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0. Introduction 0.1. Topic

Topic of the project

Unsupervised learning ?

In machine learning, and in the brain [Doya, 2000], there is:

– Supervised learning (cerebellum);

– Reinforcement learning (basal ganglia and thalamus);

– Unsupervised learning (cortex).
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0. Introduction 0.1. Topic

Topic of the project

Unsupervised learning ?

In machine learning, and in the brain [Doya, 2000], there is:

– Supervised learning (cerebellum);

– Reinforcement learning (basal ganglia and thalamus);

– Unsupervised learning (cortex).

Different unsupervised learning models

– K-Means: a classical one.
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0. Introduction 0.1. Topic

Topic of the project

Different unsupervised learning models

– K-Means;

– Self-Organizing Maps & Dynamic SOM;

– Neural Gas;

– Neural Field & Dynamic NF.
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0. Introduction 0.1. Topic

Topic of the project

Different unsupervised learning models

– K-Means;

– Self-Organizing Maps & Dynamic SOM;

– Neural Gas;

– Neural Field & Dynamic NF.

Applications and experiments

1. Data/image compression (e.g. color quantization, GIF);

2. Modeling self-organization and online learning (plasticity) in the cortex;

– etc.
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0. Introduction 0.2. Outline

Outline

1 Introduction & Motivations

2 Unsupervised Learning, starting with K-Means

3 Unsupervised models inspired from neuroscience

4 Dynamic Self-Organizing Maps (DSOM)

5 Conclusion & Appendix
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1. Unsupervised Learning, starting with K-Means 1.1. Different types of learning

Learning in the brain

The 3 main types of learning are present in the brain [Doya, 2000, Figure 1].
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1. Unsupervised Learning, starting with K-Means 1.1. Different types of learning

In Machine Learning : supervised learning I

Each type of learning have been studied from the 501s.

Supervised/Deep learning [Bishop, 2006]

” Learning from labeled data.

Success story:
Google Images (images.google.com) showed that real-world image
retrieval works (in 2012).

Lilian Besson (ENS Cachan) Presentation – Neuro-Science course March 31st, 2016 4 / 38

https://images.google.com/
https://bitbucket.org/lbesson/mva16-project-modelisation-neurosciences/
http://www.ens-cachan.fr/


1. Unsupervised Learning, starting with K-Means 1.1. Different types of learning

In Machine Learning : supervised learning II

Deep Learning success: Google Images.

Lilian Besson (ENS Cachan) Presentation – Neuro-Science course March 31st, 2016 5 / 38

https://images.google.com/
https://bitbucket.org/lbesson/mva16-project-modelisation-neurosciences/
http://www.ens-cachan.fr/


1. Unsupervised Learning, starting with K-Means 1.1. Different types of learning

In Machine Learning : reinforcement learning I

Reinforcement learning [Sutton and Barto, 1998]

” Learning with feedback (reward/penalty).

Success story:
Google DeepMind’s Alpha Go showed that reinforcement learning
(and deep learning) can give powerful AIs (in 2016).
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1. Unsupervised Learning, starting with K-Means 1.1. Different types of learning

In Machine Learning : reinforcement learning II

Reinforcement Learning success: Google DeepMind’s Alpha Go.

But unsupervised learning is still the harder, the “Holy Grail” of
machine learning.
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1. Unsupervised Learning, starting with K-Means 1.1. Different types of learning

Why is unsupervised learning harder?

No idea what the data is: no labels, no time organization, no
feedback/reward/penalty:

Just raw data.
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1. Unsupervised Learning, starting with K-Means 1.1. Different types of learning

Why is unsupervised learning harder?

No idea what the data is: no labels, no time organization, no
feedback/reward/penalty:

Just raw data.

Predictive learning is the future

A very recent quote from Richard Suttona and Yann LeCunb:

“AlphaGo is missing one key thing: the ability to learn how the world
works.” Predictive (unsupervised) learning is one of the things some of
us see as the next obstacle to better AI.

(Yann LeCun quoting Richard Sutton in February 2016)

a One of the father of reinforcement learning, cf. [Sutton and Barto, 1998].
b One of the father of deep learning.
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1. Unsupervised Learning, starting with K-Means 1.2. Vectorial quantization

Vectorial quantization: a simple unsupervised task

Let � “ t�1, . . . , �pu be samples in a space �:

Goals

– How to cluster similar data together? Similar in what sense?

– How many groups there is? � clusters �j : find �.

– What are the best representatives of each group? “Centroids” Ûj .

– Can we identify close groups (and merge them) ?
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1. Unsupervised Learning, starting with K-Means 1.2. Vectorial quantization

Vectorial quantization: a simple unsupervised task

Let � “ t�1, . . . , �pu be samples in a space �:

Goals

– How to cluster similar data together? Similar in what sense?

– How many groups there is? � clusters �j : find �.

– What are the best representatives of each group? “Centroids” Ûj .

– Can we identify close groups (and merge them) ?

For 2D points, examples of a bad quantization and a good quantization
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1. Unsupervised Learning, starting with K-Means 1.2. Vectorial quantization

Notations and objectives of VQ

Definition of a vectorial quantization algorithm

Let � be the data space (� Ă �), a compact manifold in R
�.

A vectorial quantization of � is defined by a function Φ, and a set
� Ă �, so that @x P �, Φpxq P �.
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1. Unsupervised Learning, starting with K-Means 1.2. Vectorial quantization

Notations and objectives of VQ

Definition of a vectorial quantization algorithm

Let � be the data space (� Ă �), a compact manifold in R
�.

A vectorial quantization of � is defined by a function Φ, and a set
� Ă �, so that @x P �, Φpxq P �.

� is usually discrete/finite, called the codebook: � “ t�1, . . . , ��u.
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1. Unsupervised Learning, starting with K-Means 1.2. Vectorial quantization

Notations and objectives of VQ

Definition of a vectorial quantization algorithm

Let � be the data space (� Ă �), a compact manifold in R
�.

A vectorial quantization of � is defined by a function Φ, and a set
� Ă �, so that @x P �, Φpxq P �.

� is usually discrete/finite, called the codebook: � “ t�1, . . . , ��u.

Two examples in 1�

For data in � “ R, if we want to quantize them in �:
� “ t˘1u: take Φpxq “ signpxq,
ùñ 2 prototypes.

� “ Z: take Φpxq “ txu,
ùñ 8 prototypes.
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1. Unsupervised Learning, starting with K-Means 1.2. Vectorial quantization

Notations and objectives of VQ

Definition of a vectorial quantization algorithm

Let � be the data space (� Ă �), a compact manifold in R
�.

A vectorial quantization of � is defined by a function Φ, and a set
� Ă �, so that @x P �, Φpxq P �.

� is usually discrete/finite, called the codebook: � “ t�1, . . . , ��u.

Can we generalize to any data?

Find automatically the target/compressed set �, and the clustering
function Φ, for any dataset � in a set � ?
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1. Unsupervised Learning, starting with K-Means 1.2. Vectorial quantization

Notations and objectives of VQ

Notations and objectives

– Cluster: ��
def

“ tx P � : Φpxq “ w�u;

– Target probability density � on �;

– (Continuous) Distortion of the VQ: JpΦq
def

“
�
ř

�“1

E�,�i

“

}x ´ w�}
2
‰

;

– But � is unknown: only � unbiased observations x� are available:

Empirical distortion ĴpΦq
def

“ 1

�

�
ř

�“1

ř

xjP�i

}x� ´ w�}
2;

ùñ Goal: minimize the empirical distortion Ĵ !
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1. Unsupervised Learning, starting with K-Means 1.2. Vectorial quantization

A “classical” problem

Several algorithms:

– p1q K-Means;

– Elastic Net (L1-L2 penalized least-squares);

– p2q (Dynamic) Self-Organizing Map; [Rougier and Boniface, 2011a]

– p3q (Growing/Dynamic) Neural Gas;

– p4q (Dynamic) Neural Field. [Rougier and Detorakis, 2011]
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1. Unsupervised Learning, starting with K-Means 1.2. Vectorial quantization

A “classical” problem

Several algorithms:

– p1q K-Means;

– Elastic Net (L1-L2 penalized least-squares);

– p2q (Dynamic) Self-Organizing Map; [Rougier and Boniface, 2011a]

– p3q (Growing/Dynamic) Neural Gas;

– p4q (Dynamic) Neural Field. [Rougier and Detorakis, 2011]

Several applications:

– Compression of data (images etc);

– Automatic classification/categorizationa etc.

a Success story: Netflix “automatically” discovered the main genres of
movies in 2013 from its database of movies ratings.
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1. Unsupervised Learning, starting with K-Means 1.3. K-Means

K-Means: a first unsupervised algorithm

A well-known clustering algorithm: K-Means.

K-Means

– Clusters data by trying to separate the � samples x� in �

groups of equal variance, minimizing the “distortion” JpΦq;

– This algorithm requires �, the number of clusters, to be
specified before-hand (as most unsupervised models);

– It scales well to large number of samples, and has been used
across a large range of application areas in many different
fields.
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1. Unsupervised Learning, starting with K-Means 1.3. K-Means

K-Means: a first unsupervised algorithm

A well-known clustering algorithm: K-Means.

Example: K-Means clustering on the digits dataset (PCA-reduced data).
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1. Unsupervised Learning, starting with K-Means 1.3. K-Means

Description of K-Means

The K-Means algorithm

– Divides a set of � samples � “ tx1, . . . , x�u, into � disjoint
clusters �� , each described by the mean Û� of the samples in
the cluster;

– The means are called the cluster “centroids”a;

a Note that they are not, in general, points from � (although they live in
the same space).
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1. Unsupervised Learning, starting with K-Means 1.3. K-Means

Description of K-Means

The K-Means algorithm

– Divides a set of � samples � “ tx1, . . . , x�u, into � disjoint
clusters �� , each described by the mean Û� of the samples in
the cluster;

– The means are called the cluster “centroids”a;

– Aims to choose centroids that minimize the distortion,
(inertia, or within-cluster sum of squared distances):

JpΦq “
1

�

�
ÿ

�“1

min
ÛjP�

p||x� ´ Û�||2q.

a Note that they are not, in general, points from � (although they live in
the same space).
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1. Unsupervised Learning, starting with K-Means 1.3. K-Means

Convergence & implementation

Convergence ?

– K-Means is equivalent to the Expectation-Maximization algorithm
with a small, all-equal, diagonal covariance matrix;

– And the E-M algorithm converges, as it strictly minimizes the
distortion at each step;

– . . . But it can fall down to a local minimum: that’s why a dynamic
unsupervised learning algorithm can be useful !
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1. Unsupervised Learning, starting with K-Means 1.3. K-Means

Convergence & implementation

Convergence ?

– K-Means is equivalent to the Expectation-Maximization algorithm
with a small, all-equal, diagonal covariance matrix;

– And the E-M algorithm converges, as it strictly minimizes the
distortion at each step;

– . . . But it can fall down to a local minimum: that’s why a dynamic
unsupervised learning algorithm can be useful !

Implementation ?

– K-Means is quick and efficient (with K-Means++ initialization),
usually converges, and is easy to implement;

– Available in scikit-learn: sklearn.clustering.KMeans;

– Also reimplemented myself, see kmeans.py (on-line).
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1. Unsupervised Learning, starting with K-Means 1.4. Application: color quantization for photos

Application: color quantization for photos

With a two-color-channel image (red/green)

Picture of a flower “Rosa gold glow” (from Wikipedia).
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1. Unsupervised Learning, starting with K-Means 1.4. Application: color quantization for photos

Application: color quantization for photos

In the 2D color-space

Compress the image, by clustering its colors into only 16 Voronoï diagrams:

“Rosa gold glow”, in the red/green color space (from Wikipedia).Lilian Besson (ENS Cachan) Presentation – Neuro-Science course March 31st, 2016 15 / 38
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1. Unsupervised Learning, starting with K-Means 1.4. Application: color quantization for photos

Application: color quantization for photos

“Magnification law”

K-Means fits the magnification law:

High density regions tend to have more associated prototypes
than low-density regions.
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Color quantization for a real-world photo
Color quantization compression on a HD photo:

Heimaey (in Iceland), 3648 ˆ 2736 pixels, 75986 colors.

http://scikit-learn.org/dev/auto_examples/cluster/plot_color_quantization.html
https://en.wikipedia.org/wiki/Heimaey


Color quantization for a real-world photo

3648 ˆ 2736 pixels, 32 colors from a random codebook.



Color quantization for a real-world photo

3648 ˆ 2736 pixels, 32 colors from a K-Means codebook.
ùñ (theoretical) compression by a factor » 2000 : that’s huge!



2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.1. Self-Organizing Maps (SOM)

A biologically inspired model

Visual areas in the brain appear to be spatially organized (thanks to

unsupervised training), in such a way that physically close neurones in
the cortex visual handle input signal physically close in the retina.
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.1. Self-Organizing Maps (SOM)

A biologically inspired model

This is referred as “Retinotropic” Organization.

In 1982, from these observations, T. Kohonen tried to model the spatial
organization of the visual cortex ùñ Self-Organizing Map (SOM).
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.1. SOM model

2.1. The SOM model

SOM: how does it work?

– Consider a map of � neurons, fully inter-connected;
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Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.1. SOM model

2.1. The SOM model

SOM: how does it work?

– Consider a map of � neurons, fully inter-connected;

– We add a topology on the map, in R
�;
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.1. SOM model

2.1. The SOM model

SOM: how does it work?

– Consider a map of � neurons, fully inter-connected;

– We add a topology on the map, in R
�;

– Each neuron � is linked with all the input signal (the weight
vector w� is called the “prototype” of a neuron);
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.1. SOM model

2.1. The SOM model

SOM: how does it work?

– Consider a map of � neurons, fully inter-connected;

– We add a topology on the map, in R
�;

– Each neuron � is linked with all the input signal (the weight
vector w� is called the “prototype” of a neuron);

– Each time a new input data x is presented, the neuron with
the closest prototype wins;
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.1. SOM model

2.1. The SOM model

SOM: how does it work?

– Consider a map of � neurons, fully inter-connected;

– We add a topology on the map, in R
�;

– Each neuron � is linked with all the input signal (the weight
vector w� is called the “prototype” of a neuron);

– Each time a new input data x is presented, the neuron with
the closest prototype wins;

– Prototypes of the winner (and his neighbors) are updated, to
become closer to the input data.
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.1. SOM model

2.1. The SOM model

SOM: how does it work?

– Consider a map of � neurons, fully inter-connected;

– We add a topology on the map, in R
�;

– Each neuron � is linked with all the input signal (the weight
vector w� is called the “prototype” of a neuron);

– Each time a new input data x is presented, the neuron with
the closest prototype wins;

– Prototypes of the winner (and his neighbors) are updated, to
become closer to the input data.

And iterate as long as we have training data (or cycle back).
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.1. SOM model illustrations

Illustrations: neuronal map

Consider a map of � neurons, fully inter-connected:

so each neuron is linked with any others.

5 ˆ 5 fully inter-connected neuronal map.

Note: each neuron � has a fixed position p� in R
� (� “ 2, 3 usually).
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.1. SOM model illustrations

Illustrations: neuronal map

We add a topology on the map, with natural coordinates in R
�.

Coordinates for this 5 ˆ 5 dense neuronal map.
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.1. SOM model illustrations

Illustrations: neuronal map

There is an inter-neuron Euclidean distance } ¨ }.

Euclidean distances for this 5 ˆ 5 dense neuronal map.
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.1. SOM model illustrations

Illustrations: neuronal map

Each neuron is linked with all input signals x, the weight vector w� is
called the “prototype” of a neuron � :

Example of two inputs x0, x1 for this 5 ˆ 5 dense neuronal map.
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.1. SOM algorithm

SOM learning algorithm: two repeated steps

1. Choosing the winning neuron

Simply arg min of the distance between x (new input) and the
prototypes w� : �win P arg min

�“1..�
�px, w�q.

ùñ Issue: Need for a centralized entity, not distributed
(not a very realistic model of cortex organization).
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.1. SOM algorithm

SOM learning algorithm: two repeated steps

1. Choosing the winning neuron

Simply arg min of the distance between x (new input) and the
prototypes w� : �win P arg min

�“1..�
�px, w�q.

2. Learning step

At each new input x, the winning unit (and its neighbors) will
update their prototypes with:

w�p� ` 1q Ð w�p�q ` �p�q ¨ ℎp}p� ´ p�win
}q ¨ pw�p�q ´ xq

– �p�q ą 0 is a (decreasing) learning rate;

– ℎp¨q is a neighborhood function, on distances between
neurons (}p� ´ p�win

}).
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.1. Neighborhood

Neighborhood on the neuronal map

The neighborhood function only depends on the distance of p�

from the winning neuron: (fully isotropic model)

Neighborhood function of distance from the winning neuron (}pi ´ piwin
}).
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.1. Parameters for a SOM

Parameters and specification of a SOM

Learning time � “ �init . . . �end

Starting at �init “ 0, and finishing at �end “ �� P N
˚.

ùñ Issue: �� has to be decided in advanced.
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.1. Parameters for a SOM

Parameters and specification of a SOM

Vectorial update rule: ∆w�
def

“ �p�q ¨ ℎàp�, �, �winq ¨ px ´ w�q.

Learning rate �p�q

�p�q is a (geometrically) decreasing learning rate.
We choose 0 ď �end ! �init :

�p�q
def

“ �init

ˆ

�end

�init

˙�{�f

.

ùñ Issue: the map is (almost) fixed after a certain time (not
online learning, not dynamic).
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Parameters and specification of a SOM

Vectorial update rule: ∆w�
def

“ �p�q ¨ ℎàp�, �, �winq ¨ px ´ w�q.

Neighborhood function ℎà and width àp�q

ℎàp�, �, �winq is a neighborhood function, usual form is a
Gaussian:

ℎàp�, �, �winq
def

“ exp

ˆ

´
}p� ´ p�win

}2

2àp�q2

˙

.

àp�q is a (geometrically) decreasing width.
We choose 0 ă àend ! àinit :

àp�q
def

“ àinit

ˆ

àend

àinit

˙�{�f

.



2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.2. Neural Gas (NG)

2.2. The Neural Gas model

Very similar to a SOM, but no underlying topology for the
neuron space R

�. Just prototypes w�.
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.2. Neural Gas (NG)

2.2. The Neural Gas model

Very similar to a SOM, but no underlying topology for the
neuron space R

�. Just prototypes w�.
For a new input x, all neurons � are ordered by increasing
distance of w� to x, and assigned a rank ��pxq (in r1..�s).
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.2. Neural Gas (NG)

2.2. The Neural Gas model

Very similar to a SOM, but no underlying topology for the
neuron space R

�. Just prototypes w�.
For a new input x, all neurons � are ordered by increasing
distance of w� to x, and assigned a rank ��pxq (in r1..�s).
The update rule is modified to be:

∆w�
def

“ �p�q ¨ ℎàp�, �, xq ¨ px ´ w�q.

– Same learning rate �p�q and width àp�q, decreasing with time.

– But the neighborhood function is now a inverse exponential
on ranks: ℎàp�, �, xq

def

“ exp p´��pxq{àp�qq.
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.2. Neural Gas (NG)

2.2. The Neural Gas model

Very similar to a SOM, but no underlying topology for the
neuron space R

�. Just prototypes w�.
For a new input x, all neurons � are ordered by increasing
distance of w� to x, and assigned a rank ��pxq (in r1..�s).
The update rule is modified to be:

∆w�
def

“ �p�q ¨ ℎàp�, �, xq ¨ px ´ w�q.

– Same learning rate �p�q and width àp�q, decreasing with time.

– But the neighborhood function is now a inverse exponential
on ranks: ℎàp�, �, xq

def

“ exp p´��pxq{àp�qq.

Not covered more: don’t have time. Cf. [Rougier and Boniface, 2011a].
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.2. Neural Gas (NG)

Extensions: Growing or Dynamic Neural Gas

Online learning with Neural Gas ?

There is also some extensions to the Neural Gas model: Growing
NG or Dynamic NG.

But “not today” . . .

I have not studied these extensions.
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.3. Dynamic Neural Fields (DNF)

2.3. The Neural Fields model

Dynamic Neural Fields: another family of model, inspired from the
continuous LeapField model (from MEEG), rather than neural
networks.
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.3. Dynamic Neural Fields (DNF)

2.3. The Neural Fields model

Dynamic Neural Fields: another family of model, inspired from the
continuous LeapField model (from MEEG), rather than neural
networks.
They consider a continuous membrane potential, following a
functional PDE:

á
B� px, �q

B�
“ ´� px, �q ` ℎ ` �px, �q `

ż

�

� p}x ´ y}q ¨ �p� py, �qq dy.
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.3. Dynamic Neural Fields (DNF)

2.3. The Neural Fields model

Dynamic Neural Fields: another family of model, inspired from the
continuous LeapField model (from MEEG), rather than neural
networks.
They consider a continuous membrane potential, following a
functional PDE:

á
B� px, �q

B�
“ ´� px, �q ` ℎ ` �px, �q `

ż

�

� p}x ´ y}q ¨ �p� py, �qq dy.

– � px, �q is the membrane potential at position x and time �;

– � p}x ´ y}q is the lateral connection weight between x and y;

– � is the mean firing rate, and ℎ is the resting potential;

– �px, �q is the input at position x.
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.3. Dynamic Neural Fields (DNF)

2.3. The Neural Fields model

Dynamic Neural Fields: another family of model, inspired from the
continuous LeapField model (from MEEG), rather than neural
networks.
They consider a continuous membrane potential, following a
functional PDE:

á
B� px, �q

B�
“ ´� px, �q ` ℎ ` �px, �q `

ż

�

� p}x ´ y}q ¨ �p� py, �qq dy.

– � px, �q is the membrane potential at position x and time �;

– � p}x ´ y}q is the lateral connection weight between x and y;

– � is the mean firing rate, and ℎ is the resting potential;

– �px, �q is the input at position x.

The PDE is solved with a numerical discretization
(� px�, �q, � “ 1..�, � “ �init..�end,), and a forward Euler scheme.
Not covered more: don’t have time. Cf. [Rougier and Detorakis, 2011].
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2. Unsupervised models inspired from neuroscience:
Self-Organizing Maps, Neural Gas, Dynamic Neural Fields) 2.3. Dynamic Neural Fields (DNF)

Extension: Self-Organizing DNF

In 2011, N. Rougier and Y. Boniface introduced an extension of the
DNF model to model self-organization with a Neural Field.

Modified learning rule

– If a neuron is “close enough” to the data, there is no need for
others to learn anything: the winner can represent the data
alone;

– If there is no neuron close enough to the data, any neuron
learns the data according to its own distance to the data.

(Simple relaxation of the previously used learning rate.)

Not covered more: don’t have time. Cf. [Rougier and Detorakis, 2011].
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3. Dynamic Self-Organizing Maps (DSOM)

Back to the SOM model

Back to the Self-Organizing Map (SOM) model.
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3. Dynamic Self-Organizing Maps (DSOM) 3.1. What need for a dynamic model?

The SOM model has some weaknesses

A few issues:
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3. Dynamic Self-Organizing Maps (DSOM) 3.1. What need for a dynamic model?

The SOM model has some weaknesses

A few issues:

– The map topology can not correspond to the data topology,
this can ruins the learning possibility;

Lilian Besson (ENS Cachan) Presentation – Neuro-Science course March 31st, 2016 28 / 38

https://bitbucket.org/lbesson/mva16-project-modelisation-neurosciences/
http://www.ens-cachan.fr/


3. Dynamic Self-Organizing Maps (DSOM) 3.1. What need for a dynamic model?

The SOM model has some weaknesses

A few issues:

– The map topology can not correspond to the data topology,
this can ruins the learning possibility;

– The map can fail to deploy correctly in the first learning
steps, and we get big aggregates of prototypes

( ùñ local minimum of distortion);
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3. Dynamic Self-Organizing Maps (DSOM) 3.1. What need for a dynamic model?

The SOM model has some weaknesses

A few issues:

– The map topology can not correspond to the data topology,
this can ruins the learning possibility;

– The map can fail to deploy correctly in the first learning
steps, and we get big aggregates of prototypes

( ùñ local minimum of distortion);

– The map is fixed after training, as learning rate goes to
�end ! 1 (no long-term learning, only stationary
distributions).
ùñ models part of the learning process in early years;
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3. Dynamic Self-Organizing Maps (DSOM) 3.1. What need for a dynamic model?

The SOM model has some weaknesses

A few issues:

– The map topology can not correspond to the data topology,
this can ruins the learning possibility;

– The map can fail to deploy correctly in the first learning
steps, and we get big aggregates of prototypes

( ùñ local minimum of distortion);

– The map is fixed after training, as learning rate goes to
�end ! 1 (no long-term learning, only stationary
distributions).
ùñ models part of the learning process in early years;

– We have to know the ending learning time �� in advance, i.e.
number of training examples given to the map (no online
learning).
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3. Dynamic Self-Organizing Maps (DSOM) 3.2. Constant learning rate on a SOM

Constant learning rate on a SOM ùñ DSOM

Simply change the update rule ∆w�, and neighborhood function.
At each new input data x, update the winning prototype (and its
neighbors):

∆w�
def

“ �0 ¨ }x ´ w�}� ¨ ℎÖp�, �win, xq ¨ px ´ w�q.

– �0 ą 0 is the constant learning rate;
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3. Dynamic Self-Organizing Maps (DSOM) 3.2. Constant learning rate on a SOM

Constant learning rate on a SOM ùñ DSOM

Simply change the update rule ∆w�, and neighborhood function.
At each new input data x, update the winning prototype (and its
neighbors):

∆w�
def

“ �0 ¨ }x ´ w�}� ¨ ℎÖp�, �win, xq ¨ px ´ w�q.

– �0 ą 0 is the constant learning rate;

– Ö ą 0 is the elasticity / plasticity parameter;
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3. Dynamic Self-Organizing Maps (DSOM) 3.2. Constant learning rate on a SOM

Constant learning rate on a SOM ùñ DSOM

Simply change the update rule ∆w�, and neighborhood function.
At each new input data x, update the winning prototype (and its
neighbors):

∆w�
def

“ �0 ¨ }x ´ w�}� ¨ ℎÖp�, �win, xq ¨ px ´ w�q.

– �0 ą 0 is the constant learning rate;

– Ö ą 0 is the elasticity / plasticity parameter;

– ℎÖ is a time-invariant neighborhood1 function:

ℎÖp�, �win, xq
def

“ exp

ˆ

´
1

Ö2

}p� ´ p�win
}2

}x ´ w�win
}2

�

˙

.

It is like having time-invariant but local dependent learning rate �p�q &

width àp�q.
1 Convention: ℎηp�, �win, xq

def

“ 0 if x “ wiwin .
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3. Dynamic Self-Organizing Maps (DSOM) 3.2. Constant learning rate on a SOM

Consequences of a constant learning rate

1. Online learning

No need for end time �� : can accept data as long as needed.
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3. Dynamic Self-Organizing Maps (DSOM) 3.2. Constant learning rate on a SOM

Consequences of a constant learning rate

1. Online learning

No need for end time �� : can accept data as long as needed.

2. Long term learning

�p�q does not Ñ 0 with � Ñ 8, so the map can still evolve as long
as necessary in the future.
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3. Dynamic Self-Organizing Maps (DSOM) 3.2. Constant learning rate on a SOM

Consequences of a constant learning rate

1. Online learning

No need for end time �� : can accept data as long as needed.

2. Long term learning

�p�q does not Ñ 0 with � Ñ 8, so the map can still evolve as long
as necessary in the future.

3. Different parameters (less parameters !)

Instead of 5 parameters �� , àinit, àend, �init, �end; only need for 2:
constant learning rate �0 and an elasticity Ö.
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3. Dynamic Self-Organizing Maps (DSOM) 3.2. Constant learning rate on a SOM

Consequences of a constant learning rate

1. Online learning

No need for end time �� : can accept data as long as needed.

2. Long term learning

�p�q does not Ñ 0 with � Ñ 8, so the map can still evolve as long
as necessary in the future.

3. Different parameters (less parameters !)

Instead of 5 parameters �� , àinit, àend, �init, �end; only need for 2:
constant learning rate �0 and an elasticity Ö.

But . . .

But convergence seems harder, and stability is not achievable:
less theoretical guarantee.
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3. Dynamic Self-Organizing Maps (DSOM) 3.3. Application and comparisons with NG, SOM, DSOM

Comparisons between NG, SOM and DSOM

Experimental setup (Experiments 1{2)

– Three networks (NG, SOM, DSOM) of � “ 8 ˆ 8 nodes (in
R

2) are trained for �� “ 20000 iterations, on various
distributions � on a 2� square r0, 1s ˆ r0, 1s.

– Initialization for prototypes w� is purely random (uniform
on the square).

– Decreasing distortion J is showed as function of training
time above the final codebook distribution / map.

– Small blue points are the training samples x� , big white
points are the vectors of the codebook w�.
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Comparisons between NG, SOM and DSOM

A simple uniform distribution.

– DSOM gives a smoother map than SOM.



Comparisons between NG, SOM and DSOM

A simple ring distribution.

– Distortion decreases more quickly/smoothly with DSOM than a
NG/SOM.



Comparisons between NG, SOM and DSOM

Double ring distribution.

– NG achieves here a lower distortion (SOM/DSOM have useless
nodes).



Comparisons between NG, SOM and DSOM

Issue for wrongly designed topology: 4 nodes for 5 data points.

– SOM/DSOM are not great here.



Comparisons between NG, SOM and DSOM

Non-stationary distribution, moving from quarters 3 Ñ 2 Ñ 1 Ñ 4.

– DSOM allows long-term learning: model cortical plasticity as a tight
coupling between model and environment.



Magnification law for a DSOM ?

DSOM is invariant regarding local density of the target distribution � .

ùñ DSOM does not fits the “magnification law”.
Is it good news or bad news? Depend on the application.



Influence of the elasticity parameter

Influence of the elasticity parameter Ö (3 DSOM: Ö “ 1, 2, 3).



Influence of the elasticity parameter

Influence of the elasticity parameter Ö (3 DSOM: Ö “ 1, 2, 3).

Can we find a way to auto-tune the elasticity or width parameter? àinit

and àend for SOM, and Ö for DSOM.
Probably not . . . A grid search for both, based on distortion, cannot do
the job.



3. Dynamic Self-Organizing Maps (DSOM) 3.4. Questions still not answered

Examples of non-stationary distributions

Experimental setup (Experiments 2{2)

– A DSOM with � “ 32 ˆ 32 nodes (in R
3) has been trained for

�� “ 10000 iterations;

– On a set of 10000 points uniformly distributed over the surface of
a sphere or a cube of radius 0.5 centered at (0.5, 0.5, 0.5) in R

3;

– Initialization has been done by placing initial code vectors at the
center of the sphere;

– And elasticity Ö has been set to 1;

– We observe self-organization on a sphere or cubic surface, or
self-reorganization from sphere to cubic surface (or inverse).
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Examples of non-stationary distributions

Another example of non-stationary distribution, a 2� manifold
continuously changed from a sphere to a cube (in 3�). Cf. animations.

Non-stationary distribution: a DSOM going from a sphere to a cube
distribution.



3. Dynamic Self-Organizing Maps (DSOM) 3.4. Questions still not answered

A few harder questions

What if � ě 2, 3 ?

What topology to adopt for higher dimension data?
Example of image processing with NG/SOM/DSOM in
[Rougier and Boniface, 2011a]: vectorial quantization on a similarity
graph from small patches of an image.
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What if � ě 2, 3 ?

What topology to adopt for higher dimension data?
Example of image processing with NG/SOM/DSOM in
[Rougier and Boniface, 2011a]: vectorial quantization on a similarity
graph from small patches of an image.

Separate distributions ?

If there is a need for a topological rupture: how to let a DSOM decides
to split in 2 (or more) sub-maps?
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3. Dynamic Self-Organizing Maps (DSOM) 3.4. Questions still not answered

A few harder questions

What if � ě 2, 3 ?

What topology to adopt for higher dimension data?
Example of image processing with NG/SOM/DSOM in
[Rougier and Boniface, 2011a]: vectorial quantization on a similarity
graph from small patches of an image.

Separate distributions ?

If there is a need for a topological rupture: how to let a DSOM decides
to split in 2 (or more) sub-maps?

Theoretical warranties ?

Convergence and stability: not proved.
Stability even seems unachievable if we want to keep long-term
learning (online learning).
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5. Conclusion 5.1. Technical conclusion

Quick sum-up . . . I

We recalled . . .

– Different types of learning; (in the brain and in machine learning)

– Unsupervised learning is harder, but it’s the future;

– Clustering algorithms are useful, e.g. for data compression
and also modeling brain self-organization property.

Lilian Besson (ENS Cachan) Presentation – Neuro-Science course March 31st, 2016 35 / 38

https://bitbucket.org/lbesson/mva16-project-modelisation-neurosciences/
http://www.ens-cachan.fr/


5. Conclusion 5.1. Technical conclusion

Quick sum-up . . . II

In particular, we saw . . .

– Several clustering algorithms:

- K-Means;
- Neural Gas; (quickly)

- NF & DNF; (quickly)

- SOM & DSOM . . .

– Why a dynamic model can be useful.

– Some theoretical and practical questions are still to be
answered:

- automatically choosing elasticity Ö ?
- convergence?
- stability?
- etc.

Lilian Besson (ENS Cachan) Presentation – Neuro-Science course March 31st, 2016 36 / 38

https://bitbucket.org/lbesson/mva16-project-modelisation-neurosciences/
http://www.ens-cachan.fr/


5. Conclusion 5.1. Technical conclusion

Quick sum-up . . . III

Experimentally, we applied . . .

– K-Means and a SOM to color quantization (image
compression); [Bloomberg, 2008]

– NG, SOM and DSOM on several stationary and
non-stationary distributions in 2D; [Rougier and Boniface, 2011a]

– SOM and DSOM on a higher dimension distribution (from
image processing); [Rougier and Boniface, 2011a]

And all experiments confirmed the intuitions about the models.
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5. Conclusion 5.2. Thank you!

Thank you!

Thank you for your attention.

. . . and thanks for the course !
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5. Conclusion 5.3. Questions?

Questions ?
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5. Conclusion 5.3. Questions?

Questions ?

Want to know more?

ãÑ Explore the references, or read the project report (about 15 pages);

ãÑ And e-mail me if needed: lilian.besson@ens-cachan.fr

Main references

– T. Kohonen (1998), “The Self-Organizing Map”, reference book
[Kohonen, 1998].

– N.P. Rougier & Y. Boniface (2011), “Dynamic Self-Organizing Map”,
research article [Rougier and Boniface, 2011a], and code
[Rougier and Boniface, 2011b].

– N.P. Rougier, and G. Detorakis (2011), “Self-Organizing Dynamic
Neural Fields”, research article [Rougier and Detorakis, 2011].
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6. Appendix

Appendix

Outline of the appendix

– More references given below.

– Code, figures and raw results from some experiments:

ÝÑ http://lbo.k.vu/neuro2016

– Everything here is open-source under the MIT License.
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6. Appendix 6.1. More references?

More references . . . I

Main reference

The main reference is the work of N.P. Rougier and Y. Boniface,
in 2011, presented in “Dynamic Self-Organizing Map”
[Rougier and Boniface, 2011a, Rougier and Boniface, 2011b].
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6. Appendix 6.1. More references?

More references . . . II

Cottrell, M., Fort, J.-C., and Pagès, G. (1998).
Theoretical Aspects of the SOM Algorithm.
Neurocomputing, 21(1):119–138.

Deng, J. D. and Kasabov, N. K. (2003).
On-line Pattern Analysis by Evolving Self-Organizing Maps.
Neurocomputing, 51:87–103.

Doya, K. (2000).
Complementary roles of basal ganglia and cerebellum in learning
and motor control.
Current opinion in NeuroBiology, 10(6):732–739.
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6. Appendix 6.1. More references?

More references . . . III

Fausett, L. (1994).
Fundamentals of Neural Networks: Architectures, Algorithms, and
Applications.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Kohonen, T. (1998).
The Self-Organizing Map.
Neurocomputing, 21(1):1–6.

Rougier, N. P. and Boniface, Y. (2011a).
Dynamic Self-Organizing Map.
Neurocomputing, 74(11):1840–1847.

Rougier, N. P. and Boniface, Y. (2011b).
Dynamic Self-Organizing Map.
Python code sources.
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6. Appendix 6.1. More references?

More references . . . IV

Rougier, N. P. and Detorakis, G. (2011).
Self-Organizing Dynamic Neural Fields.
In Springer, editor, International Conference on Cognitive
Neurodynamics, volume III of Advances in Cognitive Neurodynamics,
Niseko village, Hokkaido, Japan.

Sutton, R. S. and Barto, A. G. (1998).
Reinforcement Learning: An Introduction, volume 1.
MIT Press, Cambridge, MA.
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6. Appendix 6.2. MIT Licensed

Open-Source Licensed

License?

These slides and the reporta are open-sourced under the terms of
the MIT License (see lbesson.mit-license.org).

Copyright 2016, © Lilian Besson.

aAnd the additional resources – including code, figures, etc.
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