by the hidden state � = �. To compute this, we
split the reasoning in two parts:

∙ First, we need to have been in � = � at least

� times (��⊗� = � for 0 < � < �) and being in
another state after (�� ̸= �). This first term is
quite simple and easy to compute.

∙ However we also need to consider the whole history
of observations (for � = 1..� ⊗ � ⊗ 1), to be able to
say that we do not look to sequences longer than
�, so we look for patters of the form �� ̸= � first
(not in �), then ��⊗� = � again for 0 < � < � (in
� for exactly � times), and ��+�+1 ̸= � at the end
(exited from �). Unfortunately, this second term
is more complicated to compute, and more time
consuming (cf. appendix subsection A.1).

If we combine these two terms, Ö(�, �) can be explic-
itly written [Yu10, Part 4.4.1]:

Ö(�, �) = P(��⊗� = �, � = 1..�, �� ̸= �♣�1..�� )+
︁

�=1..� ⊗�⊗1

P(�� ̸= �, ��+�⊗� = �, � = 1..�, ��+�+1 ̸= �♣�1..�� )

The maximization step has a complexity8 of �(��2�2
max).

8 See section subsection A.1 in the appendix for a proof.
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5 Implementation and numerical
experiments

This section first explains what we implemented our-
selves and which Python packages was used for the ex-
periments, and then details a few numerical experiments
we did. We only worked with artificial 2� data, gener-
ated from a GMM, then from a HMM and then from a
Poisson-HSMM.

5.1 A quick overview of our implemen-
tation

We implemented9 filtering and inference for HMM, and
the Ð-Ñ recursion and filtering for HSMM with generic
distribution ourself, and we also used the open-source
pyhsmm package [Jc15] for the experiments (for R, mhsmm

[OH+11] is a good alternative, and for Octave/MATLAB
[Yu10] implement a HSMM toolbox). We used HMK 3
data, but also artificial 2� data drawn from a toy HMM
(and then HSMM): random transitions �, priors Þ and
means Û�, with � = 4 Gaussian, and geometric dura-
tions only. In some experiments, � = 4 is automatically
chosen, based on train/test log-likelihood comparison for
HMM for � = 1..20 (cf. HMK 3, Q.12). For all the ex-
periments, the HMM and HSMM models are fed with
the 2� data, and then inferred with the EM algorithm
(with � = 200 steps10).

5.2 A first experiment, continuing HMK
2 and 3

A first experiment was to be able to emulate a HMM
with a HSMM with a geometric duration distribution,
�� ≍ �(��,�) given by diagonal of the transition matrix
�, see [Mur02]. We will apply this “toy” HSMM to ar-
tificial 2� data, generated from 4 Gaussian cluster (ie.
from a GMM, as in HMK3). Below in Fig. 3 is showed
two clusterings, predicted by a Geometric-HSMM and
a Poisson-HSMM. A Geometric-HSMM gives the same
result as a HMM, while a Poisson-HSMM (with big dura-
tion prior) fails to separate the north-west �� and north-
east �� clusters, as in the HMK3 datafile the points were
constantly switching between the two clusters (ie. both
clusters almost always have a duration of 1: ��� =
��� ♠ Dirac(1)). This result is quite logical: the Poisson-
HSMM will merge the two clusters to try to find long
sequences.

9 Among other things, for more details see HMM.py on-line or
in the zip folder.

10 Animated plots of each of the clustering displayed below (ob-
tained at each EM step) are all available on-line as gif files, see
this one for example.

Figure 3: Comparing two HSMM on 2� data drawn from
a 4-state GMM: Geometric-HSMM succeeds but Poisson-
HSMM fails. The small line plot below shows the color of
the predicted cluster as a function of time.

5.3 Sampling data from a HMM

Then we wanted to test our HMM and HSMM model
on data presenting a true time dependency. We experi-
mented on a few manually chosen HMM, and an inter-
esting one is the following. Still in 2�, with 4 clusters,
we chose a transition matrix where there is no transition
between state/cluster 1 and 3 (ie. �1,3 = �3,1 = 0), but
they have almost the same Gaussian parameters; and no
transition neither between 2 and 4, but they are far away
from each other. We chose a prior on durations with
means about 20. Below in Fig. 4, is displayed the data,
with blue lines showing the transition between points,
and 4 different clusters. As wanted, cluster 1 and 3 are
very close, they are overlapping. Any model which does
not take into account the order of appearance (like a
GMM) will fail to separate the two overlapping clusters,
and we observe this in Fig. 5, where a Geometric-HSMM
fails to different the two clusters and predict � = 3 as
the most probable number of cluster (it merges the over-
lapping clusters 1 and 3).
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Figure 4: Data drawn from this toy 4-state HMM.

Figure 5: Comparing two HSMM on on Fig. 4 data.

5.4 Sampling from a HSMM

The next experiment is very similar, except we gen-
erated � = 1000 points from a manually chosen 2�
Poisson-HSMM (with mean duration about 20), with the
same kind of transition matrix and clusters (see Fig. 6).
We again have overlapping clusters 1 and 3, this time
with exactly the same Gaussian emission parameters.
We obtained quite satisfactory results (see Fig. 7): a
small-duration Geometric-HSMM fails to separate the
two overlapping clusters, while a medium-duration Poisson-
HSMM succeeds perfectly.

Figure 6: Data drawn from this 4-state Poisson-HSMM.

(a) Small durations Geometric-HMM, merges
clusters 1 and 3.

(b) Medium durations Poisson-HMM, succeeds to
find 4 clusters.

Figure 7: Comparing two HSMM on Fig. 6 data.

5.5 What’s happening if we have no tem-
poral dependency in the data

The last experiment we wanted to expose here is a very
simple one. If HMM and HSMM models are great to
model time dependency in the data, what happens in
we shuffle the data? If we randomly change the order of
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appearance of the observations ��, then it is reasonable
to say that no temporal dependency exists anymore.

The Gaussian Mixture Model (GMM) is of course in-
variant by shuffling. And both HMM and HSMM will
be almost permutation invariant if they try to model se-
quences of lengths one or two (or other very small values)
with very high probability (i.e. if � is almost diagonal
for a HMM, and if the distribution ��,� is almost con-
centrated on ¶1, 2♢).

For instance, below is shown the clustering predicted
by a Poisson-HSMM (with a prior mean duration of 30),
on the initial data (correctly time ordered, on the left),
and on a randomly shuffled copy of the data. It is clear
that trying to find sequence of duration ♠ 30 in the
shuffled data will fail.

(a) 2� data drawn from a 4-state HSMM.

(b) Same data, but shuffled.

Figure 8: A Poisson-HSMM with long � succeeds on ordered
data but fails on shuffled data, as expected.

And for the same data, we also tried a Geometric-
HSMM with a very small duration mean (linked with
how big ��,� is against ��,�), and this one was robust

against the permutation, because it is very similar to a
GMM: trying to predict sequences of length almost all
equal to 1 is like forgetting the time component! (These
last plots are not included due to space constraints.)

6 Conclusion

In our projet report, we showed that:

– HMM are a special case of HSMM, and our HSMM
implementation can emulate a HMM,

– For both HMM and HSMM, Ð-Ñ is tractable, and
efficient for small truncated �max,

– For Geometric durations, E-M for HSMM is very
similar to E-M for HMM (cf. HMK3),

– But for other durations distribution, E-M is more
complicated, but works in practice (cf. plots),

– The direct (exact) E step is time consuming for big
dataset (very big � ) or long total sequence length
(big �max),

– And the general case of the M step is not more
efficient.

We also illustrated the use of the Ð-Ñ algorithm to
predict a clustering from unlabeled but time-ordered
data. The general HSMM, with parameters inferred
from data with the E-M algorithm proved to be more
general than HMM, and usually more efficient if the
choice of the durations distribution is appropriate, and
so HSMM also generalizes Gaussian Mixture Model. One
interesting illustration (Fig. 7) is the ability to separate
overlapping Gaussian clusters (same mean and covari-
ance), by taking into account the order of appearance
of the data in the HSMM (it is a sequential learning
model).

6.1 Perspective and possible future di-
rections of work

We could have explored into more details the Viterbi and
E-M algorithm for HSMM. Another direction would be
to try a more efficient algorithm for inference, like the
variational E-M algorithm, or a more versatile one like
on-line E-M (which has been successfully applied to real-
world sound processing, see [BBC15]).

6.2 Real-world applications of HSMM, 3
examples

We studied three very recent papers [CC14, BBC15,
NCC+15] applying with success HSMM to various audio
processing tasks (real-time or not). Due to space con-
straints, we will not go into more details, please refer to
these articles.
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∙ [NCC+15] used a HSMM to match in real-time the
music sheet for a piano player, and when applied
to two-hands sheets played only with one hand,
they succeeded to use this real-time alignement to
generate the sound of the other hand. The system
learns the duration spent on each note, and use
the music-sheet as a prior on durations (using the
initial tempo). Their video demonstration is quite
cool: youtu.be/YRHgyl8IdNY.

∙ [CC14] applied HSMM to the classical sound pro-
cessing task of source separation.

∙ [BBC15] proposed an on-line E-M algorithm for
HSMM, and also present a survey of duration dis-
tributions that have been already used for HSMM
in other papers.
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A Proofs of complexity for α-β and
E-M algorithms

In this appendix section we give detailed proofs of the
complexity of the two main algorithms for HSMM.

A.1 Proof of α-β complexity

Lemma A.1 For HSMM, the Ð-Ñ forward-backward al-
gorithm has a complexity of �(��max�2), with a rather
small constant.

Proof A.2 We have to compute the whole vectors Ð�,�

and Ñ�,�, for � = 1..� and �, � = 1..�, so we already have
a �(��) complexity.

∙ For each Ð message, 1 gives an external sum on

� = 1..�
(�)
max, of size bounded by �max, and an in-

ternal sum on � = 1..�. So for forward messages,
we have �(��max�2) as announced.

∙ For each Ñ message, 2 gives symmetrically an ex-
ternal sum on � = 1..�, and an internal sum on

� = 1..�
(�)
max, of size bounded by �max, and an in-

ternal sum on � = 1..�. So for backward messages,
we have �(��max�2) as announced.

As for the constant, the only operations are sums and
products (indeed, in its first form it is a sum-product
algorithm, SPA), or logsumexp and sums (in its second
form), and all this is quick and efficient.

A.2 Proof of E-M complexity

Lemma A.3 For HSMM, performing � steps11 of the
(iterative) E-M algorithm has a complexity of
� × �(��2

max�2), with a not-so-small constant.

Proof A.4 Each step of the EM algorithm is one E step
and one M step, and we do this � ⊙ 1 times:

∙ E-step

We did not cover it in much details here, see [Yu10,
Part 2.3.1]. Each expectation step is taking a time
about �(��2

max�2). It is basically using the Ð-Ñ
recursion, as explained above, but keeps and per-
forms computations on all the non-simplified Ð�(�, �)
and Ñ�(�, �) to evaluate the Ö(�, �) and Ý�(�, �). The
other computations will all be less costly.

∙ M-step

We have � means, covariances and states prior to
compute, and for each � ∈ ¶1..�♢:

– Û︀new

� takes �(��),

– Σ︀new

� takes �(��2), in dimension �,

11 The number of E-M steps is typically linked with the aimed
precision, but we do not discuss about these details here.

– Þ︀new

� uses the filtering given by Ð-Ñ but is
in �(1) after computing it (so for the entire
complexity it yields �(���max)),

For the transition matrix, we have �2 terms to
compute. Each �︀new

�,� takes �(� ) for the numera-
tor, and �(��) for the denominator without any
optimization. But when we computes these Ý�(�, �),
by dynamic programming we can keep an addi-
tional vector (of size �(�)) for the normalization
factor

︁
�

︁
� Ý�(�, �), and so only �(� ). Finally,

updating the transitions takes �(��2) (and does
not depend on �max, this is logical because the E-
step already computed the Ý�(�, �)).

And finally, for the durations, we have �max�
terms to compute. Each �︀new

�,� takes a priori a
time �(�max) after having computed the Ö(�, �).
Each Ö(�, �) requires to compute a big sum on � =
1 . . . � ⊗ � ⊗ 1, so about �((� ⊗ �)�) (after hav-
ing all these probabilities, thanks to the E-step).
Hence, computing all the Ö(�, �) takes a total time
of
︁

�=1..�

︁
�=1..�max

�((�⊗�)�) = �(���2
max)

(because (� ⊗ �)� ⊘ ��max).
But we can again be clever, and by dynamic pro-
gramming keep an additional vector (of size �(�max))
for the normalization factor

︁
� Ö(�, �) while com-

puting the Ö(�, �); and so computing one �︀new

�,� af-
ter having all the Ö(�, �) only takes a constant time.
Finally updating the durations takes �(���2

max).

Finally, when we sum-up all these computations, we
end up with �(��2�2

max) for each of the � steps.
As for the constant in the �, the operations we per-

form here are most costly than simple sums and products
as it was for Ð-Ñ. If our data are in R

�, then we have an
additional �2 in this � (as for almost all data analysis
algorithms). For typical music application, the dimen-
sion should not be seen as a parameter of the complexity,
but �, � and �max should.
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Personal feelings about the project

We enjoyed working on a project which was close to the
last homework, and we liked the different aspects we
touched with this project: algorithms, complexity, im-
plementation, simulation, illustration, probabilistic mod-
els, inference etc. The possible applications of HSMM,
especially the one that learns to play the left-hand of a
2-hand piano track is very impressive (and might help
one-handed music players!).
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