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Abstract

This report presents the research I did between April and August 2016, in
theoretical function analysis and operator theory, at the BIG team at EPFL.

We focus mainly on two aspects: convolution operators in any dimension;
and steerable homogeneous convolutions in two dimensions (for images),
and their possible applications. A lot of our results are valid regardless of the
dimensions, so we stay in a general setting as long as we can, and then we
restrict to operators on 2D images for the study of steerable operators.

We start by recalling the common notations used in signal processing and
functional analysis, and then by recalling the main properties of a fundamen-
tal tool for this domain, the Fourier transform ℱ . We expose the main goals
of our research, in order to motivate this theoretical study of convolution op-
erators also from a practical point of view.

We chose to follow a very didactic approach, and so we almost redefine
“from scratch” the theory of functional operators, along with proofs of its
most important results. Our operators can have structural and geometric
properties, namely linearity or continuity, and translation-, scaling-, rotation-
invariance, unity – all these properties being already well-known – or steer-
ability. We study extensively the links between all these properties, and we
present many characterizations. This document is an attempt to summarize
all these results, most of them are already well-known, but some of our latest
characterizations appeared to be new results.

After a very broad section on operators, we focus on steerable convolu-
tions 𝐺, mainly in 2D, as they appear to be the natural framework for image
analysis tasks. Our main results consist in characterizations of steerable con-
volutions, first written as a sum of modulated and iterated real Riesz trans-
forms. Then adding the 𝛾-scale-invariance gives a nicer form, as a composi-
tion of a fractional Laplacian (−Δ)𝛾/2, some directional derivatives 𝐷𝛼𝑖 and
an invertible 0-scale-invariant factor 𝐺0; and another form as a composition
of elementary blocks 𝐺𝜆,𝛼. This last form is very appealing for implementa-
tion, as it is enough to implement the elementary block, and to compose it
to obtain every 2D steerable 𝛾-SI convolution, and it has a strong theoreti-
cal interpretation: a 𝐺 𝑁 -SI and steerable of order 𝑛𝐺 gets decomposed as a
product of 𝑁 elementary blocks, all 1-SI steerable of order 1 or 2. And a sim-
ple universality theorem on 𝐺𝜆,𝛼 reinforces this result: the elementary blocks
are exactly the 1-SI steerable convolutions of order 1 or 2.

We conclude by explaining how to implement our operators and their in-
verse, and by presenting the results of some experiments on 2D stochastic
processes, in order to illustrate the effects of our elementary blocks as well
as more complicated operators. We highlight some properties on the exam-
ples, like the trade-of between the directionality of 𝐷𝛼𝑖 and the isotropy of
(−Δ)𝛾/2. Our operators could also be used to develop new splines (for new
sampling schemes), and new Green’s functions (for new denoising and data
recovery algorithms), but we did not have the time to fully study this.

We also studied unitary operators, but it is only included in an appendix
as it was less connected to our main problem.
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1 Introduction

This first section is a short introduction, presenting the context and main goals and con-
tributions of our research, and then the notations and symbols used in this document.
We could not include reminders on every notions and topics that this work is built on,
of course, but we remind the main properties of the Fourier transform and its inverse, ℱ
and ℱ−1, and short explanations on Green’s functions of operators.

Remark 1.1 (Remarks for the MVA jury).
– Slides: This report comes along the slides used for the oral presentation I did in

the BIG research team at the end of my internship, which covers a similar work, but
in a simpler and more pedagogical way, so you might also be interested in reading
them. You can find them on-line: goo.gl/vm8WPF or here (click)..

– Article version: This report is long, as I preferred to adopt a very didactic ap-
proach and make it as clear, complete and detailed as possible, by giving almost ev-
ery proofs, a lot of examples, some illustrative figures, and numerical experiments.
But we are working on a shorter version, to publish soon the most interesting and
innovative results we obtained (mainly from sections 4, 5.1, 5.3).

1.1 Quick overview of our work and its contributions

Our research started as a study of convolution operators, as the team I joined was interested
in them for some time [VSU15, FAU14, UFW16], and more specifically to unitary convo-
lutions [CU10]. After some time on this topic, we obtained interesting results on a certain
family of unitary convolutions, the fractional-directional Hilbert transform, generalizing in
any dimension the previous generalizations of the 1D Hilbert transform [CU09]. Except
in dimension 1 or 2, our results were quite limited, because of the intrinsic complexity of
the sphere of higher dimensions. This part on unitary operators is only included in the
appendix A, as we preferred to focus on our other direction of research.

We were also interested in rotation-invariant operators, as it is an simple property.
We found a known strong characterization for rotation-invariant homogeneous convolu-
tions, which turn out to be restricted to the Laplacian and its generalization (𝛾-fractional
Laplacians) [UT14]. So we wanted to study a generalization of the rotation-invariance,
called the steerability [VSU15, WCU13]. This notion is known and used in the commu-
nity of filters for image analysis [Püs16], and classification1, but we studied it from a
theoretical point-of-view. In a nutshell, steerability means that the vector space spanned
by the rotated versions of an operator 𝐺 has only a finite dimension 𝑛𝐺, that we called
the steerability order. An order 1 characterizes rotation-invariance, but it can be larger
(e.g., 2D derivatives have order 2).

This class of steerable operator is more restricted, but the class of steerable convolu-
tions was still too rich in our perspective of having a simple parametrization for operators.
That is why our main interest relies on steerable operator that are also homogeneous (𝛾-
scale-invariant), as they are a meaningful framework for “physically plausible” filters.

We obtained interesting theorems for this class of homogeneous steerable convolutions
𝐺 in 2D, showing that once the order of steerability is fixed, they can all be parametrized

1 For example, textures classification with steerable filters and deep learning, also studied in the BIG
team at EPFL. Or for some historical use of steerability, cf. the steerable wavelets by Daubechies or [WCU13,
UC13, WU14].
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with a finite number of parameters, in a sum decomposition. We also have a decomposition
for 𝐺 in terms of a product decomposition, i.e., a composition of elementary blocks 𝐺𝜆,𝛼,
that can be implemented very easily, and composed to give any homogeneous steerable
operators. These parameters have an interesting physical interpretation, 𝛼 is a direction,
and 𝜆 is a measure of “partial directionality”.

This way, we can design, apply or implement a broad class of operators by simply
choosing their order, and their parameters. And steerability also eases the computation
of a rotated version of a steerable operator (simple linear algebra on its coefficients), and
this is one of the most important practical use of steerability in computer vision [Püs16].

We tried to find an easy and parametric way to inverse our operators, as it would
have open the way to more possible applications (e.g., splines), but in practice it appeared
that a closed formula for the inverse (or the Green’s function) of an partly-directional
elementary block (𝜆 ̸= 0, 1) was hard to obtain, while it was already known for the
special cases of purely isotropic (𝜆 = 0) or purely directional (𝜆 = 1) blocks [FAU14]. We
were not able to find a formula but did not have the time nor the skills to disprove it.

However, we have been able to implement our operators and their inverses, and apply
them numerically to Gaussian and compound Gaussian-Poisson sparse processes in 2D,
giving interesting illustrations and insights on their behaviors.

1.2 Notations and symbols

We collect here the general notations and terminology2 used in this report.
The set of non-negative integers, integers and real and complex numbers are denoted

N, Z, R and C, respectively. N*, Z*, R*, C* stands for the set without 0, and R+ is the set
of non-negative real numbers. #𝐴 denotes the number of elements in 𝐴 (i.e., its size).

We use bold letters to distinguish vectors from scalars. For example, 𝑓(𝑥) denotes
a function of the real-valued variable 𝑥 (with a domain of dimension 𝑑 = 1), and 𝑓(x)
denotes a function of the multivariate variable x = (𝑥1, . . . , 𝑥𝑑) which lives in the con-
sidered domain of dimension 𝑑, either R𝑑 or C𝑑 (𝑑 will always stands for the dimension
of the considered domain, instead of 𝑛).

For functions, we use the “·” symbol to denote the “missing variable”, for example
𝑓(· − s) denotes the function x ↦→ 𝑓(x− s), i.e., the translation of 𝑓(x) by s.

We use round brackets (·) for continuous variables, and square brackets [·] for discrete
variables. For example, 𝑓 [𝑛,𝑚] denotes a sequence defined on two integers (N2, Z2 or
J0, 𝑁K× J0,𝑀K), while for instance 𝑓(𝑥, 𝑦) will be defined on R2.

We use bold capital letters to represent matrices, while their entries will be denoted
with the subscripted lower case letters, e.g., A = (𝑎𝑖,𝑗). For a vector x or a matrix A, we
denote its transpose by x𝑇 or A𝑇 , and its Hermitian transpose by x𝐻 or A𝐻 (conjugated
and transposed).

The usual scalar product for vectors in R𝑑 will be denoted x𝑇y or ⟨x,y⟩ and it is de-
fined by

∑︀𝑑
𝑖=1 𝑥𝑖𝑦𝑖. For complex-valued vectors, the Hermitian scalar product is denoted

z𝑇 z′ = ⟨z, z′⟩ def=
𝑑∑︁
𝑖=1

𝑧𝑖 · 𝑧′
𝑖 =

𝑑∑︁
𝑖=1

𝑧𝑖𝑧
′
𝑖.

As most of the references in our domain of interest are from engineers more than
pure mathematicians, we prefer to use 𝑗 (and not 𝑖) to denote the imaginary unit num-

2 We try to use the more standard notations, and this paragraph is inspired from [Cha11, p9].
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ber (“
√
−1”). The conjugate of a complex number 𝑧 is denoted 𝑧 (and not 𝑧⋆), and the

real and imaginary components of 𝑧 are respectively denoted R(𝑧) and I(𝑧), while the
modulus and argument (i.e., phase) are denoted by |𝑧| and arg(𝑧).

We use ̂︀𝑓(𝜔) to denote the (usual) Fourier transform of a function3 𝑓(x) defined on
R𝑑. When it has a meaning, it is defined on (true) functions by:

̂︀𝑓(𝜔) def=
∫︁
R𝑑
𝑓(x) exp(−𝑗𝜔𝑇x)dx (for 𝜔 ∈ R𝑑),

where x is the space variable and 𝜔 is the frequency variable. As usual, we omit the
domain of the integral whenever it is obvious from the context. And for a distribution 𝜑,
its Fourier transform ℱ{𝜑} is defined by duality bracket : ⟨ℱ{𝜑}, 𝑓⟩ = ⟨𝜑,ℱ{𝑓}⟩.

When it has a meaning, the convolution of two functions 𝑓(x) and 𝑔(x) is given by

(𝑓 * 𝑔)(x) def=
∫︁
𝑓(s)𝑔(x− s)ds.

We denote the first derivative of 𝑓(𝑥) by: 𝑓 ′(𝑥), 𝐷𝑓(𝑥), or d𝑓(𝑥)/d𝑥. The 𝑘-th deriva-
tive is denoted by 𝑓 (𝑘)(𝑥). We say that 𝑓 is 𝑘-times differentiable if all its derivatives (up
to order 𝑘) exists and are continuous. For a multivariate function 𝑓(x) = 𝑓(𝑥1, . . . , 𝑥𝑛), the
partial derivative along 𝑥𝑖 is represented by 𝐷𝑖𝑓(x) = 𝜕𝑓(x)

𝜕𝑥𝑖
(cf. section 3.3.1).

We use 𝐺1 ∘𝐺2 (often simplified as 𝐺1𝐺2) to denote the composition of two transfor-
mations (or operators) 𝐺1 and 𝐺2, that is, (𝐺1 ∘ 𝐺2){𝑓} def= 𝐺1(𝐺2{𝑓}) for every element
𝑓 in the domain of 𝐺2 (such that 𝐺2{𝑓} is in the domain of 𝐺1). Beware that the order of
composition is usually important (∘ is not commutative); in general 𝐺1𝐺2 ̸= 𝐺2𝐺1.

The Dirac delta distribution4 is denoted by 𝛿(𝑥). The Kronecker delta function is
denoted by 𝛿[𝑛]. The modified sign function is denoted by sign(𝑥), equals to 1 if 𝑥 > 0 or
𝑥 = 0, and −1 if 𝑥 < 0.

We use standard notations for norms5, ‖x‖ = ‖x‖2 being the usual Euclidean norm.
For 0 < 𝑝 < +∞, the 𝑝-norm6 on functions is defined by:

‖𝑓‖𝑝
def=
[︂∫︁
|𝑓(x)|𝑝dx

]︂1/𝑝
.

The space of functions7 having finite 𝑝-norm is denoted L𝑝(R𝑑,R) = L𝑝(R𝑑) or sim-
ply by L𝑝. An operator 𝐺 which maps an L𝑝 function into an L𝑞 function is said to be
bounded if there is a constant 𝐶 ≥ 0 such that ‖𝐺𝑓‖𝑞 ≤ 𝐶‖𝑓‖𝑝.

We work in L2(R𝑑,R) = L2(R𝑑), the Hilbert space of finite-energy (or square-integrable
functions), endowed with the inner product8 [Rud91]

⟨𝑓, 𝑔⟩ =
∫︁
𝑓(x)𝑔(x)dx.

3 With the usual abuse of notation between the function 𝑓 and its value 𝑓(x).
4 We will not give more details about distributions, if the reader is unfamiliar with this theory, we

suggest to read the classic reference [Rud91] or this article on Wikipedia.
5 For a reminder on norms, see for instance this book [FR13, part. A.1] or this Wikipedia article.
6 ‖ · ‖𝑝 is a norm only for 𝑝 ≥ 1.
7 We assume the reader is familiar with the construction of this space as the quotient space of L𝑝(R𝑑)

for the equivalent relation “being equal almost everywhere”.
8 If the function are complex-valued, we always implicitly assume that the inner product is the Hermi-

tian inner product, i.e., that 𝑓 is used instead of 𝑓 in the integral: ⟨𝑓, 𝑔⟩ =
∫︀
R𝑑 𝑓(x)𝑔(x)dx, [Rud91].
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The notation H𝜅,2(R𝑑,R) denotes the (real-valued) fractional Sobolev space of order
𝜅 ∈ R, [Rud91], namely, the functions in L2(R𝑑,R), for which∫︁

(1 + ‖𝜔‖2)𝜅| ̂︀𝑓(𝜔)|2d𝜔 <∞. (1)

For integer orders 𝜅 ∈ N, this is the set of functions having (weak) partial derivatives up
to order 𝜅, such that the function and all its derivatives are in L2(R𝑑,R).

The class of infinitely differentiable functions that are rapidly decreasing at infinity,
along with all their partial derivatives, is denoted by S = S(R,R) and S(R𝑑,R) = S(R𝑑)
(the Schwartz class, [Rud91] and [UT14, p30]). Its (topological) dual, the set of continu-
ous linear functional on S, is denoted S′, and is called the set of tempered distributions,
generalized functions, or simply distributions.

For functions, the ∝ symbol (“is proportional to”) has to be understood on the func-
tion not on a specific value: 𝑓(𝑥) ∝ 𝑥2 does not mean that for any 𝑥, there is a constant
𝑐𝑥 such that 𝑓(𝑥) = 𝑐𝑥𝑥

2 (this would be true for almost any function 𝑓 !), it rather means
that there is a constant 𝑐 such that 𝑓(·) = 𝑐 ·2, i.e., ∀𝑥, 𝑓(𝑥) = 𝑐 𝑥2.

Of course, more specific notations will be introduced when needed.

1.3 Classic results on the Fourier transform

This short first part focuses on the classic results on the Fourier transform (section 1.3.1),
especially on the convolution theorem (section 1.3.3), which is a fundamental tool for the
study of convolution operator.

All these results can be found in many books, a good reference being the famous
book by Stein & Weiss [SW71], and another one is [Hör83]. We quickly include them here
for the sake of completeness, but proofs are not given. An interested reader is invited to
consult a more complete reference.

1.3.1 The Fourier transform ℱ and its inverse ℱ−1

As defined above in section 1.2, the Fourier transform ℱ is a functional, i.e., an operator
on functions. One always have to be cautious on which space are these functions taken
from, but in this report we will either consider true functions on L2(R𝑑,R) or S(R𝑑,R), or
distribution on S′(R𝑑,R), on which the Fourier transform is well defined and invertible.

Properties 1.2 (Summary of properties of the Fourier transform).
The Fourier transform ℱ is a linear and continuous operator, operating on functions on

L2(R𝑑,R) and S(R𝑑,R), and on distribution on S′(R𝑑,R).
In other words, ℱ is well defined on: L2(R𝑑,R) → L2(R𝑑,R), S(R𝑑,R) → S(R𝑑,R),

and S′(R𝑑,R)→ S′(R𝑑,R).
Additionally, it is unitary (i.e., it conserves inner product) and an isometry (i.e., it

conserves norms) on L2(R𝑑,R), and it has an inverseℱ−1 (on S(R𝑑,R) and on L2(R𝑑,R)),
satisfying ℱ−1 ∘ ℱ = Id and ℱ ∘ ℱ−1 = Id.

Proof. 9 We do not prove these classic results here, but the interested reader can refer to
reference books, e.g., [SW71] and [Rud91, Sec.7], or to more recent references for a short
reminder with proofs, e.g., [UT14] or [Cha11].
9 Some proofs that are not new are included, for the sake of completeness, but they are included in small

font like this one. A proof with a normal-sized font indicates that the proof concerns an innovative result or
that the proof itself is somehow original.
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What constant in front of the integral of the Fourier transform?

The exact (real-valued) constant used in the formula of the Fourier transform and its
inverse is only relevant if we want ℱ−1 ∘ℱ = Id, and if we want ℱ to be an isometry (the
wrong constant yields ⟨ℱ{𝑓1},ℱ{𝑓2}⟩ = 𝐶2⟨𝑓1, 𝑓2⟩ for some𝐶 ̸= 1). ℱ is usually defined
with a leading 1/(2𝜋)(𝑑/2) factor [D’A13, Def.3.2], as this choice gives the same constant
for ℱ−1, but in this case ℱ is not exactly an isometry (but it preserves orthogonality).

Warning: we will usually not explicit it, in order to keep the computations and for-
mulas as simple as possible, but the reader should keep in mind that a constant, only
depending on the dimension 𝑑, is always present when we manipulate ℱ and ℱ−1.

1.3.2 Rotation-invariance of the Fourier transform

Before introducing properly the rotation operators 𝑟𝑅 (see later for its definition, 2.41),
we can give a semi-formal statement of the rotation-invariance of the Fourier transform.

Property 1.3 (Rotation-invariance of ℱ and ℱ−1).
Bothℱ and its inverseℱ−1 are rotation-invariant: for any rotation𝑅, 𝑟𝑅∘ℱ = ℱ ∘𝑟𝑅,

and 𝑟𝑅 ∘ ℱ−1 = ℱ−1 ∘ 𝑟𝑅 (on S(R𝑑,R) and on L2(R𝑑,R)).
In simpler words, for any rotation 𝑅 ∈ SO(𝑑), and any test function 𝑓 ,

∀𝜔 ∈ R𝑑, ℱ{𝑓}(𝑅𝜔) = ℱ{𝑓(𝑅·)}(𝜔). (2)

A short proof is given below, as a good example of manipulation of the Fourier trans-
form as a multi-dimensional integral (on R𝑑).

Proof. It is quite simple to obtain, as the (bijective) change of variable10 x ↦→ x′ = 𝑅−1x
has a Jacobian equals to 1, so we can apply it in the integral defining the Fourier transform
(or its inverse), without changing its value. For instance for ℱ , for any 𝜔 ∈ R𝑑, we have,

(𝑟𝑅 ∘ ℱ){𝑓}(𝜔) = ̂︀𝑓(𝑅𝜔) def=
∫︁
R𝑑

𝑓(x) exp(−𝑗(𝑅𝜔)𝑇 x)dx

(With x′ = 𝑅−1x) =
∫︁
R𝑑

𝑓(𝑅x′) exp(−𝑗(𝑅𝜔)𝑇 (𝑅x′))dx′

(𝑅 conserves inner products) =
∫︁
R𝑑

𝑓(𝑅x′) exp(−𝑗𝜔𝑇 x′)dx′

=
∫︁
R𝑑

(𝑟𝑅{𝑓})(x′) exp(−𝑗𝜔𝑇 x′)dx′

= 𝑟𝑅{𝑓}(𝜔) = (ℱ ∘ 𝑟𝑅){𝑓}(𝜔).

And the same technique works for ℱ−1.

1.3.3 The convolution theorem

The last important property of the Fourier transform we need to introduce is the so-
called convolution theorem. One of the main interest of this operator ℱ , is its ability of
mapping a convolution (on the space domain, i.e., x) to a point-wise product (on the fre-
quency domain, i.e., 𝜔).

10 This change of variable x ↦→ x′ = 𝑅−1x or x ↦→ x′ = 𝑅x is used several times afterward.
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Theorem 1.4. For any functions 𝑓 , 𝑔 in L2(R𝑑,R), the Fourier transform ℱ maps their
convolution (𝑓 * 𝑔) to the (point-wise) product of their Fourier transforms, i.e.,

ℱ(𝑓 * 𝑔) = (ℱ𝑓).(ℱ𝑔). (3)

It is also true for functions in S(R𝑑,R), and for distributions in S′(R𝑑,R).

Easy Proof. Not proved here, cf. [SW71] or [Rud91, Th.7.2.(c)].

What we reminded here is very important for the rest of this report.

1.4 Operators, “real world vs theory”

In theory, there is two kinds of functions, as they can have either a continuous domain
(R or R2, or R𝑑 in any dimension), or a discrete domains (Z or J1,𝑀K, Z2 or J1, 𝑁K ×
J1,𝑀K for images, or Z𝑑 in any dimension). Discrete functions and their operators have
been studied extensively, cf. for instance [Uns16], and in this work we only focus on
continuous domain functions and their operators.

When we apply an operator to a “real-world” image, we need to switch from the
continuous setting to the discrete setting, and this usually raises issues like sampling
and approximation errors. We do not deal with these aspects here, but they should not
be forgotten if one wants to implements our operators and use them in practice.

Operators for the discrete world include almost any transform one can think of one
1D signals or images. The possible applications of operators are countless, and this do-
main of research is very rich. They are also called “filters”, “image analysis operators”
and other names, but they all are different ways of referring to an operator, which can
also be seen as a black-box: feed it an input image, it gives an output image. For exam-
ples, we can consider a low-pass filter to reduce the noise on an audio signals, a Wiener
filter to denoise an image, a contour detection algorithm for images, or a shape detec-
tor to locate molecules or cells in medical 2D or 3D images. The general public would
be more familiar with filters and algorithms related to photos, the best example being
Instagram filters!

1.5 Short explanations on Green’s functions

In simple words, a Green’s function 𝜌𝐺 of a convolution 𝐺 is the convolution kernel of
its (left) inverse: 𝐺−1{𝑓} = 𝜌𝐺 * 𝑓 , satisfying 𝐺𝐺−1{𝑓} = 𝑓 .

In the world of Fourier multipliers, symbolically we have ̂︁𝜌𝐺(𝜔) = 1/̂︀𝑔(𝜔) (when it
has a meaning) and so 𝜌𝐺 = ℱ−1{1/̂︀𝑔}. All these notions of kernels and Fourier multi-
pliers are introduced below in section 3.2.

Green’s functions are very useful, mainly for two aspects of signal processing:

∙ To develop new denoising algorithms, for compressive sensing (cf. [FR13]). A well-
known example is the total-variation denoising (TV-𝐿1) in dimension 1, which
is based on the derivative operator 𝐷 and its inverse computed with its Green’s
function 𝜌𝐷, cf. [Pey11]11.

11 Cf. this MATLAB notebook on “Total Variation Regularization for Denoising”
www.numerical-tours.com/matlab/denoisingsimp_4_denoiseregul
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∙ To generate splines, which are used to develop new sampling schemes. For in-
stance, [UFW16] is a recent research article using Green’s functions for generalized
TV minimization, and the splines are used to express the solution of the minimiza-
tion problem, which basically uses some well-chosen samples of the data (sampled
at the splines’ knots). A good reference is [UT14, Sec.6], more specifically Sec.6.2.2.
For example, the derivative operator 𝐷 in dimension 1 gives box-splines. The fig-
ure 6.3 in [UT14] shows the link between four objects, which are different ways of
seeing the same thing: a Green’s function (i.e., an inverse operator), a spline, an
interpolator (i.e., a sampling scheme), and a wavelet (basis functions).

Green’s functions, or inverse operators, can also be used for stochastic processes and
sparse stochastic processes, cf. [UT14, Ch.5] for the whole picture.

We will not detail more all these notions, as it would go beyond the reach of this
report. An interested reader could consult [UB07, BU07] for a good introduction on
splines and Green’s functions. We do talk much about Green’s function, so the reader
should not worry if she/he is not familiar with them.

We ran out of time to study more this aspect and to conclude the computations of a
Green’s function for our elementary blocks 𝐺𝜆,𝛼.

Conclusion

This first section started to explain the goals of our work, as well as the outline of the
next sections. We then detailed the notations and symbols used in this document, to be
perfectly clear and to remind the user of some classic definitions and constructions in
harmonic and Fourier analysis. Some important results on the Fourier transform were
given, along with one proof, but the interested reader should consult a reference book
if needed ([SW71, Hör83]). We concluded with a short reminder on Green’s functions,
and some explanations on their possible applications: in compressed sensing, they can
be used to develop new algorithms as well as new splines.

The next section 2 studies functional operators and their geometric invariance prop-
erties, in a broad setting (dimension 𝑑 ∈ N*). All the characterizations in section 3 are
valid in any dimension, but for steerability we quickly restrict to 2D operators in sec-
tion 4.
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2 Operators, and their geometric invariance properties

This section first defines test functions and operators in 2.1, with an emphasis on the
domain that can be considered, then the classic properties of linearity and continuity for
operators are introduced in 2.2, and finally some geometric properties of operators are
presented in 2.3. These properties of translation-, scaling- and rotation-invariance share
the advantage of being easily understandable from a “physical” point of view, and can
easily be explained in words and not only with a complicated formula. We try to prove
every single result in this section, but proofs can be skipped if the reader is familiar with
this theory.

2.1 Defining functional operators

We introduce here the notion of operator, and explain all the different properties that an
operator can have, from the classic ones (linearity, continuity), to some less usual ones.
Along definitions, examples are given regularly, but a detailed list of operators is given
in the next section 3.1.

2.1.1 Test functions, and some tricks to simplify their domains

Let 𝑑 ∈ N*, and Ω ⊂ R𝑑 be a domain for real-valued “test” functions 𝑓 : Ω → R. The
following remarks justify the generality of this setting.

∙ We can restrict to Ω ⊂ R𝑑 instead of Ω ⊂ C𝑑, thanks to the usual isomorphism
C ≃ R2. It is always simpler to study functions of the real variable.

∙ Similarly, we can restrict to study real-valued functions, because if 𝑓 : Ω → C, we
can study its real and imaginary parts separately.

∙ And with the same trick, we can also study multivariate-valued functions, by
studying their components separately.

To avoid the (sometime delicate) manipulation of this sub-domain Ω ⊂ R𝑑, we will
always assume that the functions are defined on the whole domain Ω = R𝑑 (as it is
usually done in this domain, [UB07, BU07]). We do not lose in generality, because if
𝑓 : Ω→ R is defined on a smaller domain12, we can extend it to another 𝑓# : R𝑑 → R:

∀x ∈ R𝑑, 𝑓#(x) def=
{︃
𝑓(x) if x ∈ Ω = Dom(𝑓)
0 otherwise.

Using this trick does not change the values of any integrals involving 𝑓 on Ω :∫︁
R𝑑
𝑓#(x)𝜑(x)dx =

∫︁
Ω
𝑓(x)𝜑(x)dx

and therefore 𝑓# and 𝑓 will have the same Fourier transform, the same moments etc. We
only consider functions spaces such that this integral

∫︀
R𝑑 𝑓(x)𝜑(x)dx has a meaning, for

instance 𝑓, 𝜑 ∈ L2(R𝑑) or 𝑓 ∈ S(R𝑑), 𝜑 ∈ S′(R𝑑).

12 This is the case of images, for instance, as they are defined on a (small) compact set in 2D.
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Note that we could lose some properties of smoothness (continuity, 𝒞𝑘 etc) on the
frontier of the domain Ω, but in this framework this is not an issue, as such properties
are not studied point-wise but only globally (e.g., for the test functions in S(R𝑑)).

To sum up, in all this report, we only consider test functions 𝑓 from R𝑑 to R.

2.1.2 Operators on test functions

The main concept we studied is operators on such function spaces. An operator 𝐺 is
simply a function of higher order, taking a 𝑓 : R𝑑 → R and producing another function,
denoted 𝐺(𝑓) = 𝐺{𝑓} : R𝑑 → R. We give below a more formal definition, along with
examples. We use the letter𝐺 (or𝐺1, 𝐺2, 𝐺

′, . . . ) to denote operators, and 𝑓 (or 𝑓1, 𝑓2, . . . )
for test functions.

Let 𝐸 be the function space we consider, which can be L2(R𝑑) or S(R𝑑) for instance,
and let 𝐹 be another function space (can be equal to 𝐸 or not).

Definition 2.1 (Functional operator). 𝐺 is a functional operator, or simply an operator,
from 𝐸 to 𝐹 when 𝐺 : 𝐸 → 𝐹 , i.e., ∀𝑓 ∈ 𝐸,𝐺(𝑓) = 𝐺{𝑓} ∈ 𝐹 , where 𝐺(𝑓) : x ↦→
(𝐺{𝑓})(x), and not 𝐺(𝑓(x)).

Definition 2.2. 𝐺 is said to operate on 𝐸 when 𝐺 : 𝐸 → 𝐸 (i.e., 𝐺{𝑓} has to be in 𝐸).

Example 2.3. To start with dummy examples, we can quote Id the identity operator: Id{𝑓} =
𝑓 , and the null operator 0𝐸→𝐸 : 0𝐸→𝐸(𝑓) = 0R𝑑→R ∈ 𝐸, both operating on 𝐸.

More interesting examples will be given regularly in this report.

Remark 2.4 (“Common domain and command dimension hypothesis”).
Without specifying it each time, it will always be assumed that the test functions

in 𝐸 and their images 𝐺{𝑓} in 𝐹 are functions (or distributions) on the same space
domain, Ω = R𝑑. The dimension 𝑑 is both the “input” and “output” space dimen-
sions. This simplifies greatly the notations, as for instance translation-invariance for
operator (see later, definition 2.21) would have no meaning if the function 𝐺{𝑓} had
a different domain (or domain dimension) than the function 𝑓 .

2.2 Classic properties of operators

This short part recall the general definition of linearity and continuity for operators, and
gives the first interesting examples of operators. The algebraic results presented here
are very classic, but we chose to prove (almost all of) them cleanly, in order to present
slowly how operators work and can be manipulated. An interested reader could consult
a reference book for more results (any book on linear algebra); but a reader familiar with
all this could skip this part and jump directly to section 2.3.

2.2.1 Linear operators (L)

We now require 𝐸 and 𝐹 to be vector spaces13.

13 The vector spaces considered in this report are usually on the field R, unless it is clearly specified for
C. No other fields K are used.
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Definition 2.5 (Linear operator). 𝐺 is a linear operator from 𝐸 to 𝐹 when

∀𝜆1, 𝜆2 ∈ R,∀𝑓1, 𝑓2 ∈ 𝐸, 𝐺{𝜆1𝑓1 + 𝜆2𝑓2} = 𝜆1𝐺{𝑓1}+ 𝜆2𝐺{𝑓2} ∈ 𝐹.

Definition 2.6 (Vector space of linear operators). The set of (real/complex) linear op-
erators (from 𝐸 to 𝐹 ) is (real/complex) a vector space (i.e., on the field R or C), denoted
ℒ(𝐸,𝐹 ) = ℒR(𝐸,𝐹 ) or ℒC(𝐸,𝐹 ) (or simply ℒ(𝐸) if 𝐹 = 𝐸).

Easy Proof. We prove two things in order to make this a definition:

∙ 0𝐸→𝐹 is linear so in ℒ(𝐸,𝐹 ),
∙ Let 𝜇1, 𝜇2 ∈ R, 𝐺1, 𝐺2 ∈ ℒ(𝐸,𝐹 ) Then 𝜇1𝐺1 + 𝜇2𝐺2 : 𝑓 ↦→ (𝜇1𝐺1 + 𝜇2𝐺2){𝑓} =
𝜇1(𝐺1{𝑓}) + 𝜇2(𝐺2{𝑓}) which is still linear on 𝑓 ∈ 𝐸, to 𝐹 (because 𝐹 is a vector
space), so 𝜇1𝐺1 + 𝜇2𝐺2 ∈ ℒ(𝐸,𝐹 ) too.

Remark 2.7. Except in very special cases,𝐸, 𝐹 and ℒ(𝐸,𝐹 ) are infinitely dimensional,
but they can be finitely dimensional.

For instance, for real function (𝑑 = 1), the function space 𝐸 = SpanR{sin, cos} (of
dimension 2) has a space of linear operators ℒ(𝐸) of finite dimension 4. Note that if
𝐸,𝐹 are finitely dimensional, then so is ℒ(𝐸,𝐹 ).

Proposition 2.8. When it is well defined, composition preserves the linearity of operators,
i.e., ℒ(𝐸) is also stable by composition.

Easy Proof. It is straightforward, by using the definition: if 𝐺1, 𝐺2 are linear, respectively
in ℒ(𝐹,𝐻) and ℒ(𝐸,𝐹 ), and if we can write 𝐺1 ∘ 𝐺2 (i.e., Im(𝐺2) ⊂ Dom(𝐺1) = 𝐹 ,
e.g., 𝐺1, 𝐺2 both are operating on L2(R𝑑)), then 𝐺

def= 𝐺1 ∘ 𝐺2 is in ℒ(𝐸,𝐻). Indeed, for
𝑓1, 𝑓2 ∈ 𝐸, 𝜆1, 𝜆2 ∈ R,

𝐺{𝜆1𝑓1 + 𝜆2𝑓2} = (𝐺1 ∘𝐺2){𝜆1𝑓1 + 𝜆2𝑓2}
= 𝐺1{𝐺2{𝜆1𝑓1 + 𝜆2𝑓2}}

(𝐺2 is linear) = 𝐺1{𝜆1(𝐺2{𝑓1}) + 𝜆2(𝐺2{𝑓2})}
(𝐺1 is linear) = 𝜆1𝐺1{(𝐺2{𝑓1})}+ 𝜆2𝐺1{(𝐺2{𝑓2})}

= 𝜆1𝐺{𝑓1}+ 𝜆2𝐺{𝑓2}.

Without any further hypothesis on the linear operators 𝐺, we cannot really say any-
thing more than these definitions, in the general setting (𝐸 being unspecified).

2.2.2 Continuous operators (C)

We can ask our operators 𝐺 : 𝐸 → 𝐹 to be continuous, in the sense of this definition:

Definition 2.9 (Continuity for operators). For 𝐺 ∈ ℒ(𝐸,𝐹 ), with 𝐸 and 𝐹 both having
a norm14denoted ‖ · ‖𝐸 and ‖ · ‖𝐹 , we say that 𝐺 is continuous when it preserves limits on
test functions15:

∀(𝑓𝑛)𝑛∈N ∈ 𝐸
N,∀𝑓 ∈ 𝐸, ‖𝑓𝑛 − 𝑓‖𝐸 −→

𝑛→+∞
0 =⇒ ‖𝐺{𝑓𝑛} −𝐺{𝑓}‖𝐹 −→

𝑛→+∞
0.

A simpler way of writing it is 𝑓𝑛 → 𝑓 =⇒ 𝐺{𝑓𝑛} → 𝐺{𝑓}, for all (𝑓𝑛)𝑛∈N, 𝑓 .
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For example, on 𝐸 = L2(R𝑑), the norm can be the usual 2-norm ‖ · ‖ = ‖ · ‖2.

Remark 2.10 (Concise notation for our class of operators). From now on, when there is no
ambiguity, we will denote an operator (or the class of operators) satisfying a certain property
with its corresponding bold capital letter (e.g., C for continuity). And if an operator satisfies
more than one property, we will simply concatenate the bold capital letters, for instance a
linear (L) and continuous (C) operator will be shorten to a LC operator, and so on.

This notation will be very convenient when we start to consider complex classes, such
as linear (L), continuous (C), translation-invariant (TI), 𝛾-scale-invariant (𝛾-SI), rotation-
invariant (RI) and steerable (St) operators: instead of giving it a complicated name or always
repeating this long list of properties, it is simply denoted LC TI 𝛾-SI St. The same notation
can either be interpreted as a shortcut for a list of adjective (when applied to one operator),
or the set (the class) of operators having these properties. When the actual domain 𝐸 (and
image 𝐹 ) of the operators is important, it is specified before using this shortcut notation.

We will denote C the class of continuous operators on 𝐸 (not studied by itself), and
LC the class of linear and continuous operators (on 𝐸).

Proposition 2.11. If 𝐸,𝐹 are linear spaces, this class LC is a linear sub-space of the space
of operators from 𝐸 to 𝐹 , stable by composition if 𝐹 = 𝐸.

Easy Proof. It is well known that continuity of functions or operators is preserved by linear
combination, by triangle inequality. And the null operator is obviously continuous.

Stability by composition is easy to obtain with the characterization of continuity as
being bounded (for linear operators). Indeed, if 𝐺1, 𝐺2 are bounded, then 𝐺 = 𝐺1 ∘ 𝐺2
is still bounded: ‖𝐺{𝑓}‖ = ‖(𝐺1 ∘ 𝐺2){𝑓}‖ = ‖𝐺1{𝐺2{𝑓}}‖ ≤ 𝐶1‖𝐺2{𝑓}‖ ≤ 𝐶1𝐶2‖𝑓‖ =
𝐶‖𝑓‖with 𝐶 = 𝐶1𝐶2.

Definition 2.12. A linear continuous (LC) operator is called an integral operator16.

Remark 2.13. It is well known that a linear operator𝐺 is continuous iff 17 it is continu-
ous on 0𝐸 iff it is bounded iff it is Lipschitz-continuous. Note that we will not prove
continuity like this, because Schwartz’s first kernel theorem 3.1 gives a simpler way
to prove that an operator is LC, by directly providing it’s Schwartz kernel 𝑘𝐺.

Remark 2.14. In the next paragraphs, we define some additional properties that an
operator 𝐺 can have. The properties TI, 0-SI and RI are defined by requiring 𝐺 to
commute with a special family of operators (e.g., translation, dilatation etc). It might
seem to be a pointless observation, but it proves directly that the classes of operators
having one or more of these properties (e.g., TI or TI + RI18) are all stable under
linear combinations, and under compositions (if 𝐸 = 𝐹 ).

15 Or a (countable or not countable) family of semi-norms, e.g., the Sobolev norms ‖ · ‖𝑝,𝛼 on 𝐸 = S(R𝑑).
15 Or when it preserves limits on test functions for all the semi-norms, in the case of semi-norms.
16 This will be justified by the first Schwartz’s kernel theorem, as 𝐺{𝑓} =

∫︀
𝑘𝐺(·, y)𝑓(y)dy is exactly the

form of an integral operator.
17 We use the standard abbreviation “iff ” for “if and only if”, i.e., a logical equivalence · · · ⇔ · · · .
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2.3 Geometric properties: translation-, scaling- and rotation-invariance

The properties introduced here are natural hypothesis for our operators. Such operators
can for example be some sort of filters on images, and it is very meaningful to ask at
least translation-invariance and scaling-invariance (or 𝛾-scaling-invariance) for filters,
as we will explain below. Having at least these two properties (TI, 𝛾-SI) is a natural
framework to study interesting and “physically meaningful” operators in 2D, and that
is why our study of steerable operators is focused on LC TI 𝛾-SI operators at the end
(cf. section 4.4.2).

2.3.1 Additional hypothesis on the function space 𝐸

Before going into more details on these geometric transforms, we need to ask three prop-
erties to the function spaces 𝐸 in order clarify three points.

Remark 2.15 (Vector space). From now on, we always ask𝐸 and 𝐹 to be vector spaces.

Remark 2.16 (Stability hypothesis for 𝐸). From now on, we always ask 𝐸,𝐹 to be
stable by translations, scaling, 𝛾-scaling and rotations, i.e., 𝐸 should be stable by
geometric transforms.

It is the case for 𝐸 = L2(R𝑑,R), 𝐸 = S(R𝑑,R) and 𝐸 = S′(R𝑑,R).

Remark 2.17 (Between S and S′). From now on, we always consider the setting where

S(R𝑑,R) ⊂ 𝐸 ⊂ S′(R𝑑,R). (4)

It is also the case for 𝐸 = L2(R𝑑,R), 𝐸 = S(R𝑑,R) and 𝐸 = S′(R𝑑,R).
A consequence is that we can always assume at least that 𝐺{𝑓} ∈ S′.

2.3.2 In fact, we need topological spaces

Remark 2.18 (Topological Vector Spaces). We also need to precise that from now on,
we always consider topological vector spaces, and not only vector spaces.

In a nutshell, it means that the vector spaces (𝐸 and 𝐹 for functions, and the
class of operators, e.g., LC or LC TI) are endowed with a topology, compatible with
their structure of vector spaces. Note that they are only asked to be topological, not
normed.

And so whenever we say that 𝐸1 is a linear sub-space of 𝐸, it means in fact that
𝐸1 is a topological vector space too, included in 𝐸, sharing the vector space structure
(i.e., same 0𝐸 , same sum + and multiplication by a scalar ·), and sharing the topological
structure (i.e., all the open sets of 𝐸1 are open sets of 𝐸).

In other words, the topology is preserved whenever the linearity is preserved. But for
the sake of conciseness and simplicity, we preferred to give the proofs only for the
linearity part, but all the results in the rest of this section are not only valid for vector
spaces and linear sub-space, but are also valid for topological vector spaces and topological
linear sub-spaces.

For more details on topological vector spaces, we let the reader consult a refer-
ence book, two good historical references being [Gro73] and [Bou81].
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2.3.3 Translation-invariant operators (TI)

In a short sentence: An operator is translation-invariant when its output on a translated input
signal is the translated output on the non-translated input signal.

For instance in 2D, it means that the operation on the input image does not depend
on the exact location of patterns in the image, but on relative location. For example, if we
are implementing a face detector, it should detect a face regardless of its location.

As soon as we consider translation operators, we see that it was a good idea to only
consider functions of domain Dom(𝑓) = Ω = R𝑑, as we need to be able to consider
𝑓(· − x0) for any x0 ∈ R𝑑.

Definition 2.19 (Translation operator on 𝐸). For a fixed x0 ∈ R𝑑, let 𝜏x0 be defined by:

𝜏x0 : 𝐸 → 𝐸, 𝑓 ↦→ 𝜏x0{𝑓}
def= 𝑓(· − x0) : R𝑑 → R,x ↦→ 𝑓(x− x0).

𝜏x0 is called the translation operator of offset x0, or simply translation by x0.

Lemma 2.20. For any x0 ∈ R𝑑, 𝜏x0 is a linear and continuous (LC) operator on 𝐸

Easy Proof. ∙ Its linearity is obvious by the distributivity of function evaluation: 𝜏x0{𝜆1𝑓1+
𝜆2𝑓2}(x) = (𝜆1𝑓1 + 𝜆2𝑓2)(x − x0) = 𝜆1𝑓1(x − x0) + 𝜆2𝑓2(x − x0) = 𝜆1𝜏x0{𝑓1} +
𝜆2𝜏x0{𝑓2}.

∙ Its continuity comes from the fact that all the norms considered for function spaces
(on R𝑑) are integrals on the whole domain R𝑑, and so the (bijective) change of vari-
able x ↦→ x − x0 (of Jacobian 1) can always be applied, without changing the value
of the norm. For instance, for classic 𝑝-norms (on R𝑑), ‖𝜏x0𝑓‖𝑝 = ‖𝑓‖𝑝. More com-
plicated constants could pop out for semi-norms or norms based on derivatives, but
there will always be a 𝐶x0 ∈ R+ such that ‖𝜏x0𝑓‖ = 𝐶x0‖𝑓‖, hence 𝜏x0 is continu-
ous19.

Note: the same scheme of proof will be used for other operators.

We can now ask our operators 𝐺 : 𝐸 → 𝐹 to be translation-invariant (also called
shift-invariant), in the sense of the following definition:

Definition 2.21 (Translation invariance for operators). For 𝐺 ∈ ℒ(𝐸,𝐹 ), 𝐺 is
translation-invariant (TI) when it commutes with any translation operator 𝜏x0 , i.e., when

∀x0 ∈ R𝑑, ∀𝑓 ∈ 𝐸,∀x ∈ R𝑑, (𝐺{𝑓})(x− x0) = (𝐺{𝑓(· − x0)})(x)
ie. = ((𝜏x0𝐺){𝑓})(x) = ((𝐺𝜏x0){𝑓})(x).

A simpler way of writing it20is simply 𝜏x0 ∘𝐺 = 𝐺 ∘ 𝜏x0 , for all x0 ∈ R𝑑.

We will denote TI the class of translation-invariant operators (not studied by itself),
and by LC TI the class of linear, continuous and translation-invariant operators (on 𝐸).

An interesting general result is the following: for an operator 𝐻 , the set of operators
𝐺 commuting with it is always a linear sub-space.

19 And 𝜏x0 is usually an isometry, i.e., 𝐶x0 = 1 except maybe for unusual function spaces 𝐸.
20 When there is no risk of ambiguity, we tend to omit the composition symbol ∘, as usual.
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Lemma 2.22 (Commutant21of an operator). Let 𝐻 ∈ ℒ(𝐸) and let Comm(𝐻) def={𝐺 ∈
ℒ(𝐸), 𝐻 ∘𝐺 = 𝐺 ∘𝐻} be the commutant of 𝐻 . It is a linear sub-space of ℒ(𝐸).

Proof. First, the null-operator obviously commutes with 𝐻 (0𝐸→𝐸 ∘𝐻 = 0𝐸→𝐸 =
𝐻 ∘ 0𝐸→𝐸 . Then, if 𝐺1, 𝐺2 ∈ Comm(𝐻), 𝜆 ∈ R, then by linearity of 𝐻 , 𝐻 ∘ (𝐺1 +
𝜆𝐺2) = 𝐻 ∘ 𝐺1 + 𝐻 ∘ (𝜆𝐺2) = 𝐺1 ∘ 𝐻 + 𝜆(𝐻 ∘ 𝐺2) = 𝐺1 ∘ 𝐻 + 𝜆(𝐺2 ∘ 𝐻) =
𝐺1 ∘𝐻 + (𝜆𝐺2) ∘𝐻 = (𝐺1 + 𝜆𝐺2) ∘𝐻 . Comm(𝐻) is also a linear sub-space as the
kernel of a linear meta-operator, 𝐺 ↦→ 𝐻 ∘𝐺−𝐺 ∘𝐻 .

Remark 2.23. For invertible 𝐻 , Comm(𝐻) can also be written as {𝐺 ∈ ℒ(𝐸), 𝐻 ∘ 𝐺 ∘
𝐻−1 = 𝐺}, so it can be seen as the set of fix point by the action 𝐺 ↦→ 𝐻 ∘ 𝐺 ∘ 𝐻−1.
So if 𝐻 is in a certain group 𝐴 (e.g., group of translation or rotation operators), the
set

⋂︀
𝐻∈𝐴 Comm(𝐻), of operators 𝐺 commuting with every 𝐻 in 𝐴 (e.g., translation-

or rotation-invariant operators), can also be interpreted in terms of fix points under
a group action, named the conjugation action (𝐻 ·𝐺 def= 𝐻 ∘𝐺 ∘𝐻−1).

Some readers could be familiar with these concepts, but we did not study them
because, despite our limited knowledge of this domain, we think that nothing from
this theory of group actions could be useful for our questions.

Proposition 2.24. If 𝐸,𝐹 are linear spaces, this class LTI is a linear sub-space of the space
of operators from 𝐸 to 𝐹 , stable by composition if 𝐹 = 𝐸.

Easy Proof. In particular, for one translation operator 𝜏x0 , Comm(𝜏x0) is a linear sub-space.
And by considering the intersection of all such linear sub-spaces, indexed22 by x0 ∈ R𝑑, it
implies that the set of operators commuting will all translations (i.e., the set of linear and
translation-invariant operators, LTI) is a linear sub-space.

Corollary 2.25. The class LC TI is a linear sub-space of ℒ(𝐸,𝐹 ), stable by composition if
𝐹 = 𝐸.

Easy Proof. By intersection.

Warning 2.26. This class is usually denoted “LSI” in this community (e.g., [UT14])
for “Linear Shift-Invariant”, but the notation “SI” will instead be used for 𝛾-SI, de-
noting the 𝛾-scale-invariance and not the shift-invariance (see later).

Definition 2.27. A linear continuous translation-invariant (LC TI) operator is called a
convolution operator, or simply a convolution23.

21 This object has most surely been already studied but we did no find any common name for it, so
“commutant” is our own way of calling it.

22 Even an infinite or a non-countable intersection of linear sub-spaces is a still a linear sup-space.
23 This will be justified by the second Schwartz’s kernel theorem, as 𝐺{𝑓} =

∫︀
𝑔(· − y)𝑓(y)dy = 𝑔 * 𝑓 is

exactly the form of a convolution operator.
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2.3.4 Scaling-invariant operators (0-SI)

In a short sentence: An operator is scaling-invariant when its output on a zoomed input signal
is the zoomed output on this non-zoomed input signal.

For instance in 2D, it means that the operation on the input image does not depend
on the absolute scale of patterns in the image, but on relative scales. With the same
example as above, a face detector should detect a face regardless of its size on the image
(it should detect small faces in the background as well as large faces in the foreground).

Definition 2.28 (Scaling operator on 𝐸). For a fixed 𝑎 ∈ R*
+ (i.e., 𝑎 ∈ R, 𝑎 > 0), let 𝑑𝑎

the operator on 𝐸 defined by:

𝑑𝑎 : 𝐸 → 𝐸, 𝑓 ↦→ 𝑑𝑎{𝑓}
def= 𝑓(𝑎·) : R𝑑 → R,x ↦→ 𝑓(𝑎x).

𝑑𝑎 is called the scaling operator (or dilatation operator) of dilatation factor24𝑎 > 0.

Some books use the inverse definition with (𝑑𝑎{𝑓})(𝑥) = 𝑓(𝑥/𝑎), but we preferred
the simpler notation.

Lemma 2.29. 𝑑𝑎 is a linear and continuous (LC) operator on 𝐸 (for any linear space 𝐸).
And 𝑑𝑎 is not25translation-invariant (TI).

Easy Proof. ∙ Its linearity is obvious: 𝑑𝑎{𝜆1𝑓1+𝜆2𝑓2}(x) = (𝜆1𝑓1+𝜆2𝑓2)(𝑎x) = 𝜆1𝑓1(𝑎x)+
𝜆2𝑓2(𝑎x) = 𝜆1𝑑𝑎{𝑓1}+ 𝜆2𝑑𝑎{𝑓2}.

∙ Its continuity comes from the fact that all the norms considered for function spaces
(on R𝑑) are integrals on the whole domain R𝑑, and so the (bijective) change of vari-
able x ↦→ 𝑎x (of Jacobian 𝑎𝑑) can always be applied, without changing the value of
the norm. For instance, for classic 𝑝-norms, ‖𝑑𝑎𝑓‖𝑝 = 𝑎𝑑‖𝑓‖𝑝. More complicated
constants can pop out for semi-norms or norms based on derivatives, but there will
always be a 𝐶𝑎 ∈ R+ such that ‖𝑑𝑎𝑓‖ = 𝐶𝑎‖𝑓‖, hence 𝑑𝑎 is continuous26.

∙ And 𝑑𝑎 is not TI in general:

(𝜏x0𝑑𝑎){𝑓}(x) = 𝑓(𝑎x− x0) ̸= 𝑓(𝑎(x− x0)) = (𝑑𝑎𝜏x0){𝑓}(x).

We can now ask our operators 𝐺 : 𝐸 → 𝐹 to be scaling-invariant (also sometimes
called dilatation-invariant, or homogeneous), in the sense of the following definition:

Definition 2.30 (Scaling invariance for operators). For 𝐺 ∈ ℒ(𝐸,𝐹 ), we say that 𝐺 is
scaling-invariant (0-SI) when it commutes with any scaling operator 𝑑𝑎, i.e., when

∀𝑎 ∈ R*
+, ∀𝑓 ∈ 𝐸,∀x ∈ R𝑑, (𝐺{𝑓})(𝑎x) = (𝐺{𝑓(𝑎·)})(x)

ie. = ((𝑑𝑎𝐺){𝑓})(x) = ((𝐺𝑑𝑎){𝑓})(x).

A simpler way of writing it is 𝑑𝑎 ∘𝐺 = 𝐺 ∘ 𝑑𝑎, for all 𝑎 ∈ R*
+.

24 Negative dilatation factor 𝑎 < 0 are never considered, neither in the literature nor in this report, one
reason being that they would mess up with the time-reversal property of the Fourier transform, another
reason being that a simple derivative would not be scale-invariant if negative 𝑎 were considered.

25 Conversely, this gives directly that any translation operator 𝜏x0 is not scale-invariant.
26 And 𝑑𝑎 is usually an isometry, up to a constant – and it always preserves orthogonality.
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As for the translation-invariance, this definition also characterizes 𝐺 by its commu-
tativity with a certain family of operators (the dilatations here).

Remark 2.31. The definition has a very similar meaning for functions and operators:
a function 𝑓 is scale-invariant when applying a dilatation to its input does not change
its value; while an operator𝐺 is scale-invariant when it commutes with any dilatation
operator. But the correct way to “apply” a dilatation to an operator is to zoom-out
the input and zoom-in the output, i.e., to consider 𝐺𝑎 = 𝑑𝑎 ∘ 𝐺 ∘ 𝑑1/𝑎. And so 𝐺 is
scale-invariant when 𝐺𝑎 = 𝐺 for all 𝑎 > 0, which means that applying a dilatation
does not change 𝐺.

We will denote 0-SI the class of scaling-invariant operators27 (not studied by itself),
and by LC 0-SI the class of linear, continuous and scaling-invariant operators (on 𝐸).

Proposition 2.32. If 𝐸,𝐹 are linear spaces, this class 0-SI is a linear sub-space of the space
of operators from 𝐸 to 𝐹 , stable by composition if 𝐹 = 𝐸.

Easy Proof. The linearity is immediate as 0-SI is the intersection of all Comm(𝑑𝑎) for 𝑎 ∈
R𝑑. And the stability by composition is simple to obtain with the definition: if 𝐺1, 𝐺2 are
0-SI, let 𝐺 = 𝐺1 ∘𝐺2, then for any 𝑎 ∈ R*

+, one have, by associativity of the composition,

𝑑𝑎 ∘𝐺 = 𝑑𝑎 ∘ (𝐺1 ∘𝐺2) = (𝑑𝑎𝐺1)𝐺2 = (𝐺1𝑑𝑎)𝐺2

= 𝐺1(𝑑𝑎𝐺2) = 𝐺1(𝐺2𝑑𝑎) = (𝐺1𝐺2)𝑑𝑎 = 𝐺 ∘ 𝑑𝑎.

Corollary 2.33. LC 0-SI operators also form a linear sub-space of ℒ(𝐸,𝐹 ), stable by com-
position if 𝐹 = 𝐸.

Easy Proof. By intersection.

2.3.5 𝛾-scaling-invariant operators (𝛾-SI)

In a short sentence: An operator is 𝛾-scaling-invariant when its output on a zoomed input
signal is the zoomed output on this non-zoomed input signal, with a (possibly) different zoom
factor, dependent geometrically on the input zoom factor.

For instance in 2D, it means that the operation on the input image does not depend
on the absolute scale of patterns in the image, but on relative scales (up to a geometric
change of variable). For the same example, a face detector should detect a face regardless
of its size on the image, but it could “react” stronger to larger faces.

Let 𝛾 ∈ R+ (i.e., 𝛾 ≥ 0). We can also ask our operators 𝐺 : 𝐸 → 𝐹 to be 𝛾-scaling-
invariant (also sometimes called 𝛾-homogeneous), in the sense of the following definition:

Definition 2.34. For 𝐺 ∈ ℒ(𝐸,𝐹 ), we say that 𝐺 is 𝛾-scaling-invariant (𝛾-SI) when

∀𝑎 ∈ R*
+,∀𝑓 ∈ 𝐸,∀x ∈ R𝑑, (𝐺{𝑓})(x/𝑎) = 𝑎𝛾(𝐺{𝑓(·/𝑎)})(x)

ie. = ((𝑑1/𝑎 ∘𝐺){𝑓})(x) = (𝑑1/𝑎{𝐺{𝑓}})(x)
= 𝑎𝛾(𝐺{𝑑1/𝑎{𝑓}})(x) = 𝑎𝛾((𝐺 ∘ 𝑑1/𝑎){𝑓})(x).

A simpler28way of writing it is 𝑑𝑎 ∘𝐺 ∘ 𝑑1/𝑎 = 1/𝑎𝛾𝐺, for all 𝑎 ∈ R*
+.

This constant 𝛾 is called “the” order of homogeneity.

27 We use the notation 0-SI instead of simply SI for “scale-invariant” to highlight the fact that it is a
special case of 𝛾-scale-invariance, with 𝛾 = 0, see the next subsection.
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We can state and easily prove this simple result, justifying the definition of the order
of homogeneity.

Lemma 2.35 (Uniqueness of the order of homogeneity for non-trivial operators).
If 𝐺 is 𝛾-SI and 𝛾′-scale-invariant for two different 𝛾 ̸= 𝛾′, then it is the null operator.
In other words, non-trivial operators have a unique order of homogeneity 𝛾.

Proof. Such 𝐺 will satisfy 𝑑1/𝑎 ∘𝐺 = 𝑎𝛾(𝐺 ∘ 𝑑1/𝑎) = 𝑎𝛾
′(𝐺 ∘ 𝑑1/𝑎), so if 𝐺 is not the

null operator, when applied to a function 𝑑𝑎{𝑓}, for 𝑓 ̸∈ ker(𝐺), then the equality
gives 𝑎𝛾𝐺{𝑓} = 𝑎𝛾

′
𝐺{𝑓}, with 𝐺{𝑓} ≠ 0 (because (𝐺 ∘ 𝑑1/𝑎)(𝑑𝑎{𝑓}) = 𝐺{𝑓} ̸= 0

as 𝑓 ̸∈ ker(𝐺)), so for 𝑎 ̸= 0, 1, it gives 𝛾 = 𝛾′. So the converse sense of this
implication is the desired result: 𝛾 ̸= 𝛾′ =⇒ 𝐺 = 0𝐸→𝐸 .

Remember that for functions, 𝛾-homogeneity means that 𝑓(𝑎x) = 𝑎𝛾𝑓(x). For exam-
ple, in dimension 𝑑 = 1, the 𝛾-homogeneous functions on R+ are exactly the function29

𝑟 ↦→ 𝑟𝛾 (up to a constant), as proved below.

Lemma 2.36 (Uniqueness of 𝛾-homogeneous functions on R+). For 𝛾 ∈ R+, let 𝑓 :
R+ → R, then 𝑓 is 𝛾-homogeneous iff there is 𝐶 ∈ R, such that ∀𝑟 ∈ R+, 𝑓(𝑟) = 𝐶𝑟𝛾 .

Proof. Let 𝐶 def= 𝑓(1), then 𝑓 is 𝛾-homogeneous iff ∀𝑟 ∈ R+, 𝑓(𝑟) = 𝑓(𝑟.1) =
𝑟𝛾𝑓(1), so 𝑓(𝑟) = 𝐶𝑟𝛾 .

This small result will be usefully applied afterward to the radial dependency (𝜔 ↦→
𝜌(‖𝜔‖)) of the Fourier multiplier of 𝛾-SI operators (see later, section 3.4.5).

We will denote 𝛾-SI the class of 𝛾-scaling-invariant operators (not studied by itself),
and by LC 𝛾-SI the class of linear, continuous and 𝛾-scaling-invariant operators (on 𝐸).

Proposition 2.37. If 𝐸,𝐹 are linear spaces, this class 𝛾-SI is a linear sub-space of the space
of operators from 𝐸 to 𝐹 .

But the sum of two non-trivial 𝛾-SI operator and 𝛾′-SI operator is scale-invariant iff 𝛾 =
𝛾′. Additionally, the class 𝛾-SI is stable under composition iff 𝛾 = 0.

Easy Proof. 𝛾-SI cannot be written with commutants, but it is easy to prove its stability by
linear combinations. The null operator is 𝛾-SI, and if 𝐺1, 𝐺2 are 𝛾-SI and 𝜆1, 𝜆2 ∈ R, then:

𝑑1/𝑎 ∘ (𝜆1𝐺1 + 𝜆2𝐺2) = 𝜆1𝑑1/𝑎 ∘𝐺1 + 𝜆2(𝑑1/𝑎 ∘𝐺2)
= 𝜆1𝑎

𝛾(𝐺1 ∘ 𝑑1/𝑎) + 𝜆2𝑎
𝛾(𝐺2 ∘ 𝑑1/𝑎)

= 𝑎𝛾(𝜆1𝐺1 + 𝜆2𝐺2) ∘ 𝑑1/𝑎.

A simple example for the second point is to consider, naively, in dimension 1, 𝑟 ↦→ 𝑟
and 𝑟 ↦→ 𝑟2, whose sum 𝑟 ↦→ 𝑟 + 𝑟2 is clearly not 𝛾-SI (for any 𝛾). The same example can
be easily extended to higher dimensions.

For the last point, the indirect sense is obvious, as we already proved that the 0-SI class
is stable by composition. The direct sense is a consequence of the next proposition 2.39,
and the fact that 2𝛾 = 𝛾 iff 𝛾 = 0.

28 Beware: the order is important here.
29 The positive variable is denoted 𝑟 and not 𝑥 here, because this result will be used for the radial part of

functions in higher dimensions later on, e.g., 𝑓(𝑟) = 𝑓(‖𝜔‖).
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Corollary 2.38. LC 𝛾-SI operators also form a linear sub-space of ℒ(𝐸,𝐹 ).

Easy Proof. By intersection.

We can also say something of the composition of two 𝛾-SI operator and 𝛾′-SI opera-
tor, to generalize the fact that 0-scale-invariance is preserved by operator composition.

Proposition 2.39. Let 𝛾, 𝛾′ ∈ R+, and 𝐺,𝐺′ a 𝛾-SI operator and a 𝛾′-SI operator, respec-
tively on 𝐹 to𝐻 and𝐸 to 𝐹 . Then𝐺′′ = 𝐺∘𝐺′ is also scale-invariant, of order 𝛾′′ = 𝛾+𝛾′,
on 𝐸 to 𝐻 .

Easy Proof. We simply apply the definition:

∀𝑎 ∈ R*
+,∀𝑓 ∈ 𝐸,∀x ∈ R𝑑, (𝐺′′{𝑓})(x/𝑎)

= ((𝐺 ∘𝐺′){𝑓})(x/𝑎) = (𝐺{𝐺′{𝑓}})(x/𝑎)
(as 𝐺 is 𝛾-SI) = 𝑎𝛾𝐺(𝐺′{𝑓}(·/𝑎))(x)

(as 𝐺′ is 𝛾′-SI) = 𝑎𝛾𝑎𝛾′
𝐺(𝐺′{𝑓(·/𝑎)})(x)

= 𝑎𝛾+𝛾′
(𝐺 ∘𝐺′{𝑓(·/𝑎)})(x)

= 𝑎𝛾′′
(𝐺′′{𝑓(·/𝑎)})(x).

And so30 𝐺′′ = 𝐺 ∘𝐺′ is indeed 𝛾′′ = 𝛾 + 𝛾′ scale-invariant.

2.3.6 Rotation-invariant operators (RI)

In a short sentence: An operator is rotation-invariant when its output on a rotated input signal
is the rotated output on this non-rotated input signal.

For instance in 2D, it means that the operation on the input image does not depend
on the absolute orientation of patterns in the image, but on relative orientation. With
the same example as above, a contour detector should detect a contour regardless of its
orientation on the image.

Definition 2.40 (Rotations on R𝑑). A 𝑑-dimensional rotation is a square matrix, in
M𝑑,𝑑(R), which is orthogonal: 𝑅𝑇𝑅 = 𝑅𝑅𝑇 = I𝑑. Such matrix 𝑅 has a determinant
det(𝑅) = ±1, and it corresponds to a linear operator on R𝑑.

The group of (proper and improper) rotations on R𝑑 is denoted O(𝑑), but is not used.
We only consider proper rotations in this report31, i.e., when det(𝑅) = +1, and the

group of proper rotations on R𝑑 is denoted SO(𝑑).

In small dimensions, rotations are well known:

∙ The case 𝑑 = 1 is empty: there is only one (proper) rotation, the identity.

30 Such result will be obvious for LC TI operators, by using their Fourier multipliers (see later).
31 Improper rotations in dimension 2 simply are axial symmetries, and including them in the definition

of rotation-invariance was reducing too much the range of interesting RI operators. Note that some books
do not clarify whether they are considering improper and proper rotations, e.g., [UT14, Def.5.3, p90].
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∙ The case 𝑑 = 2 is simple but quite rich. (Proper) rotations on R2 are parametrized

by a single parameter, 𝜃 ∈ [0, 2𝜋): 𝑅𝜃 =
[︃

cos(𝜃) sin(𝜃)
− sin(𝜃) cos(𝜃)

]︃
, which operates on

vectors of R2. They have an interesting32 composition property: 𝑅𝜃1 ∘ 𝑅𝜃2 =
𝑅𝜃1+𝜃2 .

∙ Higher dimensional rotation-invariant operators were not studied by themselves.

From a rotation matrix 𝑅, we can associate a functional operator 𝑟𝑅.

Definition 2.41 (Rotation operator on 𝐸). For a fixed 𝑅 ∈ SO(𝑑) (i.e., a rotation, oper-
ating on vectors), let 𝑟𝑅 the corresponding operator on functions (on 𝐸) defined by:

𝑟𝑅 : 𝐸 → 𝐸, 𝑓 ↦→ 𝑟𝑅{𝑓}
def= 𝑓(𝑅·) : R𝑑 → R,x ↦→ 𝑓(𝑅x).

𝑟𝑅 is called the rotation operator of rotation matrix33𝑅.

Lemma 2.42. 𝑟𝑅 is a linear and continuous (LC) operator on 𝐸 (for any 𝐸).
And 𝑟𝑅 is not34translation-invariant (TI) but is 0-scale-invariant (0-SI).

Easy Proof. ∙ Its linearity is obvious: 𝑟𝑅{𝜆1𝑓1 + 𝜆2𝑓2}(x) = (𝜆1𝑓1 + 𝜆2𝑓2)(𝑅x) =
𝜆1𝑓1(𝑅x) + 𝜆2𝑓2(𝑅x) = (𝜆1𝑟𝑅{𝑓1}+ 𝜆2𝑟𝑅{𝑓2})(x).

∙ Its continuity comes from the fact that all the norms considered for function spaces
(on R𝑑) are integrals on the whole domain R𝑑, and so the (bijective) change of vari-
able x ↦→ 𝑅x (of Jacobian 1) can always be applied, without changing the value of the
norm. Hence, for classic 𝑝-norms, ‖𝑅 ∘ 𝑓‖𝑝 = ‖𝑓 ∘𝑅‖𝑝. More complicated constants
can pop out for semi-norms or norms based on derivatives, but there will always be
a 𝐶𝑅 ∈ R+ such that ‖𝑟𝑅𝑓‖ = 𝐶𝑅‖𝑓‖, hence 𝑟𝑅 is continuous35.

∙ And 𝑟𝑅 is not TI and but is 0-SI: (𝜏x0𝑟𝑅){𝑓}(x) = 𝑓(𝑅x − x0) ̸= 𝑓(𝑅(x − x0)) =
(𝑟𝑅𝜏x0){𝑓}(x), and (𝑑𝑎𝑟𝑅){𝑓}(x) = 𝑓(𝑎(𝑅x)) = 𝑓(𝑅(𝑎x)) = (𝑟𝑅𝑑𝑎){𝑓}(x).

This other lemma is not required for the next results in this section, but it is an in-
teresting result on rotation and convolution, that will be used afterward in some proofs
about steerability, and it concerns the rotation operators.

Lemma 2.43 (Rotation of a convolution). For 𝑅 ∈ SO(𝑑), and 𝑓, 𝑔 in 𝐸, we have
𝑟𝑅{(𝑔 * 𝑓)} = (𝑟𝑅{𝑔}) *(𝑟𝑅{𝑓}).

32 So there is an isomorphism between the group SO(2) and R/2𝜋Z = T the 2𝜋-periodic torus.
33 𝑅 and 𝑟𝑅 have different domain so we preferred to use two different symbols. Note that some refer-

ences make no difference, but it can be confusing: 𝑅 operates on 𝑑-dimensional vectors, while 𝑟𝑅 operates
on functions!

34 Conversely, this gives directly that any translation operator 𝜏x0 is not rotation-invariant, and that any
dilatation operator 𝑑𝑎 is rotation-invariant.

35 And 𝑟𝑅 is an isometry, up to a constant – at least it preserves orthogonality. It is usually an isometry
(i.e., 𝐶𝑅 = 1) except maybe for unusual function space 𝐸.
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Easy Proof. It is quite simple to obtain, as the (bijective) change of variable y ↦→ y′ = 𝑅−1y
has a Jacobian36 equals to 1, so it can be applied in the integral defining the convolution
without changing its value.

Let x ∈ R𝑑, then

𝑟𝑅{(𝑔 * 𝑓)}(x) = (𝑔 * 𝑓)(𝑅x) =

=
∫︁

y∈R𝑑

𝑔(𝑅x− y)𝑓(y)dy

(With y′ = 𝑅−1y) =
∫︁

y′∈R𝑑

𝑔(𝑅(x− y′))𝑓(𝑅y′)dy′

=
∫︁

y∈R𝑑

(𝑟𝑅{𝑔})(x− y)(𝑟𝑅{𝑓})(y)dy

= ((𝑟𝑅{𝑔}) *(𝑟𝑅{𝑓}))(x)

For functions, this computation is clear. For distribution, one needs to be more cautious,
but the results is still true.

We can now ask our operators 𝐺 : 𝐸 → 𝐹 to be rotation-invariant, in the sense of the
following definition:

Definition 2.44 (Rotation invariance for operators). For 𝐺 ∈ ℒ(𝐸,𝐹 ), we say that 𝐺 is
rotation-invariant (RI) when it commutes with any rotation operator 𝑟𝑅, i.e., when

∀𝑅 ∈ SO(𝑑), ∀𝑓 ∈ 𝐸,∀x ∈ R𝑑, (𝐺{𝑓})(𝑅x) = (𝐺{𝑓(𝑅·)})(x)
ie. = ((𝑟𝑅𝐺){𝑓})(x) = ((𝐺𝑟𝑅){𝑓})(x).

A simpler way of writing it is 𝑟𝑅 ∘𝐺 = 𝐺 ∘ 𝑟𝑅, for all 𝑅 ∈ SO(𝑑).

Remark 2.45. As before, we only consider proper rotations for the definition of
rotation-invariance (and for steerability, see later definition 4.1). All these proper-
ties are studied because they have a “physical” interpretation: rotation-invariance
for a function means isotropy of its values (e.g., for a 2D image, it means that we
observe circles of different lightness, centered at (0, 0)). And for an operator (a filter,
as called in signal processing), rotation-invariance means that if the filter is applied
to a rotated version of the input image, it will give the same output as if we rotate its
output on the image.

For instance, steerability have been studied for wavelets, especially in the BIG
team during the last few years (for example cf. Szuszanna Püspöki’s PhD the-
sis [Püs16]), and applied to contour and shape detection with great success, where
rotation-invariance is an appealing property (a contour should be detected correctly
no matter its orientation).

Remark 2.46. The definition has a very similar meaning for functions and operators:
a function 𝑓 is rotation-invariant when applying a rotation to its input does not change

36 This change of variable will be used for other proofs as well. For a quick reminder on the change of
variable theorem and the notion of Jacobian, cf. this Wikipedia article.
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its value; while an operator 𝐺 is rotation-invariant when it commutes with any rota-
tion operator. But the correct way to “apply” a rotation to an operator is to anti-rotate
the input and rotate the output, i.e., to consider 𝐺𝑅 = 𝑟𝑅 ∘ 𝐺 ∘ 𝑟𝑅−1 (cf. remark 4.6).
And so 𝐺 is rotation-invariant when iff 𝐺𝑅 = 𝐺 for all 𝑅 ∈ SO(𝑑), which exactly
means that applying a rotation on 𝐺 does not change it.

We will denote RI the class of rotation-invariant operators (not studied by itself), and
by LC RI the class of linear, continuous and rotation-invariant operators (on 𝐸).

Proposition 2.47. This class RI is a linear sub-space of ℒ(𝐸,𝐹 ).

Easy Proof. As before for TI, it is immediate when RI is written as the intersection of all
the Comm(𝑟𝑅) for 𝑅 ∈ SO(𝑑).

Corollary 2.48. LC RI operators also form a linear sub-space of ℒ(𝐸,𝐹 ).

Easy Proof. By intersection.

Remark 2.49. As it will be proved afterward in section 3.4.4, rotation-invariance is
a very strong property, and usually it reduces greatly the freedom on the operator.
In our study of rotation-invariant operators, the Laplacian will in fact be the only
rotation-invariant and scale-invariant LC TI operator (along with all the fractional
Laplacians37).

Conclusion

This first section introduced the notion of test functions and operators, and presented
some algebraic and geometric properties that operators can have. We chose to focus
on the three main geometric invariance properties, translation-, scaling- and rotation-
invariance. Many results were stated about the structure of the some interesting class
of operators, and what is important is the fact that all the main class of operators are
topological vector spaces (cf. remark 2.18).

Another geometric property?

Remark 2.50 (Unitary operators). We chose to include the definition and study of uni-
tary operators in appendix A, along with the study of the Hilbert transform and its
generalizations, because they are less relevant38 to the rest of our work, but interest-
ing enough to be included.

37 Linguistic remark: I was not sure what is the correct English rule to follow here, between laplacian,
laplacians, Laplacian or Laplacians. It seemed clearer to put a “s” to indicate plurals, and a capital letter as
usual for the Laplacian. Forgive me if you disagree with my choice: “one Laplacian, two Laplacians”.

38 An interested reader could consult this appendix, but should keep in mind that it is less coherent with
the rest of our research.
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3 Classic results for operators, important examples, and charac-
terizations for geometric invariance

This section will give general results about operators, mainly characterizations for each
of the algebraic and geometric properties introduced in the previous section 2.3.

Along these general considerations, some examples of operators are presented, first
in a small overview of the classic operators, and then by studying in more details two
important examples, both coming from the study of differential equations: derivatives
(and directional derivatives) and Laplacian (and fractional Laplacian).

The two main theorems are very well known, theorems 3.1 and 3.5 are the so called
Schwartz’s kernel theorems, and we use them to give interesting characterization of be-
ing RI, 0-SI and/or 𝛾-SI for LC and LC TI operators. The proofs of every results, except
the first Schwartz theorem, are included here.

Extensive study ? We tried to conduct an exhaustive study of operators with certain
properties, where every combination of properties has been studied. For the sake of con-
ciseness and because a lot of these combinations do not yield easy or interesting results,
we only included here the more interesting ones. It is not surprising to observe that
not much can be said about operators having some geometric properties if they are not
convolution. Therefore, operators are assumed to be linear, continuous and translation-
invariant (i.e., convolution) from now on.

3.1 Quick overview of some classic examples of operators

We start by giving a small list of linear operators, that will be used a lot in this section
and the next ones. It can be seen as a short “catalog”, and nothing here is new.

The following simple operators have already been defined and studied above, be-
cause they are required to define the translation-, scaling- and rotation-invariance:

∙ The identity Id, and the constant operators 𝐶Id (𝐶 ∈ R),

∙ The translations 𝜏x0 were introduced in definition 2.19, and studied in lemma 2.20,

∙ The dilatations 𝑑𝑎 were introduced in definition 2.28, and studied in lemma 2.29,

∙ The rotations 𝑟𝑅 were introduced in definition 2.41, and studied in lemma 2.42.

Two other interesting families of operators are differential operators, which can be
either directional or isotropic, and they are studied later in details:

∙ The partial derivatives 𝐷𝑖 and directional derivatives 𝐷−→𝑢 , are introduced in defi-
nitions 3.18 and 3.21, and studied in proposition 3.23,

∙ The Laplacian Δ, and fractional Laplacians (−Δ)𝛾/2, are introduced in definitions 3.25
and 3.27, and studied in proposition 3.30.

Finally, other operators will also be presented afterward in this report, but they are
not studied by themselves and not used for our main questions:
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∙ The Hilbert transform 𝐻 , and its generalizations, the directional Hilbert transform
𝐻−→𝑢 or directional Hilbert transform 𝐻𝜏 , and our generalization the fractional-
directional Hilbert transform (fdHT) 𝐻𝜏,−→𝑢 , are introduced in definition A.9, and
studied in proposition A.11, We chose to include the study of the Hilbert trans-
form and its generalizations in appendix A.3, along with the definition and study
of unitary operators.

∙ The Riesz transform ℛ, and the iterated Riesz transforms ℛ𝑛, are not studied in
this report (even if we spent some time working on them). They are simply quoted
and their form is reminded in example 3.11, in order to recognize a sum of iterated
real Riesz transform in an important decomposition studied later in section 4.3.2.

This small subsection gave a list of some well-known operators. They are all linear
continuous (LC), and most of them are translation-invariant (TI). The first examples (𝜏x0 ,
𝑑𝑎, 𝑟𝑅) are used to define the geometric invariance properties (TI, 0-SI or 𝛾-SI, RI), and
the differential operators will be used in the next section 4.6 as elementary blocks in some
decompositions of operators as a composition of simpler terms.

Before going into these innovative results, we need to recall the well-known Schwartz’s
kernel theorem (3.1), and study its consequences, first for convolution operators (LC TI)
in section 3.2.2, and then for operators with other properties in section 3.4. Derivatives
and Laplacian are also studied in the light of the second Schwartz kernel, in section 3.3.

3.2 Schwartz’s kernel theorems

For the following characterizations, we consider the general setting with 𝑑 ∈ N* (as
before), and 𝐸 = S(R𝑑) (very restrictive on the test functions 𝑓 ) and 𝐹 = S′(R𝑑) (very
not restrictive on the transformed functions 𝐺{𝑓}, as they can be distribution). Most of
the results can also be applied for operators in L2(R𝑑), without losing in generality.
Note: All the operators considered from now on are at least linear and continuous (LC).

3.2.1 Characterization for LC – First Schwartz’s kernel theorem

The first characterization we can give is a well known result, characterizing the continu-
ity of linear operators 𝐺 by the existence of their Schwartz kernel 𝑘𝐺.

Such operator is called a kernel operator, or an integral operator, and they have been
extensively studied. We will not focus on this class LC per se, but on some sub-classes.

Theorem 3.1 (Schwartz’s kernel theorem). 𝐺 ∈ ℒ(S(R𝑑),S′(R𝑑)) is continuous iff there
exists a distribution39𝑘𝐺 on S′(R𝑑 × R𝑑), called the Schwartz kernel of 𝐺, such that

∀𝑓 ∈ S(R𝑑),∀x ∈ R𝑑, 𝐺{𝑓}(x) =
∫︁
R𝑑
𝑘𝐺(x,y)𝑓(y)dy. (5)

Some interesting explanations can be found in [Uns16, Th.11.18], but the proof is
another story.

39 Some operator 𝐺 has a kernel 𝑘𝐺 which is a (true) function, but we have to consider generalized
functions, i.e., distributions in S′: the simplest possible operator, 𝐺 = Id, has the 0-Dirac 𝛿0 for its kernel.
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Hard Proof. Any proof of this strong result is technical and long (about 2 pages),
making intensive usage of distributions, duality brackets and partial derivatives;
and it goes beyond the reach of this report, so we advise the interested reader
to consult a specialized book for the proof. It also requires a strong knowledge
of distribution theory. See for instance in [Hör83, Th.5.2.1, Part.5.2], where the
author employs a slightly more theoretical formulation.

In the sense of the distributions and the duality bracket notation40 (on S and S′), and
a tensor product (𝑓 ⊗ 𝜑), then 𝑘𝐺 is determined uniquely by this relationship

∀𝑓 ∈ S(R𝑑),∀𝜑 ∈ S′(R𝑑), ⟨𝐺{𝑓}, 𝜑⟩ = ⟨𝑘𝐺, 𝑓 ⊗ 𝜑⟩. (6)

Examples 3.2. We can start by giving a few examples. We do not compute the kernels, we
simply give it and let the reader check that it works.

∙ For the identity 𝐺 = Id, its kernel is 𝑘𝐺(x,y) = 𝛿y(x),

∙ For a translation 𝐺 = 𝜏x0 , its kernel is 𝑘𝐺(x,y) = 𝛿y(x− x0),

∙ For a dilatation, 𝐺 = 𝑑𝑎, its kernel is 𝑘𝐺(x,y) = 𝛿y(𝑎x).

∙ For a rotation, 𝐺 = 𝑟𝑅, its kernel is 𝑘𝐺(x,y) = 𝛿𝑅−1y(x) = 𝛿y(𝑅x).

Computing the Schwartz kernel 𝑘𝐺 for more complicated operators can be hard, for
instance the case of a Laplacian is not as simple as these examples,

Proposition 3.3 (Explicit form for 𝑘𝐺(x,y)). For 𝐺 LC, 𝑘𝐺(x,y) has an explicit form
given by the value in x of the image by 𝐺 of the Dirac delta distribution (in y):

𝑘𝐺(x,y) = 𝐺{𝛿y}(x). (7)

Proof. We simply take the formula, 𝐺{𝑓}(x) =
∫︀
R𝑑 𝑘𝐺(x,y′)𝑓(y′)dy′, and apply it

to 𝑓 = 𝛿y (for a fixed y ∈ R𝑑): 𝐺{𝛿y}(x) =
∫︀
R𝑑 𝑘𝐺(x,y′)𝛿y(y′)dy′ = 𝑘𝐺(x,y).

Note that in general, this explicit form is pretty but can be hard to compute concretely.

Examples 3.4. However, for simple operators, we can check that the examples of kernels
given above all satisfy this formula, and compute directly their kernels 𝑘𝐺:

∙ For the identity 𝐺 = Id, 𝑘𝐺(x,y) = 𝛿y(x) = (Id{𝛿y})(x) trivially,

∙ For a translation 𝐺 = 𝜏x0 , 𝑘𝐺(x,y) = 𝛿y(x− x0) = (𝜏x0{𝛿y})(x),

∙ For a dilatation 𝐺 = 𝑑𝑎, 𝑘𝐺(x,y) = 𝛿y(𝑎x) = (𝑑𝑎{𝛿y})(x).

∙ For a rotation, 𝐺 = 𝑟𝑅, 𝑘𝐺(x,y) = 𝛿y(𝑅x) = (𝑟𝑅{𝛿y})(x).

40 Or in the sense of the inner product on L2. We chose to not dive too much into the details of the theory
of distributions, and it is the only mention of the notion of duality bracket on a tensor product.
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3.2.2 Impulse response 𝑔 of a LC TI operator 𝐺 – Second Schwartz’s kernel theorem

This second theorem is also a well known result, characterizing the translation-invariance
of integral operators 𝐺 by a property on their Schwartz kernel 𝑘𝐺.

The second Schwartz’s kernel theorem is very easy to obtain from the first one, and
the explicit form of the kernel 𝑘𝐺(x,y) given by proposition 3.3. It is often called the
Schwartz’s convolution theorem, because this specific form for the kernel 𝑘𝐺, depending
only on x− y, allows to express 𝐺{𝑓} as a convolution between 𝑔 and 𝑓 .

Theorem 3.5 (Schwartz’s convolution theorem). A continuous 𝐺 ∈ ℒ(S(R𝑑),S′(R𝑑))
is translation-invariant iff there exists a distribution 𝑔, on S′(R𝑑,R), called the impulse
response of 𝐺, such that 𝑘𝐺(x,y) = 𝑔(x− y), i.e.,

∀𝑓 ∈ S(R𝑑), ∀x ∈ R𝑑, 𝐺{𝑓}(x) =
∫︁
R𝑑
𝑔(x− y)𝑓(y)dy = (𝑔 * 𝑓)(x). (8)

Proof. This second theorem is easy to obtain, thanks to the explicit form for 𝑘𝐺(x,y)
proved in proposition 3.3. Indeed, as soon as 𝐺 is translation-invariant, we have

𝑘𝐺(x,y) = (𝐺{𝛿y})(x) = (𝐺{𝜏y𝛿0})(x)
= ((𝐺 ∘ 𝜏y){𝛿0})(x)

(𝐺 is translation-invariant) = ((𝜏y ∘𝐺){𝛿0})(x)
= (𝜏y{𝐺{𝛿0}})(x) = (𝜏y{𝑘𝐺(·,0)})(x)
= (𝑘𝐺(·,0))(x− y) = 𝑘𝐺(x− y,0).

And so we can define 𝑔 def= 𝑘𝐺(·,0), and rewrite
∫︀
R𝑑 𝑘𝐺(x,y)𝑓(y)dy as

∫︀
R𝑑 𝑘𝐺(x−

y,0)𝑓(y)dy =
∫︀
R𝑑 𝑔(x− y)𝑓(y)dy = (𝑔 * 𝑓)(x), as claimed.

The converse sense is easy, and is left as an exercise for the reader.

Examples 3.6. For the same three basic examples as above:

∙ The identity, and any translation 𝜏x0 , are convolutions, as 𝑘𝜏x0
(x− y) = 𝛿0(x− y−

x0) = 𝛿x0(x− y) = 𝑔(x− y) with 𝑔 = 𝛿x0 .

∙ A non-trivial dilatation 𝑑𝑎 (i.e., for 𝑎 ̸= 1) is not a convolution. Indeed, 𝑘𝑑𝑎(x,y) =
𝛿0(𝑎x−y) cannot be written as function of x−y for the simple reason that if 𝑎 ̸= 1,
y = x =⇒ 𝑔(x − y) = 𝑔(0) ̸= 𝛿0((𝑎 − 1)x) in general (the right hand-side being
non-constant, for 𝑎 ̸= 1).

∙ Similarly, a non-trivial rotation 𝑟𝑅 is not a convolution (𝑘𝑟𝑅(x,y) = 𝛿0(𝑅x − y) is
not a function of x− y, for 𝑅 ̸= I𝑑).

Proposition 3.7 (Explicit form for 𝑔(x)). For 𝐺 LC TI, 𝑔(x) has an explicit form:

∀x ∈ R𝑑, 𝑔(x) = 𝐺{𝛿0}(x). (9)

Easy Proof. It is an obvious consequence of the fact that 𝑘𝐺(x,y) = 𝑔(x − y), so 𝑔(x) =
𝑘𝐺(x, 0), and proposition 3.3 giving the explicit form for 𝑘𝐺(x,y) for LC operators.
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3.2.3 Fourier multiplier ̂︀𝑔 of a LC TI operator 𝐺

This form of (𝑔 * 𝑓)(x) will be extremely convenient in the Fourier domain, as convo-
lutions become products. In full generality, 𝐹 ⊂ S′ (cf. remark 2.17), and so thanks to
properties 1.2, 𝐺{𝑓} is at least in S′. So we can always consider the Fourier transform
ℱ{𝐺{𝑓}} of the function or distribution 𝐺{𝑓}, whatever the spaces 𝐸,𝐹 (as long as they
satisfy (4)).

∀𝜔 ∈ R𝑑, ℱ
{︀
𝐺{𝑓}

}︀
(𝜔) = ℱ

{︀
(𝑔 * 𝑓)

}︀
(𝜔)

So thanks to the Fourier convolution theorem 1.4.

ℱ
{︀
𝐺{𝑓}

}︀
(𝜔) = (ℱ{𝑔}.ℱ{𝑓})(𝜔)

So ℱ
{︀
𝐺{𝑓}

}︀
(𝜔) = ̂︀𝑔(𝜔). ̂︀𝑓(𝜔) (10)

Definition 3.8. This ̂︀𝑔 is called the Fourier multiplier of the operator 𝐺.
In full generality, it is a distribution (i.e., on S′(R𝑑,R)). In practice however, ̂︀𝑔 is often

a complex-valued function, defined on R𝑑: ̂︀𝑔 : R𝑑 → C.

When 𝐺{𝑓} stays41 a function, an importance consequence of (10) is the simplicity of
applying an operator given by its Fourier multiplier: a LC TI operator is applied on an
input function 𝑓 by a simple multiplication, up-to a (possibly complicated) computation of
ℱ and ℱ−1:

Transformed function
𝐺{𝑓}(x)

Transformed function in Fourier
𝑔(𝜔)𝑓(𝜔)

Function in Fourier
𝑓(𝜔)

Input function
𝑓(x)

ℱ

Point-wise
multiplication
by 𝑔(𝜔)

ℱ−1

Figure 1: Applying 𝐺, given by its Fourier multiplier ̂︀𝑔, on an input function 𝑓 .

Remark 3.9. In the discrete setting, applying ℱ and ℱ−1 will never be an issue, be-
cause we work with Fast Fourier Transforms (fft, fft2) and Inverse FFT (ifft,
ifft2) on signals and images, as we explain later in section 5.2, and figure 3.

Examples 3.10. We can give a few examples of very simple Fourier multipliers:

∙ For 𝐺 = Id, ̂︀𝑔(𝜔) = 1 is the simplest Fourier multiplier.

∙ For a translation 𝐺 = 𝜏x0 , ̂︀𝑔(𝜔) = e−𝑗x𝑇
0 𝜔, thanks to the translation / time-shifting

property of the Fourier transform [Rud91, Th.7.2.(a)].
41 It is always the case in practice.
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Example 3.11 (Riesz transform in dimension 𝑑 = 2). The (complex) Riesz transform is the
LC TI operators on L(R2,C) defined by its (complex, not Hermitian symmetric) Fourier
multiplier (in polar coordinate):

ℛ{𝑓}(x) ℱ←→ ̂︀ℛ(𝜔) = ̂︀ℛ(𝑟, 𝜃) = e𝑗𝜃.

The real Riesz transform is given by ℛ̂real(𝑟, 𝜃) = cos(𝜃).
The complex and real Riesz transform and their iterates are LC TI and scale-invariant.
For more results and details on the Riesz transform, cf. [WCU13] and [UC13].

After these few examples, a general result can be stated about the Fourier multipliers
of LC TI operators.

Proposition 3.12 (Measurability of Fourier multipliers, and order of decay).
Usually in practice, ̂︀𝑔 is a true function, at least measurable on R𝑑.

In particular, there is no general result stating that ̂︀𝑔 is continuous, or bounded, or even
in any L𝑝(R𝑑,R) space.

However, we assume42that ̂︀𝑔 always has an order of decay 𝜅 ∈ R such that̂︀𝑔(𝜔)(1 + ‖𝜔‖2)𝜅 is in L2(R𝑑,R).

Proof. Its measurability comes directly from the fact that it is the Fourier trans-
form of 𝑔, and classic results of Fourier analysis, [SW71].

For a more specific result, cf. [UT14, Th.3.5, p41] where they characterize the
fact that 𝐺 operates on L𝑝(R𝑑,R) with their ̂︀𝑔.

The existence of the order of decay 𝜅 ∈ R, does not come from Fourier analysis,
it is an an additional assumption. Note that it does not imply that ̂︀𝑔 is in the
Sobolev space H𝜅,2(R𝑑,R) (cf. (1)), as ̂︀𝑔 may be not in L2(R𝑑,R).

Another very useful property of LC TI operators operating on and to functions (i.e.,𝐺{𝑓}
stays a function) is the surprising fact that they all commute with each other, as long as
they operator on an to the same domain, i.e., 𝐸 = 𝐹 .

Theorem 3.13 (Commutativity of LC TI operators). If 𝐸 = 𝐹 , and 𝐺1, 𝐺2 two LC TI
operators on 𝐸. Then 𝐺1 ∘𝐺2 = 𝐺2 ∘𝐺1.

Easy Proof. With the use of their Fourier multipliers ̂︀𝑔1 and ̂︀𝑔2, it is almost instantaneous.
Let 𝐺 = 𝐺1 ∘𝐺2 and 𝐺′ = 𝐺2 ∘𝐺1, and let us prove directly their equality.

∀𝜔 ∈ R𝑑, ℱ
{︀
𝐺{𝑓}

}︀
(𝜔) = ℱ

{︀
𝐺1{𝐺2{𝑓}}

}︀
(𝜔)

= (ℱ{𝑔1}.ℱ{𝐺2{𝑓}})(𝜔)
= (ℱ{𝑔1}.(ℱ{𝑔2}.ℱ{𝑓}))(𝜔)

= ̂︀𝑔1(𝜔). ̂︀𝑔2(𝜔). ̂︀𝑓(𝜔)

But this product is for point-wise values of the functions (and not distributions), in the
Fourier domain, i.e., product of simple complex values, and so it commutes,

= ̂︀𝑔2(𝜔). ̂︀𝑔1(𝜔). ̂︀𝑓(𝜔)
= ℱ

{︀
𝐺2{𝐺1{𝑓}}

}︀
(𝜔) = ℱ

{︀
𝐺′{𝑓}

}︀
(𝜔).

42 It is false to say in general that ̂︀𝑔 has an order of decay 𝜅 just because it is measurable.
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3.2.4 Real operators and Hermitian symmetry

It was an implicit hypothesis from the beginning, but let us define now the real operators.

Definition 3.14 (Real operators). An operator 𝐺 is real when it maps real-valued func-
tions 𝑓 to real-valued functions 𝐺{𝑓}.

The notion of Hermitian symmetry for complex-valued functions is useful to study
real operators.

Definition 3.15. ℎ : R𝑑 → C is Hermitian symmetric when ∀𝜔 ∈ R𝑑, ℎ(−𝜔) = ℎ(𝜔).

Lemma 3.16. Hermitian symmetry is preserved by real linear combinations, and by point-
wise function product.

Easy Proof. It is very easy to prove, with basic algebraic manipulations.

This notion is used for theorem 3.17, a very useful result characterizing the operators
𝐺 that conserves the fact that 𝑓(x) ∈ R: a real-valued signal stays real. It will be used a
lot in our study of steerable operator.

As for the geometric invariance properties, 𝐺 is real iff 𝑔 is, but not ̂︀𝑔.

Theorem 3.17 (Characterization for real LC TI operators). A LC TI operator 𝐺 is real
iff 𝑔 is real (if 𝑔 is a function) iff ̂︀𝑔 is Hermitian symmetric (if ̂︀𝑔 is a function).

Proof. For all 𝑓 , 𝐺{𝑓} is real-valued iff for all 𝑓 , ℱ(𝐺{𝑓}) is Hermitian sym-
metric, thanks to a well known property of the Fourier transform iff for all 𝑓 ,
𝜔 ↦→ ̂︀𝑔(𝜔) ̂︀𝑓(𝜔) is Hermitian symmetric, but 𝑓 is real-valued so ̂︀𝑓 is already Her-
mitian symmetric, hence iff 𝜔 ↦→ ̂︀𝑔(𝜔) is Hermitian symmetric iff 𝑔 is real.

In fact, this hypothesis is required (maybe implicitly) for almost every operator stud-
ied in this report. One could check that all the previously given examples of operators
have indeed an Hermitian symmetric Fourier multiplier ̂︀𝑔. For instance, the fdHT oper-
ators defined later in appendix A.3.2 are real operators, because their Fourier multiplier
are Hermitian symmetric.

This part introduced the second Schwartz theorem, and we now have two new points
of view to work with 𝐺: either its impulse response 𝑔 or its Fourier multiplier ̂︀𝑔. Before
giving other general results, two families of important operators are presented in the
next subsection.

3.3 Important examples of convolutions: derivatives and Laplacians

We present here two important families of convolutions, that can be defined easily as
operators, or by giving their Fourier multipliers.

In the next section, some of our most important theorems on 2D steerable operators
will highlight the importance of the two “elementary blocks” that are directional deriva-
tives and Laplacians (cf. proposition 4.46).
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3.3.1 Partial and directional derivatives

A very interesting family of operators on differentiable functions are the derivatives. We
first recall the definition of the 𝑑 partial derivatives 𝐷1, . . . , 𝐷𝑑, and then we define a
directional derivative.

Definition 3.18 (Partial derivatives). For 𝑖 ∈ {1, . . . , 𝑑}, 𝐷𝑖 the 𝑖-th partial derivative
operator, defined on differentiable functions (e.g., on S(R𝑑,R)), is

𝐷𝑖𝑓 : x ↦→ 𝜕𝑓

𝜕𝑥𝑖
(x) def= lim

ℎ→0,ℎ̸=0

𝑓(x + ℎe𝑖)− 𝑓(x)
ℎ

. (11)

where e𝑖 denotes the 𝑖-th vector of the canonical orthonormal basis for R𝑑.

Examples 3.19. ∙ For 𝑑 = 1, there is only one derivative operator: 𝐷 : 𝑓 → 𝑓 ′.

∙ For 𝑑 = 2, the two derivatives are: 𝐷1 = 𝐷𝑥 : 𝑓 → 𝜕𝑓
𝜕𝑥 and 𝐷2 = 𝐷𝑦 : 𝑓 → 𝜕𝑓

𝜕𝑦 .

Proposition 3.20. A partial derivative is a linear, continuous, translation-invariant and
1-scale-invariant operator (LC TI 1-SI), on the Schwartz class of infinitely differentiable
functions of rapid decay43S(R𝑑,R) and on distribution S′(R𝑑,R).

Easy Proof. ∙ Linearity is obvious by definition and by the linearity of a limit.

∙ The continuity of 𝐷𝑖 is true on rapid decaying Schwartz functions, as 𝑓𝑛 → 𝑓 means
by definition that all the semi-norms ‖𝑓𝑛 − 𝑓‖𝑝,𝛼 → 0, and some of the semi-norms
concern the 𝑖-th partial derivative of 𝑓𝑛 and 𝑓 , so 𝑓𝑛 → 𝑓 =⇒ 𝐷𝑖𝑓𝑛 → 𝐷𝑖𝑓 , in the
sense of the Schwartz class.

∙ By the definition of 𝐷𝑖 as a limit, we can compute the effect of a translation 𝜏x0 :

((𝜏x0 ∘𝐷𝑖){𝑓})(x) = lim
ℎ→0,ℎ̸=0

𝑓(x− x0 + ℎe𝑖)− 𝑓(x− x0)
ℎ

= lim
ℎ→0,ℎ̸=0

(𝜏x0{𝑓})(x + ℎe𝑖)− (𝜏x0{𝑓})(x)
ℎ

= ((𝐷𝑖 ∘ 𝜏x0){𝑓})(x),

so any 𝐷𝑖 is translation-invariant.

∙ The 1-scaling-invariance comes directly from the definition, with the (bijective) change
of variable ℎ ↦→ ℎ/𝑎 (of Jacobian 1/𝑎𝑑 in R𝑑).

∙ And finally, 𝐷𝑖 operates on S(R𝑑,R) because a partial derivative of a Schwartz func-
tion is still a Schwartz function, by definition (cf. [UT14, p30] if needed).

∙ For a distribution 𝜑 on S(R𝑑,R) (i.e., 𝜑 ∈ S′(R𝑑,R)), 𝐷𝑖 is defined as usual by a
duality bracket: ⟨𝐷𝑖𝜑, 𝑓⟩ = ⟨𝜑,𝐷𝑖𝑓⟩, and it is a classical result from [Rud91] that 𝐷𝑖

also operates on S′(R𝑑,R).

A first generalization of the partial derivative can easily be obtained with directional
derivatives, and a second generalization will be composed directional derivatives.

43 Considering only the once-differentiable functions is not enough, as all the family of semi-norms are
required to prove continuity.
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Definition 3.21 (Directional derivatives). For a unitary vector −→𝑢 ∈ S𝑛−1, the direc-
tional derivative of direction −→𝑢 is defined as 𝐷−→𝑢 = 𝑢1𝐷1 + · · · + 𝑢𝑑𝐷𝑑 = ⟨−→𝑢 ,∇·⟩.

Examples 3.22. We start by giving two simple examples in dimensions 1 and 2 :

∙ In dimension 𝑑 = 1, the only directional derivative are 𝐷 : 𝑓 → 𝑓 ′ and −𝐷.

∙ In dimension 𝑑 = 2, a directional derivative is parametrized by a unitary vec-
tor −→𝑢 on the sphere S1, so it can be parametrized by a unique angle 𝛼 ∈ R,
−→𝑢 = −→𝑢 𝛼

def= [cos(𝛼) sin(𝛼)]𝑇 . We write 𝐷𝛼 instead of 𝐷−→𝑢 𝛼
, it is simply 𝐷𝛼 : 𝑓 ↦→

cos(𝛼)𝜕𝑓𝜕𝑥 + sin(𝛼)𝜕𝑓𝜕𝑦 . We will prove later that it has a Fourier multiplier given bŷ︂𝐷𝛼(𝜔) = ̂︂𝐷𝛼(𝑟, 𝜃) = cos(𝛼)
(︀
𝑗𝑟 cos(𝜃)

)︀
+ sin(𝛼)

(︀
𝑗𝑟 sin(𝜃)

)︀
= 𝑗𝑟 cos(𝜃 − 𝛼).

This formula has the advantage of highlighting the “directionality” of 𝐷𝛼: it differ-
entiates along the line of angle 𝛼, and this can also be seen as first changing 𝜃 to
𝜃− 𝛼 (i.e., applies a rotation of angle −𝛼), and then differentiating along the 𝑥-axis
with 𝐷1 (Fourier multiplier 𝑗𝑟 cos(𝜃)).

This example is very important, as directional derivatives are used a lot in our
study of steerable operators, cf. section 4.6 later.

Proposition 3.23. A directional derivative is also LC TI 1-SI on S(R𝑑,R) and S′(R𝑑,R).

Easy Proof. It is obvious, as the class LC TI 1-SI is a linear sub-space of ℒ(𝐸,𝐹 ), and a
directional derivative is nothing but a linear combination of partial derivatives, which are
LC TI 1-SI from proposition 3.20 above.

Directional derivatives can be composed to obtain higher order directional derivatives,
e.g., 𝐺 = 𝐷−→𝑢 1 ∘𝐷−→𝑢 2 ∘ · · · ∘𝐷−→𝑢 𝑘

of order 𝑘 ∈ N.

Lemma 3.24. Any composition of 𝑘 ∈ N directional derivatives 𝐷−→𝑢 1 ∘𝐷−→𝑢 2 ∘ · · · ∘𝐷−→𝑢 𝑘
is

LC TI and 𝑘-SI, and their order do not matter44.

Easy Proof. Obvious with the theorems of stability by composition, and composition of
order of homogeneity, see later in corollary 2.25 and in proposition 2.39. 𝑘 = 0 gives the
identity, which is indeed LC TI 0-SI.

We presented here the derivatives and directional derivatives in the general setting
(𝑑 ∈ N*), but we will study their steerability later in section 4.2.2.

3.3.2 Laplacian and fractional Laplacian

On twice-differentiable functions, the classic Laplacian operator is well known and has
been studied and used for a long time. It has a generalization called the fractional Lapla-
cian, which can be hard to express on functions, but it has a simple Fourier multiplier.

44 This remark on the commutativity of the derivatives will be obvious because they are convolutions
and convolutions all commute with each other (theorem 3.13), but it is interesting, as for instance it gives
the Schwarz theorem: 𝜕2𝑓(𝑥,𝑦)

𝜕𝑥𝜕𝑦
= 𝜕2𝑓(𝑥,𝑦)

𝜕𝑦𝜕𝑥
. However, in the framework of distribution, it is trivial.
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Definition 3.25 (Laplacian). The Laplacian operator (Δ) is defined on 𝐸 = S(R𝑑,R) by

(Δ{𝑓})(x) = Δ𝑓(x) def=
𝑑∑︁
𝑖=1

𝜕2𝑓

𝜕𝑥2
𝑖

(x). (12)

And it is defined on S′(R𝑑,R) by duality bracket, ⟨Δ𝜑, 𝑓⟩ = ⟨𝜑,Δ𝑓⟩.

Theorem 3.26. The Laplacian is a linear, continuous, translation-invariant, rotation-
invariant, and 2-scale-invariant operator (LC TI RI 2-SI), on 𝐸 = S(R𝑑,R) and S′(R𝑑,R).

Easy Proof. As a special case of fractional Laplacian, it is a consequence of the more general
theorem given below. But proving quickly a few things manually is interesting:

∙ Its linearity and translation-invariant both come from the linearity and translation-
invariant of any iterated partial derivative.

∙ And similarly for its continuity, on 𝐸 = S(R𝑑,R) or 𝐸 = S′(R𝑑,R).

∙ The Laplacian is also rotation-invariant, but this is harder to prove manually without
the use of its Fourier multiplier (̂︀Δ(𝜔) = −‖𝜔‖2, see below in definition 3.27).

∙ Any partial derivative 𝜕2·
𝜕𝑥2

𝑖
is 2-scale-invariant, so the Laplacian is also 2-0-SI.

We could define a generalized Laplacian on functions, but it is much easier to just
give is Fourier multiplier.

Definition 3.27 (Fractional Laplacian). For 𝛾 ∈ R+, let the fractional Laplacian op-
erator, denoted (−Δ)𝛾/2, be defined on 𝐸 = S(R𝑑,R) and on S′(R𝑑,R), by its Fourier

multiplier ̂(−Δ)𝛾/2(𝜔) def= ‖𝜔‖𝛾 :

(−Δ)𝛾/2𝑓(x) ℱ←→ ‖𝜔‖𝛾ℱ{𝑓}(𝜔). (13)

Remark 3.28. This notation (−Δ)𝛾/2 is used to have a simple form of the Fourier
multiplier (without a − symbol), but its weakness is that for 𝛾 = 2, (−Δ)2/2 = −Δ
and not Δ. Still, the 2- fractional Laplacian is the classic Laplacian (up to a change of
sign). And for any 𝑛 ∈ N*, (−Δ)2𝑛/2 = (−1)𝑛Δ𝑛, so the fractional Laplacian of order
2𝑛 is the 𝑛-fold iterated Laplacian (again, up to a change of sign). Also, (−Δ)0/2 is
indeed the identity operator (Fourier multiplier = 1), so this power notation is well
justified. In fact, (−Δ) is the good object to be “fractionalized”, as (−Δ)𝛾/2 appeared
as the only way to rationally generalize the Laplacian [UT14].

We already know that LC TI operators commute, so fractional Laplacians obviously
commute, but we can say more about a composition of two fractional Laplacians (−Δ)𝛾1∘
(−Δ)𝛾2 : it is still a fractional Laplacian, of order 𝛾1 + 𝛾2.

Lemma 3.29. For any 𝛾1, 𝛾2 ∈ R+, (−Δ)𝛾1 ∘ (−Δ)𝛾2 = (−Δ)𝛾1+𝛾2 = (−Δ)𝛾2 ∘ (−Δ)𝛾1 .
In other words, there is a monoid morphism between (R+,+) and ({(−Δ)𝛾 , 𝛾 ∈ R+}, ∘).
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Easy Proof. From the definition with their Fourier multipliers, it is instantaneous.
And it is only a monoid morphism and not a group nor semi-group because the scale-

invariance order 𝛾 can only be non-negative (there is no inverse).

A fractional Laplacian has a very simple Fourier multiplier ‖𝜔‖𝛾 , so it is not surpris-
ing that it yields an operator with nice properties: it has all the properties defined in
section 2.3!

Proposition 3.30. The 𝛾-fractional Laplacian is a linear, continuous, translation-invariant,
rotation-invariant, and 𝛾-scale-invariant operator (LC TI RI 𝛾-SI), on 𝐸 = S(R𝑑,R) but
not45on S′(R𝑑,R).

Easy Proof. It will be obvious with the general characterization on the Fourier multipliers
of LC TI 𝛾-SI and LC TI RI operators, see later theorems 3.35 and 3.39. Note that rotation-
invariant implies steerability (of order 𝑛(−Δ)𝛾/2 = 1), as shown in section 4.4.1.

What is even stronger is the converse theorem, stating that (−Δ)𝛾/2 is the only oper-
ator having all these properties (up to a constant).

Theorem 3.31. Let 𝐺 be a LC TI RI 𝛾-SI operator on 𝐸 = S(R𝑑,R) or on S′(R𝑑,R), then
there is 𝐶 ∈ R such that 𝐺 = 𝐶(−Δ)𝛾/2.

Easy Proof. We will prove it later, see below theorem 3.40.

Extend the differential operators to L2 functions?

By definition, the operators 𝐷 and Δ are only valid for once- and twice-differentiable
functions so one might wonder if they could be extended on L2(R𝑑,R). The simple
answer is no, from the functions point-of-view, but from the Fourier transform point-of-
view we can. And from the distribution point-of-view, we can generalize𝐷𝛼 and (−Δ)𝛾/2

to S′(R𝑑,R).

Remark 3.32 (Differentiable operators on images?). It might be scary to consider a
derivative of an image, as it is never smooth if we see it as a function. But for imple-
mentation, we will use the discrete derivatives and the discrete Laplacians.

And any other operator 𝐺 can be approximatively applied to an image by going
into the Fourier domain, multiplying point-wise by its Fourier multiplier ̂︀𝑔, and com-
ing back in the space domain. It can only be an approximation, but it works.

3.4 Characterizations of geometric properties for integral and convolution
operators

In this section, we give some general results characterizing the linear and convolution
operators that have some geometric properties (0-SI or 𝛾-SI, and RI, or both of them).

All these results are valid for linear operators on S(R𝑑,R), in any dimension 𝑑 ∈ N*.

45 But the 𝛾-fractional Laplacian can also be defined on a rich class of distribution, smaller than S′(R𝑑,R),
[UT14]. The details of this result goes beyond the reach of this report.
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3.4.1 Characterization for LC 𝛾-SI operators

We do not start by studying the special case 0-SI but instead we directly study the gen-
eral setting 𝛾-SI. This theorem is not so intuitive but it has a simple form and an easy
proof.

Theorem 3.33. 𝐺 LC is 𝛾-SI iff 𝑘𝐺(x,y) = 𝑎𝛾+𝑑 𝑘𝐺(𝑎x, 𝑎y) for all 𝑎 ∈ R*
+,x,y ∈ R𝑑.

Remark 3.34. At first sight, this form seems weird, and the next result is more natural. The
+𝑑 in the exponent for 𝑎 simply comes from the Jacobian of the (bijective) change of variable
x ↦→ 𝑎x (on R𝑑).

Computational Proof. 46 As 𝐺 is LC, we can work with its Schwartz kernel 𝑘𝐺.
𝐺 is 𝛾-SI iff 𝑎𝛾𝐺{𝑓}(𝑎x) = 𝐺{𝑓(𝑎·)}(x) for any 𝑓,x, 𝑎, but 𝐺{𝑓}(x) =∫︀

R𝑑 𝑘𝐺(x,y)𝑓(y)dy, so 𝑎𝛾𝐺{𝑓}(𝑎x) = 𝑎𝛾
∫︀
R𝑑 𝑘𝐺(𝑎x,y)𝑓(y)dy and 𝐺{𝑓(𝑎·)}(x) =∫︀

R𝑑 𝑘𝐺(x,y)𝑓(𝑎y)dy.
They are equal iff

∫︀
R𝑑 𝑎𝛾𝑘𝐺(𝑎x,y)𝑓(y)dy =

∫︀
R𝑑 𝑘𝐺(x,y)𝑓(𝑎y)dy so the (bi-

jective) change of variable y′ = 𝑎y of Jacobian 𝑎𝑑 on R𝑑 gives (for non-zero 𝑎)∫︀
R𝑑 𝑎𝛾𝑘𝐺(𝑎x,y)𝑓(y)dy =

∫︀
R𝑑 𝑘𝐺(x,y′/𝑎)𝑓(y′)𝑎−𝑑dy′.

And so𝐺 is 𝛾-SI iff
∫︀
R𝑑

(︀
𝑎𝛾+𝑑𝑘𝐺(𝑎x,y)−𝑘𝐺(x,y/𝑎)

)︀
𝑓(y)dy = 0 for any x, and

any 𝑓 , and so iff 𝑎𝛾+𝑑𝑘𝐺(𝑎x,y) = 𝑘𝐺(x,y/𝑎) for all x,y (as they are orthogonal to
any 𝑓 – if we work in L2, or as they have the same image on any test function 𝑓 –
if we work in S).

Finally, the same substitution y′ = 𝑎y gives, without the Jacobian this time (it
is not a substitution on an integral but on the free variable y): 𝐺 is 𝛾-SI iff 𝑎𝛾+𝑑𝑘𝐺(𝑎x,
𝑎y′) = 𝑘𝐺(x,y′) for all x,y′, i.e., iff 𝑎𝛾+𝑑𝑘𝐺(𝑎·, 𝑎·) = 𝑘𝐺(·, ·) as claimed.

3.4.2 Characterization for LC TI 𝛾-SI operators

For LC TI operators (convolution), 𝛾-scale-invariance can be characterized on their Fourier
multipliers instead of their impulse response. This theorem is more intuitive than the
previous one, and it has an even easier proof.

Theorem 3.35. 𝐺 LC TI is 𝛾-SI iff ̂︀𝑔(𝑎𝜔) = 𝑎𝛾̂︀𝑔(𝜔) for all 𝑎 ∈ R*
+,𝜔 ∈ R𝑑, i.e., ̂︀𝑔 is 𝛾-SI.

Computational Proof. As𝐺 is LC TI, we can indeed work with its impulse response
𝑔, and the previous theorem directly gives that𝐺 is 𝛾-SI iff ∀𝑎 > 0,∀x,y, 𝑘𝐺(x,y) =
𝑎𝛾+𝑑𝑘𝐺(𝑎x, 𝑎y) iff ∀𝑎 > 0,∀x,y, 𝑔(x − y) = 𝑎𝛾+𝑑𝑔(𝑎(x − y)), and applying the
Fourier transform and its time-scaling property (in dimension 𝑑) gives ℱ{𝑑𝑎𝑔} =
𝑎−𝑑𝑑1/𝑎ℱ{𝑔} (for non-zero 𝑎), so ∀𝑎 > 0, ∀x,y, 𝑔(x − y) = 𝑎𝛾+𝑑𝑔(𝑎(x − y))
iff ∀𝑎 > 0, ∀x, 𝑔(x) = 𝑎𝛾+𝑑𝑔(𝑎x), iff ∀𝑎 > 0, ∀𝜔′, ̂︀𝑔(𝜔′) = 𝑎𝛾̂︀𝑔(𝜔′/𝑎) iff ∀𝑎 >
0,∀𝜔, ̂︀𝑔(𝑎𝜔) = 𝑎𝛾̂︀𝑔(𝜔) (with 𝜔 = 𝜔′/𝑎), which is exactly the result we an-
nounced.

This theorem makes it clear that a LC TI 𝐺 is 𝛾-SI (as an operator) iff ̂︀𝑔 is 𝛾-SI (as a
function). The characterization on 𝑘𝐺 for G to be LC TI seemed unnatural (with this +𝑑
in the exponent), so this theorem is reassuring: for LC TI 𝐺, 𝐺 is indeed 𝛾-SI iff some
underlying function is 𝛾-homogeneous.

46 Some proofs are harder or longer than other, and we indicate them like here, to warn the reader.
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Isolating the 𝛾-scale-invariance part as a fractional Laplacian

What is even stronger for LC TI 𝛾-SI operators is the next result, which allows to isolate
the 𝛾-SI part as a (fractional) Laplacian, composed with a second term which turns out
to be LC TI 0-SI. It really shows that having a ‖𝜔‖𝛾 multiplicative term in its Fourier
multiplier is the only way to have 𝛾-scale-invariance for a convolution.

Theorem 3.36 (Decomposition of a LC TI 𝛾-SI operator). Let 𝛾 ∈ R+, and 𝐺 = 𝐺𝛾
be an operator from 𝐸 to 𝐹 . 𝐺𝛾 is LC TI 𝛾-SI iff there exists a LC TI 0-SI 𝐺0 such that
𝐺𝛾 = 𝐺0 ∘ (−Δ)𝛾/2.

Proof. ∙ Converse sense:
If 𝐺𝛾 = 𝐺0 ∘ (−Δ)𝛾/2 for such 𝐺0, then by composition 𝐺𝛾 is also linear, con-
tinuous, translation-invariant (LC TI). And because 𝐺0 is 0-scale-invariant,
and the fractional Laplacian is 𝛾-scale-invariant, their composition is 𝛾-SI
(thanks to proposition 2.39). Hence 𝐺𝛾 is indeed LC TI 𝛾-SI.

∙ Direct sense:
In the Fourier domain, let 𝐴(𝜔) = ℱ{𝐺𝛾}(𝜔)/ℱ{(−Δ)𝛾/2}(𝜔) for 𝜔 ̸= 0R𝑑 .
Because 𝐺𝛾 and (−Δ)𝛾/2 are 𝛾-SI operators, 𝐴 is 0-scale-invariant:

∀𝜔 ̸= 0R𝑑 , ∀𝑎 ∈ R*
+, 𝐴(𝑎𝜔) = ℱ{𝐺𝛾}(𝑎𝜔)

ℱ{(−Δ)𝛾/2}(𝑎𝜔)

= 𝑎𝛾ℱ{𝐺𝛾}(𝜔)
𝑎𝛾ℱ{(−Δ)𝛾/2}(𝜔)

= ℱ{𝐺𝛾}(𝜔)
ℱ{(−Δ)𝛾/2}(𝜔)

= 𝐴(𝜔).

We also need to justify why 𝐴 can be seen as a Fourier multiplier. By defini-
tion, 𝐴 is measurable, and we can consider its inverse Fourier transform 𝑎.
So there is a valid impulse response 𝑎 such that 𝐴(𝜔) = ̂︀𝑎(𝜔) and it indeed
defines an operator 𝐺0 which is LC TI (as a convolution), and 0-SI (because
𝐴 is 0-scale-invariant).

Remark 3.37. Note that there is no reason for 𝐺0 to be unitary (cf. appendix A). At first, this
was the result we were hoping to get, based on some examples, but it cannot be achieved.
A simple counter example is a directional derivative, e.g., 𝐷𝑥 in dimension 𝑑 = 2, which can
be decomposed as a 1-scale-invariant part (i.e., half Laplacian (−Δ)1/2, of Fourier multiplier
∝ ‖𝜔‖) and a 0-scale-invariant part (of Fourier multiplier ∝ 𝜔 = (𝑟, 𝜃) ↦→ 𝑗 cos(𝜃)) which is
clearly not unitary.

3.4.3 Characterization for LC RI operators

This first characterization of rotation-invariance has a nice formulation as some sort47 of
“partial” rotation-invariance of the kernel 𝑘𝐺:

47 Rotation-invariance for a function (or distribution) of two variables should be defined as 𝑘𝐺(x, y) =
𝑘𝐺(𝑅x, 𝑅′y) for any two rotations 𝑅, 𝑅′. Here we only have the special case when 𝑅 = 𝑅′.
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Theorem 3.38. 𝐺 LC is RI iff 𝑘𝐺(x,y) = 𝑘𝐺(𝑅x, 𝑅y) for all 𝑅 ∈ SO(𝑑),x,y ∈ R𝑑.

Computational Proof. As𝐺 is LC, we can indeed work with its Schwartz kernel 𝑘𝐺.
𝐺 is RI iff 𝐺{𝑓}(𝑅x) = 𝐺{𝑓(𝑅·)}(x) for any 𝑓,x, 𝑅, but𝐺{𝑓}(x) =

∫︀
R𝑑 𝑘𝐺(x,y)

𝑓(y)dy, so𝐺{𝑓}(𝑅x) =
∫︀
R𝑑 𝑘𝐺(𝑅x,y)𝑓(y)dy and𝐺{𝑓(𝑅·)}(x) =

∫︀
R𝑑 𝑘𝐺(x,y)𝑓(𝑅y)dy.

They are equal iff
∫︀
R𝑑 𝑘𝐺(𝑅x,y)𝑓(y)dy =

∫︀
R𝑑 𝑘𝐺(x,y)𝑓(𝑅y)dy so the (bijec-

tive) change of variable y′ = 𝑅y gives
∫︀
R𝑑 𝑘𝐺(𝑅x,y)𝑓(y)dy =

∫︀
R𝑑 𝑘𝐺(x, 𝑅−1y′)𝑓(y′)dy′.

And so 𝐺 is RI iff
∫︀
R𝑑(𝑘𝐺(𝑅x,y) − 𝑘𝐺(x, 𝑅−1y))𝑓(y)dy = 0 for any x, 𝑓 , and

so iff 𝑘𝐺(𝑅x,y) = 𝑘𝐺(x, 𝑅−1y) for all x,y (as they are orthogonal to any 𝑓 if we
work in L2, as they have the same image on any test function if we work in S).

Finally, the same change of variable y′ = 𝑅y gives: 𝐺 is RI iff 𝑘𝐺(𝑅x, 𝑅y′) =
𝑘𝐺(x,y′) for all x,y′, i.e., iff 𝑘𝐺(𝑅·, 𝑅·) = 𝑘𝐺(·, ·) as claimed.

3.4.4 Characterization for LC TI RI operators

For LC TI operators, rotation-invariant can be characterized on their Fourier multipliers,
which has to be rotation-invariant functions:

Theorem 3.39. 𝐺 LC TI is RI iff ̂︀𝑔(𝑅𝜔) = ̂︀𝑔(𝜔) for all 𝑅 ∈ SO(𝑑),𝜔 ∈ R𝑑, i.e., ̂︀𝑔 is RI.

Proof. It is very simply to obtain, as 𝐺 is LC TI, we can work with its impulse re-
sponse 𝑔, and the previous theorem directly gives that𝐺 is RI iff ∀𝑅,∀x,y, 𝑘𝐺(x,y) =
𝑘𝐺(𝑅x, 𝑅y) iff ∀𝑅,∀x,y, 𝑔(x − y) = 𝑔(𝑅(x − y)), iff ∀𝑅, 𝑔 = 𝑟𝑅{𝑔}, and as
ℱ commutes with 𝑟𝑅, ̂︀𝑔 = ℱ{𝑔} = ℱ{𝑟𝑅{𝑔}} = 𝑟𝑅{ℱ{𝑔}} = 𝑟𝑅̂︀𝑔, so 𝐺 is RI
iff ∀𝑅, 𝑟𝑅̂︀𝑔 = ̂︀𝑔.

This theorem makes it clear that a LC TI 𝐺 is RI (as an operator) iff ̂︀𝑔 is RI (as a
function). A RI function on R𝑑 is purely radial, so such ̂︀𝑔 will only depend on ‖𝜔‖ and
not 𝜔. Note that it narrows greatly the richness of the Fourier multiplier.

3.4.5 LC TI RI 𝛾-SI operators are exactly fractional Laplacians

This last result is very strong, we announced it above when we worked on fractional
Laplacians without proving it, but let us rephrase it and prove it here.

Theorem 3.40 (Universality of the fractional Laplacian). 𝐺 is LC TI RI 𝛾-SI on
S(R𝑑,R) iff ̂︀𝑔 is 𝛾-SI and rotation-invariant48, iff ̂︀𝑔(𝜔) ∝ ‖𝜔‖𝛾 , i.e., there exists a con-
stant 𝐶 ∈ R such that ̂︀𝑔(𝜔) = 𝐶‖𝜔‖𝛾 , for all 𝜔 ∈ R𝑑, iff 𝐺 ∝ (−Δ)𝛾/2.

Proof. It is simply the consequence of the two previous theorems 3.35 and 3.39,
characterizing LC TI 𝛾-SI and LC TI RI operators.

∙ Direct sense: For a LC TI RI 𝛾-SI operator 𝐺, ̂︀𝑔 have to be 𝛾-SI and RI, so
it has a simple dependency on ‖𝜔‖ (as it is 𝛾-SI). For non-zero 𝜔, ̂︀𝑔(𝜔) =̂︀𝑔(‖𝜔‖.𝜔/‖𝜔‖) = ‖𝜔‖𝛾̂︀𝑔(𝜔/‖𝜔‖) = 𝐶‖𝜔‖𝛾 , with 𝐶

def= ̂︀𝑔(𝜔/‖𝜔‖) being con-
stant, as ̂︀𝑔 is RI.

48 With the vocabulary of functions in real analysis, ̂︀𝑔 is 𝛾-homogeneous and isotropic.
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∙ Converse sense: It is obvious that ̂︀𝑔(𝜔) = 𝐶‖𝜔‖𝛾 yields a 𝛾-SI and RI Fourier
multiplier, i.e., a LC TI RI 𝛾-SI operator, thanks to the converse sense of both
theorems 3.35 and 3.39.

This theorem makes it clear that a LC TI 𝐺 is RI and 𝛾-SI (as an operator) iff ̂︀𝑔 is RI
and 𝛾-SI (as a function). And the only operators in this class are the fractional Laplacian
(up to a constant).

A corollary of this theorem is another (naive) result showing that imposing too many
properties on 𝐺 reduces the freedom on ̂︀𝑔 (and on 𝐺) so much that operators propor-
tional to the identity are the only possible one.

Corollary 3.41. For 𝛾 = 0 (i.e., for “true” scale-invariant operators), 𝐺 is LC TI RI 0-
SI iff ̂︀𝑔 is constant iff 𝐺 is proportional to the identity 𝐺 ∝ Id (i.e., ∃𝐶 ∈ R such that
𝐺 = 𝐶 Id, 𝐺 : 𝑓 ↦→ 𝐶𝑓 ).

Easy Proof. It is a very intuitive result, so we will give an informal proof. Asking 𝐺 to
be RI and 0-SI is equivalent to ask ̂︀𝑔 to be both scale-invariant and isotropic, i.e., not
depending on the norm ‖𝜔‖ neither on its direction 𝜔

‖𝜔‖ , so not depending on 𝜔, i.e., ̂︀𝑔
has to be constant. It is also the consequence of the previous theorem, with 𝛾 = 0, as
𝐺 = 𝐶(−Δ)𝛾/2 = 𝐶 Id.

Conclusion

In this section, we studied linear and continuous operators (LC) with the help of their
Schwartz kernel 𝑘𝐺, and convolution operators (LC TI) with the help of their impulse re-
sponse 𝑔 or Fourier multiplier ̂︀𝑔. Some important examples were given, including trans-
lations, dilatations and rotations, and differential operators (derivatives and directional
derivatives, Laplacians and fractional Laplacians). Thanks to the two Schwartz theo-
rems, we gave some characterizations of scale-invariance, 𝛾-scale-invariance, and/or
rotation-invariance, for integral and convolution operators. Combining these character-
izations gave an interesting result, showing the universality of the fractional Laplacian
among the LC TI RI 𝛾-SI operators.
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4 Steerable convolution operators in dimension 2

We give here the general definition of a steerable operator on test functions of domain R𝑑,
first with a definition on the operator, and then with two equivalent definitions (either
of 𝑔 or ̂︀𝑔). Then we start by giving a few general results valid for any 𝑑, and then we
present a more complete study for the specific setting of 𝑑 = 2. Our main contributions
are in this setting, especially the characterizations 4.31 and 4.49.

In all this section, 𝐺 denotes a linear and continuous operator (LC), with no addi-
tional hypothesis if nothing is specified.

4.1 Defining steerability, in any dimension

This property is the last one we introduce for our operators 𝐺 in ℒ(𝐸,𝐹 ). Note that this
notion and some results presented in this section and the next one are new, to the best of
the our knowledge.

The goal of steerability is to generalize the rotation-invariance, as we explained above
how restrictive rotation-invariance can be: indeed it reduces the dimension of the do-
main of ̂︀𝑔(𝜔) from 𝑑 (for 𝜔), to only 1 (for ‖𝜔‖ ∈ R+).

4.1.1 Steerable functions and distributions

Steerability for function or distribution, as we define it here, is a natural generalization
of rotation-invariance, and proposition 4.4 will soon back up this intuition.

Note that steerable functions have already been studied, for instance [HOT98, Def.1]
studies a more general notion with a generic Lie transformation group instead of simply
the rotations. They just consider one example with rotations in 2D in page 4, but the rest
of their work is more general (and much more complicated).

Definition 4.1 (Steerability). For 𝑓 ∈ 𝐸, we say that 𝑓 is a steerable func-
tion (St) when 𝑉𝑓 , the span of its rotated versions, has a finite dimension i.e., when
𝑉𝑓

def= SpanR
{︀
𝑟𝑅{𝑓}, 𝑅 ∈ SO(𝑑)

}︀
has a finite dimension (as a linear sub-space of 𝐸).

Definition 4.2 (Order of steerability). If 𝑓 is steerable, we write 𝑛𝑓 the dimension of 𝑉𝑓 :
𝑛𝑓

def= dimR 𝑉𝑓 ∈ N, and it is called its order of steerability.

We can give a few examples of simple functions that are steerable:
Examples 4.3. ∙ The null function 0𝐸 of 𝐸 is steerable, of order 𝑛0𝐸 = 0 (and the

conserve is clearly true).

∙ A rotation-invariant function 𝑓 is steerable, of order 1, as ∀𝑅 ∈ SO(𝑑), 𝑟𝑅{𝑓} = 𝑓
(and it is an equivalence, cf. proposition 4.4).

∙ In dimension 𝑑 = 1, the only (proper) rotation is the identity, so steerability is not
interesting, as any function will be steerable in dimension 𝑑 = 1.

∙ On R𝑑, any linear form 𝑓 : x ↦→ 𝑎1𝑥1 + · · · + 𝑎𝑑𝑥𝑑 is steerable, of order 𝑛𝑓 ≤ 𝑑.
Indeed, 𝑉𝑓 ⊂ VectR{x ↦→ 𝑥𝑖, 𝑖 ∈ [1, . . . , 𝑑]}. And we can even say that 𝑛𝑓 = 𝑑 if 𝑓
is non-zero, as 𝑉𝑓 contains all the linear forms, and so it contains all the canonical
projections, because any hyperplan of R𝑑 can be written as the rotated version of
the hyperplan ker(𝑓) = a⊥ (b⊥ = 𝑅(𝑅−1a)⊥).
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As wanted, this first notion of steerability generalizes rotation-invariance for 𝑓 ∈ 𝐸.

Proposition 4.4 (RI = St of order 1). Let 𝑓 be a non-zero function, in S(R2,R) or in
L2(R2,R), or a non-null distribution in S′(R𝑑,R).

Then 𝑓 is rotation-invariant (RI) iff 𝑓 is steerable (St), with 𝑛𝑓 = 1.

Hard Proof. ∙ Direct sense: By definition, ∀𝑅 ∈ SO(𝑑), 𝑟𝑅{𝑓} = 𝑓 , so 𝑉𝑓 =
SpanR{𝑓} = {𝜆𝑓, 𝜆 ∈ R} = “R𝑓” has dimension 𝑛𝑓 = 1, so 𝑓 is steerable.

∙ Converse sense for functions: If 𝑉𝑓 has dimension 1, 𝑓 is non-zero, and it
means that for a 𝑅 ∈ SO(𝑑), there exists one 𝜆𝑅 ∈ R such that 𝑟𝑅{𝑓} = 𝜆𝑅𝑓 .
It is unique as 𝑓 is not the null function.
First, as 𝑅 can be written49 as (𝑅′)2 for some 𝑅′ ∈ SO(𝑑), and so 𝑟𝑅{𝑓} =
𝑟(𝑅′)2{𝑓} = ((𝑟′

𝑅)2){𝑓} = (𝜆𝑅′)2𝑓 = 𝜆𝑅𝑓 , so by uniqueness 𝜆𝑅 = (𝜆𝑅′)2 ≥ 0.
Now, let prove that 𝜆𝑅 ∈ {−1,+1}: function norms are always some sort
of integrals over the domain R𝑑 and on 𝑓 (or 𝜕𝛽𝑓 for Sobolev semi-norms),
and so there are all rotation-invariant, as the (bijective) change of variable
x ↦→ 𝑅x has a Jacobian = +1 and is a bijection on R𝑑. So ‖𝑓‖ = ‖𝑟𝑅{𝑓}‖,
which gives that |𝜆𝑅| = 1 by homogeneity of the norm ‖ · ‖.
These two points prove that 𝜆𝑅 = 1, for any 𝑅, and so 𝑟𝑅{𝑓} = 𝜆𝑅𝑓 = 𝑓 , so
𝑓 is indeed rotation-invariant.

∙ Converse sense for distributions: For distributions, 𝜆𝑅 still exists (on the du-
ality bracket, ⟨𝑟𝑅{𝜑}, 𝑓⟩ = 𝜆𝑅⟨𝜑, 𝑓⟩ for 𝜑 ∈ S′(R𝑑,R) and 𝑓 ∈ S(R𝑑,R)),
and we can still easily prove that 𝜆𝑅 ≥ 0. By duality bracket, |⟨𝑟𝑅{𝜑}, 𝑓⟩| =
|⟨𝜑, 𝑟𝑅{𝑓}⟩|. For some class 𝐶 of functions, this gives sup𝑓∈𝐶 |⟨𝑟𝑅{𝜑}, 𝑓⟩| =
sup𝑓∈𝐶 |⟨𝜑, 𝑟𝑅{𝑓}⟩|, so if𝐶 is stable by rotations and such that sup𝑓∈𝐶 |⟨𝜑, 𝑓⟩| <
+∞, thanks to 𝑟𝑅{𝜑} = 𝜆𝑅𝜑 we have |𝜆𝑅| sup𝑓∈𝐶 |⟨𝜑, 𝑓⟩| = sup𝑓∈𝐶 |⟨𝜑, 𝑓⟩|,
so |𝜆𝑅| = 1, yielding the same conclusion.

4.1.2 Steerable operators (St)

We can finally ask our linear operators 𝐺 : 𝐸 → 𝐹 to be steerable. To the best of the our
knowledge, we are the first to try to define and study this notion of steerable operators
in this way, and in the light of Schwartz’s kernel theorem and Fourier multipliers.

When we try to generalize the steerability of functions to operators, the first defi-
nition we could think of is the following definition 4.5 on the operator part, but other
definitions could consider the impulse response 𝑔 of 𝐺 and on the Fourier multiplier ̂︀𝑔
of 𝐺 (proposition 4.9). It turns out that the three definitions are equivalent.

Definition 4.5 (Steerability for operators). For 𝐺 ∈ ℒ(𝐸,𝐹 ) a linear operator, we say
that 𝐺 is a steerable operator (St) when 𝑉𝐺

def= SpanR
{︀
𝑟𝑅 ∘ 𝐺 ∘ 𝑟𝑅−1 , 𝑅 ∈ SO(𝑑)

}︀
has a

finite dimension (as a linear sub-space of ℒ(𝐸,𝐹 )).
The order of steerability of 𝐺 is also (uniquely) defined as 𝑛𝐺

def= dimR 𝑉𝐺.

49 For instance, for 𝑑 = 2, take half the angle of 𝑅, 𝑅′ = 𝑅𝜃0/2 if 𝑅 = 𝑅𝜃0 ; and in higher dimension it is
still true, only harder to visualize.
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Remark 4.6 (Why 𝑟𝑅 ∘ 𝐺 ∘ 𝑟𝑅−1 ?). The first thing that we thought of when we tried
to generalize the steerability from functions to operators is to define 𝑉𝐺 the same
way we defined 𝑉𝑓 : with 𝑟𝑅{𝐺} = 𝑟𝑅 ∘ 𝐺. But this does not work at all: it would
not be a generalization of rotation-invariance, and it is weirdly non-symmetric: if
𝐺 = 𝐺1 ∘ 𝐺2, the intuition says that turning 𝐺 is equivalent to turning both 𝐺1 and
𝐺2, but 𝑟𝑅{𝐺} = (𝑟𝑅 ∘ 𝐺1) ∘ 𝐺2: only the left term 𝐺1 gets “turned” by 𝑅 with this
incorrect definition.

With the correct definition, it works as expected: 𝑟𝑅 ∘𝐺 ∘ 𝑟𝑅−1 = 𝑟𝑅 ∘ (𝐺1 ∘𝐺2) ∘
𝑟𝑅−1 = 𝑟𝑅 ∘ 𝐺1 ∘ (𝑟𝑅−1𝑟𝑅) ∘ 𝐺2 ∘ 𝑟𝑅−1 = (𝑟𝑅 ∘ 𝐺1 ∘ 𝑟𝑅−1) ∘ (𝑟𝑅 ∘ 𝐺2 ∘ 𝑟𝑅−1), which
indeed appears as the composition of both 𝐺1 and 𝐺2 “turned” by 𝑅.

Example 4.7 (𝑟𝑅 ∘𝐺 ∘ 𝑟𝑅−1 or 𝑟𝑅−1 ∘𝐺 ∘ 𝑟𝑅 ?). One could wonder if the order is the good
one. A simple sanity check is to consider, in dimension 2, 𝐺 = 𝐷𝑥 and 𝑅 = 𝑅+𝜋/2. The
intuition behind this notion of “turned” operator is that applying 𝑅+𝜋/2 to 𝐷𝑥 should
give 𝐷𝑦. We let the reader check that 𝑟𝑅+𝜋/2 ∘ 𝐷𝑥 ∘ 𝑟𝑅−1

+𝜋/2
= 𝑟𝑅+𝜋/2 ∘ 𝐷𝑥 ∘ 𝑟𝑅−𝜋/2 = 𝐷𝑦

as wanted, but 𝑟𝑅−1
+𝜋/2

∘ 𝐷𝑥 ∘ 𝑟𝑅+𝜋/2 = 𝑟𝑅−𝜋/2 ∘ 𝐷𝑥 ∘ 𝑟𝑅+𝜋/2 = 𝑟𝑅−𝜋𝐷𝑦 ∘ 𝑟𝑅𝜋 : 𝑓 ↦→
{𝐷𝑦(𝑓(−·))}(−·) ̸= 𝐷𝑦.

Remark 4.8 (Conjugation action). This notation 𝑟𝑅 ∘ 𝐺 ∘ 𝑟𝑅−1 will ring a bell to anyone who
studied group action, as it is one of the most well-known and studied extensively in the
context of group action. This is called a conjugation action, and here the group of rotation
operators 𝑟𝑅 (i.e., {𝑟𝑅, 𝑅 ∈ SO(𝑑)}) acts on the group of convolutions 𝐺.

This first definition of steerability is the most general definition we can give (𝐺 was
only asked to be linear). By restricting to LC TI operators, we can also use their impulse
response 𝑔 or Fourier multiplier ̂︀𝑔, and express the steerability pf 𝐺 as the steerability of
𝑔 or ̂︀𝑔 (as function or distribution, and not operators). Fortunately, these two definitions
turn out to be equivalent to the first one.

Proposition 4.9 (Other definition of steerability for LC TI operators). For 𝐺 : 𝐸 →
𝐹 a LC TI operator, we say that 𝐺 is a steerable operator (St) when 𝑔 is steerable (as a
distribution) or when ̂︀𝑔 is steerable (as a function), i.e., when either 𝑉𝑔 = SpanR

{︀
𝑟𝑅{𝑔}, 𝑅 ∈

SO(𝑑)
}︀

or 𝑉𝑔 = SpanR
{︀
𝑟𝑅{̂︀𝑔}, 𝑅 ∈ SO(𝑑)

}︀
has a finite dimension.

The order of steerability of 𝐺 is also 𝑛𝐺 = 𝑛𝑔 = dimR 𝑉𝑔 = 𝑛𝑔 = dimR 𝑉𝑔.

Long Proof. We need to prove the equivalence between the steerability of 𝑔 and
the steerability of ̂︀𝑔. It comes from a property we highlighted before, the rotation-
invariance of the Fourier transform (property 1.3), 𝑟𝑅 ∘ℱ = ℱ ∘ 𝑟𝑅. Let prove that
𝑔 is steerable iff ̂︀𝑔 is steerable, [Püs16].

∙ Direct sense: If 𝑔 is steerable, we denote by 𝛽 =
(︀
𝑔1, . . . , 𝑔𝑛𝑔

)︀
a basis of 𝑉𝑔

(which is finite dimensional by definition). The only thing we need50 is that
the we can take the Fourier transform of the 𝑔𝑖.

50 But beware that we cannot chose a basis such that 𝑔𝑖 = 𝑟𝑅𝑖 𝑔 for a certain rotation 𝑅𝑖 ∈ SO(𝑑), but
that is not an issue as this kind of proof works on the (𝑔𝑖)1≤𝑖≤𝑛𝑔 without the need to have a specific form
for the basis.
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Let 𝑅 ∈ SO(𝑑), then by definition of the basis 𝛽, there is (𝜆𝑖)1≤𝑖≤𝑛𝑔 ∈ R𝑛𝑔

such that 𝑟𝑅{𝑔} =
∑︀𝑛𝑔

𝑖=1 𝜆𝑖𝑔𝑖. And ̂︀𝑔(𝜔) = ℱ{𝑔}(𝜔), and so for 𝜔 ∈ R𝑑,

(𝑟𝑅{̂︀𝑔})(𝜔) = (𝑟𝑅{ℱ{𝑔}})(𝜔) = ((𝑟𝑅 ∘ ℱ){𝑔})(𝜔)
(as ℱ is RI) = ((ℱ ∘ 𝑟𝑅){𝑔})(𝜔)

= (ℱ{𝑟𝑅{𝑔}})(𝜔) =
(︃
ℱ
{︃ 𝑛𝑔∑︁
𝑖=1

𝜆𝑖𝑔𝑖

}︃)︃
(𝜔)

(as ℱ is linear) =
𝑛𝑔∑︁
𝑖=1

𝜆𝑖(ℱ{𝑔𝑖})(𝜔)

So finally, (𝑟𝑅{̂︀𝑔})(𝜔) =
𝑛𝑔∑︁
𝑖=1

𝜆𝑖 ̂︀𝑔𝑖(𝜔).

And so, ̂︀𝑔 is steerable, because there is (̂︀𝑔𝑖)1≤𝑖≤𝑛𝑔 such that for every 𝑅 ∈
SO(𝑑), there exists (𝜆𝑖)1≤𝑖≤𝑛𝑔 ∈ R𝑛𝑔 satisfying (𝑟𝑅{̂︀𝑔}) =

∑︀𝑛𝑔

𝑖=1 𝜆𝑖 ̂︀𝑔𝑖.
It also proves that 𝑛𝑔 ≤ 𝑛𝑔 as (̂︀𝑔𝑖)1≤𝑖≤𝑛𝑔 is (at least) a spanning family of 𝑉𝑔.

∙ Converse sense: The same computation as for the direct sense can be done
here, by using the fact that 𝑔 = ℱ−1{̂︀𝑔}, and the rotation-invariance of ℱ−1

(property 1.3), and its linearity. It also proves that 𝑛𝑔 ≤ 𝑛𝑔 as (𝑔𝑖)1≤𝑖≤𝑛𝑔
is at

least a spanning family of 𝑉𝑔.

Both sense gave an inequality on dimensions, so 𝑛𝑔 = 𝑛𝑔.

Finally, we can sum up the previous results in this proposition.

Proposition 4.10 (Equivalence between the three notions of steerability). 𝐺 is steerable
iff 𝑔 is steerable iff ̂︀𝑔 is steerable. And we have 𝑛𝐺 = 𝑛𝑔 = 𝑛𝑔.

Long Proof. We already proved the second equivalence, so we can focus for in-
stance on 𝐺 is St iff ̂︀𝑔 is St. This proof is based on the explicit formula linking 𝑔
and 𝐺, proposition 3.7, 𝑔(x) = 𝐺{𝛿0}(x), and the fact that 𝛿0 is rotation-invariant
(as a distribution, because x = 0 iff 𝑅x = 0).

∙ Direct sense: If𝐺 is steerable, i.e., if 𝑉𝐺 has finite dimension, then there exists
𝑛𝐺 operators 𝐺1, . . . , 𝐺𝑛𝐺 ∈ SO(𝑑), of impulse response 𝑔𝑖, such that for all
𝑅 ∈ SO(𝑑), there is 𝜆1, . . . , 𝜆𝑛𝐺 ∈ R satisfying 𝑟𝑅𝐺𝑟𝑅−1 =

∑︀𝑛𝐺
𝑖=1 𝜆𝑖𝐺𝑖.

We have (𝑟𝑅𝑔)(x) = 𝑔(𝑅x) = (𝐺{𝛿0})(𝑅x) = (𝑟𝑅𝐺){𝛿0}(x), and 𝛿0 = 𝑟𝑅−1𝛿0
as it is RI, so 𝑟𝑅𝑔 = (𝑟𝑅𝐺){𝑟𝑅−1𝛿0} = (𝑟𝑅𝐺𝑟𝑅−1){𝛿0}.
Therefore, 𝑟𝑅𝑔 =

∑︀𝑛𝐺
𝑖=1 𝜆𝑖(𝐺𝑖){𝛿0} =

∑︀𝑛𝐺
𝑖=1 𝜆𝑖𝑔𝑖, which proves that 𝑔 is steer-

able, of order 𝑛𝑔 ≤ 𝑛𝐺 (because (𝑔1, . . . , 𝑔𝑛𝐺) spans 𝑉𝑔).

∙ Converse sense: The same computation works in a similar way, proving that
𝑟𝑅𝐺𝑟𝑅−1 and

∑︀𝑛𝐺
𝑖=1 𝜆𝑖𝐺𝑖 has the same impulse response (𝑟𝑅𝑔 and

∑︀𝑛𝐺
𝑖=1 𝜆𝑖𝑔𝑖),

and so they are equal (as 𝐺{𝑓} = 𝑔 * 𝑓 ). So if 𝑔 is St, 𝐺 is also St, of order
𝑛𝐺 ≤ 𝑛𝑔.

Both sense gave an inequality on dimensions, so 𝑛𝐺 = 𝑛𝑔 (= 𝑛𝑔).

The following result is not new and has already been used earlier, but we prefer to
summarize the computations in a lemma.
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Lemma 4.11 (Three forms for a rotated operator).
Let 𝐺 be a convolution, and for 𝑅 ∈ SO(𝑑), let 𝐺𝑅 = 𝑟𝑅 ∘ 𝐺 ∘ 𝑟𝑅−1 . Then his impulse
response is 𝑔𝑅 = 𝑟𝑅{𝑔}, and his Fourier multiplier is ̂︁𝑔𝑅 = 𝑟𝑅{̂︀𝑔}.

Easy Proof. For the impulse response, the closed-form expression gives 𝑔𝑅 = 𝐺𝑅{𝛿0} =
(𝑟𝑅 ∘𝐺∘𝑟𝑅−1){𝛿0} = (𝑟𝑅 ∘𝐺){𝑟𝑅−1{𝛿0}} and 𝛿0 is RI so 𝑔𝑅 = (𝑟𝑅 ∘𝐺){𝛿0} = 𝑟𝑅{𝐺{𝛿0}} =
𝑟𝑅{𝑔}.

The same result can be obtained with the convolution formula 𝐺{𝑓} = (𝑔 * 𝑓) and
lemma 2.43 about the rotation of a convolution: 𝐺𝑅{𝑓} = (𝑟𝑅∘𝐺∘𝑟𝑅−1){𝑓} = 𝑟𝑅(𝐺{𝑟𝑅−1{𝑓}}) =
𝑟𝑅(𝑔 *(𝑟𝑅−1{𝑓})) = (𝑟𝑅{𝑔}) *(𝑟𝑅{𝑟𝑅−1{𝑓}}) = (𝑟𝑅{𝑔}) * 𝑓) = (𝑔𝑅 * 𝑓).

And for the Fourier multiplier, it comes directly from the rotation-invariance of ℱ
(property 1.3): ̂︁𝑔𝑅 = 𝑟𝑅{𝑔} = ℱ{𝑟𝑅{𝑔}} = 𝑟𝑅{ℱ{𝑔}} = 𝑟𝑅{̂︀𝑔}.

Example 4.12. For example, in dimension 𝑑 = 2, 𝐺 is steerable when

dimR 𝑉𝑔 = dimR SpanR
{︀̂︀𝑔(𝑅𝜃·), 𝜃 ∈ [0, 2𝜋)

}︀
< +∞

Note that such a parametric form (in 𝜃) for 𝑉𝑔 is only valid in dimension 2.

Examples 4.13. These examples are the operator versions of the few examples of steerable
functions given above:

∙ The null operator on 𝐸 is steerable, of order 𝑛0ℒ(𝐸) = 0 (and the conserve is true).

∙ A rotation-invariant operator (RI) is steerable, of order 1 (and it is an equivalence,
see after proposition 4.22).

∙ On R2, any directional derivative 𝐷𝛼 is steerable, of order 𝑛𝐷𝛼 = 2. A composi-
tion of 𝑚 ∈ N directional derivatives is also steerable, of order 𝑚 + 1 (see after in
lemma 4.41).

The steerability order 𝑛𝑓 , 𝑛𝐺 ∈ N indicates somehow the “directional variability”
of a function 𝑓 or an operator 𝐺. Being able to have 𝑛𝐺 > 1 (e.g., for derivatives on
R2), proves that steerability is really a richer notion than rotation-invariance, as proposi-
tion 4.4 already proved that it contains rotation-invariance (when 𝑛𝐺 = 1).

We will denote St the class of steerable operators, and LC TI St the class of linear,
continuous, translation-invariant and steerable operators (on 𝐸). We tend to prefer the
longer version LC TI St, the class of steerable convolution operators, to always remem-
ber than steerability does not require translation-invariance. As for the previous classes,
these two classes are stable under linear combinations, and by compositions

Proposition 4.14. The class LC TI St is a linear sub-space of ℒ(𝐸,𝐹 ), and

𝑛𝐺1+𝐺2 ≤ 𝑛𝐺1 × 𝑛𝐺2 . (14)

Long Proof. For the stability by linear combinations, this time we prefer to sep-
arate between the (external) scalar product 𝜆𝐺 and the (internal) sum 𝐺1 + 𝐺2,
instead of doing both at the same time with 𝜆1𝐺1 + 𝜆2𝐺2 as we did before.

∙ The null operator is steerable (of order 𝑛𝐺 = 0), as shown above.
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∙ If𝐺 is steerable, and 𝜆 ∈ R*, then obviously 𝜆𝐺 : 𝑓 ↦→ (𝜆𝐺){𝑓} = 𝜆(𝐺{𝑓}) =
𝜆𝐺{𝑓} (scalar product) is still steerable51, as SpanR

{︀
𝑟𝑅 ∘ (𝜆𝐺), 𝑅 ∈ SO(𝑑)

}︀
=

𝜆SpanR
{︀
𝑟𝑅𝐺,𝑅 ∈ SO(𝑑)

}︀
= 𝜆𝑉𝐺 = 𝑉𝐺 (as 𝜆 ̸= 0), which is finite dimen-

sional by hypothesis on 𝐺 (being steerable). So 𝑉𝜆𝐺 is 𝑉𝐺 if 𝜆 ̸= 0, but is the
null singleton {0𝐸→𝐸} if 𝜆 = 0, and therefore the order of steerability of 𝜆𝐺
is given by

𝑛𝜆𝐺 =
{︃
𝑛𝐺 if 𝜆 ̸= 0,
0 if 𝜆 = 0.

∙ If 𝐺1, 𝐺2 are two steerable operators, then for 𝑅 ∈ SO(𝑑) we simply have
𝑟𝑅(𝐺1 + 𝐺2) = 𝑟𝑅𝐺1 + 𝑟𝑅𝐺2 ∈ 𝑉𝐺1 + 𝑉𝐺1 as 𝑟𝑅𝐺1 ∈ 𝑉𝐺1 and 𝑟𝑅𝐺2 ∈
𝑉𝐺2 , and this sum52 is a linear space, therefore 𝑉𝐺1+𝐺2 = Span

{︀
𝑟𝑅(𝐺1 +

𝐺2), 𝑅 ∈ SO(𝑑)
}︀
⊂ 𝑉𝐺1 + 𝑉𝐺1 , and so 𝑉𝐺1+𝐺2 is again finitely dimensional,

of dimension 𝑛𝐺1+𝐺2 ≤ 𝑛𝐺1 + 𝑛𝐺2 , which is exactly (14).

Remark 4.15 (Optimal inequality). One could wonder if this inequality (14) could be
improved, as it is sometimes an equality (e.g., 𝐺1 = 0). In fact, we cannot improve
it to 𝑛𝐺1+𝐺2 = max(𝑛𝐺1 , 𝑛𝐺2), as for instance if 𝐺1 = Id, 𝐺2 = −𝐺1, then 𝑛𝐺1+𝐺2 =
𝑛0𝐸 = 0 < max(𝑛𝐺1 , 𝑛𝐺2) = max(1, 1) = 1.

Proposition 4.16. Composition preserves steerability, i.e., if 𝐺 and 𝐺′ are operators on 𝐸
and are both steerable, then 𝐺′′ = 𝐺 ∘𝐺′ is still steerable, and 𝑛𝐺′′ satisfies:

𝑛𝐺∘𝐺′ ≤ 𝑛𝐺 × 𝑛𝐺′ . (15)

Proof. Let 𝐺,𝐺′ two steerable operators, of order 𝑛 = 𝑛𝐺 and 𝑛′ = 𝑛𝐺′ , and 𝐺′′ =
𝐺 ∘𝐺′. Thanks to proposition 4.10, we can work on either 𝑔 = 𝑔 * 𝑔′ or ̂︀𝑔 = ̂︀𝑔̂︀𝑔′. As
we already observed, 𝑟𝑅{𝑔} = (𝑟𝑅{𝑔′}) *(𝑟𝑅{𝑔′}) and 𝑟𝑅{̂︀𝑔} = (𝑟𝑅{̂︀𝑔})(𝑟𝑅{̂︀𝑔′}).

If we assume 𝐺 and 𝐺′ to be steerable of respective order 𝑛 and 𝑛′, then by
definition we can take (𝐺𝑖)1≤𝑖≤𝑛 and (𝐺′

𝑘)1≤𝑘≤𝑛′ two bases of 𝑉𝐺 and 𝑉𝐺′ . No
need to explicitly write 𝐺𝑖 as a rotated version of 𝐺, it will be easier to just work
with 𝐺𝑖 and 𝐺′

𝑘. And it is easier to work with their impulse responses, 𝑔 and 𝑔′,
(𝑔𝑖) and (𝑔′

𝑘).
Let 𝑅 ∈ SO(𝑑), there is 𝑛 numbers 𝜆𝑖 ∈ R and 𝑛′ numbers 𝜆′

𝑘 ∈ R, such that
𝑟𝑅𝑔 =

∑︀𝑛
𝑖=1 𝜆𝑖𝑔𝑖 and 𝑟𝑅𝑔′ =

∑︀𝑛′
𝑘=1 𝜆

′
𝑘𝑔

′
𝑘. Therefore,

𝑟𝑅𝑔
′′ =

(︃
𝑛∑︁
𝑖=1

𝜆𝑖𝑔𝑖

)︃
*

⎛⎝ 𝑛′∑︁
𝑘=1

𝜆′
𝑘𝑔

′
𝑘

⎞⎠ =
𝑛∑︁
𝑖=1

𝑛′∑︁
𝑘=1

(𝜆𝑖𝜆′
𝑘)⏟  ⏞  

def= 𝜆′′
𝑙

(𝑔𝑖 * 𝑔′
𝑘)⏟  ⏞  

def= 𝑔′′
𝑙

So the change of variable (𝑖, 𝑘) ↦→ 𝑙 gives =
𝑛×𝑛′∑︁
𝑙=1

𝜆′′
𝑙 𝑔

′′
𝑙 .

And this proves that 𝑉𝑔′′ has finite dimension, as this family (𝑔′′
𝑙 )1≤𝑙≤𝑛×𝑛′ is

spanning 𝑟𝑅𝑔′′ and so 𝑉𝑔′′ . So 𝑔′′ is steerable, of order 𝑛′′ ≤ 𝑛 × 𝑛′. Hence 𝐺′′ is
also steerable, and we have 𝑛𝐺∘𝐺′ ≤ 𝑛𝐺 × 𝑛𝐺′ , giving (15).

51 In other words, the steerability property does not care about the non-zero constants.
52 The last sum has to be understood as a Minkowsky sum between two linear sub-spaces: 𝐴 + 𝐵

def={𝑎 +
𝑏, 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.
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Remark 4.17 (Special cases?). This formula (15) can be quickly checked:

∙ If 𝐺′ = 0𝐸 , 𝑛𝐺 = 0 and 𝐺′′ = 0𝐸 , so 𝑛𝐺 = 0 is absorbing in (15).

∙ If 𝐺′ = Id𝐸 , 𝑛𝐺 = 1 and 𝐺′′ = 𝐺′, so 𝑛𝐺 = 1 is neutral in (15).

Remark 4.18 (Optimal inequality). One could wonder if this inequality 𝑛𝐺1∘𝐺2 ≤
𝑛𝐺1 × 𝑛𝐺2 (15) can be improved as it is sometimes an equality (e.g., 𝐺1 = Id). In
fact, we cannot improve it to 𝑛𝐺1∘𝐺2 = 𝑛𝐺1 × 𝑛𝐺2 , as for instance if 𝐺1 = 𝐺2 = 𝐷𝑥,
then 𝑛𝐺1∘𝐺2 = 𝑛𝐷2

𝑥
= 3 < 𝑛𝐺1 × 𝑛𝐺2 = 2× 2 = 4.

Remark 4.19 (Easy to check in 2D). We will have a strong characterization for steer-
able convolutions, valid only in 2D (theorem 4.31), and one of its consequences is the
fact that steerability is preserved by composition for 2D steerable convolutions, as
given by proposition 4.16.

An obvious corollary is the following, stating that composing by a RI operator pre-
serves steerability and gives the same steerability order.

Corollary 4.20. If 𝐺1 is rotation-invariant and 𝐺2 steerable, then 𝐺 = 𝐺1 ∘ 𝐺2 is also
steerable and 𝑛𝐺 ≤ 𝑛𝐺2 , with an equality iff 𝐺1 ̸= 0ℒ(𝐸).

Proof. We reprove it differently here, to see when 𝑛𝐺 ≤ 𝑛𝐺2 can be strict.
We can work with their Fourier multipliers, ̂︀𝑔 = ̂︀𝑔1 · ̂︀𝑔2, and for 𝑅 ∈ SO(𝑑), we

have 𝑟𝑅̂︀𝑔 = (𝑟𝑅 ̂︀𝑔1) · (𝑟𝑅 ̂︀𝑔2) (point-wise multiplication), thanks to lemma 2.43. So
if 𝐺1 is RI, 𝑟𝑅 ̂︀𝑔1 = ̂︀𝑔1 (theorem 3.39), and so:

𝑉𝑔 = Span
{︀
𝑟𝑅̂︀𝑔,𝑅 ∈ SO(𝑑)

}︀
= Span

{︀
(𝑟𝑅 ̂︀𝑔1) · (𝑟𝑅 ̂︀𝑔2), 𝑅 ∈ SO(𝑑)

}︀
= Span

{︀ ̂︀𝑔1 · (𝑟𝑅 ̂︀𝑔2), 𝑅 ∈ SO(𝑑)
}︀

=
{︀ ̂︀𝑔1 · ℎ, ℎ ∈ Span{𝑟𝑅 ̂︀𝑔2, 𝑅 ∈ SO(𝑑)}

}︀
= ̂︀𝑔1 · 𝑉̂︀𝑔2

,

(with a slight abuse of notation at the last line.) But it shows that dimR 𝑉𝑔 ≤
dimR 𝑉̂︀𝑔2

, and it is an equality iff multiplying by ̂︀𝑔1 does not reduce the dimension
of 𝑉̂︀𝑔2

.

In this first subsection about steerability, we defined steerable functions and steerable
operators, in any dimension 𝑑 ∈ N, and we gave some general results about steerability
(e.g., 𝑛𝑓 = 1 iff 𝑓 is RI) and the class of steerable convolution operators.

In the rest of this section, we study some examples and special cases of steerable
operators in any dimension (𝑛𝐺 = 0, 1), and the links between steerability and the other
geometric invariance properties. We then focus on 2D steerable convolutions, for which
the Laplacians and directional derivatives are important construction blocks.
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4.2 Special cases and examples of steerable operators

In this short subsection we show two very basic cases, for operators with a steerability
order of 0 or 1, and then we study some simple examples of steerable operators.

4.2.1 Steerability of order 0 or 1 ?

Proposition 4.21. 𝐺 is the null operator (from 𝐸 to 𝐹 ) iff 𝑛𝑔 = 0.

Easy Proof. 𝐺 = 0𝐸→𝐹 iff 𝑔 = 0𝐸 and all its rotated versions are 0𝐸 too iff 𝑉𝑔 = {0𝐸} (by
definition) iff 𝑛𝑔 = 053.

Proposition 4.22. If𝐺 is a non-zero LC operator,𝐺 is RI iff𝐺 is steerable (St) with 𝑛𝑔 = 1.

Easy Proof. 𝐺 is steerable iff 𝑔 is steerable, and so the result obtained for distributions
(proposition 4.4) directly gives: 𝐺 is RI iff 𝑔 is RI iff 𝑔 is St with 𝑛𝑔 = 1.

Note that we did not find any similar results for higher values 𝑛𝑔 ≥ 2 .

4.2.2 Some simple examples of steerable operators

In dimension 2, we use the polar notation 𝜔 = (𝑟, 𝜃) (for 𝜔 ∈ R2, 𝑟 ∈ R+, 𝜃 ∈ [0, 2𝜋) or
𝜃 ∈ R) almost everywhere, from now on.

The generalized Riesz transform is steerable

Example 4.23. For any 𝑘 ∈ Z, the Fourier multiplier ̂︀𝑔 in L2(R2,C) defined by ̂︀𝑔(𝜔) =̂︀𝑔(𝑟, 𝜃) = e𝑗𝑘𝜃 is steerable with 𝑛𝑔 = 2. It corresponds to a generalization of the (complex)
Riesz transform.

Indeed,𝑅𝜃0{̂︀𝑔}(𝜔) = ̂︀𝑔(𝑅𝜃0𝜔) = ̂︀𝑔(𝑟, 𝜃+𝜃0) = cos(𝑘𝜃0)e𝑗𝑘𝜃+𝑗 sin(𝑘𝜃0)e𝑗𝑘𝜃 and if they
are seen as functions of (𝑟, 𝜃), they are in SpanR

{︀
e𝑗𝑘𝜃, e𝑗(𝑘𝜃+𝜋/2)}︀, so 𝑉𝑔 is finite dimen-

sional, and has dimension 𝑛𝑔 = 𝑛𝐺 = 2.
Note that none of the two functions spanning 𝑉𝑔 are impulse responses of real oper-

ators, e.g., (𝑟, 𝜃) ↦→ e𝑗(𝑘𝜃+𝜋/2) = 𝑗e𝑗𝑘𝜃 does not correspond to a real operator, as it is not
Hermitian symmetric. And for 𝑘 ∈ N*, it gives the (complex) Riesz transformℛ for 𝑘 = 1
and its iterateℛ𝑘. For more details on the complex Riesz transform, see [UC13, WCU13].

This example can be generalized into the following lemma, giving a simple but ex-
pressive elementary block for steerable functions of L2(R2,C), with a free radial part 𝜌(𝑟)
(in L2(R+)), that will be used for the representer theorems below.

Lemma 4.24. For any 𝑘 ∈ Z and 𝜌 ∈ L2(R2) non-zero, the function 𝑢, defined by 𝑢(𝑟, 𝜃) =
𝜌(𝑟)e𝑗𝑘𝜃, is steerable, with 𝑛𝑢 = 2.

This result can be seen as a direct consequence of the more general corollary 4.20
proved above, but we also prove it manually to explain properly this idea of separating
the radial and polar dependencies, in 2D.

53 Remember that the only linear sub-space of dimension 0 is the null singleton – and not any singleton,
as a linear sub-space has to contain the null vector!
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Easy Proof. The previous example already proved that the polar part 𝑣(𝑟, 𝜃) = e𝑗𝑘𝜃 is steer-
able, so let a basis 𝑣1, 𝑣2 of 𝑉𝑣 . Let 𝑅 ∈ SO(𝑑), and so there exists 𝜆1, 𝜆2 ∈ R such that
𝑟𝑅𝜃0
{𝑣}(𝑟, 𝜃) = e𝑗𝑘(𝜃+𝜃0) = 𝜆1𝑣1(𝜃) + 𝜆2𝑣2(𝜃).
The radial dependency does not change anything for steerability, as 𝑟𝑅𝜃0

{𝑢}(𝑟, 𝜃) =
𝑢(𝑟, 𝜃+𝜃0) = 𝜌𝑘(𝑟)e𝑗𝑘(𝜃+𝜃0), and so 𝑟𝑅𝜃0

{𝑢}(𝑟, 𝜃) = 𝜌𝑘(𝑟)(𝜆1𝑣1(𝜃)+𝜆2𝑣2(𝜃)) = 𝜆1𝑢1(𝑟, 𝜃)+
𝜆2𝑢2(𝑟, 𝜃), proving that 𝑢 is also steerable with 𝑛𝑢 ≤ 2 (as 𝑢1, 𝑢2 is spanning 𝑉𝑢).

For non-zero radial profile, 𝑢1(𝑟, ·), 𝑢2(𝑟, ·) is free for some 𝑟 > 0, so 𝑢1, 𝑢2 is free.

Real Riesz transform and iterated real Riesz transforms are steerable

Example 4.25. For any 𝑘 ∈ N, the Fourier multiplier ̂︀𝑔 in L2(R2,C) defined by ̂︀𝑔(𝑟, 𝜃) =
𝑗 cos(𝑘𝜃) yields a 2D steerable convolution.

Indeed, 𝑅𝜃0{̂︀𝑔}(𝜔) = ̂︀𝑔(𝑅𝜃0𝜔) = ̂︀𝑔(𝑟, 𝜃 + 𝜃0) = cos(𝜃0) cos(𝑘(𝜃) + 𝑗 sin(𝜃0) cos(𝑘(𝜃)) ∈
SpanR

{︀
(𝑟, 𝜃) ↦→ e𝑗𝛽𝜃, (𝑟, 𝜃) ↦→ e𝑗(𝛽𝜃+𝜋/2)}︀, so 𝑉𝑔 is finite dimensional, and has dimension

𝑛𝑔 = 𝑛𝐺 = 2. ̂︀𝑔(𝜔) = ̂︀𝑔(𝑟, 𝜃) = 𝑗 cos(𝑘𝜃) is steerable with 𝑛𝑔 = 2. It corresponds
to the iterated real Riesz transform. They are real operators as this time their Fourier
multipliers are clearly Hermitian symmetric.

Directional derivatives are steerable

In dimension 2, we can easily study the steerability of directional derivatives, but it will
be harder in higher dimensions (as their Fourier multiplier is not easy to compute).

Proposition 4.26. In dimension 𝑑 = 2, partial derivatives and directional derivatives are
steerable, of steerability order 𝑛𝐷𝛼 = 2 (for any 𝛼 ∈ R), and we have a simple formula for
the rotation of ̂︂𝐷𝛼:

∀𝜃0 ∈ R, 𝑟𝑅𝜃0
{̂︂𝐷𝛼} = 𝐷𝛼−𝜃0 . (16)

Easy Proof. As a partial derivative𝐷𝑖 is nothing but a special case of directional derivative
(with a unit vector −→𝑢 = −→𝑢 𝛼 ∈ S1 of angle 𝛼 ∈ {0, 𝜋

2 }), we can study 𝐷𝛼 as a general case.
𝐷𝛼 is steerable iff its Fourier multiplier is steerable (proposition 4.10). And we know

that ̂︁𝐷𝛼(𝜔) = ̂︁𝐷𝛼(𝑟, 𝜃) = 𝑗𝑟 cos(𝜃 − 𝛼) (see examples 3.22), so

∀𝜔 = (𝑟, 𝜃) ∈ R2, 𝑟𝑅𝜃0
{̂︁𝐷𝛼}(𝜔) = ̂︁𝐷𝛼(𝑅𝜃0𝜔)

(In polar coordinates, ) = ̂︁𝐷𝛼(𝑅𝜃0(𝑟, 𝜃))

= ̂︁𝐷𝛼(𝑟, 𝜃 + 𝜃0)) = 𝑗𝑟 cos((𝜃 + 𝜃0)− 𝛼)

= 𝑗𝑟 cos(𝜃 − (𝛼− 𝜃0)) = 𝐷𝛼−𝜃0(𝜔).

This identity on 𝑟𝑅𝜃0
{̂︁𝐷𝛼} is enough to have the steerability of ̂︁𝐷𝛼, as

𝑉̂︁𝐷𝛼
= SpanR

{︀
𝑟𝑅{̂︁𝐷𝛼} : 𝑅 ∈ SO(𝑑)

}︀
= SpanR

{︀
𝑟𝑅𝜃0
{̂︁𝐷𝛼} : 𝜃0 ∈ R

}︀
= SpanR

{︀
𝐷𝛼−𝜃0 : 𝜃0 ∈ R

}︀
= SpanR

{︀̂︂𝐷𝜃0 : 𝜃0 ∈ R
}︀

= SpanR
{︀̂︁𝐷𝑥, ̂︁𝐷𝑦

}︀
.

Therefore 𝑉̂︁𝐷𝛼
has finite dimension, equals to dimR SpanR

{︀̂︁𝐷𝑥, ̂︁𝐷𝑦

}︀
≤ 2.

And we know that ̂︁𝐷𝑥 and ̂︁𝐷𝑦 are free, as functions on R2, because ̂︁𝐷𝑥 : 𝜔 ↦→ 𝑗𝑤1 and̂︁𝐷𝑦 : 𝜔 ↦→ 𝑗𝑤2, so 𝑉̂︁𝐷𝛼
has dimension exactly 2.
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Remark 4.27 (And for higher dimensions?). In higher dimension (𝑑 > 2), ̂︂𝐷−→𝑢 is not
as simple as in 2D, but we also have that 𝑟𝑅̂︂𝐷−→𝑢 = 𝐷𝑅−1−→𝑢 , which spans exactlŷ︁𝐷1, . . . , ̂︁𝐷𝑑 (for 𝑅 ∈ SO(𝑑)). So ̂︂𝐷−→𝑢 is also steerable, of order 𝑑.

Fractional Laplacians are steerable

Laplacians and fractional Laplacians are rotation-invariant, as proved above in proposi-
tion 3.30, and so they are (trivially) steerable, of order 𝑛Δ = 1 and 𝑛(−Δ)𝛾/2 = 1.

4.3 2D steerable convolution operators

We now focus on steerable convolution operators in 2D, as our motivation mainly lies
in possible applications to image analysis and stochastic processes for images. This sub-
section starts by giving two versions of a representer theorem for rotation-invariant sub-
spaces of Fourier multiplier, and then applies them to prove a first characterization for
steerable convolution, that can be written as a sum of (complex) Riesz transform, modu-
lated by complex-valued radial factors (lemma 4.24). Special cases of this form are then
studied, and the next subsection will give a simpler form for 𝛾-SI operators.

We only consider operators on 𝐸 = L2(R2,R) from now on. The first theorem 4.31 is
a very powerful characterization of steerable convolutions.

4.3.1 Representer theorems for rotation-invariance sub-spaces

The proof of theorem 4.31 is not too hard, providing that we have the following interme-
diate result. The first theorem comes from [VSU15, Th.2.3], and the next one is a simple
rewriting, adapted to our setting. We refer to them as “representer” theorems because
they exhibit the form of the elements of a basis, like usual representer theorems54 do.

Theorem 4.28 (Representer theorem for rotation-invariance sub-spaces).
A 𝑞-dimensional linear sub-space of L2(R2,C) is stable by rotation iff it is spanned by 𝑞
functions 𝜑1(𝑟, 𝜃), . . . , 𝜑𝑞(𝑟, 𝜃) of L2(R2,C), that have the following separable form in
polar coordinates:

𝜑𝑛(𝜔) = 𝜑𝑛(𝑟, 𝜃) = 𝜌𝑛(𝑟)e𝑗𝑘𝑛𝜃 where 𝑘𝑛 ∈ Z (all different). (17)

The radial dependencies 𝜌𝑛(𝑟) can be complex-valued, and are in L2(R+,C).

Remark 4.29 (Short chronology). In [VSU15, Sec.2.2], the authors evoke a proof of a more
general result based on Lie groups (cf. [HOT98]), but we chose to not spend any extra time
studying these more complicated results (as it would have required some additional time to
understand the underlying theory), and we checked their “simple” proof, based on Fourier
series (see below, (21)). The converse sense was known from 1991, and the general result for
the direct sense seems to be known from 1998, but the particular result in this setting only
dates from last year (2015, [VSU15]).

54 For instance, see this Wikipedia article for the representer theorem in statistical learning and in RKHS.
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Long and Hard Proof. ∙ Converse sense: The sufficient part is easy to check. If
these 𝑞 functions spans the sub-space 𝐴, then it is easy to check that it is
stable by rotation: 𝑟𝑅𝛼{𝜑𝑛}(𝑟, 𝜃) = 𝜑𝑛(𝑟, 𝜃 + 𝛼) = e𝑗𝑘𝑛𝛼𝜑𝑛(𝑟, 𝜃) ∈ C𝜑𝑛(𝑟, 𝜃) ∈
SpanC

{︀
𝜑1(𝑟, 𝜃), . . . , 𝜑𝑞(𝑟, 𝜃)

}︀
= 𝐴, for each 𝑛 ∈ {1, . . . , 𝑞}, so 𝑟𝑅𝛼𝐴 ⊂ 𝐴 as

expected.

∙ Direct sense: We adapt here the proof given in [VSU15, Appendix A].
Let𝐴 be this subspace, and 𝜑1, . . . , 𝜑𝑞 a basis of𝐴. Because we are in L2(R𝑑,C),
an Hermitian space, we can ask this basis to be orthonormal (by using the
Gram-Schmidt process if needed). Let 𝜑 be a vector-valued function defined
by 𝜑(𝑟, 𝜃) = [𝜑1(𝑟, 𝜃), . . . , 𝜑𝑞(𝑟, 𝜃)] for 𝑟, 𝜃 ∈ R2 (𝜑 : R2 → C𝑞). 𝐴 is stable by
rotation iff for all 𝜃 ∈ R, 𝑟𝑅𝜃

{𝜑} has all its entries is in the span of 𝜑 iff there
exists a (𝑞 × 𝑞) matrix-valued function c of 𝜃 such that

∀𝜃 ∈ R, 𝑟𝑅𝜃
{𝜑} = c(𝜃)𝜑. (18)

c(𝜃)𝜑 is a matrix-vector product, giving a function of R2 → C𝑞. This matrix
c(𝜃) ∈ ℳ𝑞×𝑞(C) is uniquely defined because 𝜙 is a basis, and its entries are
given by

∀𝜃 ∈ R, c𝑖1,𝑖2(𝜃) = ⟨𝑟𝑅𝜃
{𝜑𝑖1}, 𝜑𝑖2⟩. (19)

And now for 𝜃1, 𝜃2 ∈ R, 𝑟𝑅𝜃1+𝜃2
= 𝑟𝑅𝜃1

∘ 𝑟𝑅𝜃2
and the linearity of 𝑟𝑅𝜃1

gives

c(𝜃1 + 𝜃2) = c(𝜃1)c(𝜃2). (20)

The form of the entries of c(𝜃) (19) implies that they are 2𝜋-periodic, and
bounded, thanks to Cauchy-Schwarz inequality, both 𝑟𝑅𝜃

{𝜑𝑖1} and 𝜑𝑖2 being
in L2(R2,C). Therefore, the Fourier coefficients of c belong to L2(T), T being
the 2𝜋-periodic torus (R/2𝜋Z), and so we can expand c(𝜃) as a Fourier series,
with 𝑞 × 𝑞 matrix-valued Fourier coefficients c𝑘 (for 𝑘 ∈ Z), given by

∀𝑘 ∈ Z, c𝑘 = 1
2𝜋

∫︁ 𝜋

−𝜋
c(𝜃)e−𝑗𝑘𝜃d𝜃. (21)

Using (20), we obtain the following identities (seen as matrix product),{︃
c2
𝑘 = c𝑘 for every 𝑘 ∈ Z,

c𝑘1c𝑘2 = 0 for every 𝑘1 ̸= 𝑘2 ∈ Z.

Their proof can be found in the appendix B.3. These identities imply that the
(matrix-valued) Fourier coefficients c𝑘 are mutually orthogonal projection
matrices. But they are 𝑞 × 𝑞 matrices, so there can be at most 𝑞 orthonormal
projection directions u𝑛 (𝑛 = 1, . . . , 𝑝 with 𝑝 ≤ 𝑞), and we define 𝑘𝑛 the index
of the corresponding projection matrices (𝑘𝑛 ∈ Z, all distinct).
The matrix of projection of direction u𝑛 will in fact be written55 c𝑘𝑛 = u𝑛.u𝐻𝑛 ,
and so the Fourier series of c(𝜃) reduces to a finite number of terms (at most
𝑞), of the form c𝑘𝑛e𝑗𝑘𝑛𝜃, i.e., (u𝑛.u𝐻𝑛 )e𝑗𝑘𝑛𝜃.

55 u𝑛 is a complex-valued vector of dimension 𝑞, and so the outer product u𝑛.u𝐻
𝑛 is a complex-valued

matrix of dimension 𝑞 × 𝑞, as c𝑘𝑛 should be.
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And (18) implies that 𝜑(𝑟, 𝜃) = c(𝜃)𝜑(𝑟, 0). This was enough to prove the
separability between 𝑟 and 𝜃, but we need the form on c𝑘𝑛 to be able to
define 𝜌𝑛(𝑟) as u𝐻𝑛 𝜑𝑛(𝑟, 0), which proves that

∀𝑟, 𝜃, 𝜑(𝑟, 𝜃) =
𝑞∑︁

𝑛=1
u𝑛𝜌𝑛(𝑟)e𝑗𝑘𝑛𝜃.

And we can then conclude that the components of 𝜑, 𝜑1, . . . , 𝜑𝑞, all depend
linearly on functions of the form (17).

As we will see it and use it often later, Hermitian symmetry implies some symmetry
conditions on the indexes 𝑘𝑛, and some complex symmetric on the radial profiles.

Theorem 4.30 (Repres. theorem for rotation-invariance Hermitian-sym. sub-space).
A 𝑞-dimensional linear sub-space of L2(R2,C), of Hermitian-symmetric Fourier multipli-
ers, is stable by rotation iff it is spanned by 𝑞 functions 𝜑1(𝑟, 𝜃), . . . , 𝜑𝑞(𝑟, 𝜃) that have the
following separable form in polar coordinates:

𝜑𝑛(𝜔) = 𝜑𝑛(𝑟, 𝜃) = 𝜌𝑛(𝑟)e𝑗𝑘𝑛𝜃 where 𝑘𝑛 ∈ Z. (22)

and 𝑘𝑛 ∈ Z is present iff −𝑘𝑛 ∈ Z is present (for 𝑘𝑛′ = −𝑘𝑛 for some 𝑛′). The radial
dependencies 𝜌𝑛(𝑟) are in L2(R+,R), can be complex-valued, but they satisfies 𝜌𝑛′(𝑟) =
(−1)𝑘𝑛𝜌𝑛(𝑟), and in the linear combinations the coefficients has to satisfy 𝑎𝑛′ = (−1)𝑘𝑛𝑎𝑛.

The Hermitian symmetry conditions are really not so clear here, and cannot be sim-
plified, but they will be easier to understand for the characterization of steerable opera-
tors, see below proposition 4.35.

4.3.2 Sum decomposition for steerable convolutions

The first general characterization for steerable convolutions on L2(R2,R) is the follow-
ing. It will be a direct application of the previous theorem, with 𝑞 = 𝑛𝐺 functions, and
𝑁 = maxN{|𝑘𝑛|, 1 ≤ 𝑛 ≤ 𝑝} = 𝐾𝐺. We first consider complex steerable convolutions,
and then use the Hermitian symmetry to give a characterization for real operators. This
first characterization of complex LC TI St operators will write their Fourier multiplier as
a sum of Riesz transforms, each term e𝑗𝑘𝜃 being modulated by a radial factor 𝜌𝑘(𝑟).

Theorem 4.31 (Characterization of 2D complex LC TI St operators).
𝐺 is a non-zero LC TI St operator on L2(R2,C) iff there exists 𝐾𝐺 ∈ N, and

(𝜌𝑘)−𝐾𝐺≤𝑘≤𝐾𝐺
: R+ → C such that

∀𝜔 = (𝑟, 𝜃) ∈ R2, ̂︀𝑔(𝑟, 𝜃) =
∑︁

−𝐾𝐺≤𝑘≤𝐾𝐺

𝜌𝑘(𝑟)e𝑗𝑘𝜃. (�)

Long and Hard Proof. ∙ Converse sense: The sufficient sense is easy to check, as
each function (𝑟, 𝜃) ↦→ 𝜌𝑘(𝑟)𝑒𝑗𝑘𝜃 is LC TI and steerable (lemma 4.24), and a
complex linear combination (that conserves Hermitian symmetry) conserves
steerability. And the existence of the Fourier multiplier (implicit on the right
side) ensures that 𝐺 is LC TI, so it is indeed LC TI St on L2(R2).
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∙ Direct sense: The necessary sense is a consequence of the previous theo-
rem 4.28. It is only valid for sub-spaces of L2(R2,R), and as we said in
proposition 3.12, in the general setting we do not have ̂︀𝑔 in L2(R2,R).
However, by hypothesis56 (cf. proposition 3.12), ̂︀𝑔 will always have a certain
“order of decay” 𝜅 ∈ R, so that (1 + 𝑟2)𝜅̂︀𝑔(𝑟, 𝜃) is in L2(R2,R) (cf. propo-
sition 3.12). And so, up to a purely-radial multiplicative term that will be
included in all the radial functions 𝜌𝑘(𝑟), we can safely assume that ̂︀𝑔 is in
L2(R2).
The proof is simpler to understand if we do not keep this additional term
(1 + 𝑟2)𝜅. Because we might modify the radial functions 𝜌𝑘(𝑟), we will not
be able to affirm that they are in L2, and that is why this theorem kept them
unspecified57 (in “R+ → R”).
If 𝐺 is steerable, by definition 𝑛𝐺 = 𝑛𝑔 < +∞, and so we can apply the
theorem to the 𝑛𝐺-dimensional subspace of L2(R2,R), 𝑉𝑔, which is obvi-
ously stable by rotations (by definition, 𝑉𝑔 contains all the rotated versions
of ̂︀𝑔, 𝑟𝑅{̂︀𝑔}). 𝑉𝑔 is indeed in L2(R2,R) thanks to the trick we exposed above
(maybe it is 𝑉(𝑟,𝜃)↦→𝑔(𝑟,𝜃)(1+𝑟2)𝜅 instead).
Therefore, there is 𝑛𝐺 functions 𝜑𝑛(𝑟, 𝜃) spanning 𝑉𝑔, that are in L2(R2), and
have the form 𝜑𝑛(𝑟, 𝜃) = 𝜌𝑛(𝑟)e𝑗𝑘𝑛𝜃 for 𝑘𝑛 ∈ Z (with the radial component
𝜌𝑛(𝑟) in L2(R+)). This family is spanning 𝑉𝑔, therefore any 𝑢 ∈ 𝑉𝑔 can be
written as 𝑢 =

∑︀𝑛𝐺
𝑛=1 𝑎𝑛𝜌𝑛(𝑟)e𝑗𝑘𝑛𝜃 for (𝑎𝑛)1≤𝑛≤𝑛𝐺 ∈ C𝑛𝐺 .

Instead of parameterizing the 𝑘𝑛 ∈ Z, we can introduce more coefficients 𝑎𝑘
for 𝑘 ∈ Z and simply chose them equals to 0 if 𝑘 is not one of the (𝑘𝑛)1≤𝑛≤𝑛𝐺

(and we also define 𝜑𝑘(𝑟) = 1 in this case). If we define𝐾𝐺 = maxN{|𝑘𝑛|, 1 ≤
𝑛 ≤ 𝑝}, any 𝑢 ∈ 𝑉𝑔 can be also written as 𝑢 =

∑︀
−𝐾𝐺≤𝑘≤𝐾𝐺

𝑎𝑘𝜑𝑘(𝑟)e𝑗𝑘𝜃.
This second form has the advantage of being parametric in only one integer
𝐾𝐺 ∈ N, coefficients 𝑎𝑘 and the radial functions 𝜑𝑘.
Finally, as ̂︀𝑔 ∈ 𝑉𝑔, it can be written as wanted

̂︀𝑔(𝑟, 𝜃) =
∑︁

−𝐾𝐺≤𝑘≤𝐾𝐺

𝑎𝑘𝜌𝑘(𝑟)e𝑗𝑘𝜃.

We simply rename 𝜌𝑘(𝑟) := 𝑎𝑘𝜌𝑘(𝑟) to give it the form of the theorem.

We can give some examples of LC TI steerable operators written in this form (�).

Examples 4.32. ∙ If 𝐾𝐺 = 0, then ̂︀𝑔(𝑟, 𝜃) = 𝜌0(𝑟) is purely radial (but with an ad-hock
radial profile), hence it is rotation-invariant (𝑛𝐺 = 1) but not necessarily scale-
invariant.

∙ For example, a fractional Laplacian 𝐺 = (−Δ)𝛾/2 has the wanted form, with 𝑆𝐺 =
{0} (so 𝐾𝐺 = 0 and 𝑛𝐺 = 1, cf. proposition 4.33) and 𝜌0(𝑟) = 𝑟𝛾 .

56 This could be justified better by considering weighted Sobolev spaces, but we preferred to had the
existence of the order of decay 𝜅 in the hypothesis on the “usually encountered” ̂︀𝑔.

57 But as soon as we work with 𝛾-scale-invariant operators, they will have 𝜌𝑘(𝑟) = 𝑟𝛾 , and 𝜅 = −(𝛾/2+1)
will be enough to have (1 + 𝑟2)𝜅

𝜌𝑘(𝑟) in L2(R+,R).
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∙ A directional derivative 𝐷𝛼 (for 𝛼 ∈ R) can be written under this form: ̂︂𝐷𝛼(𝑟, 𝜃) =
𝑗𝑟 cos(𝜃 − 𝛼) = 𝑗𝑟 (cos(𝛼) cos(𝜃) + sin(𝛼) sin(𝜃)).

And Euler’s identity gives 𝑗 cos(𝜃) = 𝑗
2

(︁
e𝑗𝜃 + e−𝑗𝜃

)︁
and 𝑗 sin(𝜃) = 1

2

(︁
e𝑗𝜃 − e−𝑗𝜃

)︁
so ̂︂𝐷𝛼(𝑟, 𝜃) = 𝑎1𝑟e𝑗𝜃 + 𝑎−1𝑟e−𝑗𝜃 is indeed in the form of the theorem, with 𝑎1 =
𝑗
2 cos(𝛼) − 1

2 sin(𝛼) ∈ C and 𝑎−1 = 𝑗
2 cos(𝛼) + 1

2 sin(𝛼) ∈ C. It has 𝑆𝐺 = {−1,+1},
𝐾𝐺 = 1 and 𝑛𝐺 = 2 = 𝐾𝐺 + 1 (as proved above in proposition 4.42). We observe
that 𝑎−1𝑟 = −𝑎1𝑟 = −𝑎1𝑟 = (−1)1𝑎1𝑟, which will be proved in proposition 4.35.

∙ Another example, for 𝐺 = 𝐷𝑥𝐷𝑦, ̂︀𝑔(𝜔) = (𝑗𝑤1)(𝑗𝑤2) = −𝑟2 cos(𝜃) sin(𝜃) so ̂︀𝑔(𝜔) =
−𝑟2 1

2 sin(2𝜃) = 𝑟2
(︁
𝑗
4e𝑗2𝜃 − 𝑗

4e−𝑗2𝜃
)︁

= 𝑎2𝑟
2e𝑗2𝜃 − 𝑎−2𝑟

2e−𝑗2𝜃. It has 𝑆𝐺 = {−2,+2},
𝐾𝐺 = 2 and 𝑛𝐺 = 3 = 𝐾𝐺 + 1 (as proved below in proposition 4.42). This time, we
observe that 𝑎−2𝑟

2 = 𝑎2𝑟2 = 𝑎2𝑟
2 = (−1)2𝑎2𝑟

2.

This form (�) is very general, as nothing is known about the radial functions 𝜌𝑘,
except that they have to be measurable (as ̂︀𝑔). The polar components (i.e., dependency
in 𝜃) are a weighted sum of iterated (complex) Riesz transforms (Fourier multiplier e𝑗𝑘𝜃,
𝑘 > 0) and iterated anti-Riesz transforms (e−𝑗𝑘𝜃, 𝑘 > 0), but we will rewrite it in terms of
real Riesz transforms later on.

Before that, it is interesting to note that we can bound the steerability order of a
steerable operator, if it is written in this form.

Proposition 4.33. For a non-zero 2D steerable 𝛾-SI convolution operator𝐺 written in this
form (�), there is a link between its steerability order 𝑛𝐺 and 𝐾𝐺 the higher “frequency”
intervening in ̂︀𝑔(𝑟, 𝜃): 𝑛𝐺 ≤ 𝐾𝐺 + 1. We recall that 𝐾𝐺 is

𝐾𝐺 = max |𝑆𝐺| = max
N
{|𝑘|, 𝑘 ∈ Z, 𝑎𝑘 ̸= 0} = “ max

N
{|𝑘|, 𝑘 ∈ Z, e𝑗𝑘𝜃 appears in ̂︀𝑔(𝑟, 𝜃)}′′.

Easy Proof. Note that for 𝐺 = 0𝐸 , 𝑛𝐺 = 0 but 𝐾𝐺 = −∞ (as a maximum of an empty set,
by convention), thus the formula can only be valid for non-zero operators.

In fact, we do not need to prove it now, because for non-zero 2D steerable convolu-
tion, adding the scale-invariant will give the decomposition (34), and so proposition 4.42
directly gives this result on 𝑛𝐺 and 𝐾𝐺.

Remark 4.34 (Can we have an equality?). A simple counter-example can be ̂︀𝑔(𝑟, 𝜃) =
cos(𝑁𝜃) for 𝑁 ∈ N, 𝑁 ≥ 4. It has 𝐾𝐺 = 𝑁 ≥ 4, but 𝑟𝑅𝛼{̂︀𝑔}(𝑟, 𝜃) = cos(𝑁(𝜃 + 𝛼)) =
cos(𝑁𝜃) cos(𝑁𝛼)− sin(𝑁𝜃) sin(𝑁𝛼). So 𝑉𝑔 ⊂ SpanR

{︀
cos(𝑁𝜃), sin(𝑁𝜃)

}︀
(as functions

of (𝑟, 𝜃)). So ̂︀𝑔 and 𝐺 are indeed steerable with 𝑛𝐺 ≤ 2 (obvious from theorem 4.31).
In fact 𝑛𝐺 = 2, as 𝐺 is not RI. So this 𝐺 has 𝑛𝐺 = 2 and 𝐾𝐺 = 𝑁 ≥ 4, i.e., 𝑛𝐺 < 𝐾𝐺

and so the inequality 𝑛𝐺 ≤ 𝐾𝐺 + 1 cannot be improved.

As said above, the Hermitian symmetry of its Fourier multiplier can be characterized
easily on the (complex) radial part (𝜌𝑘(𝑟))−𝐾𝐺≤𝑘≤𝐾𝐺

, for a steerable operator written
on the form of the first theorem. We have eliminated the indexes 𝑘𝑛 and simply used
𝑘 ∈ {−𝐾𝐺 ≤ 𝑘 ≤ 𝐾𝐺}, so this result is much simpler to write.
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Proposition 4.35 (Characterization of real LC TI St operators). For a steerable operator
𝐺 written in this form (�), 𝐺 maps real-valued functions to real-valued functions (i.e., 𝐺 is
on L(R2,R)) iff

∀𝑟 ∈ R+, ∀𝑘 ∈ Z, 𝜌−𝑘(𝑟) = (−1)𝑘𝜌𝑘(𝑟). (23)

Computational Proof. Thanks to theorem 3.17,𝐺 is a real operator iff ̂︀𝑔 is Hermitian
symmetric, so when ̂︀𝑔 is written in this form (�), ̂︀𝑔 is Hermitian symmetric
⇔ ∀𝑟, 𝜃, ̂︀𝑔(𝑟, 𝜃 + 𝜋) = ̂︀𝑔(𝑟, 𝜃)
⇔ ∀𝑟, 𝜃,

∑︀
𝑘∈Z 𝜌𝑘(𝑟)(−1)𝑘e𝑗𝑘𝜃 =

∑︀
𝑘∈Z 𝜌𝑘(𝑟)e−𝑗𝑘𝜃

We prefer to write the sum for 𝑘 ∈ Z and keep in mind that it is always a finite
sum on 𝑘 ∈ 𝑆𝐺, as we define 𝑎𝑘 = 0 if 𝑘 ̸∈ 𝑆𝐺
⇔ ∀𝑟, 𝜃,

∑︀
𝑘∈Z

(︁
𝜌𝑘(𝑟)(−1)𝑘 − 𝜌−𝑘(𝑟)

)︁
e𝑗𝑘𝜃 = 0

But the functions 𝜃 ↦→ e𝑗𝑘𝜃 are all linearly independent (for 𝑘 ∈ Z), so having
this equality for all values of 𝜃 forces all the coefficients to be zeros (and it is an
equivalence as the converse is true)
⇔ ∀𝑟, ∀𝑘 ∈ Z, 𝜌𝑘(𝑟)(−1)𝑘 = 𝜌−𝑘(𝑟).

4.3.3 A simpler form for this characterization of steerability?

Remark 4.36. In particular, if the radial dependencies are real-only, the condition
𝜌−𝑘(𝑟) = 𝜌𝑘(𝑟) simply means 𝜌−𝑘(𝑟) = 𝜌𝑘(𝑟), and so each term for 𝑘 and −𝑘 in
the sum can be simplified into 𝜌𝑘(𝑟)

(︁
e𝑗𝑘𝜃 + (−1)𝑘e−𝑗𝑘𝜃

)︁
. This will be the beginning

of the proof of the simpler characterization for LC TI St operators that are also 𝛾-SI.

Common radial part?

This simpler form could be interesting to study, but we obviously lose in generality:

∀𝜔 = (𝑟, 𝜃) ∈ R2, ̂︀𝑔(𝑟, 𝜃) = 𝜌(𝑟)
∑︁

−𝐾𝐺≤𝑘≤𝐾𝐺

𝑎𝑘e𝑗𝑘𝜃.

A simple counter example can be ̂︀𝑔(𝑟, 𝜃) = 𝑟 + 𝑟2𝑗 cos(𝜃) = 𝑟 + 𝑟2𝑗 1
2(e𝑗𝜃 + e−𝑗𝜃), which

gives a steerable and real convolution 𝐺, but the radial dependency of ̂︀𝑔(𝑟, 𝜃) cannot be
factorized into one function 𝜌(𝑟).

This form was intermediate between the general form, with (possibly) different 𝜌𝑘(𝑟),
and the form for 𝛾-SI operators, with a shared radial dependency in the form of 𝑟𝛾 .

We tried to find a more subtle characterization for LC TI St operators having a com-
mon radial dependency 𝜌(𝑟) in the form (�), but nothing interesting came out of this
direction, unfortunately.

4.4 Steerability and other geometric properties

From the beginning, we mainly studied steerable convolutions and not simply steer-
able operators, i.e., steerable operators that are also linear, continuous and translation-
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invariant; so only two58 geometric properties are left to be studied: rotation-invariance
(RI), and 𝛾-scale-invariance (𝛾-SI).

4.4.1 Rotation-invariance for steerable convolution operators

We already observed in proposition 4.22 the link between steerability and rotation-invariance
(𝑛𝐺 = 1), but a more interesting geometric property to study is the scaling-invariance (or
the 𝛾-scale-invariance to not lose in generality).

4.4.2 𝛾-scale-invariance for 2D steerable convolution operators

Quite surprisingly, it is easy to obtain a much stronger characterization for LC TI St
operators that are also 𝛾-SI. There is a sufficient and necessary condition on all the radial
functions 𝜌𝑘 appearing in the characterization (�), which all have to be 𝛾-SI (i.e., being
proportional to 𝑟 ↦→ 𝑟𝛾 , thanks to lemma 2.36). The proof is quite elegant as it turns out
that we do not need to work on each 𝜌𝑘 separately.

Theorem 4.37 (Characterization of 2D LC TI 𝛾-SI St operators). 𝐺 is a LC TI 𝛾-SI St
operator on L2(R2,R) iff there exists 𝐾𝐺 ∈ N, and (𝑎𝑘)−𝐾𝐺≤𝑘≤𝐾𝐺

∈ C such that

∀𝜔 = (𝑟, 𝜃) ∈ R2, ̂︀𝑔(𝑟, 𝜃) = 𝑟𝛾
∑︁

−𝐾𝐺≤𝑘≤𝐾𝐺

𝑎𝑘e𝑗𝑘𝜃. (24)

Computational Proof. ∙ Direct sense: If 𝐺 is LC TI St, ̂︀𝑔 has the form of the first
theorem. Instead of trying to prove manually that each 𝜑𝑘 is 𝛾-SI, we simply
need to observe that if 𝐺 is 𝛾-SI, then:

∀𝑟 > 0, ̂︀𝑔(𝑟, 𝜃) = 𝑟𝛾̂︀𝑔(1, 𝜃).

And so, by the first theorem (�),

∀𝑟 > 0, ̂︀𝑔(𝑟, 𝜃) = 𝑟𝛾
∑︁

−𝐾𝐺≤𝑘≤𝐾𝐺

𝜌𝑘(1)⏟  ⏞  
=𝑎𝑘

e𝑗𝑘𝜃.

Thus, defining 𝑎𝑘 as 𝜑𝑘(1) ∈ C directly gives the desired form.

∙ Converse sense: It is almost obvious, as the existence of the Fourier multi-
plier (implicit on the right side) ensures that 𝐺 is LC TI. A Fourier multi-
plier of this form is 𝛾-SI, Hermitian symmetric, so 𝐺 is 𝛾-SI too and operates
on L2(R2) (i.e., 𝐺{𝑓} is still real-valued). And the last point to check is the
steerability: every term of the sum is steerable and the preservation of the
steerability by (finite) sums (proposition 4.14).

Remark 4.38. Note that the coefficients 𝑎′
𝑘 are not necessarily the same as the 𝑎𝑘 of the

first theorem 4.31, but the 𝐾𝐺 integer stays the same.

58 As we said above, we did not study the unity property as extensively as the others. However, there is
two small results on unitary steerable convolutions in the appendix A.4.
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In the simplified form (24), we can characterize the Hermitian symmetry of ̂︀𝑔 directly
on its (complex) coefficients (𝑎𝑘)−𝐾𝐺≤𝑘≤𝐾𝐺

.

Proposition 4.39. For a 𝛾-SI steerable operator 𝐺 written in this form (24), 𝐺 maps real-
valued functions to real-valued functions iff ∀𝑘, 𝑎−𝑘 = (−1)𝑘𝑎𝑘.

Proof. It is simply the consequence of the same result (proposition 4.35) for steer-
able operators (non-necessarily 𝛾-SI), applied to the special case of a common
radial profile, 𝜑𝑘(𝑟) = 𝑎𝑘𝑟

𝛾 ,∀𝑘 ∈ Z.

Corollary 4.40. If 𝑆𝐺
def={𝑘 ∈ Z, 𝑎𝑘 ̸= 0}, then the previous result implies that 𝑆𝐺 has to be

“even”, i.e., symmetric regarding 0: ∀𝑘 ∈ Z , 𝑘 ∈ 𝑆𝐺 ⇔ −𝑘 ∈ 𝑆𝐺.

For instance, for a single directional derivative, 𝑆𝐺 = {−1,+1}, as seen above.

Factorizing a Laplacian ?

This form ̂︀𝑔(𝑟, 𝜃) = 𝑟𝛾
∑︀

−𝐾𝐺≤𝑘≤𝐾𝐺
𝑎𝑘e𝑗𝑘𝜃 for the Fourier multiplier of a 2D steerable 𝛾-

SI convolution can be seen as a special case of theorem 3.36, where we explained that a
LC TI 𝛾-SI operator 𝐺 can be decomposed as 𝐺 = (−Δ)𝛾/2 ∘𝐺0 for 𝐺0 LC TI 0-SI. This
result showed that the 𝛾-SI part can be isolated into a Laplacian, and this is exactly what
is done here: 𝐺 is decomposed as𝐺 = (−Δ)𝛾/2∘𝐺0 for𝐺0 LC TI 0-SI, with𝐺0 of Fourier
multiplier 𝑔0(𝜔) =

∑︀
−𝐾𝐺≤𝑘≤𝐾𝐺

𝑎𝑘e𝑗𝑘𝜃, written in the form (�), in the special case of a
steerable convolution not-depending on 𝑟 = |𝜔| (i.e., 0-SI).

Trigonometric polynomial

We can observe that 𝑔0(𝜔) = 𝑔0(e𝑗𝜃) =
∑︀

−𝐾𝐺≤𝑘≤𝐾𝐺
𝑎𝑘e𝑗𝑘𝜃 is exactly a trigonometric poly-

nomial, that is Hermitian symmetric like 𝑔(𝜔). We will study the roots of this trigono-
metric polynomial (on the circle), in the last characterization of steerable convolutions
(see below in section 4.6).

4.5 Composing fractional Laplacians and directional derivatives

We already proved that any fractional Laplacian and any directional derivative are steer-
able, and a their composition is also steerable. Moreover, we can say a little bit more:

Lemma 4.41 (Composition of directional derivatives). Let 𝐺 = 𝐷𝛼1 . . . 𝐷𝛼𝑚 , for 𝑚 ∈
N, then 𝐺 is steerable, of order 𝑛𝐺 = 𝑚+ 1, and of max frequency 𝐾𝐺 = max |𝑆𝐺| = 𝑚.

Proof. Steerability is preserved by composition, and for (partial) derivatives, we
can check quite easily that 𝑉𝐺 ⊂ SpanR

{︀
𝐷𝑚
𝑥 , 𝐷

𝑚−1
𝑥 𝐷𝑦, 𝐷

𝑚−2
𝑥 𝐷2

𝑦, . . . , 𝐷
2
𝑥𝐷

𝑚−2
𝑦 ,

𝐷𝑥𝐷
𝑚−1
𝑦 , 𝐷𝑚

𝑦

}︀
. And so by definition 𝐺 is steerable of order 𝑛𝐺 ≤ 𝑚+ 1.

And it is an equality, 𝑛𝐺 = 𝑚 + 1, as proven in appendix B.1. The proof is
long but technical and not so interesting, as it consists mainly in trigonometric
manipulations, so we preferred to move it to the appendix.

The result for max frequency is clear when we simply develop ̂︀𝑔(𝑟, 𝜃). It is
written

∏︀𝑚
𝑖=1 𝑗𝑟 cos(𝜃 − 𝛼𝑖) = 𝑟𝑚𝑗𝑚 1

2𝑚

∏︀𝑚
𝑖=1

(︀
𝑒𝑗(𝜃−𝛼𝑖) − e−𝑗(𝜃−𝛼𝑖)

)︀
and so when
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we develop the product we get a (Hermitian symmetry) complex linear combi-
nation of terms of the form e𝑗𝑘𝜃−𝑗(𝛼𝑖1 ±···±𝛼𝑖𝑘

) for −𝑚 ≤ 𝑘 ≤ 𝑚 and {𝑖1, . . . , 𝑖𝑘} ⊂
{1, . . . ,𝑚} (of size exactly 𝑘, i.e., all 𝑖1, . . . , 𝑖𝑘 are different).

We can state the following result to sum-up the properties of a composition of a
fractional Laplacian and 𝑚 directional derivatives, and the rest of this subsection will
study the converse of this proposition.

Proposition 4.42. Let 𝛾 ∈ R+, and 𝑚 ∈ N, 𝐶 ∈ R, and (𝛼𝑖)1≤𝑖≤𝑚 ∈ R𝑚, and let the
operator 𝐺 = 𝐶(−Δ)𝛾/2𝐷𝛼1 . . . 𝐷𝛼𝑚 . Then 𝐺 is LC TI, (𝛾 + 𝑚) scale-invariant, and
steerable, with 𝐾𝐺 = max |𝑆𝐺| = 𝑚, and 𝑛𝐺 = 𝑚+ 1, on 𝐸 = S(R2,R).

Proof. ∙ The linearity, continuity, 𝛾+𝑚 scale-invariance and steerability comes
from the previous theorems 2.39 and 4.14, of stability by compositions and
additivity of the orders of scale-invariance.

∙ And the previous lemma 4.41 gives the announced values for 𝐾𝐺 and 𝑛𝐺, as
the fractional Laplacian is rotation-invariant (and so composing by it does
not change the order of steerability neither the max frequency 𝐾𝐺).

Example 4.43 (𝐷𝑥+𝐷𝑦). For example, the steerable convolution𝐺 = 𝐷𝑥+𝐷𝑦 = 𝐷1+𝐷2 =
𝐷𝛼=0 +𝐷𝛼=𝜋/2 can be written in the form of this proposition, with no Laplacian and just
one directional derivative (as 𝑛𝐺 = 2 = 𝐾𝐺 − 1, 𝑚 = 𝐾𝐺 = 1 is enough):

𝐺 = 𝐷𝑥 +𝐷𝑦 =
√

2𝐷𝜋/4.

Easy Proof. Let 𝐺 = 𝐷𝑥 + 𝐷𝑦 , of Fourier multiplier ̂︀𝑔(𝑟, 𝜃) = 𝑗𝑟 cos(𝜃) + 𝑗𝑟 sin(𝜃), which
can be written as 𝑗𝑟(cos(𝜃) + sin(𝜃)) = 𝑗𝑟

√
2 cos(𝜃 − 𝜋

4 ), that we recognized as the Fourier
multiplier of the fractional derivative of angle + 𝜋

4 , so 𝐺 =
√

2𝐷𝜋/4.

Remark 4.44 (Only one Laplacian?). In the form given to 𝐺 of the previous result, one
could wonder why there is only one Laplacian ((−Δ)𝛾/2) but (possibly) more than
one directional derivatives (𝑚 ≥ 0).

∙ First, with 𝛾 = 0 the Laplacian will be the identity, so this form includes the
possibility of not composing a Laplacian.

∙ And then, thanks to proposition 2.39, and the commutativity of LC TI opera-
tors (including Laplacians and derivatives), if there is more than one fractional
Laplacian, let say (−Δ)𝛾1/2 ∘ · · · ∘ (−Δ)𝛾𝑚′/2 , it gets reduced into one Laplacian
(−Δ)(𝛾1+···+𝛾𝑚′ )/2.

Therefore, this form with exactly one fractional Laplacian in the composition is as
general as the form with 𝑚′ ∈ N fractional Laplacians.

The same result is clearly wrong for directional derivatives, as two derivatives
cannot be factorized into only one (e.g., 𝐷𝑥𝐷𝑦 cannot be written as one 𝐷𝛼).

We tried to get a converse result of the previous proposition, that would be a form
of universality of this family composed of Laplacians and directional derivatives, but
clearly we had no serious hope for it. The converse result, stated like this, is wrong, as
the following example will show.
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Example 4.45 (Counter-example). Without a more subtle analysis of the properties of
operators on this form𝐺

def= 𝐶(−Δ)𝛾/2𝐷𝛼1 . . . 𝐷𝛼𝑚 , the converse result of proposition 4.42
is wrong, as there exists an operator 𝐺 LC TI, 𝑚-scale-invariant, steerable, with 𝑛𝐺 =
𝑚+ 1 and 𝐾𝐺 = 𝑚, that cannot be written in this form.

Easy Proof. Let 𝐺1 = 𝐷𝛼1 . . . 𝐷𝛼𝑚
and 𝐺2 = (−Δ)(𝑚−1)/2𝐷𝛼𝑚+1 , which are both LC TI,

𝑚-scale-invariant and steerable, and they have 𝑛𝐺1 = 𝑚+ 1 (cf. lemma 4.41) and 𝑛𝐺2 = 2
(cf. proposition 4.42) and they have both𝐾𝐺1 = 𝐾𝐺2 = 𝑚. But their sum cannot be written
as 𝐶(−Δ)𝛾/2𝐷𝛼′

1
. . . 𝐷𝛼′

𝑚′
(we can check this on their Fourier multiplier).

The more general result we got about the converse sense is the following, where 𝐺
is not written as a simple composition of a fractional Laplacian and some directional
derivatives, but as a sum of such products.

Proposition 4.46 (Weak converse of proposition 4.42). Let 𝐺 is LC TI, 𝛾 + 𝑚 scale-
invariant (for 𝛾 ∈ R+,𝑚 ∈ N), and steerable, with𝐾𝐺 = max |𝑆𝐺| = 𝑚, on𝐸 = S(R2,R)
(i.e., 𝐺 has the form of (24)),

̂︀𝑔(𝑟, 𝜃) = 𝐶𝑟𝛾+𝑚 ∑︁
−𝑚≤𝑘≤𝑚

𝑎𝑘e𝑗𝑘𝜃, (25)

then 𝐺 can be decomposed as a sum of terms of this form

𝐶(−Δ)𝛾𝑖/2𝐷𝛼𝑖,1 . . . 𝐷𝛼𝑖,𝑚𝑖
. (26)

all satisfying 𝛾𝑖 +𝑚𝑖 = 𝛾 +𝑚. In this form, 𝐺 has 𝑛𝐺 = 1 + max𝑖{𝑚𝑖}.

It is only a “weak” converse because there is a sum of terms, and not just one, as it
was the case for the direct sense (proposition 4.42).

Long and Hard Proof. The converse sense is clearly true, as each term is obviously
LC TI and steerable, and 𝛾𝑖 +𝑚𝑖 = 𝛾 +𝑚 implies that the 𝑖-th term is also 𝛾 +𝑚
scale-invariant, and so is their sum.

Proving the direct sense is just a matter of a long and technical trigonomet-
ric computation, in order to rewrite ̂︀𝑔(𝑟, 𝜃) = 𝑟𝛾+𝑚∑︀

−𝑚≤𝑘≤𝑚 𝑎𝑘e𝑗𝑘𝜃 as a sum of
products like

∏︀𝐾
𝑖=1 𝑟𝑗 cos(𝜃 − 𝛼𝑖), which corresponds to the Fourier multiplier of

○𝐾
𝑖=1𝐷𝛼𝑖 . It consists in some trigonometric manipulations to convert the angular

dependency
∑︀

−𝑚≤𝑘≤𝑚 𝑎𝑘e𝑗𝑘𝜃 (dependency on 𝜃).
This proof makes an intensive use of the fact that 𝐺 is a real operator, to have

𝑎−𝑘 = (−1)𝑘𝑎𝑘, ∀𝑘 ∈ {−𝑚, . . . ,𝑚} (proposition 4.39). Instead of keeping complex
coefficients 𝑎𝑘 we write them as 𝑎𝑘 = 𝑏𝑘 + 𝑗𝑐𝑘 for 𝑏𝑘, 𝑐𝑘 ∈ R. The symmetry reads
𝑏−𝑘 = (−1)𝑘𝑏𝑘 for real parts, and 𝑐−𝑘 = (−1)𝑘+1𝑐𝑘 for imaginary parts.

Let us work on
∑︀

−𝑚≤𝑘≤𝑚,𝑘 ̸=0 𝑎𝑘e𝑗𝑘𝜃, as the term for 𝑘 = 0 gives a simple
Laplacian term (which is already in the form (26)). So are dealing with this sum:∑︀𝑚

1=𝑘 𝑎𝑘e𝑗𝑘𝜃+𝑎−𝑘e−𝑗𝑘𝜃. Each term can first be written and studied independently:

𝑎𝑘e𝑗𝑘𝜃 + 𝑎−𝑘e−𝑗𝑘𝜃 =
(︀
𝑏𝑘 + 𝑗𝑐𝑘

)︀
e𝑗𝑘𝜃 +

(︀
(−1)𝑘𝑏𝑘 + 𝑗(−1)𝑘+1𝑐𝑘

)︀
e−𝑗𝑘𝜃

= 𝑏𝑘
(︀
e𝑗𝑘𝜃 + (−1)𝑘e−𝑗𝑘𝜃)︀⏟  ⏞  
=2 cos(𝑘𝜃) if 𝑘∈2N,
=2𝑗 sin(𝑘𝜃) if 𝑘∈2N+1

+𝑗𝑐𝑘
(︀
e𝑗𝑘𝜃 + (−1)𝑘+1e−𝑗𝑘𝜃)︀⏟  ⏞  

=2𝑗 sin(𝑘𝜃) if 𝑘∈2N,
=2 cos(𝑘𝜃) if 𝑘∈2N+1
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And so by regrouping the real terms and the imaginary terms together:

𝑚∑︁
1=𝑘

𝑎𝑘e𝑗𝑘𝜃 + 𝑎−𝑘e−𝑗𝑘𝜃 = 2
∑︁

1≤𝑘≤𝑚,𝑘∈2N

(︀
𝑏𝑘 cos(𝑘𝜃)− 𝑐𝑘 sin(𝑘𝜃)

)︀⏟  ⏞  
∈R

+ 2𝑗
∑︁

1≤𝑘≤𝑚,𝑘∈2N+1

(︀
𝑏𝑘 sin(𝑘𝜃) + 𝑐𝑘 cos(𝑘𝜃)

)︀⏟  ⏞  
∈R

We can check that we did not lose the Hermitian symmetry, as the real part only
contains the even indexes 𝑘 so is even (as a function of 𝜃), and the imaginary part
only contains the odd indexes 𝑘 so is odd (as a function of 𝜃).

For both parts, we will develop each terms cos(𝑘𝜃) and sin(𝑘𝜃) = cos(𝑘(𝜃 −
𝜋
2𝑘 )), thanks to the Viète formula (lemma B.1, given and proved in appendix B.2).
We only work with cosines, because we aim at recognizing the Fourier multipliers
of compositions of directional derivatives (of the form 𝑗𝑟 cos(𝜃 − 𝛼)).

For the real part,

2
∑︁

1≤𝑘≤𝑚,
𝑘∈2N

(︀
𝑏𝑘 cos(𝑘𝜃)− 𝑐𝑘 sin(𝑘𝜃)

)︀

= 2
∑︁

1≤𝑘≤𝑚,
𝑘∈2N

(︁
𝑏𝑘

[︀ ⌊𝑘/2⌋∑︁
𝑙=0

(︂
𝑘

2𝑙

)︂
(−1)𝑙

(︀
cos(𝜃)

)︀𝑘−2𝑙(︀ cos(𝜃 − 𝜋

2 )
)︀2𝑙]︀

− 𝑐𝑘

[︀ ⌊𝑘/2⌋∑︁
𝑙=0

(︂
𝑘

2𝑙

)︂
(−1)𝑙

(︀
cos(𝜃 − 𝜋

2𝑘 )
)︀𝑘−2𝑙(︀ cos(𝜃 − (𝜋2 + 𝜋

2𝑘 ))
)︀2𝑙]︀)︁

.

And for the imaginary part,

2
∑︁

1≤𝑘≤𝑚,
𝑘∈2N+1

(︀
𝑏𝑘 sin(𝑘𝜃) + 𝑐𝑘 cos(𝑘𝜃)

)︀

= 2
∑︁

1≤𝑘≤𝑚,
𝑘∈2N+1

(︁
𝑏𝑘

[︀ ⌊𝑘/2⌋∑︁
𝑙=0

(︂
𝑘

2𝑙

)︂
(−1)𝑙

(︀
cos(𝜃 − 𝜋

2𝑘 )
)︀𝑘−2𝑙(︀ cos(𝜃 − (𝜋2 + 𝜋

2𝑘 ))
)︀2𝑙]︀

+ 𝑐𝑘

[︀ ⌊𝑘/2⌋∑︁
𝑙=0

(︂
𝑘

2𝑙

)︂
(−1)𝑙

(︀
cos(𝜃)

)︀𝑘−2𝑙(︀ cos(𝜃 − 𝜋

2 )
)︀2𝑙]︀)︁

.

Without inflecting to the reader the pain of developing and simplifying these
sums of sums of product of two powered cosines59, we just observe that both the
real and imaginary parts have been decomposed as a sum of product of cosines,
all in the form cos(𝜃 − 𝛼) for some 𝛼 ∈ R (the angles being 0, 𝜋2 , or in the form
𝜋
2𝑘 or 𝜋

2 + 𝜋
2𝑘 for 𝑘 ∈ {1, . . . ,𝑚}). The coefficients appearing in these sums are all

reals, composed of 2, 𝑏𝑘, 𝑐𝑘 ∈ R, and (−1)𝑙 and
(︀𝑘

2𝑙
)︀
.

We simply need to check that there is always even number of cosine terms for
the real part and an odd number for the imaginary part. But it is indeed the case

59
(︀

cos(𝜃)
)︀𝑘−2𝑙 ×

(︀
cos(𝜃 − 𝜋

2 )
)︀2𝑙

, and
(︀

cos(𝜃 − 𝜋
2𝑘

)
)︀𝑘−2𝑙 ×

(︀
cos(𝜃 − ( 𝜋

2 + 𝜋
2𝑘

))
)︀2𝑙

for the real part, and(︀
cos(𝜃 − 𝜋

2𝑘
)
)︀𝑘−2𝑙 ×

(︀
cos(𝜃 − ( 𝜋

2 + 𝜋
2𝑘

))
)︀2𝑙

and
(︀

cos(𝜃)
)︀𝑘−2𝑙 ×

(︀
cos(𝜃 − 𝜋

2 )
)︀2𝑙

for the imaginary part.
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as there is always (𝑘 − 2𝑙) + (2𝑙) = 𝑘 cosines in the product, and 𝑘 ∈ 2N for the
real part, and 𝑘 ∈ N + 1 for the imaginary part.

Therefore the real part of the polar dependency has been written as a sum of
products of an even number (𝑚𝑖 ≤ 𝑚) of terms of the form 𝑗 cos(𝜃−𝛼𝑙) (the 𝑗 dis-
appear as 𝑗𝑘 ∈ {±1} if 𝑘 ∈ 2N), and the imaginary part of the polar dependency
has been written as a sum of products of an odd number (𝑚𝑖 ≤ 𝑚) of terms of the
form 𝑗 cos(𝜃 − 𝛼𝑙) (the 𝑗 stays as 𝑗𝑘 ∈ {±𝑗} if 𝑘 ∈ 2N + 1).

We are done for the angular part, and the radial part was only a common
factor of 𝑟𝛾+𝑚. Every term of the sum obtained for the angular part consist of a
product of 𝑘′ ≤ 𝑚 cosines, so we can factorize the radial part 𝑟𝛾+𝑚 and split it, for
each term, between a 𝑟𝑚𝑖 and 𝑟𝛾+𝑚−𝑚𝑖 . The 𝑟𝑚𝑖 term gets factorized as 𝑟 for each
𝑗 cos(𝜃 − 𝛼𝑙), so we recognize the Fourier multiplier of 𝐷𝛼𝑙

, and the remaining
𝑟𝛾+𝑚−𝑚𝑖 is the Fourier multiplier of a fractional Laplacian with 𝛾𝑖 = 𝛾+𝑚−𝑚𝑖 ≥
0. It proves that 𝛾𝑖 +𝑚𝑖 = 𝛾 +𝑚 as we announced.

Finally, we have indeed been able to decompose ̂︀𝑔(𝑟, 𝜃), the Fourier multiplier
of a 2D steerable 𝛾 + 𝑚 scale-invariant convolution, with 𝐾𝐺 = 𝑚, as a sum of
terms that are proportional (with real coefficients) to the Fourier multipliers of
operators of the form (−Δ)𝛾𝑖/2𝐷𝛼𝑖,1 . . . 𝐷𝛼𝑖,𝑚𝑖

, with 𝛾𝑖 +𝑚𝑖 = 𝛾 +𝑚.

Remark 4.47. The formula for the steerability order comes from two points:

∙ A block 𝐶(−Δ)𝛾𝑖/2𝐷𝛼𝑖,1 . . . 𝐷𝛼𝑖,𝑚𝑖
as in (26) has 𝑛𝐺 = 1 +𝑚𝑖.

∙ And for this special case of composition of derivatives, the steerability order
of a sum is the maximum of the steerability orders of each term (lemma 4.41).

Remark 4.48. And we also have a bound on the number of products needed to be
included: there will be at most (⌊𝑚2 ⌋)(⌊

𝑚
2 ⌋+ 1) terms in the decomposition (26). It

also comes from the number of terms in the right-hand side of the Viète formulas
(lemma B.1).

We continue below with an important result which does not decompose𝐺 as a sum of
simple terms, but as a composition of Laplacians, directional derivatives, and an invertible
0-scale-invariant factor 𝐺0, satisfying ̂︀𝑔0(𝜔) ̸= 0, for all 𝜔 ∈ R𝑑.

4.6 Main characterization for 2D steerable 𝛾-SI convolution operators

In this subsection, we conclude the study of 2D steerable operators by giving a nicer
characterization, based on the form ̂︀𝑔(𝑟, 𝜃) = 𝑟𝛾

∑︀
−𝐾𝐺≤𝑘≤𝐾𝐺

𝑎𝑘e𝑗𝑘𝜃. Instead of having
a sum of 2𝐾𝐺 very simple terms, we will modify it to obtain a product of 𝐾𝐺 simple
factors, each consisting of only one or a sum of two terms.

4.6.1 First product decomposition

The exact form is left for the next section, here we will start by showing the first char-
acterization as a product of a Laplacian, some directional derivatives, and a “nice part”,
being invertible and 0-scale-invariant. This result states that steerable convolutions in
2D can be factorized into a composition of a fractional Laplacian, of directional deriva-
tives, and of a certain operator 𝐺0 which has a non-canceling Fourier multiplier ̂︀𝑔0. The
converse is also true, under some strong hypotheses on ̂︀𝑔0.
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It is one of the main contributions of the work presented in this report, as it is both
an innovative result and a strong characterization. To the best of our knowledge, this
theorem is the very first of its kind.

Theorem 4.49 (Invertible part of a steerable operator). An operator 𝐺 on L2(R2,R) is
a 2D steerable convolution, 𝛾-scale-invariant with 𝛾 ≥ 𝐾𝐺 iff 𝐺 can be written

𝐺 = 𝐶(−Δ)(𝛾−𝑚)/2 ∘𝐷𝛼1 ∘ · · · ∘𝐷𝛼𝑚 ∘𝐺0, (27)

with 𝐶 ∈ R, 𝑚 ≤ 𝐾𝐺, 𝛼1, . . . , 𝛼𝑚 ∈ R, and 𝐺0 an invertible 0-scale-invariant steerable
convolution, with ̂︀𝑔0(𝑟, 𝜃) ̸= 0 for all 𝑟, 𝜃. Furthermore, ̂︀𝑔0(𝑟, 𝜃) is just a (Hermitian sym-
metric) trigonometric polynomial in e𝑗𝜃, of degree 𝐾𝐺 −𝑚, that has no root of modulus 1,
i.e., ̂︀𝑔0(𝑟, 𝜃) =

∏︀
𝑧𝑖∈𝑍2,|𝑧𝑖|̸=1(e𝑗𝜃 − 𝑧𝑖), for a finite 𝑍2 ⊂ C of even size.

Remark 4.50. We tried to clean up and shorten its proof, but this result involves some
unavoidable technical computations and “tricks”. Proving the symmetry 𝑧𝑖 ∈ 𝑍𝐺 ⇔
−1/𝑧𝑖 ∈ 𝑍𝐺 is quick for roots of modulus 1, but really not obvious for the other roots.

Note that in all the following computations, 𝜃 is always a free variable, all the
expressions involving a 𝜃 have to be understood with a leading “∀𝜃 ∈ [0, 2𝜋), . . . ”,
and similarly for 𝑟 ∈ R.

Long and Hard Proof. ∙ Direct sense:
Thanks to theorem 4.37, 𝐺 is LC TI 𝛾-SI St for 𝛾 ≥ 𝐾𝐺 iff its Fourier multiplier
can be written ̂︀𝑔(𝑟, 𝜃) = 𝑟𝛾

∑︀
−𝐾𝐺≤𝑘≤𝐾𝐺

𝑎𝑘e𝑗𝑘𝜃. The radial dependency is very
simple, so we only have to work on the polar part.

Let 𝑃𝐺(e𝑗𝜃) def=
∑︀

−𝐾𝐺≤𝑘≤𝐾𝐺
𝑎𝑘e𝑗𝑘𝜃, which is a trigonometric polynomial of de-

gree 𝐾𝐺 (𝑎𝐾𝐺
̸= 0). We could consider the (complex) roots of modulus 1 of the

polynomial 𝑃𝐺(𝑧) =
∑︀

−𝐾𝐺≤𝑘≤𝐾𝐺
𝑎𝑘𝑧

𝑘, and simply say that the other roots do not
matter as long as |𝑧| = 1 (i.e., 𝑧 = e𝑗𝜃), but this would not be good enough.

As 𝑃𝐺(𝑧) is not really a polynomial, we instead work with a second object,

̃︁𝑃𝐺(e𝑗𝜃) def= e𝑗𝐾𝐺𝜃𝑃𝐺(e𝑗𝜃) = (e𝑗𝜃)𝐾𝐺𝑃𝐺(e𝑗𝜃)
= e𝑗𝐾𝐺𝜃

∑︁
−𝐾𝐺≤𝑘≤𝐾𝐺

𝑎𝑘e𝑗𝑘𝜃 =
∑︁

0≤𝑘≤2𝐾𝐺

𝑎𝑘−𝐾𝐺
( e𝑗𝜃⏟ ⏞ 

=𝑧
)𝑘,

which is a (“true”) complex polynomial now: ̃︁𝑃𝐺(𝑧) =
∑︀

0≤𝑘≤2𝐾𝐺
𝑎𝑘−𝐾𝐺

𝑧𝑘.
Note that𝑃𝐺 and ̃︁𝑃𝐺 are linked to ̂︀𝑔, by ̂︀𝑔(𝑟, 𝜃) = 𝑟𝛾𝑃𝐺(e𝑗𝜃) = 𝑟𝛾e−𝑗𝐾𝐺𝜃̃︁𝑃𝐺(e𝑗𝜃).
Because𝐺 is real, ̂︀𝑔 is Hermitian symmetric, and so we have a symmetry on its

coefficients (𝑎−𝑘 = (−1)𝑘𝑎𝑘) as well as on the trigonometric polynomial 𝑃𝐺. In-
deed we have ̂︀𝑔(−𝜔) = ̂︀𝑔(𝜔), which gives ̂︀𝑔(𝑟, 𝜃+𝜋) = ̂︀𝑔(𝑟, 𝜃) in polar coordinates,
and so 𝑃𝐺(e𝑗(𝜃+𝜋)) = 𝑃𝐺(−e𝑗𝜃) = 𝑃𝐺(e𝑗𝜃) on 𝑃𝐺.

This symmetry on 𝑃𝐺 gives a similar symmetry on ̃︁𝑃𝐺, with an extra factor:

̃︁𝑃𝐺(e𝑗(𝜃+𝜋)) = ̃︁𝑃𝐺(−e𝑗𝜃)
(By definition of ̃︁𝑃𝐺) = (−1)𝐾𝐺e𝑗𝐾𝐺𝜃𝑃𝐺(−e𝑗𝜃)

(By symmetry on 𝑃𝐺) = (−1)𝐾𝐺e𝑗𝐾𝐺𝜃𝑃𝐺(e𝑗𝜃)
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(By definition of ̃︁𝑃𝐺) = (−1)𝐾𝐺e𝑗𝐾𝐺𝜃e−𝑗𝐾𝐺𝜃̃︁𝑃𝐺(e𝑗𝜃)

So ̃︁𝑃𝐺(e𝑗(𝜃+𝜋)) = (−1)𝐾𝐺e𝑗2𝐾𝐺𝜃̃︁𝑃𝐺(e𝑗𝜃). (28)

Let us consider the roots of ̃︁𝑃𝐺. It is of degree exactly 2𝐾𝐺 as 𝑎𝐾𝐺
̸= 0 (by

definition), and so thanks to the Fundamental Theorem of Algebra, it has exactly
2𝐾𝐺 complex roots, and let 𝑍𝐺 be the set of its (complex) roots (#𝑍𝐺 = 2𝐾𝐺). We
can compute its value at 0: ̃︁𝑃𝐺(0) = 𝑎−𝐾𝐺

= (−1)𝐾𝐺𝑎𝐾𝐺
̸= 0, so 0 is not a root of̃︁𝑃𝐺 (0 /∈ 𝑍𝐺).

By definition of 𝑍𝐺, we have ̃︁𝑃𝐺(e𝑗𝜃) = 𝑎𝐾𝐺

∏︀
𝑧𝑖∈𝑍𝐺

(e𝑗𝜃 − 𝑧𝑖), as 𝑎𝐾𝐺
is the

highest-degree factor in ̃︁𝑃𝐺.
So ̃︁𝑃𝐺(e𝑗(𝜃+𝜋)) = ̃︁𝑃𝐺(−e𝑗𝜃) = 𝑎𝐾𝐺

∏︀
𝑧𝑖∈𝑍𝐺

(−e𝑗𝜃 − 𝑧𝑖), and (28) gives

̃︁𝑃𝐺(e𝑗(𝜃+𝜋)) = (−1)𝐾𝐺e𝑗2𝐾𝐺𝜃̃︁𝑃𝐺(e𝑗𝜃)
= (−1)𝐾𝐺e𝑗2𝐾𝐺𝜃

(︀
𝑎𝐾𝐺

∏︁
𝑧𝑖∈𝑍𝐺

(e−𝑗𝜃 − 𝑧𝑖)
)︀

(#𝑍𝐺 = 2𝐾𝐺 so) = (−1)𝐾𝐺𝑎𝐾𝐺

∏︁
𝑧𝑖∈𝑍𝐺

e𝑗𝜃(e−𝑗𝜃 − 𝑧𝑖)

= (−1)𝐾𝐺𝑎𝐾𝐺

∏︁
𝑧𝑖∈𝑍𝐺

(1− 𝑧𝑖e𝑗𝜃)

And 0 ̸∈ 𝑍𝐺 so 𝑧𝑖 ̸= 0, hence we can divide by 𝑧𝑖:

̃︁𝑃𝐺(e𝑗(𝜃+𝜋)) = (−1)𝐾𝐺𝑎𝐾𝐺

∏︁
𝑧𝑖∈𝑍𝐺

𝑧𝑖(1/𝑧𝑖 − e𝑗𝜃)

𝑎𝐾𝐺

∏︁
𝑧𝑖∈𝑍𝐺

(−e𝑗𝜃 − 𝑧𝑖) =
(︁
(−1)𝐾𝐺𝑎𝐾𝐺

∏︁
𝑧𝑖∈𝑍𝐺

𝑧𝑖
)︁ ∏︁
𝑧𝑖∈𝑍𝐺

(−1)(e𝑗𝜃 − 1/𝑧𝑖)

𝑎𝐾𝐺
(−1)

∈2N⏞  ⏟  
#𝑍𝐺 ∏︁

𝑧𝑖∈𝑍𝐺

(e𝑗𝜃 + 𝑧𝑖) =
(︁
(−1)𝐾𝐺𝑎𝐾𝐺

∏︁
𝑧𝑖∈𝑍𝐺

𝑧𝑖
)︁
(−1)

∈2N⏞  ⏟  
#𝑍𝐺 ∏︁

𝑧𝑖∈𝑍𝐺

(e𝑗𝜃 − 1/𝑧𝑖)

𝑎𝐾𝐺

∏︁
𝑧𝑖∈𝑍𝐺

(e𝑗𝜃 + 𝑧𝑖) =
(︁
(−1)𝐾𝐺𝑎𝐾𝐺

∏︁
𝑧𝑖∈𝑍𝐺

𝑧𝑖
)︁ ∏︁
𝑧𝑖∈𝑍𝐺

(e𝑗𝜃 − 1/𝑧𝑖). (29)

But we also know that 𝑎−𝐾𝐺
= 𝑎𝐾𝐺

∏︀
𝑧𝑖∈𝑍𝐺

−𝑧𝑖 = 𝑎𝐾𝐺

∏︀
𝑧𝑖∈𝑍𝐺

𝑧𝑖, from the
fact that 𝑎−𝐾𝐺

= ̃︁𝑃𝐺(0). So (−1)𝐾𝐺𝑎𝐾𝐺

∏︀
𝑧𝑖∈𝑍𝐺

𝑧𝑖 = (−1)𝐾𝐺𝑎𝐾𝐺

∏︀
𝑧𝑖∈𝑍𝐺

𝑧𝑖 =
(−1)𝐾𝐺𝑎−𝐾𝐺

and so it is 𝑎𝐾𝐺
(by the symmetry on coefficients): therefore the con-

stant term in the previous computation (29) vanishes. And so we have
∏︀
𝑧𝑖∈𝑍𝐺

(e𝑗𝜃+
𝑧𝑖) =

∏︀
𝑧𝑖∈𝑍𝐺

(e𝑗𝜃 − 1/𝑧𝑖), which directly proves that −𝑧𝑖 ∈ 𝑍𝐺 ⇔ 1/𝑧𝑖 ∈ 𝑍𝐺, i.e.,

𝑧𝑖 ∈ 𝑍𝐺 ⇔ −1/𝑧𝑖 ∈ 𝑍𝐺. (30)

The figure 2 illustrates this symmetry and shows some roots for a toy example
of ̃︁𝑃𝐺 : 𝑧1, 𝑧

′
1, 𝑧2, 𝑧

′
2 are roots of modulus 1 (i.e., ∈ U), and 𝑧3, 𝑧

′
3, 𝑧4, 𝑧

′
4 are roots of

modulus ̸= 0, 1 (i.e., ̸∈ U); and they are symmetric, 𝑧′
𝑖 = −1/𝑧𝑖.

The factorization 𝑃𝐺(e𝑗𝜃) = e−𝑗𝐾𝐺𝜃̃︁𝑃𝐺(e𝑗𝜃) = 𝑎𝐾𝐺
e−𝑗𝐾𝐺𝜃

∏︀
𝑧𝑖∈𝑍𝐺

(e𝑗𝜃 − 𝑧𝑖) can
then be simplified thanks to this relation (30).

Master thesis – EPFL & ENS Cachan 63/103 Lilian Besson

https://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra
http://www.math.ens-cachan.fr/version-francaise/formations/master-mva/
http://www.epfl.ch/
http://www.ens-cachan.fr/
http://perso.crans.org/besson/


Theoretical study of steerable homogeneous convolutions in 2D September 16, 2016

U
𝑂

𝑧1

𝑧2

𝑧′
1

𝑧′
2 𝑧3

𝑧′
3

𝑧4

𝑧′
4

Figure 2: Some roots of the polynomial ̃︁𝑃𝐺, 𝑧1, 𝑧
′
1, 𝑧2, 𝑧

′
2 ∈ U, 𝑧3, 𝑧

′
3, 𝑧4, 𝑧

′
4 ̸∈ U.

∙ For the roots of modulus 1, if 𝑧𝑖 = e𝑗𝛽𝑖 is a root, then the relation (30) gives
that −1/𝑧𝑖 = −𝑧𝑖 = e𝑗(𝛽+𝜋) = −e𝑗𝛽𝑖 is also a root.
So if we define 𝑍1

def= 𝑍𝐺 ∩U = {𝑧𝑖 ∈ 𝑍𝐺, |𝑧𝑖| = 1} the set of roots of modulus
1, we just proved that it has an even size (#𝑍1 ∈ 2N), and that e𝑗𝛽𝑖 ∈ 𝑍1 ⇔
−e𝑗𝛽𝑖 ∈ 𝑍1. Figure 2 shows 𝑍1 = {𝑧1, 𝑧

′
1, 𝑧2, 𝑧

′
2} and 𝑍 ′

1 = {𝑧1, 𝑧2}.
Let 𝑍 ′

1 = 𝑍1 ∩ [0, 𝜋), and so
∏︀
𝑧𝑖∈𝑍1(e𝑗𝜃 − 𝑧𝑖) =

∏︀
𝛽𝑖∈𝑍′

1
(e𝑗𝜃 − e𝑗𝛽𝑖)(e𝑗𝜃 + e𝑗𝛽𝑖).

For each term:

(e𝑗𝜃 − e𝑗𝛽𝑖)(e𝑗𝜃 + e𝑗𝛽𝑖) = e𝑗2𝜃 − e𝑗2𝛽𝑖

= e𝑗(𝜃+𝛽𝑖)(e𝑗(𝜃−𝛽𝑖) − e𝑗−(𝜃−𝛽𝑖))
= e𝑗𝜃e𝑗𝛽𝑖2𝑗 sin(𝜃 − 𝛽𝑖)

= e𝑗𝜃e𝑗𝛽𝑖2𝑗 cos(𝜃 − (𝛽𝑖 −
𝜋

2 )).

Remember that 𝑃𝐺(e𝑗𝜃) = e−𝑗𝐾𝐺𝜃̃︁𝑃𝐺(e𝑗𝜃), so we can factorize one e−𝑗𝜃 for
each term in order to simply keep

∏︀
𝛽𝑖∈𝑍′

1
e𝑗𝛽𝑖2𝑗 cos(𝜃− (𝛽𝑖− 𝜋

2 )) (and there is

𝐾𝐺−#𝑍 ′
1 terms 𝑒−𝑗𝜃 left). Up-to a constant complex term e

𝑗
∑︀

𝑍′
1
𝛽𝑖

(that will
be dealt with after), this product is the angular dependency of the Fourier
multiplier of a composition of 𝑚 def= #𝑍 ′

1 directional derivatives of angles
𝛼𝑖

def= 𝛽𝑖 − 𝜋
2 ∈ R (without their radial dependencies 𝑟).

∙ Now for the roots not of modulus 1, if 𝑧𝑖 = 𝑟𝑖e𝑗𝛽𝑖 is a root, then the relation
(30) gives that −1/𝑧𝑖 = −(1/𝑟𝑖)e𝑗𝛽𝑖 is also a root (and 𝑟𝑖 ̸= 0, 1 so 1/𝑟𝑖 ̸= 𝑟𝑖).
So if we define 𝑍2

def= 𝑍𝐺 ∖ 𝑍1 = {𝑧𝑖 ∈ 𝑍𝐺, |𝑧𝑖| ̸= 1}, it also has an even size
(#𝑍2 ∈ 2N), and that 𝑟𝑖e𝑗𝛽𝑖 ∈ 𝑍2 ⇔ −(1/𝑟𝑖)e𝑗𝛽𝑖 ∈ 𝑍2.
Let 𝑍 ′

2 = {|𝑧𝑖| < 1, 𝑧𝑖 ∈ 𝑍2}, and so
∏︀
𝑧𝑖∈𝑍2(e𝑗𝜃 − 𝑧𝑖) =

∏︀
𝛽𝑖∈𝑍′

2
(e𝑗𝜃 −

𝑟𝑖e𝑗𝛽𝑖)(e𝑗𝜃+(1/𝑟𝑖)e𝑗𝛽𝑖). Figure 2 shows 𝑍2 = {𝑧3, 𝑧
′
3, 𝑧4, 𝑧

′
4} and 𝑍 ′

2 = {𝑧3, 𝑧4}.
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For each term:

(e𝑗𝜃 − 𝑟𝑖e𝑗𝛽𝑖)(e𝑗𝜃 + (1/𝑟𝑖)e𝑗𝛽𝑖) = e𝑗2𝜃 + (1/𝑟𝑖 − 𝑟𝑖)⏟  ⏞  
̸=0, >0 in fact

e𝑗(𝜃+𝛽𝑖) − e𝑗2𝛽𝑖

= e𝑗(𝜃+𝛽𝑖)(e𝑗(𝜃−𝛽𝑖) + (1/𝑟𝑖 − 𝑟𝑖)− e𝑗−(𝜃−𝛽𝑖))
= e𝑗𝜃e𝑗𝛽𝑖

(︀
2𝑗 sin(𝜃 − 𝛽𝑖) + (1/𝑟𝑖 − 𝑟𝑖)

)︀
= e𝑗𝜃e𝑗𝛽𝑖

(︀
2𝑗 cos(𝜃 − (𝛽𝑖 −

𝜋

2 )) + (1/𝑟𝑖 − 𝑟𝑖)
)︀

⏟  ⏞  
̸∈𝑗R,∈C, and ̸=0,∀𝜃

.

Remember that there is still (𝐾𝐺 − #𝑍 ′
1) term e−𝑗𝜃 left, and 𝐾𝐺 − #𝑍 ′

1 =
#𝑍 ′

2 (because 2𝐾𝐺 = #𝑍𝐺 = #𝑍1 + #𝑍2 = 2#𝑍 ′
1 + 2#𝑍 ′

2), so we can
factorize one e−𝑗𝜃 for each term in order to simply keep

∏︀
𝛽𝑖∈𝑍′

2
e𝑗𝛽𝑖

(︀
2𝑗 cos(𝜃−

(𝛽𝑖 − 𝜋
2 )) + (1/𝑟𝑖 − 𝑟𝑖)

)︀
. Up-to a constant complex term e

𝑗
∑︀

𝑍′
2
𝛽𝑖

(that will
be dealt with after), this product corresponds to a never-canceling Fourier
multiplier of a steerable convolution. It will be studied more in detail in the
next corollary 5.1.
For now, we can conclude by observing that this complex-valued Fourier
multiplier is indeed never-canceling and is a trigonometric polynomial.

Remark 4.51. So we are almost done for the direct sense, we simply need to ex-
plain why the constant complex terms are not an issue. At first sight, they could
mess up with the Hermitian symmetry of ̂︀𝑔 (if the leading factor is not a pure-real
number). Remember that 𝑎−𝐾𝐺

= (−1)𝐾𝐺𝑎𝐾𝐺
, but also that 𝑎−𝐾𝐺

= ̃︁𝑃𝐺(0) =
𝑎𝑁
∏︀
𝑧𝑖∈𝑍𝐺

(−𝑧𝑖) = 𝑎𝑁
∏︀
𝑧𝑖∈𝑍𝐺

𝑧𝑖 (as #𝑍𝐺 ∈ 2N). Therefore, if 𝜓 def= arg 𝑎𝐾𝐺
, then e𝑗𝜓

satisfies60(−1)𝐾𝐺e−𝑗𝜓 = e𝑗𝜓
∏︀
𝛽𝑖∈arg𝑍𝐺

e𝑗𝛽𝑖 . Indeed the modulus of the roots dis-
appear in this product, by the symmetry we proved on 𝑍𝐺, as (𝑟𝑖e𝑗𝛽𝑖)(− 1

𝑟𝑖
e𝑗𝛽𝑖) =

−e𝑗2𝛽𝑖 . So 𝐾𝐺𝜋 − 𝜓 = 𝜓 +
∑︀
𝛽𝑖∈arg𝑍𝐺

𝛽𝑖
mod 2𝜋, but by symmetry, half of the 𝛽𝑖 ∈ arg𝑍𝐺 can be written 𝛽𝑖′ + 𝜋 (for
some 𝑖′), and #𝑍𝐺/2 = #𝑍 ′

𝐺 = 𝐾𝐺, so 𝐾𝐺𝜋 = 2𝜓 +
∑︀
𝛽𝑖∈arg𝑍′

𝐺
(𝛽𝑖 + 𝛽𝑖 + 𝜋) =

2𝜓 + 2
∑︀
𝛽𝑖∈arg𝑍′

𝐺
𝛽𝑖 + 𝐾𝐺𝜋 mod 2𝜋, i.e., 𝜓 +

∑︀
𝛽𝑖∈arg𝑍′

𝐺
𝛽𝑖 = 0 mod 𝜋, which sim-

ply says that the constant complex term in the final factorization is purely real:

e
𝑗(𝜓+

∑︀
𝛽𝑖∈arg 𝑍′

𝐺
)

= ±1 ∈ R. And so, we rechecked that the factorization we obtained
is indeed Hermitian symmetric.

The direct sense of the proof was quite long, because we had to introduce different
objects (𝑃𝐺, ̃︁𝑃𝐺, 𝑍𝐺 etc), and prove some non-obvious results (mainly the symmetry 𝑧𝑖 ∈
𝑍𝐺 ⇔ −1/𝑧𝑖 ∈ 𝑍𝐺).

The converse sense is much simpler, as usual for such results.

Proof. ∙ Converse sense:
Let 𝐺 be written like the theorem 4.49 asks. We simply need to check that:

∙ It is obviously a convolution as a product of convolutions (corollary 2.25).

60 We use the unusual notation arg 𝑍𝐺 for {𝛽𝑖, 𝑧𝑖 = 𝑟𝑖e𝑗𝛽𝑖 ∈ 𝑍𝐺} = {arg 𝑧𝑖, 𝑧𝑖 ∈ 𝑍𝐺} .
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∙ 𝐺0 is 0-SI, each derivative 𝐷𝛼𝑖 is 1-SI and the (𝛾 −𝑚)-fractional Laplacian
is (𝛾 − 𝑚)-SI, so their composition, 𝐺, is 0 + (1 + · · · + 1) + (𝛾 − 𝑚) = 𝛾
scale-invariant (proposition 2.39).

∙ ̂︀𝑔0(𝜔) has a very specific form, which gives directly that ̂︀𝑔(𝑟, 𝜃) can be written
as 𝑟𝛾

∑︀
−𝐾𝐺≤𝑘≤𝐾𝐺

𝑎𝑘e𝑗𝑘𝜃, and so thanks to the converse of theorem 4.31, 𝐺 is
steerable.

∙ We know that the fractional Laplacian and the derivatives are real, and ̂︀𝑔0(𝜔)
is Hermitian symmetric, so 𝐺 is also real (differentiating indeed maps a real-
valued function to a real-valued function).

4.6.2 Rotating a 2D steerable 𝛾-SI convolution operators

This first product decomposition has the advantage of giving a very simple expression
for a rotated version of 𝐺. A rotation 𝑅𝜃0 on 𝐺 gets applied separately on each deriva-
tives 𝐷𝛼𝑖 and on 𝐺0.

Proposition 4.52. For 𝐺 written as in theorem 4.49, and a rotation 𝑅 = 𝑅𝜃0 ∈ SO(2),

𝑟𝑅𝐺𝑟𝑅−1 = 𝐶(−Δ)(𝛾−𝑚)/2 ∘𝐷𝛼1−𝜃0 ∘ · · · ∘𝐷𝛼𝑚−𝜃0 ∘
(︀
𝑟𝑅𝐺0𝑟𝑅−1

)︀
.

Easy Proof. Quite obvious, as 𝐶(−Δ)(𝛾−𝑚)/2 is RI, 𝑟𝑅𝜃0
𝐷𝛼1𝑟𝑅−1

𝜃0
= 𝐷𝛼1−𝜃0 , and the fact

that rotating 𝐺 is equivalent to rotating each block, remark 4.6.

This proposition 4.52 has to be put in perspective with a similar result we can prove
for the sum decomposition, for which the rotation 𝑅𝜃0 gets applied on the coefficients
𝑎𝑘.

Proposition 4.53. For 𝐺 written as in theorem 4.37, and a rotation 𝑅 = 𝑅𝜃0 ∈ SO(2),
and let 𝐺′ = 𝑟𝑅𝐺𝑟𝑅−1 . 𝐺 and its rotated version has the same frequency 𝐾𝐺′ = 𝐾𝐺 and
homogeneity degree 𝛾, and the coefficients of 𝐺′ are 𝑎′

𝑘 = 𝑎𝑘e𝑗𝑘𝜃0 .
In other words, the Fourier multiplier 𝑔′ of 𝐺′ satisfies

∀𝜔 = (𝑟, 𝜃) ∈ R2, 𝑟𝑅̂︀𝑔(𝑟, 𝜃) = ̂︀𝑔′(𝑟, 𝜃) = ̂︀𝑔(𝑟, 𝜃 + 𝜃0) = 𝑟𝛾
∑︁

−𝐾𝐺≤𝑘≤𝐾𝐺

𝑎′
𝑘e𝑗𝑘𝜃.

Easy Proof. Obvious,

𝑟𝑅̂︀𝑔(𝑟, 𝜃) = ̂︀𝑔(𝑟, 𝜃 + 𝜃0) = 𝑟𝛾
∑︁

−𝐾𝐺≤𝑘≤𝐾𝐺

𝑎𝑘e𝑗𝑘(𝜃+𝜃0)

= 𝑟𝛾
∑︁

−𝐾𝐺≤𝑘≤𝐾𝐺

𝑎𝑘e𝑗𝑘𝜃0⏟  ⏞  
def= 𝑎′

𝑘

e𝑗𝑘𝜃.
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Conclusion

To the best of our knowledge, the theorem we just proved is the first decomposition of
a steerable convolution operator as a composition of well-knowns operators (fractional
Laplacian and directional derivatives) and an invertible 0-scale-invariant part (of non-
canceling Fourier multiplier).

This theorem is quite strong, but still not explicit enough if we want to use a steerable
convolution 𝐺 in practice. Instead of this “nice” part 𝐺0, given by its Fourier multiplier̂︀𝑔0(𝑟, 𝜃) parametrized as a non-canceling trigonometric polynomial in e𝑗𝜃 (i.e., a sum),
we would like to have a decomposition in term of a composition of simple elementary
blocks (i.e., a product). The next section will explore this direction.
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5 Implementing and inverting 2D steerable convolutions

In this short section, the last one, we still focus on steerable 𝛾-SI convolution operators in
2D, and theorem 4.49 is our starting point. First, finishing the computations on 𝐺0 will
give an other characterization, which consists in a product of elementary blocks 𝐺𝜆,𝛼
(corollary 5.1).

We then explain how to implement these operators for 2D images, by using a direct
and an inverse Fast Fourier Transform (FFT), and the discrete-domain expression of the
Fourier multipliers.

We also shortly present how this decomposition can be used to invert the 2D steerable
convolutions. The same method can be used to implement their inverses, providing that
we know how to inverse the block. In fact, this step turns out to be quite hard to obtain
symbolically, and we expose why it is a difficult task that we have been able to finish in
time. However, implementing an inverse elementary block was not too hard, and some
examples illustrate its effect on a 2D Poisson sparse process are included.

5.1 Product decompositions vs sum decomposition

We gave and prove above a very strong characterization for 2D steerable convolutions,
but we did not give much details about the invertible 0-scale-invariant𝐺0 and its Fourier
multiplier ̂︀𝑔0. The theorem 4.49 stated that ̂︀𝑔0 is a trigonometric polynomial, of degree
𝐾𝐺 −𝑚, that does not cancel. We can work on the expression of ̂︀𝑔0 in order to make 𝐺0
appear as a composition of simpler terms.

It seemed weird to have, in one hand, two very simple elementary blocks ((−Δ)1/2

or (−Δ)𝛾/2, and 𝐷𝛼𝑖), and, on the other hand, an un-factorized 𝐺0. We will essentially
prove that 𝐺0 can be factorized as a composition of 1-SI steerable convolutions that are
simple elementary blocks of the common form 𝜆𝑖𝐷𝛼𝑖 + (1 − 𝜆𝑖)(−Δ)1/2, for 𝜆𝑖 ∈ (0, 1),
up to a real constant coefficient.

In other words, after factorizing a fractional Laplacian of the good order, 𝐺0 is just a
product of convex combinations of two well-known differential 1-scale-invariant convo-
lutions, the directional derivative 𝐷𝛼𝑖 and the half-Laplacian (−Δ)1/2.

It will again strengthen the fact that the two elementary blocks (𝐷𝛼𝑖 and (−Δ)1/2) are
intrinsically important, and it will also have a practical consequence for the inversion of
our convolutions, as it is much easier to compute the inverse and the Green’s function of
a product than of a sum.

5.1.1 Factorizing 𝐺0

Remember that ̂︀𝑔0(𝑟, 𝜃) =
∏︀
𝑧𝑖=𝑟𝑖e𝑗𝛽𝑖 ∈𝑍′

2

(︀
2𝑗 cos(𝜃−(𝛽𝑖−𝜋/2))+(1/𝑟𝑖−𝑟𝑖)

)︀
(cf. proof of the

direct sense of theorem 4.49). We chose 𝑟𝑖 < 1, so 1/𝑟𝑖− 𝑟𝑖 > 0. Let 𝐶𝑖
def= 2 + (1/𝑟𝑖− 𝑟𝑖) ∈

R, > 2 and 𝜆𝑖 = 2/𝐶𝑖 ∈ (0, 1). Then, with 𝛼𝑖
def= 𝛽𝑖 − 𝜋/2, we can write this term as a

convex combination between the polar part of 𝐷𝛼𝑖 and of (−Δ)1/2:

2𝑗 cos(𝜃 − (𝛽𝑖 − 𝜋/2)) + (1/𝑟𝑖 − 𝑟𝑖) = 𝐶𝑖
(︀
𝜆𝑖 cos(𝜃 − 𝛼𝑖) + (1− 𝜆𝑖)

)︀
. (31)

The real constant 𝐶𝑖 is not an issue, they will be factorized into one real constant 𝐶.
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Therefore, we can transform the ̂︀𝑔0 into a composition of terms with a never-canceling
Fourier multipliers, of the form 𝜆𝑗 cos(𝜃 − 𝛼) + (1− 𝜆) for 𝜆 ̸= 0, 1, as announced:

̂︁𝐺0(𝑟, 𝜃) = 𝐶 ′
𝑚∏︁
𝑖=1

(︀
𝜆𝑗 cos(𝜃 − 𝛼) + (1− 𝜆)

)︀
. (32)

And so, up-to a term 𝑟𝑚, it will give the operator 𝐺0:

𝐺0 = 𝐶 ′ 𝑚
○
𝑖=1

(︀
𝜆𝑖𝐷𝛼𝑖 + (1− 𝜆𝑖)(−Δ)1/2)︀. (33)

We can add a radial 1-scale-invariant term 𝑟 for each block, because the theorem below
will assume 𝛾 ≥ 𝐾𝐺 and 𝑚 ≤ 𝐾𝐺.

The form of the elementary block 𝜆𝑖𝐷𝛼𝑖 + (1− 𝜆𝑖)(−Δ)1/2, introduced here only for
𝜆 ̸= 0, 1, is also interesting as it clearly generalizes the half-Laplacian (for 𝜆 = 0), and the
directional derivatives (for 𝜆 = 1). The previous characterization 4.49 already introduced
a Laplacian and some directional derivatives in the decomposition, and they can all also
be written as 𝜆𝑖𝐷𝛼𝑖 + (1− 𝜆𝑖)(−Δ)1/2, for 𝜆𝑖 ∈ {0, 1}.

Therefore, we can decompose 𝐺 into a product of well-known blocks and a “nice”
part, and each term can be written as one elementary block (with 𝜆𝑖 ∈ {0, 1}) or a product
of elementary blocks (with 𝜆𝑖 ∈ (0, 1)).

5.1.2 Elementary blocks decomposition for 2D LC TI 𝛾-SI St operators

This can be formalized as the second characterization for 2D steerable 𝛾-SI convolutions.

Corollary 5.1 (Elementary blocks decomposition for 2D LC TI 𝛾-SI St operators).
An operator 𝐺 on L2(R2,R) is a 2D steerable convolution, 𝛾-scale-invariant with 𝛾 ≥

𝐾𝐺, i.e., LC TI 𝛾-SI St iff

𝐺 = 𝐶(−Δ)(𝛾−𝐾𝐺)/2 ∘
𝐾𝐺

○
𝑖=1

(︀
𝜆𝑖𝐷𝛼𝑖 + (1− 𝜆𝑖)(−Δ)1/2)︀. (34)

with 𝐶 ∈ R, 𝜆1, . . . , 𝜆𝐾𝐺
∈ [0, 1] and 𝛼1, . . . , 𝛼𝐾𝐺

∈ R.
In this form, 𝐺 has 𝑛𝐺 = 1 + #{𝑖, 𝜆𝑖 ̸= 0} = 1 +

∑︀𝐾𝐺
𝑖=1 1𝜆𝑖 ̸=0.

Proof. It is simply a rewriting of theorem 4.49, thanks to the computations we did
above61, combining the explicit form of 𝐺0 (33) and the characterization 4.49. We
factorized all the Laplacians in the leading term (−Δ)(𝛾−𝐾𝐺)/2 (of scale-invariance
order 𝛾 −𝐾𝐺 that could be non-integer), and that is why 𝜆𝑖 > 0, and that is why
there is exactly 𝑁 = 𝐾𝐺 blocks 𝐺𝜆𝑖,𝛼𝑖

.

61 For this last theorem, we preferred to include the proof beforehand, to clearly show how we came to
this result. We could also have started directly with that characterization but we preferred our approach as
it appeared more didactic and easier to follow.
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Remark 5.2 (What if the homogeneity degree is too small ?). This corollary assumes
𝛾 ≥ 𝐾𝐺, but it can also be applied if it is not the case, at least for the implementation
part, because we can write ̂︀𝑔(𝑟, 𝜃) = 𝑟−𝐾𝐺(𝑟𝐾𝐺̂︀𝑔(𝑟, 𝜃)) = 𝑟−𝐾𝐺̂︀𝑔′(𝑟, 𝜃) (for 𝑟 ̸= 0), with
𝐺′ of homogeneity degree 𝛾 + 𝐾𝐺 ≥ 𝐾𝐺. So we can apply (34) to 𝐺′, and obtain a
similar decomposition for𝐺, except that the leading Laplacian might have a negative
order, i.e., it can be an inverted fractional Laplacian.

Therefore, as soon as we know how to implement and apply in practice such
inverted fractional Laplacian, we can be convinced that this characterization can be
used for any steerable homogeneous convolutions, no matter their order 𝛾 (it can
even be negative!).

5.1.3 A universality result for the elementary block 𝐺𝜆,𝛼

This short result is interesting as it highlights the universality of our “elementary block”
𝐺𝜆𝑖,𝛼𝑖

among the 2D steerable convolution 1-scale-invariant operators that have𝐾𝐺 ≤ 1.

Proposition 5.3. 𝐺 is a non-zero 2D steerable convolution 1-scale-invariant operator, with
𝐾𝐺 ≤ 1 (or, equivalently, 𝑛𝐺 ≤ 2), iff there is 𝐶 ∈ R, 𝜆 ∈ [0, 1], 𝛼 ∈ R such that
𝐺 = 𝐶𝐺𝜆,𝛼 = 𝐶

(︁
𝜆𝐷𝛼 + (1− 𝜆)(−Δ)1/2

)︁
. And 𝐺 is RI iff 𝑛𝐺 = 1 iff 𝐾𝐺 = 0 iff 𝜆 = 0.

Proof. The converse sense is obvious from what is already proved about the block
𝐺𝜆,𝛼, so let us focus on the direct sense.

Thanks to the main characterization 4.37, we can write ̂︀𝑔(𝑟, 𝜃) as 𝑟
∑︀

−1≤𝑘≤1 𝑎𝑘e𝑗𝑘𝜃,
as 𝐾𝐺 ≤ 1. The Hermitian symmetry gives 𝑎0 ∈ R, and 𝑎−1 = −𝑎1, and so if we
write 𝑎1 = 𝑟1e𝑗𝜑1 , we can compute easily on ̂︀𝑔(𝑟, 𝜃) to obtain the desired form:

̂︀𝑔(𝑟, 𝜃) = 𝑟(𝑎−1e−𝑗𝜃 + 𝑎0 + 𝑎1e𝑗𝜃) = 𝑟(𝑎0 + 𝑎1e𝑗𝜃 − 𝑎1e−𝑗𝜃)
= 𝑟(𝑎0 + 𝑟1e𝑗(𝜃+𝜑1) − 𝑟1e−𝑗(𝜃+𝜑1)) = 𝑟(𝑎0 + 𝑟12𝑗 sin(𝜃 + 𝜑1))

= 𝑟

(︂
𝑎0 + 2𝑟1𝑗 cos

(︂
𝜃 + 𝜑1 −

𝜋

2

)︂)︂

If 𝐶 ̸= 0, = (𝑎0 + 2𝑟1)⏟  ⏞  
def= 𝐶

⎛⎜⎜⎜⎝ 𝑎0
𝑎0 + 2𝑟1⏟  ⏞  

=1−𝜆

𝑟 + 2𝑟1
𝑎0 + 2𝑟1⏟  ⏞  

def= 𝜆

𝑗𝑟 cos
(︀
𝜃 −

(︂
𝜋

2 − 𝜑1

)︂
⏟  ⏞  

def= 𝛼

)︀
⎞⎟⎟⎟⎠

And so ̂︀𝑔(𝑟, 𝜃) = 𝐶
(︁
𝜆̂︂𝐷𝛼 + (1− 𝜆) ̂(−Δ)1/2

)︁
(𝑟, 𝜃).

If 𝐶 ̸= 0 this computation gives the desired form. If 𝐶 = 𝑎0 +2𝑟1 = 0, it means
that 𝑎0 = −2𝑟1 ≤ 0, so with 𝛼 = (𝜋2 − 𝜑1) + 𝜋, and 𝐶 = −2𝑟1 and 𝜆 = 1

2 , we also
have the desired form.

Example 5.4 (A simple example). We give one example, which at first sight look like a
counter-example. Let consider 𝐺 = 1

2

(︁
−𝐷𝑥 + (−Δ)1/2

)︁
. It is indeed a 2D steerable

convolution, and is clearly 1-scale-invariant, with 𝐾𝐺 = 2 and 𝑛𝐺 = 1, as ̂︀𝑔(𝑟, 𝜃) =
1
2 (𝑟 − 𝑗𝑟 cos(𝜃)) = 𝑟

(︁
−1

4e−𝑗𝜃 + 1
2 −

1
4e𝑗𝜃

)︁
in the form of (�).
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But because of the difference of signs in front of the derivative and the half-Laplacian,
we could think it would not fit as a convex combination (𝜆 ∈ [0, 1]) of both. The trick here
is that −𝐷𝑥 = −𝐷𝛼=0 = 𝐷𝛼=𝜋, and so 𝐺 = 𝐺𝜆,𝛼 = 𝜆𝐷𝜋 + (1 − 𝜆)(−Δ)1/2 with 𝜆 = 1

2
and 𝐶 = 1, in the form of proposition 5.3.

5.1.4 A natural interpretation for this last characterization?

This proposition 5.3 also shows that the form of the decomposition of corollary 5.1 is very
natural: a 𝑁 -scale-invariant steerable convolution 𝐺 (with 𝐾𝐺 = 𝑁 ) gets decomposed
into a composition of 𝑁 1-scale-invariant steerable convolutions, which are exactly the
terms written as 𝜆𝐷𝛼 + (1 − 𝜆)(−Δ)1/2 (up to real multiplicative constant), and has
𝐾𝐺𝜆,𝛼

≤ 1.
We also found interesting that proposition 5.3 generalizes the universality of Lapla-

cian among the 1-scale-invariant rotation-invariant steerable convolutions, i.e., with 𝑛𝐺 =
1 and 𝐾𝐺 = 0 (and even if 𝑛𝐺 = 0).

If the homogeneity order is not an integer or if it too small, corollary 5.1 can still be
applied, and the resulting decomposition is still elegant and simple, but we no longer
have this additional interpretation.

5.2 Implementation of 2D steerable 𝛾-SI convolutions for images

As we already explain it, applying an operator known with its Fourier multiplier is easy
on images, because the computations of ℱ and ℱ−1 does not need to be done symbol-
ically, but can be done numerically. The Fast Fourier Transform (FFT) is the function
fft2 and its inverse is ifft2, and they are used like shown in figure 3.

Transformed image
𝐺{𝑓}[m,n]

Transformed image in Fourier
𝑔[m,n]𝑓[m,n]

Image in Fourier
𝑓[m,n]

Input image
𝑓[m,n]

fft2

Point-wise
multiplication
by 𝑔[m,n]

ifft2

Figure 3: Applying a discrete operator𝐺, given by its (continuous-domain) Fourier mul-
tiplier ̂︀𝑔[m,n], on a 2D image 𝑓[m,n].

We implemented the elementary blocks 𝐺𝜆,𝛼 in a GNU Octave script, also valid for
MATLAB, using 2D matrices and the Fast Fourier Transform (FFT) and Inverse FFT
(cf. fft2 and ifft2 functions in MATLAB). Our implementation is not yet open-source,
as this part is still an on-going work in collaboration some BIGgers. It will probably be
released soon.

The form we obtained with the characterization corollary 5.1 is very elegant because
it appears as a composition (i.e., a convolution for impulse responses or a product for
Fourier multipliers) of 𝑁 elementary blocks that now all have the same form: 𝐺𝜆,𝛼 =
𝜆𝐷𝛼 + (1− 𝜆)(−Δ)1/2, for 𝜆 ∈ [0, 1] and 𝛼 ∈ R.

Master thesis – EPFL & ENS Cachan 71/103 Lilian Besson

http://www.mathworks.com/help/matlab/ref/fft2.html
http://www.mathworks.com/help/matlab/ref/ifft2.html
https://www.gnu.org/software/octave/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/help/matlab/ref/fft2.html
http://www.mathworks.com/help/matlab/ref/ifft2.html
http://bigwww.epfl.ch/people.html?photo=2016
http://www.math.ens-cachan.fr/version-francaise/formations/master-mva/
http://www.epfl.ch/
http://www.ens-cachan.fr/
http://perso.crans.org/besson/


Theoretical study of steerable homogeneous convolutions in 2D September 16, 2016

As we announced it, having this is very interesting from a concrete point of view.
We simply need to implement two things: a fractional Laplacian and a block 𝐺𝜆,𝛼, and
we just have to compose them in order to obtain any operators of the considered class.
Additionally, the parameters 𝜆𝑖, 𝛼𝑖 have a physical interpretation, 𝛼 being the direction
of the derivative𝐷𝛼 and 𝜆 the trade-of between the directionality of𝐷𝛼 and the isotropy
of the half-Laplacian.

5.3 Inverse steerable convolutions applied to Sparse Stochastic Processes

In this subsection, we present the results of some experiments we made on 2D images,
generated as sparse stochastic processes, on two kinds of white noise, a Gaussian and
compound Gaussian-Poisson noise.

A sparse process 𝑠 is specified with three elements: a linear operator, usually written
𝐿 in the literature and not 𝐺 (usually it is a linear continuous differential operator), an
initial “white” noise 𝑤, and the equation 𝐿𝑠 = 𝑤. For most cases, 𝑠 is defined as a
solution of a linear stochastic differential equation, driven by the white Lévy noise 𝑤. To
compute or plot 𝑠, one has to find a valid left-inverse for 𝐿, which can be well defined
even if 𝐿 is not invertible at first sight, cf. [FAU14, UT14]. This left-inverse might not
be unique, and it is usually not easy to find one, especially when a stable or L𝑝-stable
inverse is required, cf. [UT14, Ch.5].

The case of the fractional Laplacians has been known from the 80s, cf. for instance
[UT14, Sec.5.5.2], and the case of derivatives and directional derivatives was dealt with
in [FAU14]. We tried the generalize these previous work for our elementary block 𝐺𝜆,𝛼
but it turned out to be harder. We do not include more reminders on these stochastic
processes, our reference being [UT14]62, mainly the chapters 5 and 7.

5.3.1 Details about the setting of our experiments

We were focusing on the effect of a simple operator, the inverse of an elementary block
𝐺𝜆,𝛼. For 𝜆 ∈ (0, 1), we already explained that its Fourier multiplier is non-canceling
(except in 0), so its inverse can be applied by a simple point-wise division in the Fourier
domain. We chose to handle the singularity by simply removing it: if G_inv[i,j] was
infinite (from a division by 0), we forced it to be 1. It only concerns one pixel (in Fourier),
so hopefully it does not change the output image too much.

For our operators:

∙ We only consider 1-scale-invariant 𝐺, i.e., 𝛾 = 1, so their inverse are all (−1)-SI.

∙ We tried many values 𝜆, and the figures below use a value in 𝜆 = 0, 0.25, 0.5, 0.75, 1.
It is a trade-of between the directionality of 𝐷𝛼 and the isotropy of (Δ)1/2, as seen
in practice, cf. the figures below. The higher the 𝜆, the more directional the process
will be:

𝜆 = 0 can be interpreted as purely isotropic
𝜆 = 0.25 can be interpreted as “almost isotropic”
𝜆 = 0.5 can be interpreted as “partly isotropic, partly directional”
𝜆 = 0.75 can be interpreted as “almost directional”
𝜆 = 1 can be interpreted as purely directional

62 If needed, cf. [UT14, Sec.7.5.3, p183] which is available on-line, e.g., figure 7.9, or these slides (click).
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∙ For the angle 𝛼, we tried values in {0, 𝜋/6, 𝜋/4, 𝜋/2, 3𝜋/4, 𝜋}. Experiments with a
turning 𝛼 were done, on the same noise to really see the effect of 𝛼, in figure ??.

∙ We also experimented with the application of two inverse blocks, of same or dif-
ferent angle, 𝛼1, 𝛼2, and the figure 18 and 19 below is for 𝛼1 = 3𝜋/4, 𝛼2 = 5𝜋/4.

The setup of our sparse processes was the following:

∙ A 2D i.i.d. Gaussian “white” process, of scaling parameter
√

100, i.e., every pixel
of the image are all independent and identically distributed (i.i.d.), following the
same (continuous) Gaussian law of parameter 𝜎 =

√
100.

∙ A 2D compound Gaussian Poisson63 process of parameter 𝜈 = 0.01, or 0.1, 1, 10.
In a nutshell, it consists in uniformly located spikes or deactivated pixels (i.i.d.).
Each spikes is a sum of a certain number of Gaussians, all of parameter 𝜎 =

√
100,

and the number of Gaussian (either 0 or more) follows a discrete Poisson law of
parameter 𝜈, which basically controls64 the (average) number of spikes.

∙ Both were used to generate images of width and height of N = 100 pixels65.

∙ Note that both Gaussian and Poisson are fully isotropic in their formulation, but a
realization can be and is usually not isotropic.

For these sparse stochastic processes, we used an implementation of Gaussian and
Gaussian compound Poisson noises in GNU Octave66, that is still internal to the BIG
team at EPFL, and not yet open-sourced.

5.3.2 List of experiments and their figures

Gaussian and compound Poisson noise

(a) Gaussian “white” noise (b) Compound Poisson noise with 𝜈 = 0.1

Figure 4: Two examples of realizations of Sparse Stochastic Processes

63 For more details on compound Poisson and compound Gaussian-Poisson processes, refer for instance
to this Wikipedia article, or some explanations can be found in [UT14, Ch.7].

64 When Gaussian compound Poisson are used to models spikes for neurons, 𝜈 is usually referred as a
“firing rate”. Cf. this course by J.-P. Nadal (MVA, 2016) or this article by S. Shinomoto.

65 Our code is not yet optimized so it was slow for bigger images (≃ 3 minutes by figure for N = 200).
66 Which is are also valid for MATLAB.
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– First, let see two realizations of noise in figure 4, a white Gaussian on the left67, and
a compound Poisson on the right (with medium “firing rate” 𝜈 = 0.1).

Illustrations with one inverse block
– One block 𝐺−1

𝜆,0, with 𝛼 = 0, and an increasing 𝜆 = 0, 0.25, 0.5, 0.75, 1, applied on
both noise, cf. figures 5–9. We start to observe some nice-looking patterns.

And for the higher values of 𝜆, figures 8 and 9 shows very clearly a directional be-
havior. We observe an effect on this line (𝛼 = 0, i.e., east, along →), which looks like a
discrete integration: the positive spikes (red-orange) or the negative spikes (blue-cyan)
get propagated, like if the spikes were (discretely) summed along the direction. The
summation appears on the same direction as it is the inverse of a discrete derivative, gen-
eralizing the result known in 1D: the inverse of the discrete derivative 𝐷 is a cumulative
sum from the left to right (a discrete integration).

(a) On a Gaussian white noise (b) On a “low-firing” Poisson

Figure 5: 𝐺−1
0,0 : purely isotropic, like a local integration

Figure 6: 𝐺−1
0.25,0 : not yet directional

– We also applied𝐺−1
𝜆,5𝜋/4 to the same Gaussian white noise, for three different values

of 𝜆 = 0.25, 0.5, 0.75, to really highlight the trade-of isotropic/directional, in figure 10.
The directionality started to appear strongly for 𝜆 = 0.75, when we observed the same
phenomenon, the emergence of a directional behavior, indicating again a direction of

67 In all the next figures, the Gaussian will be on the left and the Poisson on the right.
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Figure 7: 𝐺−1
0.50,0 : not much directional

Figure 8: 𝐺−1
0.75,0 : more directional, along→

Figure 9: 𝐺−1
1,0 : purely directional, along −→

integration (i.e., a discrete cumulative sum), except it is along the line of angle 𝛼 = 𝜋/6
(north-west) this time.

This is exactly what we expected an inverse directional derivative (of angle 𝜋/6)
would do, as in 1D the derivative is the inverse of the integration. It is very satisfy-
ing to check that it works similarly along a line in 2D. Remember that we implemented
the inverse operator 𝐺−1

𝜆,5𝜋/6 in the Fourier domain, with a point-wise multiplier by its
inverse Fourier multiplier, and not by a space-domain numerical integration, but it is
quite interesting to observe that they have a similar behavior!
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(a) 𝜆 = 0.25 (b) 𝜆 = 0.5 (c) 𝜆 = 0.75

Figure 10: 𝐺−1
𝜆,𝜋/6 for 𝜆 = 0.25, 0.5, 0.75, on the same Gaussian white noise

– We also tried to observe the effect of the angle 𝛼, by applying 𝐺−1
0.75,𝛼 and 𝐺−1

0.95,𝛼,
for three different values of 𝛼 = 0, 𝜋/4, 𝜋/2, applied to the same Gaussian, and with
𝜆 = 0.75 and then 𝜆 = 0.95 to see a strong but not full directionality. The figures 11
and 12 clearly shows the effect of the rotation when 𝛼 increases (in the trigonometric
sense, i.e., anti-clockwise, x).

(a) 𝛼 = 0, along→ (b) 𝛼 = 𝜋/4, along↗ (c) 𝛼 = 𝜋/2, along ↑

Figure 11: 𝐺−1
0.75,𝛼 for 𝛼 = 0, 𝜋/4, 𝜋/2, on the same Gaussian white noise

(a) 𝛼 = 0, along→ (b) 𝛼 = 𝜋/4, along↗ (c) 𝛼 = 𝜋/2, along ↑

Figure 12: Very directional, 𝐺−1
0.95,𝛼 for 𝛼 = 0, 𝜋/4, 𝜋/2, on the same noise
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Mondrian and partially-directional Mondrian process
– Applying to both of them the same operator, 𝐷−1

𝑥 𝐷−1
𝑦 , composed of two purely-

directional blocks, 𝐺−1
1,0𝐺

−1
1,𝜋/2, gives the “Mondrian process”68, in figure 13. The left and

right figures are similar, but slightly different: the (low-firing) Poisson has less vertexes
than the Gaussian.

(a) On a Gaussian white noise (b) On a “low-firing” Poisson

Figure 13: Purely directional, two orthogonal integrations, this is the “Mondrian” process

– And with 𝜆 = 0.5 and then 0.75, applying the two partly-directional blocks,𝐺−1
𝜆,0𝐺

−1
𝜆,𝜋/2,

gives a partly-directional “Mondrian” process, not too different from the purely-directional
one, cf. figure 14.

Figure 14: Partly directional “Mondrian” process, on a “low-firing” Poisson, for 𝜆 = 0.5, 0.75

This example is a very interesting one, as figure 14 shows how easy it is to gener-
ate new families of process, based on well-known examples, by adding a “fractional-
isotropy” (i.e., 𝜆 < 1) to purely-directional processes (e.g., the Mondrian), or by adding
a “fractional-directionality” (i.e., 𝜆 > 0) to purely-isotropic processes (e.g., white noise),
thanks to our framework of 2D steerable convolutions.

We have great hope that this idea can lead to new and interesting stochastic sparse
processes, and maybe to fractional-directional fractals69

68 It is a famous example in the BIG team, e.g., [UT14, Fig.7.9], or the examples on the book website
sparseprocesses.org. The “Mondrian process” consists in two discrete integration, along the 𝑥 and 𝑦
axis, of some sparsely localized spikes, and that is why it looks like rectangle aligned with the two axes.

69 If the Lévy noise 𝑤 is self-similar, then the sparse process 𝑠 solution of 𝐿𝑠 = 𝑤 can be seen as a
self-similar process, i.e., a fractal.
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More illustrations with two inverse blocks
– We also tried to chain two elementary blocks, of the same angle, by applying twice

the operator 𝐺−1
𝜆,−𝜋/6 to the same Gaussian noise (fig. 4a), for three different values of

𝜆 = 0.3, 0.5, 0.8, to continue to highlight the trade-of isotropic/directional, in figure 15.

Figure 15: 𝐺−1
𝜆,−𝜋/6𝐺

−1
𝜆,−𝜋/6 for 𝜆 = 0.3, 0.5, 0.8 on the same Gaussian noise

– We applied twice the operator𝐺−1
𝜆,−𝜋/4 to the same Gaussian noise, for higher values

of 𝜆 = 0.5, 0.8, 0.9, in figure 16. As before, The isotropy of the Laplacian is almost entirely
lost for 𝜆 = 0.9, showing a highly pronounced directionality. 𝛼 = −𝜋/4 gives an image
aligned along the line of angle 3𝜋/4 = −𝜋/4 mod 𝜋, because inverting the operator𝐺𝜆,𝛼
implies inverting the underlying direction (i.e., 𝛼 ↦→ 𝛼+ 𝜋) :

Figure 16: 𝐺−1
𝜆,−𝜋/4 ∘𝐺

−1
𝜆,−𝜋/4 for 𝜆 = 0.5, 0.8, 0.9 on the same Gaussian noise

– Figure 17 shows the application of two blocks of same angle, 𝐺−1
𝜆,𝜋/3𝐺

−1
𝜆,𝜋/3, with

𝛼1 = 𝛼2 = 𝜋/3 and an increasing 𝜆 = 0.5, 0.75, 1, on the same Gaussian.

(a) “Not very directional” (b) “Partly directional” (c) “Very directional”

Figure 17: 𝐺−1
𝜆,𝜋/3𝐺

−1
𝜆,𝜋/3 for 𝜆 = 0.5, 0.75, 1 on the same Gaussian noise
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– We also tried to chain two elementary blocks, of different angles, 𝐺−1
𝜆,3𝜋/4 ∘𝐺

−1
𝜆,5𝜋/4,

again for 𝜆 = 0.3, 0.5, 0.8, applied to a low-firing compound Poisson noise (𝜈 = 0.01,
i.e., very few spikes), in figure 18. Having a small number of spikes help to see the
directionality increases when 𝜆 increases. The difference between the three sub-figures
is obvious: the few discrete spikes get integrated along the two directions 3𝜋/4 and 5𝜋/4,
and the resulting effect look like an integrated cone of opening angle 𝜋/2 = 5𝜋/4− 3𝜋/4
in the left direction (west).

Figure 18: 𝐺−1
𝜆,3𝜋/4 ∘𝐺

−1
𝜆,5𝜋/4 for 𝜆 = 0.3, 0.5, 0.8 on a low-firing Poisson noise (𝜈 = 0.01)

Remark 5.5. The patterns in figure 18 are quite similar to the result of some fluid-
dynamic simulation on 2D diffusion70. . . , and it not surprising as we simply inte-
grated twice some spikes: this discrete integration is a cumulative sum, which be-
haves numerically like if fluid particles were diffusing around an obstacle.

– Our last illustration will be the application of the same operator 𝐺−1
𝜆,3𝜋/4 ∘ 𝐺

−1
𝜆,5𝜋/4,

for 𝜆 = 0.3, 0.5, 0.8, to the same high-firing compound Poisson noise (𝜈 = 10, i.e., lots of
spikes), in figure 19. This time, there is so many spikes that the realization of the Poisson
noise was (almost) isotropic, and the inverse operator of different “directionality trade-
of” 𝜆 (almost) all have the same visual effect.

(a) 𝜆 = 0.3 (b) 𝜆 = 0.5 (c) 𝜆 = 0.8

Figure 19: 𝐺−1
𝜆,3𝜋/4 ∘𝐺

−1
𝜆,5𝜋/4 for 𝜆 = 0.3, 0.5, 0.8 on a high-firing Poisson noise (𝜈 = 10)

70 For example, cf. this video youtu.be/vOFcHqImXJ8, based on the Navier-Stokes equations.
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We cannot reasonably include more experiments or explanations, but we tried to in-
clude the most interesting ones. Each illustration was making a point that was explained
shortly, and they all backed up the different intuitions we had about our elementary
block 𝐺𝜆,𝛼 and its inverse.

In particular, we really saw that 𝜆 ∈ [0, 1] is a simple trade-of between isotropy and
directionality, and that 𝛼 is the direction of the (discrete) derivation (from 𝐺𝜆,𝛼) and
integration (from 𝐺−1

𝜆,𝛼).

Remark 5.6. More figures are available on-line, see here (goo.gl/EJ7LFa).

Remark 5.7. We are thankful to Virginie Uhlmann (BIG team, EPFL) for her great
help about the implementation of these 2D Sparse Stochastic Processes, and the 𝛾-SI
steerable convolutions and their inverses.

Conclusion

This last part presented a refinement on the main characterization of 𝛾-SI 2D steerable
convolution operators. It has several advantage, as its simplicity is appealing from a
parametric point of view, and its modularity is useful for the implementation. Defining
rich steerable operators is as simple as picking some directions 𝛼𝑖, and some values
for 𝜆𝑖, indicating the trade-of between the directionality of the derivative 𝐷𝛼𝑖 and the
isotropy of the half-Laplacian, and composing the blocks 𝐺𝜆𝑖,𝛼𝑖

.
We explained how to implement both the fractional Laplacian and the block 𝐺𝜆,𝛼,

and their inverse numerically, in order to “integrate” some 2D isotropic compound Pois-
son noise, to illustrate the action of our operators. We have been able to observe the role
of both parameters 𝜆 and 𝛼, and to start to understand the effect of an inverse block𝐺𝜆,𝛼.

Our experiments and implementation are still on-going research, and we will keep
working on them in the future, especially for the article version of this report.
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6 Conclusion

We defined in section 2 our functional operators, on L2(R𝑑,R) and on S(R𝑑,R), and we
explained what kind of structural as well as geometric properties they can have: linearity,
continuity, translation-, scaling-, rotation-invariance or unity. We studied extensively the
links between all these properties in section 3, and we presented many characterizations
of different properties. Some were obvious and already known, but some were new
and quite interesting. Combining properties usually gives elegant characterizations, on
𝑘𝐺for integral operators (i.e., LC), and on 𝑔 and ̂︀𝑔 for convolution operators (i.e., LC TI).
The universality of the fractional Laplacians among LC TI RI 𝛾-SI (theorem 3.40), for
instance, was not too hard to obtain, but it highlights the importance of this family of
isotropic differential operators. To the best of our knowledge, this is the first attempt to
summarize all these characterizations.

We then focused in section 4 on steerable convolution operators 𝐺, mainly in 2D, for
which our main results consist on some characterizations, to first write them as a sum of
modulated and iterated real Riesz transforms. This form was already known, ant too rich
to be used in practice, so we restrict to steerable homogeneous (i.e., 𝛾-SI) convolutions.
Adding the scale-invariance gave a nicer form, as a composition of a fractional Laplacian
(−Δ)𝛾/2, some directional derivatives 𝐷𝛼𝑖 and an invertible 0-scale-invariant factor 𝐺0
(of never-canceling Fourier multiplier, given as a certain trigonometric polynomial).

We also obtained a simpler form, writing 𝐺 as a composition of elementary blocks
𝐺𝜆𝑖,𝛼𝑖

, all being convex combination of the (−Δ)𝛾/2 and 𝐷𝛼𝑖 . This last form is very
appealing for implementation, and defining new steerable operators with a simple para-
metric interface (only need to pick the directions 𝛼𝑖 ∈ [0, 2𝜋], and the trade-of parameters
𝜆𝑖 ∈ [0, 1]). It is also interesting from our theoretical point-of-view, as we showed that
𝐺𝜆𝑖,𝛼𝑖

are the only steerable 1-SI operators of order less than 2. It yields a deep interpre-
tation: a steerable 𝐺 of order 𝑛𝐺 ≤ 𝐾𝐺 + 1 is first written as a sum of modulated iterated
Riesz up to a max frequency of 𝐾𝐺, and then as a composition of exactly 𝐾𝐺 elementary
blocks, all of order 1 or 2.

We did not have the time to do a lot of experiments, but we concluded by explain-
ing the ideas behind an implementation of these steerable operators, and by presenting
the results of some experiments on 2D stochastic processes in section 5.3. It helped to
illustrate the effects of our elementary blocks, and of more complicated operators.

Our approach has the advantage of providing a nice theoretical framework for study-
ing operators, especially steerable operators and 2D steerable 𝛾-SI convolutions. We
strongly believe that our contribution is plural, as this report summed up many known
theoretical results and presented some new theorems, but also explained and illustrated
some examples in 2D on sparse stochastic processes (on Gaussian or compound Pois-
son noise). Our main future direction of research is to conclude these experiments, and
hopefully we will try to publish our main theoretical results on 2D steerable convolu-
tions, illustrated by these experiments.

We only evoked about the other possible future works, of applying our 2D steerable
𝛾-SI convolution operators to sampling (with new splines) and denoising and data re-
covery algorithms (with new Green’s functions). We did not have the time to explore
these directions, but most surely someone will continue on this topic in the BIG team at
EPFL.
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6.1 Other questions, possible future works

We also thought of some additional questions71 on our theory of steerable operators
with geometric properties. We have not worked a lot on these questions, but however
we wanted to mention them.

∙ Can we study more than “just” translation-invariance, maybe invariance by affine
transforms ? It seems harder.

∙ For steerability, we mentioned quickly that 𝑟𝑅 ∘ 𝐺 ∘ 𝑟𝑅−1 was the form of a group
action, the conjugation action. Could we study other group actions ? Possibly, but
we did not find any interesting one so far.

∙ We defined steerability in a general setting but only studied it in 2D. What happens
for steerability in 3D ? It is known to be less easy, but is the difficulty coming from
non-commutativity (of 3D rotations), from non-compactness ?

∙ For a non-steerable operator, can we “approximate” it with a steerable operator of
a certain order? Is it possible to define a projection on the set of steerable operators
of bounded order ?, like it is possible to project a continuous function on the set
of polynomial of bounded degrees (e.g., with Lagrange interpolation). It seems a
reasonable result, but we ran out of time to investigate it.

∙ Can we define steerability for non-linear operator? The same define will work, as the
linearity of 𝐺 is not needed for 𝑉𝐺 to be a (finite dimension) vector space. How-
ever, we do not have Schwartz’s kernel for non-linear operator, so the theory will
probably be harder to develop.

∙ Any discrete theory of steerability?

71 Thanks to Gabriel Peyré for his suggestions.
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A Appendix – On unitary operators (U)

This additional section is devoted to the study of unitary operators, from their definition
(on Euclidean or Hilbert spaces), to characterizations when some geometric properties
are added. We also present and study an interesting family of unitary operators, gen-
eralizing the well-known Hilbert transform. Some additional results can be proved for
unitary steerable and 𝛾-SI steerable operators in 2D.

A.1 Unitary operators (U), definitions and examples

For the special case when 𝐸 = 𝐹 = L2(R𝑑,R), or more generally if both 𝐸 and 𝐹 have
an inner product (i.e., are Euclidean spaces), we can ask our operators 𝐺 : 𝐸 → 𝐹 to be
unitary, in the sense of the following definition72:

Definition A.1 (Unitary operators). For 𝐺 ∈ ℒ(𝐸,𝐹 ), 𝐺 is unitary (U) when
∀𝑓1, 𝑓2 ∈ 𝐸, ⟨𝐺{𝑓1}, 𝐺{𝑓2}⟩ = ⟨𝑓1, 𝑓2⟩. (35)

Proposition A.2. A unitary operator is also called an isometry.

Easy Proof. In an Euclidean space, preserving inner products is equivalent to preserving
norms, by the polarization identity (⟨x,y⟩ = (‖x+y‖−‖x−y‖)/4). Therefore, an operator
is unitary iff it preserves norms, which is the definition of an isometry.

We will denote U the class of unitary operators (not studied by itself), and by LC TI
U the class of linear, continuous and unitary operators (on 𝐸).

Proposition A.3. This class L U is not a linear sub-space of ℒ(𝐸,𝐹 ), but is stable by
composition if 𝐹 = 𝐸.

Easy Proof. A simpler counter example is 𝐺1 = Id and 𝐺2 = −Id, which are both linear
and unitary, but their sum is the null operator, which clearly does not conserve inner
products. Stability by composition is easy. For two L U operators 𝐺1, 𝐺2,

∀𝑓1, 𝑓2 ∈ 𝐸, ⟨𝐺{𝑓1}, 𝐺{𝑓2}⟩
= ⟨(𝐺1 ∘𝐺2){𝑓1}, (𝐺1 ∘𝐺2){𝑓2}⟩
= ⟨𝐺1{𝐺2{𝑓1}}, 𝐺1{𝐺2{𝑓2}}⟩
= ⟨𝐺2{𝑓1}, 𝐺2{𝑓2}⟩ = ⟨𝑓1, 𝑓2⟩.

A.2 Characterizations for unitary convolution operators

On 𝐸 = 𝐹 = L2(R𝑑,R), thanks to their Fourier multiplier, LC TI operators have a very
simple characterization for being unitary.

Theorem A.4. 𝐺 LC TI is unitary (U) iff |̂︀𝑔(𝜔)| = 1 for (almost) all 𝜔 ∈ R𝑑.

72 Unitary operators only have a meaning on normed spaces, or on Euclidean spaces.
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Proof. By definition, 𝐺 is unitary iff it preserves the inner products. And on L2,
we know that the Fourier transform is an isometry73, so ℱ preserves the inner
products. Let 𝑓1, 𝑓2 be two test functions (in L2(R𝑑)).

⟨𝐺{𝑓1}, 𝐺{𝑓2}⟩ = ⟨ℱ{𝐺{𝑓1}},ℱ{𝐺{𝑓2}}⟩

= ⟨̂︀𝑔̂︁𝑓1, ̂︀𝑔̂︁𝑓2⟩

= ⟨|̂︀𝑔|2̂︁𝑓1,̂︁𝑓2⟩.

And so, 𝐺 is unitary iff ⟨𝐺{𝑓1}, 𝐺{𝑓2}⟩ = ⟨𝑓1, 𝑓2⟩ for all 𝑓1, 𝑓2 iff ⟨|̂︀𝑔|2̂︁𝑓1,̂︁𝑓2⟩ =
⟨̂︁𝑓1,̂︁𝑓2⟩ for all 𝑓1, 𝑓2 iff |̂︀𝑔(𝜔)|2 − 1 = 0 for (almost) all 𝜔 ∈ R𝑑 iff |̂︀𝑔(𝜔)| = 1 for
(almost) all 𝜔 ∈ R𝑑.

Note that for usual examples of operators, ̂︀𝑔 is a true function, and this result
will be ∀𝜔 ∈ R𝑑, |̂︀𝑔(𝜔)| = 1.

Proposition A.5. Let 𝐺 be LC TI and unitary, if it is 𝛾-SI then 𝛾 = 0.

Easy Proof. Thanks to the previous theorem, and the characterization for LC TI 𝛾-SI op-
erators (theorem 3.35), it is obvious, as ̂︀𝑔(𝜔) = ‖𝜔‖𝛾̂︀𝑔(𝜔/‖𝜔‖) for 𝜔 ̸= 0, so |̂︀𝑔(𝜔)| =
‖𝜔‖𝛾 |̂︀𝑔(𝜔/‖𝜔‖)| and |̂︀𝑔(𝜔)| = 1 = |̂︀𝑔(𝜔/‖𝜔‖)|, which implies that ‖𝜔‖𝛾 = 1 for all 𝜔 ̸= 0,
so 𝛾 = 0.

Remark A.6. Note that we do not have that converse: a unitary convolution can
be not scale-invariant! We could imagine for instance a Fourier multiplier likê︀𝑔(𝑟, 𝜃) = e𝑗𝑟 cos(𝜃), which is Hermitian symmetric (̂︀𝑔(𝑟, 𝜃 + 𝜋) = e𝑗𝑟 cos(𝜃+𝜋) =
e−𝑗𝑟 cos(𝜃) = e𝑗𝑟 cos(𝜃) = ̂︀𝑔(𝑟, 𝜃)). It clearly has a modulus equal of 1, but it is not
𝛾-scale-invariant for any 𝛾 ∈ R+: e𝑗𝑟 cos(𝜃) ̸= 𝑟𝛾e𝑗 cos(𝜃). Indeed, for 𝜃 = 0, it would
give e𝑗𝑟 = 𝑟𝛾e𝑗 which can only be true for 𝑟 ∈ 1 + 2𝜋Z but the relation has to be true
for any 𝑟 ∈ R+.

We tried for quite some time to obtain a characterization for unitary LC TI 0-SI opera-
tors, but we failed to obtain anything more explicit or more powerful than this (obvious)
proposition:

Proposition A.7. 𝐺 is LC TI 0-SI and unitary iff ̂︀𝑔 is scale-invariant and of modulus 1.

Proof. Thanks to the previous proposition, and the characterization for LC TI 0-SI
operators (theorem 3.35) (iff ̂︀𝑔 is scale-invariant), it is obvious.

In such cases, ̂︀𝑔 has its image in S1 (complex unit circle), and can be restricted
to S𝑑−1 (unit sphere of R𝑑) thanks to its scale-invariance. We tried to characterize
such ̂︀𝑔|S𝑑−1 : S𝑑−1 → S1, but we failed. The more promising direction was the use
of some path lifting theorem74 [Bil04], but in this general setting there is no hope of
imposing an hypothesis of continuity on ̂︀𝑔, making it useless in general.

73 With the good choice of constant for ℱ , as explained in the introduction 1.3.1.
74 For a continuous (or 𝒞𝑘) function 𝑓 : Ω → C, if 𝑓 has module 1, there exists a continuous (or 𝒞𝑘) “path

lifting” function Θ𝑓 such that 𝑓(x) = exp(𝑗Θ𝑓 (x)).
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And quite directly, we also obtain a very narrow result, showing that the identity is
the only 𝛾-SI convolution to be both unitary and rotation-invariant.

Proposition A.8. If 𝐺 is LC TI 𝛾-SI and unitary, it is RI iff it is the identity.

Proof. The converse is obvious, and the direct sense is quick thanks to the previ-
ous theorem, and the characterizations of rotation-invariant and 0-scale-invariant
operators, theorems 3.35 and 3.39. Combining the three results gives directly that
∀𝜔 ∈ R𝑑, ̂︀𝑔(𝜔) = 1, i.e., 𝐺 = Id.

In other words, the only operator to be LC TI RI 𝛾-SI and unitary is the identity.
We tried to obtain more general results on unitary operators, but nothing else inter-

esting came out of this research in the general setting. The next part introduces a para-
metric family of unitary operators in any dimension (the fractional-directional Hilbert
transforms), and we prove that it is universal in dimension 𝑑 = 1, and that no paramet-
ric family can be universal in higher dimension. However, the closure of this family will
turn out to be a dense family in dimension 𝑑 = 2.

A.3 An extended example: the fractional-directional Hilbert transforms fdHT

We start by reminding what is the classic Hilbert transform, and some of its earlier gener-
alizations, and then we introduce the family of fractional-directional Hilbert transform,
in any dimension 𝑑. We focus on the specific case of dimension 𝑑 = 2, where the family
will not be universal but its closure for composition will be dense in the class of unitary
LC TI 0-SI operators on L(R2,R).

We will explain why, but this is the best result that can be achieved when we look
for a parametrization of such operators. This negative result should be opposed to the
universality of the fractional Hilbert transform in dimension 𝑑 = 1, but it should not be
seen as a failure: the class of possible Fourier multiplier for unitary LC TI 0-SI in higher
dimensions is simply too rich to be parametrized.

A.3.1 Classic Hilbert transform and earlier generalizations in dimension 1 and 2

In dimension 𝑑 = 1, the classic Hilbert transform 𝐻 is defined on L2(R,R) by its simple
Fourier multiplier75:

𝐻{𝑓}(𝑥) ℱ←→ −𝑗 sign(𝑤) ̂︀𝑓(𝑤). (36)

It is well-known, for instance in optics, and it has been used since the seventies.
We will not detail how it is used and implemented, and why it is interesting, but the
interested reader could consult for instance [LMZ96].

Let us expose two earlier generalizations in dimension 1 and 2.

75 One can check quickly that this 1D Fourier multiplier ̂︀𝐻(𝑤) = −𝑗 sign(𝑤) is indeed Hermitian sym-
metric.
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In dimension 𝑑 = 1

A well-known generalization is the fractional Hilbert transform 𝐻𝜏 , as presented for
instance in [CU10, Part 2.1] or [LMZ96], and it is defined on L2(R,R) by:

𝐻𝜏
def= cos(𝜋𝜏)Id− sin(𝜋𝜏)𝐻.

It contains the special cases Id = 𝐻0 and 𝐻 = 𝐻−1/2, it satisfies a nice composition
property: 𝐻𝜏1∘𝐻𝜏2 = 𝐻𝜏1+𝜏2 and its Fourier multiplier is given by𝑤 ↦→ exp (𝑗𝜋𝜏 sign(𝑤)).

In dimension 𝑑 = 2

A generalization was introduced and studied in [CU10, Part 4, p15], with a parameter
𝜃 ∈ [0, 2𝜋), and by writing −→𝑢 𝛼

def= [cos(𝛼) sin(𝛼)]𝑇 the unitary vector of angle 𝛼, the 2-
dimension directional Hilbert transform 𝐻𝛼 is defined on L2(R2,R) by:

𝐻𝛼{𝑓}(x) ℱ←→ −𝑗 sign(−→𝑢 𝑇𝛼𝜔) ̂︀𝑓(𝜔).

It has also nice properties, but we leave the reader refers to [CU10] for more details.

A.3.2 Definition of the fdHT

The fractional-directional Hilbert transform is a parametric operator, with two parame-
ters, that generalize the Hilbert transform 𝐻 (and its previously introduced generaliza-
tion) to operate on L2(R𝑑,R) and not simply on L2(R,R) or L2(R2,R). The form of its
Fourier multiplier is very simple, but the resulting family is surprisingly interesting.

Definition A.9 (fdHT). For 𝜏 ∈ R a scalar and −→𝑢 ∈ S𝑑−1 a unitary vector (in R𝑑).
We denote by𝐻𝜏,−→𝑢 the LC TI operator on𝐸 = L2(R𝑑), defined by its Fourier multiplier:

∀𝜔 ∈ R𝑑, 𝐻𝜏,−→𝑢 (𝜔) def= exp(𝑗𝜋𝜏 sign(−→𝑢 𝑇𝜔)⏟  ⏞  
∈{−1,1}

). (37)

It is called the fractional directional Hilbert transform76of parameters 𝜏,−→𝑢 (fdHT).

Easy Proof. This operator is obviously LC TI as we define it by its (measurable) Fourier
multiplier 𝐻𝜏,−→𝑢 (𝜔). We need to check that it maps real-valued functions to real-valued
functions, and thanks to theorem 3.17, it is enough to check that its Fourier multiplier is
Hermitian symmetric:

𝐻𝜏,−→𝑢 (−𝜔) = exp
(︀
𝑗𝜋𝜏 sign(−→𝑢 𝑇 (−𝜔))

)︀
= exp

(︀
−𝑗𝜋𝜏 sign(−→𝑢 𝑇 𝜔)

)︀
= exp (𝑗𝜋𝜏 sign(−→𝑢 𝑇 𝜔)) = (𝐻𝜏,−→𝑢 (𝜔)).

Warning A.10. The sign(. . . ) term has to be inside the exponential, not outside, in order to
have the Hermitian symmetry. Indeed, e𝑗𝜃 = e−𝑗𝜃 ̸= −e𝑗𝜃 = e𝑗(𝜃+𝜋).

76 “Fractional” because of the factor 𝜏 ∈ R, and “directional” because of the direction vector −→𝑢 ∈ S𝑑−1.
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A.3.3 Elementary properties of the fdHT

Some properties of the fdHT operators are easy to obtain.

Proposition A.11. Any fdHT operator 𝐻𝜏,−→𝑢 is also 0-SI, and unitary (U).

Easy Proof. ∙ 𝜔 only appears in sign(−→𝑢 𝑇 𝜔) in the expression of its Fourier multiplier,
and sign(−→𝑢 𝑇 (𝑎𝜔)) = sign(𝑎(−→𝑢 𝑇 𝜔)) = sign(−→𝑢 𝑇 𝜔) for any 𝑎 > 0, so its Fourier mul-
tiplier is scale-invariant, hence the operator 𝐻𝜏,−→𝑢 is 0-SI.

∙ By definition, |𝐻𝜏,−→𝑢 (𝜔)| = 1. By the characterization A.4 of unitary LC TI operators,
this gives directly that 𝐻𝜏,−→𝑢 is unitary.

Lemma A.12. Our fractional-directional Hilbert transform 𝐻𝜏,−→𝑢 can also be seen as:

𝐻𝜏,−→𝑢 = cos(𝜋𝜏)Id− sin(𝜋𝜏)𝐻−→𝑢 . (38)

With 𝐻−→𝑢 the (purely) directional Hilbert transform (̂︂𝐻−→𝑢 (𝜔) = −𝑗 sign(−→𝑢 𝑇𝜔)),
cf. [CU10, Part 4, p15].

Easy Proof. We simply observe that the real and imaginary parts of the Fourier multiplier
of 𝐻𝜏,−→𝑢 are respectively even and odd:

𝐻𝜏,−→𝑢 (𝜔) = exp(𝑗𝜋𝜏 sign(−→𝑢 𝑇 𝜔)) (39)

= cos⏟ ⏞ 
is even

(𝜋𝜏 sign(−→𝑢 𝑇 𝜔)⏟  ⏞  
±1

) + 𝑗 sin⏟ ⏞ 
is odd

(𝜋𝜏 sign(−→𝑢 𝑇 𝜔)⏟  ⏞  
±1

)

= cos(𝜋𝜏) + 𝑗 sin(𝜋𝜏) sign(−→𝑢 𝑇 𝜔)
= cos(𝜋𝜏)− sin(𝜋𝜏)

(︀
−𝑗 sign(−→𝑢 𝑇 𝜔)

)︀
.

= cos(𝜋𝜏) ̂︀Id(𝜔)− sin(𝜋𝜏)̂︂𝐻−→𝑢 (𝜔).

Corollary A.13 (In dimension 2). Remember that 𝐻𝛼 is the (purely) directional Hilbert
transform in dimension 2, defined by ̂︂𝐻𝛼(𝑟, 𝜃) = −𝑗 sign(cos(𝜃 − 𝛼)), then if −→𝑢 = −→𝑢𝛼,

𝐻𝜏,𝛼
def= 𝐻𝜏,−→𝑢𝛼

= cos(𝜋𝜏)Id− sin(𝜋𝜏)𝐻𝛼.

So we recognize in ̂︂𝐻𝜏,𝛼(𝑟, 𝜃) a term extremely similar to the radial dependency of one of our
“elementary block” 𝐺𝜆,𝛼′ = 𝜆𝐷𝛼′ + (1− 𝜆)(−Δ)1/2 (up-to a real constant 𝐶).

Easy Proof. We can manipulate directly its Fourier multiplier:

|𝜔|𝐻𝜏,𝛼(𝜔) = 𝑟𝐻𝜏,𝛼(𝑟, 𝜃)
= 𝑟 (cos(𝜋𝜏) + 𝑗 sin(𝜋𝜏) sign(cos(𝜃 − 𝛼)))
= cos(𝜋𝜏)𝑟 + sin(𝜋𝜏)𝑗𝑟 sign(cos(𝜃 − 𝛼))
= 𝐶⏟ ⏞ 

∈R

(︀
(1− 𝜆) 𝑟⏟ ⏞ 

= ̂(−Δ)1/2(𝑟,𝜃)

+ 𝜆⏟ ⏞ 
∈[0,1]

(𝑗𝑟 sign(cos(𝜃 − 𝛼′)))⏟  ⏞  
=̂︁𝐷𝛼′ (𝑟,𝜃)

)︀
.

With 𝑐 = cos(𝜋𝜏) + sin(𝜋𝜏), and

∙ If 𝑐 = 0, 𝐶 = 2 cos(𝜋𝜏), 𝜆 = 1
2 ∈ [0, 1], 𝛼′ = 𝛼+ 𝜋.
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∙ Else if 𝑐 ̸= 0, 𝐶 = 𝑐 sign( sin(𝜋𝜏)
𝑐 ), 𝜆 = sin(𝜋𝜏)

𝑐 sign( sin(𝜋𝜏)
𝑐 ) ∈ [0, 1], 𝛼′ = 𝛼 + 𝜋 if

sin(𝜋𝜏)
𝑐 ≤ 0 else 𝛼′ = 𝛼.

Remark A.14. Unfortunately, we have not been to exploit this similarity. The previous
corollary is not very useful, but we wanted at least to expose this similarity in 2D
between the fdHT 𝐻𝜏,𝛼 and the elementary steerable convolutions 𝐺𝜆,𝛼. . .

The fdHT family also has an interesting algebraic property, similar to the one of the
group of rotation:

Proposition A.15. For a fixed −→𝑢 , every family {𝐻𝜏,−→𝑢 , 𝜏 ∈ R} is a semi-group:

∙ 𝐻𝜏1,
−→𝑢 ∘𝐻𝜏2,

−→𝑢 = 𝐻𝜏1+𝜏2,
−→𝑢 for the composition law77,

∙ Id = 𝐻0,−→𝑢 is neutral for the composition,

∙ And the inverses78 of 𝐻𝜏,−→𝑢 is any operator of the set {𝐻−𝜏+2𝑘,−→𝑢 , 𝑘 ∈ Z}.

Easy Proof. The three points are easy to check, we let the interested reader do it.

There is no similar result of stability by compositions when two different directions
(−→𝑢1 ̸= −→𝑢2) can be used, unfortunately, but we also have this result.

Lemma A.16. 𝐻𝜏,−→𝑢 also has an inverse with the same 𝜏 but of inverse direction: 𝐻𝜏,−−→𝑢 .

Easy Proof. It is obvious from

𝐻𝜏,−→𝑢 (𝜔) = 𝐻𝜏,−→𝑢 (−𝜔) = 𝐻𝜏,−−→𝑢 (𝜔),

and the fact that 𝐻𝜏,−→𝑢 (𝜔) has modulus 1, so 𝐻𝜏,−→𝑢 (𝜔)𝐻𝜏,−→𝑢 (𝜔) = 1.

We will then consider the family of operators composed of any finite compositions of
fdHT. Considering limits of such compositions will be interesting, it will give the closure
by composition and inverse of the family of composed fdHT. The closure by inverse is
obvious from lemma A.16 but it is a nice property. It turns out that this last family is
dense in 2D, but not in higher dimension.

A.3.4 Implementation of the fdHT

We implemented the fdHT operators, in a Python v2/v3 script, using numpy arrays and
the Fast Fourier Transform (FFT) and Inverse FFT implementation from numpy (cf. fftn,
ifftn). Our implementation is open-source, available on-line, and comes with a docu-
mentation and examples.

A fdHT is represented by its parameter 𝜏 ∈ R and direction −→𝑢 ∈ S𝑑−1, and we apply
it to real-valued images using the usual process, presented above in figure 3.

78 It highlights the presence of a semi-group morphism between {𝐻𝜏,−→𝑢 , 𝜏 ∈ R} for ∘ and R for +, or a
group morphism if 𝜏 is restricted to R/2Z the 2-periodic torus, instead of the real line R.

78 This set has a structure of a semi-group only, because there is not a unique inverse.
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The implementation was quick to obtain, but we spent quite some time experiment-
ing and trying to understand the behavior of the fdHT operators. We applied them to
square images (in 2D only), of different kind, firstly on purely isotropic images, then on
simple patterns and finally on black-and-white image (e.g., Lenna, of course). For a rea-
son we failed to understand, the discrete function we implemented from our formulas
was not a real operator, even if the continuous formulas ensures that it is (as 𝐻𝜏,−→𝑢 is
Hermitian symmetric). That is why the images and animations we got are not simple
black-and-white images, but complex-valued images. We used this other script to asso-
ciate a clear color-map to complex values. The figures we obtained are on-line, see here
(goo.gl/P5huxH).

Unfortunately, the results of our experiments are not so satisfactory, hence we prefer
to not spend much time detailing them. A curious reader can refer to the code and the
figures on-line.

A.3.5 Non-universality but density of the fdHT among unitary 0-SI convolutions

In dimension 1, there is a strong characterization of LC TI 0-SI and unitary operators
as fractional Hilbert transforms. Indeed, [CU10, Th.3.1, p8] showed that the fractional
Hilbert transform on L2(R,R) are exactly the unitary linear operators invariant to trans-
lations and scaling. In other words, on L2(R,R), a unitary LC TI St operator 𝐺 can be
written as 𝐺 = 𝐻𝜏 for some 𝜏 ∈ R (and 𝜏 is unique if is taken in (−1, 1]).

We would like to get the same kind of result in any dimension 𝑑, and that was the
motivation behind our study of this 𝑑-dimensional generalization of the 1-d fractional
Hilbert transform. Without explaining all the research process, we can simply say that
we have been able to answer this question negatively.

Theorem A.17 (No universal parametric family in dimension 𝑑 ≥ 2).
In any dimension 𝑑 ≥ 2, any family 𝒜 of operators parametrized by a finite number

of parameters (reals or integers) cannot be universal in the class of unitary LC TI 0-SI
operators on L2(R𝑑,R).

Proof. As we already seen it, the class of possible Fourier multipliers is very rich,
as the only condition always imposed on ̂︀𝑔 is its modulus being 1, its measura-
bility and 0-scale-invariance, i.e., it can be restricted to ̂︀𝑔 : S𝑑−1 → S1. The set of
measurable functions from S𝑑−1 to S1 = U is not finite dimensional, as for instance
it contains the infinite-dimensional family 𝜔 → e𝑗𝑘𝑤1 (for 𝑘 ∈ Z).

Instead of a universal family (a basis), we can try to exhibit a dense family. In di-
mension bigger than 2, we failed to find a family of unitary convolutions that was both
simple to work with and dense, and we strongly believe that it is unachievable. But in
dimension 2, the family introduced above, constituted of any finite number of composi-
tions of fdHT, turns out to be dense in the unitary convolutions.

Theorem A.18 (Density of composed fdHT among 2D unitary LC TI 0-SI operators).
Any 2D unitary LC TI 0-SI operator 𝐺 can be approximated by a sequence 𝐺𝑛, each being
a composition of at most 𝑛 fdHT operators, in the sense of 𝑔𝑛 → 𝑔 in S′ or ̂︁𝑔𝑛 → ̂︀𝑔 as a
simple limit of measurable functions (i.e., point-wise limit).
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Long and Hard Proof. 79

We work with Fourier multipliers instead of impulse response. The core idea
of the proof is to be able to compose two fdHT Fourier multipliers to obtain a
Hermitian-symmetric function that acts like the indicator function of a small an-
gular sector on S1 (as small as needed).

More formally, let 𝛼 ∈ R and 𝜀 > 0. Let 𝐴𝛼,𝜀 be the (possibly small) angular
sector, surrounding 𝛼, of size 𝜀: 𝐴𝛼,𝜀 = (𝛼− 𝜀/2, 𝛼+ 𝜀/2) mod 2𝜋 (an open in-
terval). And let 𝐵𝛼,𝜀 = 𝐴𝛼,𝜀

⨄︀(︀
𝐴𝛼,𝜀 + 𝜋

)︀
(the later being a Minkowsky sum). 𝐵𝛼,𝜀

is stable by 𝜃 ↦→ 𝜃 + 𝜋. See figure 20 for an illustration of the two angular sectors.

𝑥

𝑦

−→𝑢1

−𝜀

𝛼−→𝑢 2
+𝜀

−
−→𝑢1

−𝜀

𝛼 + 𝜋

−
−→𝑢 2

+𝜀

+

𝑂
∙

𝐴𝛼,𝜀⏟ ⏞ 

⏞  ⏟  
𝐴𝛼,𝜀 + 𝜋

Figure 20: Two angular sectors 𝐴𝛼,𝜀 and 𝐴𝛼,𝜀 + 𝜋 (= 𝐴𝛼+𝜋,𝜀), in 2D.

Let 𝛽 ∈ R, and let ̂︂ℎ𝛼,𝜀(𝜔) = ̂︂ℎ𝛼,𝜀(𝑟, 𝜃) = exp
(︀
𝑗𝛽
(︀
1𝐴𝛼,𝜀(𝜃)− 1𝐴𝛼,𝜀(𝜃 + 𝜋)

)︀ )︀
, it

has a constant modulus of 1, and is Hermitian symmetric (H-s):

̂︂ℎ𝛼,𝜀(−𝜔) = ̂︂ℎ𝛼,𝜀(𝑟, 𝜃 + 𝜋) = exp
(︀
𝑗𝛽
(︀
1𝐴𝛼,𝜀

(𝜃 + 𝜋)− 1𝐴𝛼,𝜀
(𝜃 + 2𝜋)

)︀ )︀
= exp

(︀
𝑗𝛽
(︀
1𝐴𝛼,𝜀(𝜃)− 1𝐴𝛼,𝜀(𝜃 + 𝜋)

)︀
= ̂︂ℎ𝛼,𝜀(𝑟, 𝜃) = ̂︂ℎ𝛼,𝜀(𝜔).

And ̂︂ℎ𝛼,𝜀 can be written as a product of two Fourier multipliers of fdHT. Let
𝑢1 = −→𝑢 𝛼−𝜀/2 and 𝑢2 = −→𝑢 𝛼+𝜀/2 be two unitary directional vectors, corresponding
to the left- and right-limit of 𝐵𝛼,𝜀. Then we can check that

̂︂ℎ𝛼,𝜀(𝜔) = exp
(︂
𝑗
𝛽

2 sign(𝑢1𝜔𝑇 )
)︂

exp
(︂
−𝑗 𝛽2 sign(𝑢2𝜔𝑇 )

)︂
. (40)

Proof. To prove (40), we simply need to check that it is true in the four different
domains: between 𝑢1 and 𝑢2, on the left of both, between−𝑢2 and−𝑢1, and on the
right of both (in the trigonometric sense, cf. figure 20).

79 Beware that this proof is long and technical, and make use of some notions coming from Lebesgue’s
theory of integration. For a reminder, see for instance these Wikipedia articles: on Lebesgue integration or
on simple functions.
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So we can write ℎ as a composition of two fdHT, ℎ𝛼,𝜀 = 𝐻𝛽/2,𝑢1 ∘𝐻𝛽/2,−𝑢2 =
𝐻𝛽/2,−→𝑢 𝛼−𝜀/2

∘ 𝐻𝛽/2,−→𝑢 −(𝛼+𝜀/2)
. Now, let us explain how we can use ̂︂ℎ𝛼,𝜀 as an ele-

mentary building block. We aim at approximating any ̂︀𝑔, that is known to be H-s,
of modulus 1, and measurable.

We know80 that the simple functions81 are dense among the measurable func-
tions (for the point-wise limit), and it is still true for H-s functions on S1 to S1

(i.e., functions of 𝜃 only). And H-s step functions are dense among the H-s sim-
ple functions. So we can just show that our building block can be compose to
approximate a H-s unitary simple function (for the point-wise limit).

A H-s unitary simple function 𝑓 on [0, 2𝜋] will be written 𝑓(𝜃) =
∑︀𝐾
𝑘=−𝐾 e𝑗𝛽𝑘1𝐴𝑘

(𝜃),
for 𝐾 ∈ N and 𝛽𝑘 ∈ R, and a partition of measurable sets

⨄︀𝐾
𝑘=−𝐾 𝐴𝑘 of [0, 2𝜋]. The

coefficients in the linear combination are of modulus 1, so they can be written as
e𝑗𝛽𝑘 . The Hermitian symmetry imposes that 𝑓(𝜃) ̸= 0⇔ 𝑓(𝜃 + 𝜋) ̸= 0, so, up-to a
new indexing, we can have 𝐴0 = ∅, and 𝜃 ∈ 𝐴𝑘 ⇔ 𝜃 + 𝜋 ∈ 𝐴−𝑘 for all 𝑘 > 0, and
so the symmetry gives 𝛽𝑘 = −𝛽−𝑘. Now, we can write (or at least approximate)
𝐴𝑘 as a (limit of) finite union(s) of open intervals because the measurable sets can
be written as (possibly infinite, but always countable82) unions of Borelian sets,
which can be taken as left- and right-open intervals (in dimension 1, on [0, 2𝜋]).

Now the trick is to write 𝑓(𝜃) as

𝑓(𝜃) =
𝐾∑︁

𝑘=−𝐾

e𝑗𝛽𝑘1𝐴𝑘
(𝜃) =

𝐾∑︁
𝑘=1

e𝑗𝛽𝑘1𝐴𝑘
(𝜃) + e−𝑗𝛽𝑘1𝐴−𝑘

(𝜃)

=
𝐾∑︁

𝑘=1
e𝑗𝛽𝑘1𝐴𝑘

(𝜃) + e−𝑗𝛽𝑘1𝐴𝑘
(𝜃 − 𝜋)

=
𝐾∑︁

𝑘=1
exp(𝑗𝛽𝑘1𝐴𝑘

(𝜃)− 𝑗𝛽𝑘1𝐴𝑘
(𝜃 + 𝜋))

= exp
(︁
𝑗

𝐾∑︁
𝑘=1

𝛽𝑘 (1𝐴𝑘
(𝜃)− 1𝐴𝑘

(𝜃 + 𝜋))
)︁

This last step is wrong in the general case, but true here because we have a parti-
tion: only one term is non-zero at a time.

𝑓(𝜃) =
𝐾∏︁

𝑘=1
exp(𝑗𝛽𝑘 (1𝐴𝑘

(𝜃)− 1𝐴𝑘
(𝜃 + 𝜋)))

We recognize the product of𝐾 terms with the same form, exp(𝑗𝛽𝑘 (1𝐴𝑘
(𝜃)− 1𝐴𝑘

(𝜃 + 𝜋))).
So if 𝐴𝑘 =

⨄︀𝑁𝑘
𝑖=1 𝐼𝑖,𝑘 is partitioned with a finite number 𝑁𝑘 of open disjoint inter-

vals, 𝑓(𝜃) becomes a (big) product of 𝑀 =
∑︀𝐾
𝑘=1𝑁𝑘 terms,

𝑓(𝜃) =
𝐾∏︁

𝑘=1
exp(𝑗𝛽𝑘 (1𝐴𝑘

(𝜃)− 1𝐴𝑘
(𝜃 + 𝜋)))

80 Cf. this Wikipedia article if needed, or in French.
81 Definition: a simple function is a finite linear combination of indicator functions of measurable sets.
82 It is very important to have (in the worse scenario) a countable family, and not any infinite family, as

we want at the end to chain all these approximations and get one sequence, indexed by N, i.e., a countable
sequence. This result appeared to not be known with a unique name, one name we found was the Lindelöf
lemma.
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=
𝐾∏︁

𝑘=1
exp

(︃
𝑗𝛽𝑘

(︃
𝑁𝑘∑︁
𝑖=1

1𝐼𝑖,𝑘
(𝜃)−

𝑁𝑘∑︁
𝑖=1

1𝐼𝑖,𝑘
(𝜃 + 𝜋)

)︃)︃

=
𝐾∏︁

𝑘=1

(︃
𝑁𝑘∏︁
𝑖=1

exp(𝑗𝛽𝑘

(︀
1𝐼𝑖,𝑘

(𝜃)− 1𝐼𝑖,𝑘
(𝜃 + 𝜋)

)︀
)
)︃

=
𝑀∏︁

𝑙=1
exp(𝑗𝛽𝑙 (1𝐼𝑙

(𝜃)− 1𝐼𝑙
(𝜃 + 𝜋))) =

𝑀∏︁
𝑙=1

ℎ𝛼,𝜀(𝑟, 𝜃).

As a open interval 𝐼𝑙 can always83 be seen as a angular sector 𝐴𝛼,𝜀, and in this
case, (40) implies that ℎ𝛼,𝜀 is exp(𝑗𝛽𝑙 (1𝐼𝑙

(𝜃)− 1𝐼𝑙
(𝜃 + 𝜋))).

Finally, if we put everything together, we obtain the complete story:

1. If 𝐺 is a 2D real 0-SI unitary convolution, its Fourier multiplier ̂︀𝑔 is a unitary
Hermitian symmetry measurable function, whose domain can be restricted
to S1 = U (each hypothesis is important).

2. ̂︀𝑔 can be approximated84 by unitary H-s simple functions on S1 (approximated
in the sense of point-wise limit for functions, i.e., a simple limit).

3. A simple function 𝑓 is a finite sum of indicator functions of measurable sets
𝐴𝑘 (on the circle S1 or the angles [0, 2𝜋]). A unitary simple function will have
complex coefficients of modulus 1: 𝑓(𝜃) =

∑︀𝐾
𝑘=−𝐾 e𝑗𝛽𝑘1𝐴𝑘

(𝜃).
4. Such a measurable set 𝐴𝑘 is decomposed as disjoint union of open intervals
𝐼𝑘,𝑖 (possibly infinite, but always countable).

5. So the simple function 𝑓 can be written as
∑︀𝑀
𝑙=−𝑀 e𝑗𝛽𝑙1𝐼𝑙

(𝜃).

6. A trick is to then write 𝑓(𝜃) =
∏︀𝑀
𝑙=−𝑀 e𝑗𝛽𝑙1𝐼𝑙

(𝜃) instead85.
7. The Hermitian symmetry gives a certain symmetry on 𝐼𝑙 (and 𝐴𝑘), and so
𝑓(𝜃) =

∏︀𝑀
𝑙=1 e𝑗𝛽𝑙(1𝐼𝑙

(𝜃)−1𝐼𝑙
(𝜃+𝜋)).

8. For intervals 𝐼𝑙, this term e𝑗𝛽𝑙(1𝐼𝑙
(𝜃)−1𝐼𝑙

(𝜃)) is exactly what we called our ele-
mentary block ℎ𝛼,𝜀 of parameters 𝛼, 𝜀 depending86 on 𝐼𝑙.

9. Composing two simple87 fdHT operators gives this elementary block ℎ𝛼,𝜀.

Conclusion: so by going backward (from 9 to 1), we see that our fdHT oper-
ators can indeed be used to approximate 𝐺, in the sense of the point-wise limit of
their Fourier multiplier.

Remark A.19. This proof was tedious, and one should keep in mind that we only
proved the density of the composed fdHT operators, in particular we did not give an
explicit representation of any 2D unitary LC TI 0-SI operator as a finite composition
of fractional-directional Hilbert transforms (it is unachievable!).

Even worse, the density result is not fully explicit either. Each step we developed
in the proof is explicit, but it would be impossible to sum them up in an simple and
explicit scheme.

83 Simply take 𝛼 the middle of the interval, and 𝜀 its length.
84 The approximation can be as precise as we want (there is convergence of a family (𝑔𝑛)𝑛∈N).
85 It seems odd but this is true, as exactly one 1𝐼𝑙 (𝜃) is non-zero for any 𝜃, and for the others: adding a

e𝑗𝛽𝑙1𝐼𝑙 (𝜃) = 0 or multiplying by a e𝑗𝛽𝑙1𝐼𝑙
(𝜃) = 1 does nothing.

86 𝛼 ∈ [0, 2𝜋] is the middle of the interval, and 𝜀 > 0 is its length.
87 Of common parameter 𝜏 = 1

2 and directions 𝑢1 = −→𝑢 𝛼−𝜀/2 and 𝑢2 = −→𝑢 −(𝛼+𝜀/2).
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This being said, our theorem of density (theorem A.18) is still a very interesting result,
as to the best of our knowledge it is the first of its kind for dimension bigger than 1. As
theorem A.17 highlighted it, we have no hope of finding a parametrization of 2D unitary
LC TI 0-SI operators with a finite number of parameters, so the density of a simple
family of operators is the best one can hope to achieve. The fdHT have the advantage of
being very easy to manipulate, parametrize and implement. Note that we do not know
of any other dense family, so we cannot compare ours to another one. . .

And in higher dimension?

The fdHT was introduced in any dimension (definition A.9), but our theorem A.18 can
only work in 2D. The key property we used was that the fdHT are constants on half-
circles, and combining two of them gives a block similar to the indicator function of a
(small) convex angular sector (i.e., an interval). The same trick has no chance to work in
higher dimensions, as fdHT are constants on half hyper-spheres, and combining two (or
more) of them will never give a small surface element on S𝑑−1.

Figure 21 is an illustration of this sphere in 3D, showing two symmetric angular sec-
tors (denoted 𝐴𝜑,𝜓,𝜀, (𝜑, 𝜓) having their usual meaning as spherical coordinates). They
are obtained by combining two angular sectors, for instance on 𝜑 (in blue) and 𝜓 (in or-
ange), and we see that the nice behavior we used in 2D cannot be obtained in 3D: there
is two “bands” (blue and orange, outside the red sectors) that cannot be neglected. It
would be tedious to fully explain why our 2D trick does not generalize in higher dimen-
sion, but we hope this illustration would be enough for the reader to get a glimpse of
this issue.

𝑂

𝑁

𝑆

𝜑

𝜓

A𝜑,𝜓,𝜀

𝐴𝜑+𝜋,𝜓+𝜋,𝜀

Figure 21: Two angular sectors A𝜑,𝜓,𝜀 (front) and 𝐴𝜑+𝜋,𝜓+𝜋,𝜀 + 𝜋 (back), in 3D.
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A.3.6 Inverting a fdHT

We will simply interpret the fact that the family of fdHT is closed under the inversion.
For instance, in dimensions 1 and 2.

Lemma A.20. For a fdHT in dimension 1 (i.e., a purely-fractional Hilbert transform),𝐻𝜏 =
cos(𝜋𝜏)Id− sin(𝜋𝜏)𝐻 , its Fourier multiplier is ̂︁𝐻𝜏 (𝑤) = cos(𝜋𝜏) + 𝑗 sin(𝜋𝜏) sign(𝑤). It
has an inverse, given by 𝐻−1

𝜏 = 𝐻−𝜏 .

Lemma A.21. For a fdHT in dimension 2, 𝐻𝜏,𝛼 = cos(𝜋𝜏)Id − sin(𝜋𝜏)𝐻𝛼, its Fourier
multiplier is ̂︁𝐻𝜏 (𝑤) = cos(𝜋𝜏) + 𝑗 sin(𝜋𝜏) sign(cos(𝜃 − 𝛼)). It has an inverse, given by
𝐻−1
𝜏,𝛼 = 𝐻𝜏,𝛼+𝜋.

Corollary A.22. Therefore, there is need of Green’s function for our fdHT.

Easy Proof. Indeed, if we know how to apply (theoretically or practically, e.g., on an image)
a fdHT, then we directly know how to apply an inverse fdHT.

A.4 Attempts of characterizing unitary 2D steerable convolutions

After a long and detailed study of 2D steerable convolutions in the core of this work
(section 4.3), one could wonder what can be said if we mix the unity and the steerability
properties. We do not have any rich characterization for steerability in dimension 𝑑 ∈ N
but only in dimension 1 and 2, so this last part focus only on steerable convolutions in
dimension 2.

Surprisingly, a characterization of unitary LC TI St operators appeared very hard to
obtain, while adding the scale-invariance reduces greatly the richness of the class and
gives a very narrow result (as before). This will be the last characterization of operators
with geometric properties.

Theorem A.23. An operator 𝐺 LC TI St on L2(R2,R) is unitary iff ̂︀𝑔(𝑟, 𝜃) can be written
as
∑︀

−𝐾𝐺≤𝑘≤𝐾𝐺
𝜌𝑘(𝑟)𝑎𝑘e𝑗𝑘𝜃, for 𝜌𝑘 ∈ L2(R,C) and 𝜌−𝑘𝑎−𝑘 = (−1)𝑘𝜌𝑘𝑎𝑘, and |̂︀𝑔(𝑟, 𝜃)| =

1 (almost) everywhere.

Easy Proof. We simply put together two characterizations obtained earlier, proposition 4.39
and theorem A.4.

Remark A.24 (Can we say more?). This theorem is quite limited, but the presence of
unknown radial dependencies 𝜌𝑘(𝑟) makes it impossible to characterize the fact that
|̂︀𝑔(𝑟, 𝜃)| = 1 on the different terms 𝜌𝑘(𝑟)𝑎𝑘(𝑟).

As we said before, adding the 𝛾-SI property simplifies greatly the computations as
the radial dependencies 𝜌𝑘(𝑟) = 𝑟𝛾 can be factorized. In the case of unitary steerable 𝛾-SI
operators, it turns out that they are the ones with only one term 𝑎𝑘e𝑗𝑘𝜃 in their additive
decomposition (�), and the Hermitian symmetry for real operators imposes a condition
on the coefficients so the only non-zero term can be for 𝑘 = 0.
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Theorem A.25. The identity is the only real unitary 𝛾-SI 2D steerable convolution operator.

Computational Proof. The converse is obviously true, as we mentioned it earlier:
the identity operator is indeed a convolution, it is steerable as it is rotation-invariant,
and it is unitary.

For the direct sense, we already know that 𝛾-SI + U implies 𝛾 = 0, i.e., 0-
SI. Then we know that 𝛾-SI steerable convolutions have a specific form for their
Fourier multiplier: ̂︀𝑔(𝑟, 𝜃) = 𝑟𝛾

∑︀
−𝐾𝐺≤𝑘≤𝐾𝐺

𝑎𝑘e𝑗𝑘𝜃, so 𝛾 = 0 implies that G is a
(Hermitian symmetric) sum of iterated complex Riesz transforms. Now |̂︀𝑔(𝑟, 𝜃)|2 =
1 implies ̂︀𝑔(1, 𝜃)̂︀𝑔(1, 𝜃) = 1, for all 𝜃. But this product can be developed:

|̂︀𝑔(𝑟, 𝜃)|2 = (
∑︁

−𝐾𝐺≤𝑘≤𝐾𝐺

𝑎𝑘e𝑗𝑘𝜃)(
∑︁

−𝐾𝐺≤𝑘≤𝐾𝐺

𝑎𝑘e𝑗𝑘𝜃)

= (
∑︁

−𝐾𝐺≤𝑘≤𝐾𝐺

𝑎𝑘e−𝑗𝑘𝜃)(
∑︁

−𝐾𝐺≤𝑘≤𝐾𝐺

𝑎𝑘e𝑗𝑘𝜃)

= (
∑︁

−𝐾𝐺≤𝑘≤𝐾𝐺

(−1)𝑘𝑎−𝑘e−𝑗𝑘𝜃)(
∑︁

−𝐾𝐺≤𝑘≤𝐾𝐺

𝑎𝑘e𝑗𝑘𝜃)

= (
∑︁

−𝐾𝐺≤𝑘′≤𝐾𝐺

(−1)𝑘′
𝑎𝑘′e𝑗𝑘′𝜃)(

∑︁
−𝐾𝐺≤𝑘≤𝐾𝐺

𝑎𝑘e𝑗𝑘𝜃)

|̂︀𝑔(𝑟, 𝜃)|2 =
∑︁

−𝐾𝐺≤𝑘′≤𝐾𝐺

∑︁
−𝐾𝐺≤𝑘≤𝐾𝐺

(−1)𝑘′
𝑎𝑘′e𝑗𝑘′𝜃𝑎𝑘e𝑗𝑘𝜃

(With 𝑙 = 𝑘 + 𝑘′) =
∑︁

−2𝐾𝐺≤𝑙≤2𝐾𝐺

(
∑︁

−𝐾𝐺≤𝑘≤𝐾𝐺

(−1)𝑙−𝑘𝑎𝑙−𝑘𝑎𝑘)e𝑗𝑙𝜃

So |̂︀𝑔(𝑟, 𝜃)|2 = 1 =
∑︁

−2𝐾𝐺≤𝑙≤2𝐾𝐺

(
∑︁

−𝐾𝐺≤𝑘≤𝐾𝐺

(−1)𝑙−𝑘𝑎𝑙−𝑘𝑎𝑘)e𝑗𝑙𝜃,∀𝜃

But the functions 𝜃 ↦→ e𝑗𝑙𝜃 are free for−2𝐾𝐺 ≤ 𝑙 ≤ 2𝐾𝐺, so this last equality gives
that ∑︁

−𝐾𝐺≤𝑘≤𝐾𝐺

(−1)𝑙−𝑘𝑎𝑙−𝑘𝑎𝑘 =
{︃

0 if 𝑙 ̸= 0
1 if 𝑙 = 0.

These 2𝐾𝐺 + 1 relations on the coefficients (𝑎𝑘)−𝐾𝐺≤𝑘≤𝐾𝐺
can then be used to

prove that 𝑎0 = 1 and 𝑎𝑘 = 0 if 𝑘 ̸= 0 (by using the formula for the determinant
of a circulant matrix). And so ̂︀𝑔(𝑟, 𝜃) = 1, i.e., 𝐺 is indeed the identity.
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Conclusion

In this appendix we defined the notion of unitary operators, and we started by giv-
ing some naive examples. We have a characterization for unitary convolution operators
(theorem A.4), but it turns out that the condition on ̂︀𝑔(𝜔) (|̂︀𝑔(𝜔)| = 1) is too rich to be
characterized more specifically. In particular, we explained that it is impossible to ob-
tain a finite-dimensional parametrization of the class of unitary convolution operators.
However, when 𝐺 satisfies other geometric properties (𝛾-SI or RI), the richness of ̂︀𝑔 is
greatly reduced, giving for example a very narrow result: the only unitary LC TI RI 𝛾-SI
operator is the identity. Instead, we studied a specific family, the fractional-directional
Hilbert transforms (fdHT), and despite not being a basis, its closure by composition
gives a dense family among the 2D unitary convolution operators. It is the best we can
achieve as in dimension 𝑑 ≥ 2, the class of valid Fourier multipliers is simply too rich
to be parametrized with a finite number of parameters, so having a basis is impossible.
This result is false in higher dimension, and it even seems impossible to obtain a dense
parametric family for 𝑑 > 2. We concluded by an easy, but limited, characterization of
unity for steerable and 𝛾-SI steerable operators in 2D.
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B Appendix – Additional proofs

This short appendix contains 3 proofs that were not important enough to be included
above, or part of some long proofs. Their order follows the outline of the report.

B.1 A composition of 𝑚 directional derivatives has 𝑛𝐺 = 𝑚 + 1

We moved the longer part of the proof of lemma 4.41 here. Let 𝑚 ∈ N and 𝛼1, . . . , 𝛼𝑚 ∈
R, and 𝐺 = 𝐷𝛼1 ∘ · · · ∘𝐷𝛼𝑚 . Let us show that 𝑛𝐺 = 𝑚+ 1.

Long and Hard Proof. 88 We proceed by induction, we will first prove that the fol-
lowing property89 (𝑃𝑚) is true for any 𝑚 ∈ N:

∀𝑅𝜃0 ∈ SO(2),∀𝜃 ∈ R, 𝑟𝑅𝜃0
̂︀𝑔(𝑟, 𝜃) = ̂︀𝑔(𝑟, 𝜃 + 𝜃0) = 𝑗𝑚𝑟𝑚

𝑚∑︁
𝑖=0

𝑓
[𝑚]
𝑖 (𝜃0)𝜑[𝑚]

𝑖 (𝜃).

For 𝑓 [𝑚]
𝑖 (𝜃0) def= cos𝑚−𝑖(𝜃0) sin𝑖(𝜃0) and 𝜑[𝑚]

𝑖 (𝜃) def=
∑︀
𝐽1⊎𝐽2={1,...,𝑚}(

∏︀
𝑘∈𝐽1 cos(𝜃−𝛼𝑘))

(
∏︀
𝑘′∈𝐽2 − sin(𝜃 − 𝛼′

𝑘)) with #𝐽1 = 𝑖 and #𝐽2 = 𝑚− 𝑖, for any 0 ≤ 𝑖 ≤ 𝑚.

∙ (Optional) If 𝑚 = 0, 𝐺 = Id, and so 𝑛𝐺 = 1 = 𝑚 + 1, and 𝑓
[0]
0 (𝜃0) = 1 and

𝜑
[0]
0 (𝜃) = 1, so (𝑃0) is true.

∙ If 𝑚 = 1, 𝐺 = 𝐷𝛼1 , and so 𝑛𝐺 = 2 (proposition 4.26). and 𝑓
[1]
0 (𝜃0) = sin(𝜃0),

𝑓
[1]
1 (𝜃0) = cos(𝜃0), and 𝜑

[1]
0 (𝜃) = − sin(𝜃 − 𝛼1), 𝜑[1]

1 (𝜃) = cos(𝜃 − 𝛼1). Indeed,
we already proved that

𝑟𝑅𝜃0
̂︂𝐷𝛼1(𝑟, 𝜃) = 𝑗𝑟 cos((𝜃 − 𝛼1) + 𝜃0)

= 𝑗𝑟 cos(𝜃0) cos(𝜃 − 𝛼1)− 𝑗𝑟 sin(𝜃0) sin(𝜃 − 𝛼1) (41)

= 𝑗1𝑟1
1∑︁

𝑖=0
𝑓

[1]
𝑖 (𝜃0)𝜑[1]

𝑖 (𝜃).

So (𝑃1) is true.
∙ Now if 𝑚 ≥ 1, and if (𝑃𝑚), let us show it for 𝑚 + 1. We can write 𝐺 as
𝐺′ ∘ 𝐷𝛼𝑚+1 , with 𝐺′ = 𝐷𝛼1 ∘ 𝐷𝛼𝑚 . We can apply (𝑃𝑚) to 𝐺′ (the first 𝑚
derivatives), and use the formula (41) for the last derivative 𝑟𝑅𝜃0

𝐷𝛼𝑚+1(𝑟, 𝜃).

𝑟𝑅𝜃0
̂︀𝑔(𝑟, 𝜃) =

(︀
𝑟𝑅𝜃0

̂︀𝑔′(𝑟, 𝜃)
)︀ (︁
𝑟𝑅𝜃0

𝐷𝛼𝑚+1(𝑟, 𝜃)
)︁

=
(︃
𝑗𝑚𝑟𝑚

𝑚∑︁
𝑖=0

𝑓
[𝑚]
𝑖 (𝜃0)𝜑[𝑚]

𝑖 (𝜃)
)︃

(𝑗𝑟 cos(𝜃0) cos(𝜃 − 𝛼𝑚+1)− 𝑗𝑟 sin(𝜃0) sin(𝜃 − 𝛼𝑚+1))

= 𝑗𝑚+1𝑟𝑚+1(︀ 𝑚∑︁
𝑖=0

𝑓
[𝑚]
𝑖 (𝜃0)𝜑[𝑚]

𝑖 (𝜃) (cos(𝜃0) cos(𝜃 − 𝛼𝑚+1)− sin(𝜃0) sin(𝜃 − 𝛼𝑚+1))
)︀
.

The leading 𝑗𝑚+1𝑟𝑚+1 is good, and by identifying the dependencies in 𝜃0

(for 𝑓 [𝑚+1]
𝑖 ) and in 𝜃 (for 𝜑[𝑚+1]

𝑖 ), we check easily that:

𝑓
[𝑚]
𝑖 (𝜃0) cos(𝜃0) =

(︀
cos𝑚−𝑖(𝜃0) sin𝑖(𝜃0)

)︀
cos(𝜃0)

88 We included colors, blue for 𝜃 and green for 𝜃0, hoping it will improve the readability.
89 This property is quite rich, as we have been able to fully explicit the basis of 𝑉𝑔 , but we did not find it

any use except here.
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= cos(𝑚+1)−𝑖(𝜃0) sin𝑖(𝜃0) = 𝑓
[𝑚+1]
𝑖 (𝜃0),

𝑓
[𝑚]
𝑖 (𝜃0) sin(𝜃0) =

(︀
cos𝑚−𝑖(𝜃0) sin𝑖(𝜃0)

)︀
sin(𝜃0)

= cos(𝑚+1)−(𝑖+1)(𝜃0) sin𝑖+1(𝜃0) = 𝑓
[𝑚+1]
𝑖+1 (𝜃0).

And for 𝜃0, we recognized the long formula (without expanding it):

𝜑
[𝑚]
𝑖−1(𝜃0)⏟  ⏞  

def= 0 if 𝑖=0

cos(𝜃 − 𝛼𝑚+1)− 𝜑
[𝑚]
𝑖 (𝜃0)⏟  ⏞  

def= 0 if 𝑖=𝑚+1

sin(𝜃 − 𝛼𝑚+1) = 𝜑
[𝑚+1]
𝑖 (𝜃0).

And so we proved the formulas for 𝑓 [𝑚+1]
𝑖+1 and 𝜑[𝑚+1]

𝑖 , i.e., (𝑃𝑚+1).

Now that (𝑃𝑚) has been proved (for any 𝑚), let us use it to prove the required
result of steerability of 𝐺, i.e., on the dimension of 𝑉𝑔 (as a sub-space of functions
of R2 → R). But (𝑃𝑚) gives a nice formula for 𝑟𝑅𝜃0

̂︀𝑔, as its dependency in 𝜃0 are

only in the functions 𝑓 [𝑚]
𝑖 , 0 ≤ 𝑖 ≤ 𝑚.

Let us prove (𝑄𝑚), that (𝑓 [𝑚]
𝑖 )0≤𝑖≤𝑚 is a free family (as functions of 𝜃0), again

by induction on 𝑚 (of step size 2 this time). For one example, with 𝑚 = 4, see
figure 22.

Figure 22: The functions 𝑓 [𝑚]
𝑖 (𝜃0) for 1 ≤ 𝑖 ≤ 𝑚 − 1, for 𝑚 = 4 (normalized to bound

their values in [−1, 1]). Obtained with this Python script (click). We can observe the
linear independence we just proved.

∙ For 𝑚 = 0, 1 it is obvious, from the form of the functions (1 for 𝑚 = 0, and
cos, sin for 𝑚 = 2). So we have (𝑄0) and (𝑄1).

∙ Now, for 𝑚 ≥ 2, if we have (𝑄𝑚−2), let us prove (𝑄𝑚),

Let (𝜆𝑖)0≤𝑖≤𝑚 ∈ R𝑚+1 so that
∑︀𝑚
𝑖=0 𝜆𝑖𝑓

[𝑚]
𝑖 (𝜃0) = 0 (for all 𝜃0). Taking the

special values at 𝜃0 = 0 and 𝜋/2 gives 𝜆0 = 0 (only one cos𝑚(0) = 1 stays)
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and 𝜆𝑚 = 0 (only one sin𝑚(𝜋/2) = 1 stays). Now, on (0, 𝜋/2), we have

0 = cos(𝜃0)
(︃

𝑚−1∑︁
𝑖=1

𝜆𝑖 cos𝑚−𝑖−1(𝜃0) sin𝑖−1(𝜃0)
)︃

sin(𝜃0)

0 = cos(𝜃0)⏟  ⏞  
̸=0

(︃
𝑚−2∑︁
𝑖′=0

𝜆′
𝑖′ cos𝑚−2−𝑖′

(𝜃0) sin𝑖′
(𝜃0)

)︃
sin(𝜃0)⏟  ⏞  

̸=0

=⇒ 0 =
𝑚−2∑︁
𝑖′=0

𝜆′
𝑖′𝑓

[𝑚−2]
𝑖 (𝜃0),∀𝜃0 ∈ (0, 𝜋/2).

So
∑︀𝑚−2
𝑖′=0 𝜆

′
𝑖′𝑓

[𝑚−2]
𝑖 (𝜃0) = 0 for all 𝜃0, except for 4 points, 0, 𝜋/2, 𝜋, 3𝜋/2, but

as we are dealing with continuous functions, discrete values do not matter.
And so we find 0 written as a linear combination of the functions 𝑓 [𝑚−2]

𝑖 ,
which are free by the induction hypothesis (𝑄𝑚−2), so all the 𝜆′

𝑖′ are 0, and
so 𝜆𝑖 = 0, ∀0 ≤ 𝑖 ≤ 𝑚. And so we proved (𝑄𝑚).

Now, to conclude, the linear independence of this family, of size 𝑚 + 1, is
enough to show that 𝑛𝐺 = dimR 𝑉𝑔 ≥ 𝑚+1. But we already knew that 𝑛𝐺 ≤ 𝑚+1,
so we have 𝑛𝐺 = 𝑚+ 1 as wanted.

B.2 Viète formulas to develop cos(𝑘𝜃) and sin(𝑘𝜃)

We include here a small lemma used in the proof of proposition 4.46, and its proof.

Lemma B.1 (Viète formula for cos(𝑘𝜃)). For any 𝜃, 𝛼 ∈ R, 𝑘 ∈ N*, we have

cos(𝑘𝜃) =
⌊𝑘/2⌋∑︁
𝑙=0

(︃
𝑘

2𝑙

)︃
(−1)𝑙

(︀
cos(𝜃)

)︀𝑘−2𝑙(︀ cos(𝜃 − 𝜋

2 )
)︀2𝑙
. (42)

Proof. It is a classic computation from the binomial theorem applied to e𝑘𝜃 = (e𝜃)𝑘
and by taking the real part of the left-hand side, R(e𝑘𝜃) = cos(𝑘𝜃), and the real
part of the right-hand side, R((e𝜃)𝑘) = R(

∑︀𝑘
𝑙=0
(︀𝑘
𝑙

)︀
cos(𝜃)𝑘−𝑙(𝑗 sin(𝜃))𝑙). ⌊𝑘/2⌋ is

the lower integer part of 𝑘/2 (i.e., the biggest integer to be smaller or equal to 𝑘/2).
We have a similar formula for sin(𝑘𝜃), as a direct application of cos (42):

sin(𝑘𝜃) = cos(𝑘(𝜃 − 𝜋

2𝑘 ))

=
⌊𝑘/2⌋∑︁
𝑙=0

(︃
𝑘

2𝑙

)︃
(−1)𝑙

(︀
cos(𝜃 − 𝜋

2𝑘 )
)︀𝑘−2𝑙(︀ cos(𝜃 − (𝜋2 + 𝜋

2𝑘 ))
)︀2𝑙
.
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B.3 The Fourier coefficients of c(𝜃) are mutually orthogonal projections

We include here the proof of an intermediate result used in the proof of theorem 4.28.

Proof. Let us check these two identities on the Fourier coefficients of the 𝑞 × 𝑞
matrix-valued function c(𝜃), defined by c𝑘 = 1

2𝜋
∫︀ 𝜋

−𝜋 c(𝜃)e−𝑗𝑘𝜃d𝜃:{︃
c2
𝑘 = c𝑘 for every 𝑘 ∈ Z,

c𝑘1c𝑘2 = 0 for every 𝑘1 ̸= 𝑘2 ∈ Z.

∙ For 𝑘 ∈ Z,

c2
𝑘 =

(︂ 1
2𝜋

∫︁ 𝜋

−𝜋
c(𝜃)e−𝑗𝑘𝜃d𝜃

)︂2

=
(︂ 1

2𝜋

)︂2 ∫︁ 𝜋

−𝜋

∫︁ 𝜋

−𝜋
c(𝜃)e−𝑗𝑘𝜃c(𝜃′)e−𝑗𝑘𝜃d𝜃d𝜃′

(Thanks to (20)) =
(︂ 1

2𝜋

)︂2 ∫︁ 𝜋

−𝜋

∫︁ 𝜋

−𝜋
c(𝜃 + 𝜃′)e−𝑗𝑘(𝜃+𝜃′)d𝜃d𝜃′

(With 𝜃′′ = 𝜃 + 𝜃′) =
(︂ 1

2𝜋

)︂2 ∫︁ 𝜋

−𝜋
c(𝜃′′)e−𝑗𝑘𝜃′′

(︂∫︁ 𝜋

−𝜋
1 d𝜃

)︂
⏟  ⏞  

=2𝜋

d𝜃′′

= 1
2𝜋

∫︁ 𝜋

−𝜋
c(𝜃′′)e−𝑗𝑘𝜃′′d𝜃′′ = c𝑘.

∙ For 𝑘1 ̸= 𝑘2 ∈ Z,

c𝑘1c𝑘2 =
(︂ 1

2𝜋

)︂2 ∫︁ 𝜋

−𝜋

∫︁ 𝜋

−𝜋
c(𝜃)e−𝑗𝑘1𝜃c(𝜃′)e−𝑗𝑘2𝜃′d𝜃d𝜃′

(Thanks to (20)) =
(︂ 1

2𝜋

)︂2 ∫︁ 𝜋

−𝜋

∫︁ 𝜋

−𝜋
c(𝜃 + 𝜃′)e−𝑗𝑘1𝜃e−𝑗𝑘2𝜃′d𝜃d𝜃′

(With 𝜃′′ = 𝜃 + 𝜃′) =
(︂ 1

2𝜋

)︂2 ∫︁ 𝜋

−𝜋

∫︁ 𝜋

−𝜋
c(𝜃′′)e−𝑗𝑘2𝜃′′e−𝑗(𝑘1−𝑘2)𝜃d𝜃d𝜃′′

=
(︂ 1

2𝜋

)︂2 ∫︁ 𝜋

−𝜋
c(𝜃′′)e−𝑗𝑘2𝜃′′

(︂∫︁ 𝜋

−𝜋
e−𝑗(𝑘1−𝑘2)𝜃d𝜃

)︂
⏟  ⏞  

=0 as 𝑘1−𝑘2 ̸=0

d𝜃′′ = 0.
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