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Master M2 MVA 2015/2016 - Graphs in ML - TP 1

By: Lilian Besson (1ilian.besson at ens-cachan.fr).

Attached programs

The programs for this TP are included in the zip archive I sent, and are regular MATLAB /Octave programs
(tested with Octave only, v3.8 and v4, on both Linux and Windows).

Problem 1 : Graph Construction

Question 1.1

Remark: See the code build_similarity_graph.m for more details.

For k-nn graph, the value of o2 does not influence the links of the graphs, but it does influence the weights.
Indeed, whatever o2 is, the exponential similarity function will give the same ordering of k closest neighbors of
one node i, as showed in Figure [T}

Graph knn with threshold:4, sigma*2:1, 200 points, and dist: blobs Graph knn with threshold:4, sigma”2:100000000, 200 points, and dist: blobs
T T T T

Figure 1: A 4-nn graph for 200 points, with o2 = 1 on the left but ¢ = 10® on the right (same structure).

Therefore, I think we cannot see a relationship between the structures of these two graphs:

1. a k-nn graph with large k& and small o2 (it will be very densely connected but with very small non-1
weights),

2. a k-nn graph with small k and large o2 (it will be very sparse but with high non-zero weights),

Question 1.2

Right now, the graph construction algorithms (the two variants, k-nn or €) cannot scale to “big” graphs because
of their time complexity:

o exponential_euclidean is always in O(n?d) (whatever the o) for n samples of dimension d,

e k-nn graph construction is in O(n? min(k,log(n))) (we have to take the k smallest elements of a vector of
size n, n times),

o and ¢ graph construction is also in O(n?).
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Both the two variants face the same limitation of running in time O(n?) (or worse).

Another issue is the memory complexity, ie. the way we store the graph matrices G and similarities: if
we use dense matrices, they will have occupy a memory size of O(n?), no matter the way we build the graph.

One possible improvement is to use sparse matrices for G, but I do not see a way to compute either the k-nn
or the e graph without entirely computing the simﬂaritie&ﬂ Ideas for a real improvement could be parallelization,
or building only an approximation of the graph.

Question 1.3

For the worst_case_blog distribution, the parameter dist_options define the distance between the blob (the
n — 1 first points) and the last point which is located on the right of the blob. The higher dist_options will
be, the further that last point will be.

That distribution is called “worst case” because it will be shaped exactly like an unique blob, except with
one alien point really far away from the others.

Question 1.4

The generating parameter (dist_options) will move away the last generated point. Hence, in order to have a
connected graph, we must choose a very low epsilon.

In our experiments, with 300 points and o2 = 0.50:

« For a distance of 0, for instance, € is computed as 10! which is already small.
« For a distance of 2, for instance, € is computed as 10727!
o For a distance of 10, for instance, € is computed as 10750 (which is extremely small!).
 In fact, after a certain value (20 in our experiments), the graph cannot be connected anymore as the last
point has a similarity of 0 with all the other points.
Question 1.5

o It is easier to build a k-nn connected graph when the data is separable by affine plans (like for the blobs
distribution),

o Oppositely, it is easier to build a e connected graph when the data is compact class-wise (like blobs or
two_moons).

Problem 2 : Spectral Clustering

Question 2.1

For this first example, two_blobs_clustering.m generates two compact blobs, so if k is too small, a k-nn
graph will have two separated connected components. Hence, in order to keep the graph connected, we choose
a k-nn graph with k£ = 16 (I tried different values, starting from 2 before having one unique click from k > 16),
and we arbitrarily chose 02 = 0.5 (but it seems to not influence the result very much).

Therefore for spectral clustering we have taken the first two eigen-vectors corresponding to the unique zero
eigen-value (ug, Ag = 0) and the smallest non-zero eigen-value (uj, with Ay = 9.672e-03). Then we could
have done as seen in the class (“Relaxing Balanced Cuts”), by computing the sign of the spectral coordinate,
but this might have been two simple (it works here, but not in general). So instead, we have run a k-means

1 Indeed, we either have to sort them and pick the k smallest or to filter them — both operations require the entire array of
similarities between a point i and all the others points. ..
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algorithIrEl on the rows of the matrix U containing the vectors ug and u; as column, and assigned the resulting
labels to our original samples (x;).

The results are plotted bellow (Figure :

True Labels Spectral Clustering k-means

Figure 2: k-nn: True clusters vs Spectral clustering vs k-means (connected graph).

This leads to a perfect separation for spectral clustering thanks to the chosen values of ug and u;. We get
the same results with k-means, thanks to the compactnessﬂ of the data.

Question 2.2

This time, in order to build a graph with two separated connected components. We choose an e-graph with
€ = 0.5 to have exactly two separated blobs (I tried different values, from 0.1 to 1.0), and we arbitrarily chose
02 = 0.5 (but it does not influence the result very much).

Therefore for spectral clustering we have taken the first two eigen-vectors corresponding to the two zero
eigen-values. That is the easier case: each eigen-vector leads to the indicator of its cluster. Their values are
u; = 1o, and ug = 1¢, where (1¢,) j = 1lgec; and C; the i-th cluster. Then we have run a k-means algorithm
on the rows of the matrix U containing the vectors u; and us as column, and assigned the resulting labels to
our original samples (z;).

The results are plotted bellow (Figure |3):

True Labels Specitral Clustering k-means

Figure 3: e-graph: True clusters vs Spectral clustering vs k-means (2 connected components).

The second choice of type of similarity graph also leads to a perfect separation for spectral clustering. We
get the same results with k-means, thanks to the compactness of the data.

2 Thanks to the built-in kmeans function of Octave/Matlab, even if we could have rewritten ourself — it’s not that complicated.
3 This works because we worked with two_blobs_clustering.m that generates two compact blobs.
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Question 2.3

For the choose_eig_function, we implement the elbow heuristic: the goal is to choose the number k such
that all eigen-values A1, ..., A are very small, but A\;4; is relatively large in comparison (first big eigen gap).

In practice, for the first example with ¢ = 0.03, I chose to build a 8-nn graph, and we found k = 4, as
expected (there is 4 blobs). The adaptative_spectral_clustering function works quite well, giving a perfect
separation once again. The results are plotted bellow (Figure F_l[), along with the first 15 eigen-values (we can
clearly seen the “elbow” at k = 4):
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Figure 4: 8-nn graph: True clusters vs Adaptive Spectral clustering, and first 15 eigen-values (clear elbow).

Question 2.4

For the same example but with 02 = 0.20, we see that building either a k-nn or an € graph will be harder, as
the 4 blobs are mixed. The adaptative_spectral function worked very well, with the choice of 3 eigen values,
but adaptative_spectral_clustering failed, because the elbow rule has difficulty to chose 3 eigen values.
The results are plotted bellow (Figure [5)), along with the first 15 eigen-values (the “elbow rule” is less obvious):
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Figure 5: 8-nn graph: True clusters vs Spectral clustering, and first 15 eigen-values (unclear elbow).

The main difference we observe for this larger value of o2 is that the data are now more compact. But The
k-means clustering works quite well too.

Question 2.5

The number of 0 in the spectrum gives the number of connected components. So if we expected the data to be
really clustered in k groups but we find a different number of connected components, maybe the graph was
wrongly built.

Looking at the distribution of the eigen-values can help us to determine if our cluster are well defined of not,

the larger the gap of the bend will be, the better our clusters will be determined. I do not see other information
that could be read on the spectrum.

Question 2.6

Here we compare spectral and k-means clustering on the “two moons” dataset, and we observe for the first time
that k-means fails while spectral clustering works perfectly well (either with a 5-nn graph or with a e-graph
with ¢ = 0.5, and both had ¢% = 0.5). The results with a 5-nn and a ¢ similarity graphs are plotted bellow
(Figures [6] and [7):

True Labels Spectral Clustering k-means

Figure 6: € graph: True clusters vs Spectral clustering vs k-means (2 connected components).
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True Labels Spectral Clustering k-means

Figure 7: 5-nn graph: True clusters vs Adaptive Spectral clustering vs k-means (2 connected components).

Question 2.7

Here we compare spectral clusterings with L and L,.,, respectively the Laplacian and the “random walk”
regularized Laplacian of the similarity graph, on the “point and circle” dataset. We observe for the first time
that the first one fails to separate the point from the circle, while the random walk clustering works perfectly
well, with a 20-nn graph (but not for a e-graph), and o2 = 0.5 stayed constant).

The results are plotted bellow (Figures [8| and E[):

True Labels Spectral Clustering k-means

Figure 8: 20-nn graph: True clusters vs Spectral clustering with L vs k-means (failing).

True Labels Spectral Clustering k-means

Figure 9: 20-nn graph: True clusters vs Spectral clustering with L., vs k-means (works well).

We can interpret this difference of performance by the fact that the random-walk clustering takes even more
into account the connectivity of the graph. If we normalize, we do observe a much better clustering, and this is
because here we are approximating the Normalized Cut problem, and this leads to have more “homogeneous’
clusters. We can see on the figure above, that even if we do not retrieve the original segmentation we retrieve
something very consistent. As in the previous example, k-means is not adapted to solve this problem.

i
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Question 2.8

For visualizing the ARI “performance score” as a function of the similarity graph parameter (k or €), we work
here with the “two moons” dataset (with N = 500 points). The results are plotted bellow (Figures (10| and .

e For the € graph, we chose to make the parameter vary from 0.05 to 0.95 with a step of 0.05, and as expected
the ARI score has a maximum value of 1 for some values of € (as seen in Question 2.6). (Figure

Parameter Sensitvity for k-nn graph spectral custering

ARI clutering performance

Figure 10: k-nn graph: ARI performance as a function of k = 1...20.

e For the € graph, we chose to make the parameter vary from 0 to 1 with a step of 0.1, and as expected the
ARI score has a maximum value of 1 for some values of £ (as seen in Question 2.6). (Figure |11)

Parameter Sensitvity for espilon graph spectral custering
T T

ARl clutering performance

Parameter epsilon n [0, 1] step h 0.1

Figure 11: € graph: ARI performance as a function of e =0 : 0.1 : 1.

As we can observe there exists a “stability area” for both type of graph. But we also can get very poor
results, even for values close from the good ones: hence they cannot be qualified as stable.

Question 2.9

In ARI we use the label inherent to the creation of the distribution. They are “true” in the sense that they are
the original ones, but they not necessarily are the labels of the best (ie. most useful) clustering. If we did not
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have the “true” labels, we could try to evaluate the quality of our clusteringﬂ by looking at the stability of
our clustering over experiments or looking if our clusters are homogeneous (but we must define a measure for
homogeneity before, not an easy task).

Question 2.10

We used eig and not eigs in the spectral_clustering and spectral_clustering_adaptative functions.

o The first one, eig(A) computes all the eigen-values (and eigen-vectors) of the matrix (solves the eigen
problem Az = Az), and eig(A, D) computes all the eigen-values (and eigen-vectors) of the matrix (solves
the generalized eigen problem Ax = ADxz).

e The second one eigs offers many options, but simply said: eigs(A, K) computes only the first K
eigen-values (and eigen-vectors), and eigs(A, B, K) gives the first K solution to the generalized problem
(Az = ABz).

Therefore, using eigs rather than eig is useful when we need to compute only few eigen-values. For spectral
clustering, we usually only need the smallest ones, and computing for example only the 20 smallest ones should
be faster than computing all of them (and it is enough for our examples here, as we saw where is the bend each
time). In practice, I did not observed any speedup on this aspect. ..

Question 2.11

eigs scale to large graphs better that eig but both will be limited for very large graphs. We could use
parallelization for speeding up the construction process, but I do not know exactly how (how to split up the
data and so the graph in sub problems that can be run in parallel?).

Question 2.12

We used k-means, but I don’t know what thresholding refers to for this situation.

Problem 3 : Image Segmentation

Question 3.1

Cf. image_segmentation.m. We have not done anything too complicated or fancy here.

We chose the e-graph variant, with a small € = 0.005 and a high value for o2 = 90 (in order to have a
densely connected graph). We tried to cluster the image into 6 clusters (the white background, the gray shadows
and 4 balls — T also tried to assimilate white and gray, to just have 5 clusters).

As suggested, we improved the function exponential_euclidean to use pdist to be more efficient, and
build_similarity_graph for € graph with a one-liner W = similarities .* (similarities >= eps) which
is way quicker than two for loops (Matlab/Octave have this weakness). Still, our code was quite long to run (22
seconds for building the 5000 x 3 similarity graph, 29 seconds to build to Laplacian, 75 seconds for non-adaptive
clustering, 82 for adaptive clustering. . .).

First, we tried with non-adaptive spectral clustering, by choosing manually 5 eigen values (I also tried other
values), see Figure

4 The page https://en.wikipedia.org/wiki/Cluster_analysis#Evaluation_and_assessment explains other possibilities.
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Original image Spectral Clustering (5 eigen values)
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Figure 12: Example of non-adaptive image segmentation (5 eigen values).

Then, the adaptive version gives similar results, and we clearly have been able to obtain better results with
the adaptive one, see Figure

Original image Adaptive Spectral Clustering
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Figure 13: Example of a “good” image segmentation (with “elbow” rule).

We also tried to implement two tricks found on-line: one is to add two more features, x and y coordinates
(1:50 here), but it failed greatly; and the other one is a trick to assimilate white and grays by removing to each
RGB triplet (r,g,b) its mean (so white and any grays (g, g, g) will be projected to the same color (0,0,0)), and
it worked quite well (we used it for the two figures [12| and [L3| above).

Question 3.2

We could observe the image at different scales, for example we could reduce its size to something we can cluster
more easily, by averaging pixels (it would be like blurring the image). Then if we want to use all the pixels we
have, we can cluster on the clusters previously obtained in a recursive manner. Also we could parallelize the
computations, as said in 2.10 (even if I don’t know how to do it).

Conclusion

Remark: I found the TP to be really too long, and both hard and tedious, so I really did not enjoyed it, sorry.
Note: I edited the images with Gimp| in order to remove useless white parts, but nothing was modified.
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